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Within the context of learning a rule from examples, we study the general characteristics of learning with
ensembles. The generalization performance achieved by a simple model ensemble of linear students is calcu-
lated exactly in the thermodynamic limit of a large number of input components and shows a surprisingly rich
behavior. Our main findings are the following. For learning in large ensembles, it is advantageous to use
underregularized students, which actually overfit the training data. Globally optimal generalization perfor-
mance can be obtained by choosing the training set sizes of the students optimally. For smaller ensembles,
optimization of the ensemble weights can yield significant improvements in ensemble generalization perfor-
mance, in particular if the individual students are subject to noise in the training process. Choosing students
with a wide range of regularization parameters makes this improvement robust against changes in the unknown
level of corruption of the training dat§S1063-651X%97)00701-(

PACS numbds): 87.10+e, 05.90+m, 02.50.Wp

[. INTRODUCTION partitioned among the individual predictors in a way that
optimizes the ensemble performance.

The methods of statistical mechanics have been applied Ten copies of the same weather forecast obviously con-
successfully to the study of neural networks and other syst@in exactly the same amount of information as just one
tems that can learn rules from examplésr reviews see, COPY- By obtaining terdifferentforecasts, however, it may
e.g., Refs[1,2]). The main issue is normally the question of actually be pos_S|bIe to predict tomorrow’s weather more ac-
generalization Given a set of training examples, i.e., pairs of cu_rately, even if the for_ecasts are all based on the same sat-
. : : ellite data. The same is true quite generally for ensemble
inputs and cprrespondlng outputs p‘rloduced ”accs)‘rdlng tPearning; only if the predictors in an ensemble are different is
sonJe underlying but unknown rulghe t(_aacher or tar-  ihere something to be gained from using an ensemble. This
get”), one wants to generate, by a suitable training algoqpyious insight was quantified in RéB] by a relation stat-
rithm, a predictor (the “student”) that generalizes, i.€., jng that the generalization error of a weighted combination
makes accurate predictions for the outputs corresponding tgy predictors in an ensemble is equal to the average error of
inputs not contained in the training set. the individual predictors minus the “disagreement” among

More recently, it has emerged that generalization perforthem, which we refer to as the ambiguity. For completeness,
mance can often be improved by training not just one prethe derivation of this basic relation is reviewed in Sec. Il. In
dictor, but rather using an ensemble, i.e., a collection of &ef.[9], a combination of the ensemble idea and the method
(finite) number of predictors, all trained for the same task.of cross-validation was also suggested. It is implemented by
This idea of improving generalization performance by com-training each student only on a subset of the available data
bining the predictions of many different predictors has beerand “holding out” the remaining examples for testing its
investigated extensively in statistics; see, e.g., R&s5|. performance. There are several reasons why this approach is
Within the context of neural network learning, ensemblesuseful. First, one can obtain ambiasedestimate of the en-
have also been studied by several groups; see, for instancsemble generalization error, even though the ensemble as a
Refs. [6—9]. Usually the predictors in the ensemble arewhole is trained on all available data. Second, by training the
trained independently and then their predictions are comindividual students on different subsets of the training data,
bined. This combination can be done by majofity classi-  they are made more “diverse,” and so it should be possible
fication) or by simple averagingin regressiop but one can to reduce the ensemble error by increasing the ambiguity
also use awveightedcombination of the predictor. We focus more than the errors of the individual students. Third, the
on the latter method in the following. Other schemes forambiguity can be estimated from the distribution of inputs
combining predictors exist, such as mixtures of explett§,  (without the corresponding target outpugdone, which can
where the weighting of the ensemble members is highly noneasily be sampled in many practical applications. By estimat-
linear, and boosting11,12), in which the training data are ing the ambiguity accurately, the optimal weight for each

student in the ensemble can then be determined to a similar
degree of precision.

*Present address: Centre for Biological Sequence Analysis, Uni- The method outlined above raises several interesting
versity of Denmark, Building 206, DK-2800 Lyngby, Denmark. questions. First, it would be interesting to see under which
Electronic address: krogh@cbs.dtu.dk circumstances one can actually improve the ensemble gener-

"Electronic address: P.Sollich@ed.ac.uk alization performance by training each student only on a sub-
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set of the available data. A second question is how large guantifies the disagreement among the predictors on input

fraction of the data set should be held out to obtain the lowx; it is simply the variance of their outputs around the

est ensemble generalization error. Finally, one would like toveighted ensemble mean. The quadratic errors of predictor

know whether it is useful to have students differ, for ex-k and of the ensemble are

ample, in the amounts of regularization they use or whether

it is more advantageous to have an en_semb!e of identically () =[y(x)— ()3,

regularized students. In this paper we investigate these and

other questions quantitatively. By turning to the simplest of _

all models for the students, the linear perceptron, we obtain e(x)=[y(x)—f(x)1%,

analytical results for the generalization performance of the

ensemble as a function of noise in the data, noise in theespectively. Adding and subtractiygx) in (1) yields, after

training process, the amount of regularization on the studentg few manipulations,

and, finally, the size of the training sets of the individual

students and their overlaps. The behavior that we find for this

simple system is surprisingly rich and sufficiently nontrivial

to allow general conclusions to be drawn. We believe that ) .

these conclusions will, at least to some extent, also hold fowhere it was used that the weighig sum to one and we

more complex, nonlinear learning systems. have defined the average error of the individual predictors
For the case of an ensemble of unregularized linear stu€(X) = Zore(X).

dents, two limiting cases of our analysis have previously Let us now assume that the inputs sampled randomly

been studied in Ref13]: the limit in which all the students from a probability distributiorP(x). The above formulas can

are trained on the full data set and the one where all trainin?‘e averaged over this distribution and the corresponding

sets are mutually non-overlapping. The main contribution ofstochastit target outputs/(x). If we define the average of

the present paper is that we are able to treat the case 6fX) to be theensemble generalization errer, then we ob-

intermediate training set sizes and overlaps exactly, yieldinggin, by averaging2),

detailed insights into ensemble learning. Furthermore, our

analysis also allows us to study the effect of noise in the e=e—a. 3

training algorithm, the influence of having different regular-

izations for the students in the ensemble, and the perforT

mance improvements that can be gained by optimizing th

weights with which individual students contribute to the en-

semble predictions. A short account of some of this work ha

appeared in Ref.14].

e(x)=e(x)—a(x), @

he first term on the right-hand side is the weighted average
9f the generalization errors of the individual predictors
‘€=, wye), While the second is théaverage ensemble
mbiguity

a= a.= £ — F(X)]2)s. 4
Il. GENERAL FEATURES OF ENSEMBLE LEARNING ; @ik ; O[O0 = FO0 1 @

A. Ensemble generalization error and ambiguity ) ] . ]
The general relatioi3), which has been previously derived

_Let us consider the task of predicting a rLgkeache) in Ref.[9], shows clearly that the more the predictors differ,
given by a target functiori, mapping inputsce ™ 10 oUt-  hq |ower the ensemble error will be, provided the individual
puts ye R. We assume that we can obtain only noisygrrors remain constant. We want the predictors to disagree.
samples of _thls mapping and denote the resulting stochastig,qther important feature of Eq3) is that it decomposes
target functiony(x). Assume now that an ensemble Kf e generalization error into a term that depends only on the
independent predictor(x) of y(x) is available. Weighted  generajization errors of the individual predictors and another
averages over this ensemble will be denoted by an overbajarm that containall correlations between the predictors.
The final output of the ensemble, for example, is given by pyrthermore, as Eq4) shows, the correlation teracan be

L estimated entirely fronunlabeled datai.e., no knowledge is
f(X)= 2, wf(X). required of the actual target function. The term “unlabeled
k example” is borrowed from classification problems, and in

this context it means an input for which the value of the

. . L ) target outputy(x) is unknown.
We can think of weightwy as our belief in predictok and Parenthetically, we note that our definition of the gener-

therefore constrain the weights to be positive and t0 sum Qjization error includes a contribution arising from the sto-
one. _ o , chasticity of the target outputs alofreamely, the variance of
We define theambiguityon inputx of a single member of y(x), averaged ovek]. Equation(3) also holds when this
the ensemble aay(x) =[fx(x) —f(x)]%. The ensemble am- jrrelevant constant is dropped on both sides, and this is in-
biguity on inputx, deed what we shall do in our explicit calculations of the
generalization error below. We also observe from E).
that the generalization error of the ensemble is always
a_(x)=2 wkak(X)=E o F(X) —f_(x)]z, (1) smal.ler than me(weighfced average error of .the individual
K K predictors,e<e. In particular, for uniform weights
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1 react very similarly to different training sets. In the opposite
€= REK €, case where the fluctuations of the students are completely
uncorrelated, one has

which has been noted by several authors, see, e.g.[Ref.

B. Bias and variance V(x)= ; wi([Afk(X)]z>xﬂyy,¢, )

All our observations up to this point do not depend on
how the predictord, are obtained. In the rest of this paper,
we assume that thig are generated on the basis of a trainingwhich for approximately uniform ensemble weights
set consisting ofp examples of the target function, (., ~1/K) is significantly lower[by a factor of O(1/K)]
(x*,y¥), u=1, ... p, wherey”=fo(x*) + 7", with 7" be-  than the averagés) of the individual variances. We expect,
ing zero mean additive noise. In this context, it is natural tofherefore, that ensemble learning is most useful in circum-
refer to thefy as students and to focus on theerageen-  stances where the generalization errors of the individual stu-
semble generalization error as the main quantity of interesyents are dominated by variance rather than bias. This ex-
The average is taken over all training sets, i.e., over all set§ectation will be confirmed by our results for a simple model
of training inputsx*, randomly and independently sampled system, to be described in the following sections.
from P(x), and the corresponding noisy training outputs
y*. Decomposing the ensemble outg(k) into its average
over all training setgf(x) )« and the deviationAf(x) C. Training on subsets
from this average, one can write the average ensemble gen- s pointed out in the Introduction, the students in the

eralization error as ensemble need not be trained on all available training data.
In fact, since training on different examples will generally

— —f ()12
(€hyn=(LYO) = F(X) ]y by increase the ambiguity, it is possible that training on subsets
_ —(F(; 2y L UTAF() T2 of the data willimprovegeneralization performance. An ad-
QYO0 ={FODD sy Dy CLATOO sy ditional advantage is that, by holding out a different part of
:(Bz(x,y))xvy+<V(x)>X. (5)  the total data set for the purpose of testing each student, one

can use the whole data set for training the ensemble and still
The first and second terms on the right-hand sidéspfare  get an unbiased estimate of the ensemble generalization er-
normally referred to agsquaredl bias and variance of the ror. Denoting this estimate by, one has simply
ensemble outpuboth averaged over the test inpuand test

outputy), respectively{15]. Since the bias of the ensemble e= €S- 5, (8)
B(x,y)=y(x)—<f(x)>xﬂyy,¢=; @[ Y(X) = (P00 ) yu] where €®5= 3, wyel®! is the average of the students’ test

errors anda is an estimate of the ensemble ambiguity, ob-
is simply the average of the biases of the individual studentgained from unlabeled examples as explained aljd6¢
ensemble learning normally cannot be expected to yield a So far, we have not mentioned how to find the ensemble
significant reduction in bias compared to learning with aweightsw, . Often uniform weightss,= 1/K are used, but it
single student. The variance of the ensemble output, on this tempting to optimize the weights in some way. In Refs.

other hand, is given by [7,8], the training set was used to perform the optimization,
i.e., the weights were chosen to minimize the ensemble train-
2 ing error. This can easily lead to substantial over-fitting, as
V(x)= < ( > “’kAfk(X)) > we shall show below. It has therefore been suggel@gtb
Xk, yk minimize the estimated generalization er(@®) instead. If

this is done, the estimat€8), evaluated at the optimized
= ok (AT OO ATI(X) )y weights, is of course no longer unbiased; intuitively, how-
k! ever, we expect the resulting bias to be small for large en-
embles. A quantitative analysis of this point is beyond the
cope of our present analysis, since the fluctuations of the
test errors around the corresponding generalization errors
vanish in the thermodynamic limit considered below, making
V(X)gE wk<[Afk(X)]2>X#'y#' (6) the e;timate(8) not only unbiase_d,. but in fact exact. Note
K that since both the ensemble training error and the ensemble
generalization error involve only terms linear and quadratic
This bound is saturated when the fluctuations of the studen the ensemble outpynd hence in the ensemble weights
outputs(as functions of hypothetical “fluctuations” in the ), finding the corresponding optimal, is simply a qua-
training sel are fully correlated and of equal variance, con-dratic optimization problem, made nontrivial only by the
firming again the intuition that the benefit of ensemble learnconstraints that the weights should be positive and sum to
ing is small if all students are identical in the sense that theyne.

It is upper bounded by the average of the variances of th§
individual students:
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Ill. ENSEMBLES OF LINEAR STUDENTS come identical to their typical values for a particular training
set. For linear students, it was shown in Re2] that, in
general, the exact average case results obtained in the ther-
In preparation for our analysis of learning with ensemblesmodynamic limit are good approximations even for system
of linear students we now briefly review the case of a singl&sizesN as small as a few tens or hundreds, and we expect the
linear student, also referred to as a “linear perceptron.”same to hold for our analysis of ensemble learning with lin-
Such a student implements the input-output mapping ear students.
Let us assume that the training inputs are chosen ran-
F(x)= inx domly and independently from a Gaussian distribution
N P(x)=<exp(—3x?) and that training outputs are generated by
a linear target function corrupted by noise,
parametrized in terms of ad-dimensional parameter vector y”=ng"“/\/ﬁ+ n*, where »* is zero mean additive noise
w with real components; the scaling factor/N is intro-  with varianceo?. Fixing the length of the target parameter
duced for convenience and T denotes the transpose of a veeector towgz N for simplicity, the resulting generalization
tor. The student’s parameter vectoishould of course not be error of a linear student with weight decayand learning
confused with the ensemble weighig. The most common noiseT can be written a$23]
method for training such a linear studdpt parametric in-

A. Linear perceptron learning

ference models in genejals minimization of the sum-of- o 2 ﬁ
squares training error €= (0" +T)GHA(o"=A) o (10
- u 12 On the right-hand side of this equation we have dropped the
E _zﬂ: [y“=f(x*)] term arising from the noise on the target function alone,
which is simply o?; this convention will be followed
wherex=1, ... p numbers the training examples. To pre- throughout. The “response function'G is defined as

vent the student from fitting noise in the training data, aG=(1/N)tr(g), whereg™" is half the Hessian of the energy

weight decay term is often added, and one minimizes théunctionE defined in(9) and() is an average over the train-
energy function ing inputsx*. Explicitly, g can be expressed as

E=E'+ w2 (9) g i=A1+A, (11
instead. The size of the weight decay paramstdetermines  Wherelis theNXN unit matrix and
how strongly large parameter vectors are penalized; large 1
corresponds to a strongeegularization of the student. A= _E XH(xH)T (12)
Within a Bayesian framework\ can also be viewed as N

implementing prior knowledge about the type of task to be, . . L
learned(see, e.g., Ref§17—19). Finally, A can loosely be is the correlation matrix of the training inputs. The response

interpreted as a soft constraint on the complexity of the maptufntﬁtéongzntigﬁ ;;lgz]lated as the physically relevant solution

ping that the linear student can implement. In the context of
learning with multilayer feedforward networks, for example, 1G=al(1+G)+\ (13)
large\ would thus correspond to a high cost for adding new '

hidden units, so that simple networks with few hidden unitsynich leads to

would be preferred.

In practice, the minimum of the energy functi&nis often 1 5
located by gradient descent. For the linear studeris a G=CG(aN) =5 {l-a-A+V(1-a—))"+4r].
guadratic function of the parameter vectey and therefore (14)

this procedure will necessarily find the global minimum of

E. However, for more realistic, nonlinearly parametrized stu-An equation exactly analogous t@0) also holds when the
dents, this will not necessarily be the case, and one magraining examples are generated by a noisy nonlinear percep-
often end up in a local minimum &. We crudely model the tron target function. In this case? is replaced by an effec-
corresponding randomness in the training process by considive noise level, which is the sum of the actual noise variance
ering white noise added to the gradient descent updates aihd the error of the best linear fit to the transfer function of
the parameter vectown. In a continuous learning time ap- the nonlinear target perceptroh3,25,28.

proximation,w then obeys a Langevin equation, which for = We conclude our review of learning with a single linear
large learning times leads to a Gibbs distribution of paramstudent by remarking that for any given number of training
eter vectord20]. This distribution can be written aB(w) examplese and zero learning noise= 0, the generalization
«cexp(—E/2T), where the “temperature’T measures the error (10) is minimized when the weight decay is set to the
amount of noise in the learning procd®d]. We focus our value A = ¢ [23]. Assuming that the noise on the training
analysis on the thermodynamic limlit—co at constant nor- outputs and the prior probability of teacher parameter vectors
malized number of training examples=p/N. In this limit,  wg are Gaussian, this corresponds to optimal learning in the
quantities such as the training or generalization error becomsense of Ref[27] and also to the Bayes optimal estimator
self-averaging, i.e., their averages over all training sets besee, e.g., Ref$28,29). The minimal value of the generali-
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zation error thus obtained i8°G(a,0?). For A<o?, the  replacementfrom the total available data set of sikier. For
student isunderregularizecand will therefore tend toverfit  the overlap of the training sets of studektandl (k#1) one
noise in the training data; fox>o?, on the other hand, then hasa, /a=(ay/a)(a,/a) up to fluctuations that van-
over-regularizationforces the student to fit the data lessish in the thermodynamic limit; hence

closely and puts more emphasis on the preference for short

parameter vectora/, as expressed in the weight decay term ag=agala. (17)
of the energy functiorf9). In terms of the bias-variance de-

composition of the generalization error discussed in Sec. llFor finite ensembles one can construct training sets for which
underregularlzatlon corresponds_to' small bias but large varig, < o, @, /a. This results in a slightly smaller generaliza-
ance, since the student’s predictions depend strongly Ofion error, but for simplicity we uséL?).

noise in the training data. For overregularized students, on
the other hand, the variance is small, but the suboptimally
large value of\ leads to a large bias. This difference be-

tween under- and overregularization will help us understand We now give the analog of the resyit5) and(16) for the
the resulting ensemble performance, as discussed in moszror of the ensemble predictions on tinaining set It has

C. Ensemble training error

detail in Sec. IV. been suggestdd, 8] that the ensemble weighis, should be
chosen such that this so-calleshsemble training erroiis
B. Ensemble generalization error minimized, which motivates our interest in this quantity.

Since the ensemble training error is not an unbiased estimate
of the generalization error, choosing the ensemble weights to
. . | minimize it may well lead to overfitting. However, when

Each st_udent has an ensgmble weightand is tr_alned N some examples are held out for testing each student, the
Nay training examples, with studenksand| sharingNay ensemble error on the training set contains contributions

tralnmgt eé(a{?plesl._ As abtove,hwe consudei_r noisy tralnlntg dat"ﬁom both training and test errors of the individual students.
generated by a linear teachésr a nonlinear perceptron (This shows that the term “ensemble training error” is ac-

teallcher Wlfthheffectw(la.nmse vana;)rlwé). Deta}!ls Qf the cal- tually a slight misnomer in this contexfThe test errors es-

cul ation do tAe reSlé'tmg. eniem edgeEr;era |zarE|on ﬁrror r?reﬁmate the corresponding generalization errors without bias,
relegated to Appendix A; In Appendix B, we show how the 5,4 one would therefore expect the degradation of generali-
relevant averages over training inputs can be calculated ugzqn performance from minimizing the ensemble training

if‘g either diagrammatic_ m.etho.‘ﬂ?“] or differential. €qua-  apror rather than the estimated generalization €i@pto be
tions derived from matrix identitief22]. The resulting en-  q|atively benign, as long as the test sets for the individual

semble generalization error is students are not too small.

The calculation of the ensemble training error, which is

€=, ww €&y, (150  detailed in Appendixes A and B, yields the result
kI

1 - 2
where Gt:<5§l} (Y"—Ek wkf(x“)) >:§ ooy . (18)

. :Pkm+02(1—Pk)(1_P|)ak|/aka|
kl 1-(1-p)(1—p) o/ axe

We now consider an ensemble Kflinear students with
weight decaysh, and learning noiseg, (k=1,... K).

+ 80 TkGx- In the absence of learning noiall T,=0), the €}, are re-
(16)  lated to the corresponding coefficierig in the result for the
ensemble generalization erri6) by
Here G, is defined asGy=G(ay,\ ) and p,=\Gy. Re-
writing the definition of p, as p={((IN)trr (N1 1
+Ap 1), whereA, is the correlation matrix of the training edeTk:o= (€lt =0t 02): 1- Z[Z—pk—m
inputs on which studerk is trained,py can be interpreted as
the fraction of theN parameters of studektthat are not well ay
determined by its training datébut rather by the weight ~(1=p)(1=p)—~
decay regularization 30]. The Kroneckers in the last term K=
gf (16) arises because the Iearnlng.no[ses for different S.tuSince the students can fit noise in the training data, the en-
ents are uncorrelated. The generalization error and ambigu- S
. L semble training error can of course be smaller thdnand
ity of the individual students are . L ;
therefore we have retained the contribution from noise on the
training examples irf19). This is why the ensemble training
€= €k, A= €— 22 | €T 2 WO €l - error is related to the ensemble generalization énduding
! hm noise on the test examplest o2. Equation(19) shows that,
s expected, the training error is always smaller than the
?noisy) generalization error. The same is also true in the
presence of learning noisd (>0), where one has

] . (19

From these expressions one can again verify the general r
lation (3). In Secs. IV and V, we shall explore the conse-
guences of the general resls) and (16) first for the limit

of a large ensembl& — and then for more realistic en-
semble sizes. We will concentrate on the case where the t

g Gk
t

o ; . = elly ot ST X
training set of each student is sampled randoimjthout €= €klT, -0+ T

o 1+Gk

(20

ay
+(1——)Gk
o
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10 10 P=MNGr=0%G(a,0)=p (k=1,...K). (22
“l @ () : : : - .
Using (13), the solution for the optimal training set sizes
© °6 oer ‘ (ck denotes the fraction of the total data set used for testing
ol 04k studentk) is obtained as
0.2r P S~ .21
L7 AN o e - - 1 ay 1_)\k/0'2 (23)
¥ SN Y| B N G=l—-—=—"7——-.
0%0 0.2 04006 08 1.0 0?)0 02 04 Coe 08 10 k a 1+G(a,0'2)
FIG. 1. Generalization errors and ambiguity for an infinite en-The  corresponding generalization error is simply

semble of identical students. The solid line is the ensemble genee=p+ O(1/K), which, as explained in Sec. llIA, is the
alization errore, the dotted line shows the error of the individual minimal generalization error that can be obtained. We can
studentse, and the ambiguitya is represented by the dashed line. thus conclude thaa large ensemble with optimally chosen
(@ shows the case of underregularized students=Q.05, training set sizes can achieve globally optimal generalization
0‘2:0.2). Note that there is an optimalfor which the generaliza- performance However, we see fromi23) that, SinCGCKBO
tion error of the ensemble has a minimum. This minimum eXiStSby definition, 0pt|ma| genera"zation performance can 0n|y
wheneven < g2, When the _students are overregu_la_rized as in plothe obtained by choosing optimal training set sizes if all the
(b) (\=0.3 at the same noise levef=0.2), the minimum disap-  \yeight decays, are smaller thaw?, i.e., if the ensemble is
pears. For both plote=1. underregularized. This is exemplified, again for an ensemble
of identical students, in Fig.(fh), which shows that for an
overregularized ensemble, the generalization error is a mono-
tonic function ofc and never reaches the minimum generali-
zation error. These results confirm our expectation that en-
semble learning is most useful for reducing variance: The
generalization error of under-regularized students is domi-
nated by variance contributions, which, as shown in Sec. I,
; o o can be significantly reduced by decorrelating the student out-
wheree andey are the training and generalization errors of pyts. This is achieved by training the students on nonidenti-
studentk. This shows explicitly that the ensemble training ca| training sets with small overlap, and in this way optimal
error is a mixture of training and generalization errors. generalization performance can be achievémt optimal
c¢). For overregularized students, on the other hand, the gen-
eralization error is dominated by bias. Only the remaining
i . small variance contribution can be reduced by using an en-
We now use our main resulLd) to analyze the generali- gempie making it impossible to reach optimal performance.
zation performance of an ensemble with a large nuribef The general conclusion that we draw from the above re-
students, in particular when the size of the training sets fog, i js thaensemble learning is most useful if the individual
the individual students are chosen optimally. If the ensemblgy,gents are not already strongly regularizebhis means
weights w are approximately uniformd~1/K), the en- ot for ensemble learning, overfitting can actually have a
semble generalization error is dominated by the off-diagonalsitive effect by allowing full exploitation of the ensem-
elements of the matrixe) in the limit of a large ensemble o5 potential for reducing variance. Using the correspon-
K— . The diagonal elements can therefore be replaced witQence petween regularization and prior knowledge, we can
the corresponding expressions for the off-diagonal elementg,so say that ensemble learning really comes into its own
yielding together with(17) when only little prior knowledge about the task to be learned
is available, which would normally lead to strong overfitting
when using a single student. Note that the large ensemble
generalization errof21) has no contribution from the learn-
ing noise of the individual students. This property of en-
For the special case where all students are identical and asemble learning, namely, the suppression of inherent ran-
trained on training sets of identical sizg=(1—c)a, we  domness in the training process, will be explored in more
show the resulting ensemble generalization error in Hig. 1 detail in Sec. V.
The minimum at a nonzero value of which is the fraction An interesting consequence (3) is that in order to ob-
of the total data set held out for testing each student, catain optimal generalization performance, more strongly regu-
clearly be seen. This confirms our intuition that when thelarized students should be trained on a larger fraction of the
students are trained on smaller, less overlapping trainingptal data set. Using22), this can also be interpreted in the
sets, the increase of the errors of the individual students casense that all students should have the same number of pa-
be more than offset by the corresponding increase in ambrameters that are well determined by their respective training
guity. sets. This makes sense since one expects that in this case the
The optimal training set sizes, can in fact be calculated fluctuations of all students caused by the randomness of the
analytically. Setting the derivatives of the generalization ertraining examples will be of the same order, thus maximizing
ror (21) with respect tay, to zero, one obtains the conditions the overall ambiguity.

compared tos, TG, for the generalization error. For the
diagonal terms if19) and(20) one can show the intuitively
reasonable result

ay ay
t t 2
€ —e+|1——|(e,+ 09,
kk o k @ ( k )

IV. LARGE ENSEMBLE LIMIT

prp1+ o2 (1=p) (1= p))l
1-(1=-p)(1—p)la

6%2 W) (21)
kI
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We now discuss the finit& corrections to the generali- 1.0
zation error resulting from thé@arge K-optimal) choice(23)
for the training set sizes, assuming that the ensemble is
under-regularized, i.e\, < o for all k. For uniform weights
(w=1/K) one haskaﬁ=1/K, and in the general case we

0.8

therefore define an effective ensemble size by 0.6 1
1/Keﬁ=2kwﬁ. Using (22) and (13), the ensemble generali- w
zation error can then be written in the form 041 .
+p2> of (1 )UZ_)\kJer} 02r I
€= w - 5 . T i
pTp =~ “k p P2+ he | A
0.0 1 1 L L
and bounded by 00 02 04 06 08 1.0
Cc
1 [0+ Thax o . _—
esp|l+ —|————-1]|, FIG. 2. Generalization error of an ensemble with ten identical
Keft A min students as a function of the test set fractipifor various values of

the learning noisd. From bottom to top the curves correspond to
where\ i, and T, are the minimal weight decay and the T=0,0.1,0.2....,1.0. The stars show the errgy(T) of the optimal
maximal learning noise in the ensemble, respectively. Thewith respect to the choice of weight degagingle perceptron
ensemble is thus large in the sense that optimal generalizaained on all the examples, which is independentoffhey are
tion performance can be achieved by tuning the training setlaced where the ensemble error is identicakg6T). For T=0,

sizes if €o(T) is always lower than the ensemble error, as shown by the
lowest star. The parameters for this example arel, A=0.05,
2+ T ax andg?=0.2.
Kei>| ——— —
)\min

A. Effect of learning noise

This means that, although it is useful not to overregularize \ye nhave seen that in an overregularized ensemble, noth-

the students in the ensemble, one should definitely utiIiZ(?ng can be gained by making the students more “diverse” by
Wh?teverlpr[or knowledge IS a;aﬂable to provide somle m'nf"training them on smaller, less overlapping training sets. One
mal regu arlzgtmn(cor_rgs_pon Ing to a nonzero value of 145150 expect this kind of “diversification” to be unnec-
Amin). OtherW|§e, prohibitively Iar_ge gnsemble sizes will beessary or even counterproductive when the learning noise is
needed to achieve good generalization performance. high enough to provide sufficient inherent diversity of stu-

We conclude this section by discussing how the adapta-

tion of the training set sizes could be performed in practicefjems' In the large ensemble limit, we saw that this effect is

confining ourselves to an ensemble of identically regularize&Uppressed’ bUt_'t does indeed occur for realistically sized
students for simplicity, where only one parameterensembles- In I':lg..2 we show the dependence of the en-
c=c,=1—a,/a has to be adapted. If the ensemble is un-Semble generallzgnon_errm on Czl_a_k/“ for an en-
derregularized one expects that the generalization error wifeémble ofK=10 identical, underregularized students. For
have a minimum for some nonzecoas in F|g Ia) There- small Iearning noisd’, the minimum ofe at nonzercc per-
fore, one could start by training all students on a large fracsists, whereas for largef, e is monotonically increasing
tion of the total data sefcorresponding ta@~0) and then Wwith ¢, implying that further diversification of students be-
gradually and randomly remove training examples from theyond that caused by the learning noise is wasteful. The plot
students’ training sets. For each training set size, one couldiso shows the performance of the optimal single student
estimate the generalization error by the performance of théwith A chosen to minimize the generalization error at the
students on the examples on which they have not beegivenT), demonstrating that the ensemble can perform sig-
trained according to Eq8) and one would stop removing nificantly better by effectively averaging out learning noise.
training examples when the generalization error stops de-
creasing. The resulting estimate of the generalization error
will be slightly biased; however, it would seem that for a
large enough ensemble and due to the random selection of For realistic ensemble sizes, we have just seen that the
training examples, the risk of obtaining a strongly biasedPresence of learning noise generally reduces the potential for
estimate by, for example, systematically testing all studentperformance improvement by choosing optintralining set
on too “easy” training examples is rather small. sizes The inherently noisy, diverse students should each be
trained on a large part of the total data set, the size of the test
set being just sufficient to estimate the generalization error
reliably. In such cases, however, one can still adaptetie

We now discuss some effects occurring in ensembles witlkemble weightsy, to optimize performance, again on the
“realistic” numbers of students, which were not covered by basis of the estimate of the ensemble generalization €)yor
the discussion of the large ensemble limit in the precedindexamples of the resulting decrease in generalization error are
section. shown in Figs. 8 and 3b) for an ensemble of size

B. Weight optimization

V. REALISTIC ENSEMBLE SIZES
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1.0 1.0

FIG. 3. Generalization errar of an ensemble
with ten students with different weight decays,
shown as a function of the noise’. The weight
decays of the students are marked by stars on the
0.0 ook o o o (logarithmig x axis. The dashed lines are for the
0.001 0010,  0.100 1.000 0.001 0010, 0.100 1000  uniformly weighted ensemblay,= 1/K) and the

G o solid line is for ensemble weights chosen to mini-
mize the ensemblgeneralizationerror. The dot-
dashed lines show the generalization error ob-
tained when the ensemble weights are found
instead by minimizing the ensembimining er-
ror. The dotted lines, finally, are for the optimal
single student trained on all data. All the plots are
for «=1; the values of the learning noigeand
the test set fractioe are shown in the individual
plots. Note that ir(c) (T=0, c=0), the error that
the optimally weighted ensemble achieves is in-
- - - == distinguishable from the error of the single opti-

00—~ w w w w w w 00w w w w v w w w

0.001 0010 , 0.100 1.000 0.001 0010, 0.100 1000  mal network.
o o

051 0.5+

1.5( T T T 1.5

— . !
1.0r T=0 ! b 1.0+

0.5F : / E 0.5

uniform weights
—————— minimum generalization error weights
e minimum training error weights
............ optimal single student

K =10 with the weight decays, equally spaced on a loga- understood as showing the limiting behavior &+ 0.
rithmic axis between 10° and 1. We have also studied the effect of weight optimization for
For both of the temperaturdsshown, the ensemble with ensembles of students whose weight decays cover only a
uniform weights performs worse than the optimal single stufairly small range. As an example, Fig. 4 shows the behavior
dent. With weight optimization, the generalization perfor- of an ensemble oK =10 students consisting of two groups
mance approaches that of the optimal single student foof five identical students, each with the weight decays of the
T=0 and is actually better &=0.1 over the whole range of two groups being fairly similar. Contrasting this with the
noise levelsa? shown. Since even the best single studentcase of an ensemble with a wide spread of different weight
from the ensemble can never perform better than the optimalecays[see Figs. @& and 3b)], we see that the range of
single studentwhich, in general, will not be contained in the noise levelss? for which the generalization error of the en-
ensemblg this implies that combining the student outputs in semble with optimized weights is lower than that of the op-
a weighted ensemble average is superior to simply choosingmal single student has become smaller. In general, we thus
the best member of the ensemble by cross-validation, i.e., oxpect it to be advantageous to have an ensemble of students
the basis of its estimated generalization error. The reason favith different degrees and/or kinds of regularization in order
this is that the ensemble average suppresses the learnitgmake the performance improvement obtained from an en-
noise on the individual students. semble with optimized weights robust against changes of the
In Fig. 3 we have also plotted the ensemble generalizatiotunknown noise levelo?.
error for the case when the ensemble weights are found by In Fig. 4 we have also plotted thigotal) weight that is
minimizing the ensemble training err(k8). For small noise assigned to the group of five students with the smaller weight
level o> andc=0.2[Figs. 3a) and 3b)] the result is essen- decay when the ensemble generalization error is optimized.
tially as good as for the generalization error minimization,For low noise levelsr? and zero learning noigel =0, Fig.
but for larger noise levels the system starts to overfit. Figured(a)], this group of students carries all the weight, while the
3(c) and 3d) show the case=0, where all the students are students with the higher weight decay are effectively
trained on the full data set. The absence of test error contriswitched off. This means that it is actually better to reduce
butions from the ensemble training error is seen to lead téhe effective ensemble size =5 than to retain highly
substantial overfitting and therefore cannot, in general, beverregularized students in the ensemble. For finite learning
recommended as a robust method of choosing the ensemieise[Fig. 4(b)], on the other hand, the students with higher
weights. Whert is exactly zero, it is of course impossible to weight decay are never switched off completely; being able
choose the ensemble weights by optimizing the estimatetb average out learning noise by using the whole ensemble is
generalization error as there are no examples for testing. Thabviously better than removing overregularized students
corresponding lines in Figs(® and 3d) should therefore be from the ensemble.
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1.5 T T 15 T T

g, 5m,
g, 5m,

0.0 i

. N 0.0 .
0.001 0.010 0.100 1.000 0.001 0010
c

0.100 1.000

FIG. 4. Generalization errat of an ensemble with ten students made up of two groups of five identical stugetitsveight decays
Ni=---=Ag=0.005\g="- - - =\10=0.05 as shown by stars on tkeaxis), plotted vs the noise levet?. The solid lines show the error for
ensemble weights chosen to minimize the ensemble generalization error. The dot-dashed line is the totalwyeigsighed to the group
of students with the smaller weight decay; as the noise level increases, the students with larger weight decay are favored. For comparison,
the generalization error of the optimal single student trained on all(datted ling is also plotted. As in Figs.(8) and 3b), the plots are
for a=1 andc=0.2, with learning nois§ =0 andT=0.1. Note how the range of noise levetd for which the ensemble performs better
than the optimal single student has now become smaller.

VI. CONCLUSION culation for the case of a linear teacher; the generalization to
. . . a general nonlinear perceptron teacher can be obtained
We have studied ensemble learning for th_e simple, anaétraightforwardly using the methods described in R22].
lytically solvable scenario of an ensemble of linear students:.
Our main findings, which correlate with experimental results
presented in Ref9], are the following. In large ensembles, 1. Ensemble generalization error
one should use underregularized students in order to maxi-

. , X ) The ensemble generalization error can be measured with
mize the benefits of the variance-reducing effects of en

i : : . Tespect to the target output values either before or after noise
semble learning. In this way, the globally optimal generali-js agqded. As mentioned in the text, we have chosen to use the
zation error achievable on the basisaiif the available data pgise free target values in our calculations; inclusion of the
can be reached when the training set sizes of the individugyyise contribution would simply increase the value of the

students are chosen optimally and, at the same time, an Uganeralization error by2. By definition, the generalization
biased estimate of the generalization error can be obtained, .. of the ensemble with respect to the noise free target
The ensemble performance is optimized when the morg, os is

strongly regularized students are trained on a larger part of
the available data, making the number of parameters that are 1 1 2
i ini T T
well determined by the training data equal for all students. e={|—=Xx WO—E w—=X" W
For ensembles of more realistic size, we found that for stu- \/N k \/N X
dents subject to a large amount of noise in the training pro- "
cess it is unnecessary to further increase the diversity of stu- 1 D T
:N - WX Vi ,
X

dents by training them on smaller, less overlapping training
sets. In this case, optimizing the ensemble weights is the
method of choice for achieving low ensemble generalization ) . )
error and can yield better generalization performance than affhere ()x is an average over the test input wy is the
of learning noise and trained on all data. This improvement

iS most insensitive to changes in the unknown noise level Vie=Wgp— Wy (A1)

o? if the weight decays of the individual students cover a

wide range. As mentioned in the Introduction, we expectrpe average over the assumed Gaussian distribuRior)
most of the above conclusions to carry over, at least qualitas, exp(—1x?) of test inputs yieldgx),=0 and(xx"),=1 and
tively, to ensemble learning with more complex, nonlinearpancq z X X

models.

1 2

APPENDIX A: ENSEMBLE ERRORS €~ N(Ek: “’k"k) ' (A2)
In this appendix we outline the calculation of the average

ensemble generalization err¢t5 and (16) and ensemble This expression now needs to be averaged over the student
training error (18)—(20). While most of the averages in- parameter vectorg, (i.e., over all realizations of the learn-
volved can be carried out directly, the calculation of average$1g noisg and then over all training sets.
over training inputs is more complicated and is therefore As explained in Secs. IIlA and IlIB, they, are, for a
described separately in Appendix B. We detail only the calgiven training set, distributed d&(w,)«<exp(—EJ/2T,), with
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1 2 (remember that we assumeg=N). We are therefore left
Ex= 2 yH— —WIX“ +)\kwﬁ, with two training input averages, which are evaluated in Ap-
#e S N pendix B:

o . .
whereu e S, means that examplex,y#) is contained in the GG (1+G(1+G))

training set of studenk. The distributions of the different tr'(gg) = , (A8)
w, are (for a fixed training setindependent of each other (1+G)(1+G) — aG G

since each student is assumed to be subject to independent

learning noise. Because the energy functidfjsare qua- , epener

dratic inw,, the joint distribution of thev, is Gaussian with r <gkAk'gO:(1+G,()(1+G,)—ozk|GkG, - (A9)

means and covariances

Inserting these results int@®7) and making use of13) to
1 simplify the expressions, one obtains the resli) and(16)
<Wk>‘9k¢_m§k ysxe given in the text.
(AW AWy = (W) — (W (W) T= 8 Tigk,  (A3) 2. Ensemble training error

The same techniques as above can be used to calculate the

where, by analogy witff11) and (12), ensemble error on the training set, although the resulting

1 expressions are slightly more cumbersome. {fteemalized
gk’l=)\k1+ Ay, Akzﬁ E XH(xH)T. (A4) ensemble training error is defined as
pe Sk
2
Sin_ce thev_k differ from the_ wy only by a constant vector, el= EE <yu_2 wkfk(xu))
their covariances are identical to those of thg while their “ k

average values are

=<—2 LS wabes

2
> . (A10)

(Vi) =Wo— (W) = G| MWo— \/_N > 7'k |. (AD)
e Sy
where we have made use OAl) and the decomposition
Here we have used the decomposition of the training outputA6). The average over the distribution of thg, i.e., over
into noise free target values and additive noise the learning noise, can be carried out as in the preceding

section and yields

1
yH == WoxH + 77, (A6)
\/N € —_E wkw|<VkAV|>
Inserting (A3) and (A5) into (A2) and averaging over the
np* yields[tr'-- - =(1/N)tr- - -] 5

+p—m2k wk% <77”V||<-X“>+%% ((9*)%)

1
)\k>\|NWE<9k9|>Wo+ o?tr’ (gAK Q)

€= 2 Wk
k1

1
+ 0 Tk Etr(QkA>, (A11)

+ O Tilr’ <9k>} : (A7) _
where we have denoted lyy the averages of the, over the

learning noise. Inserting the explicit for(A5) of the v, and

where averaging over the;*, the first term of(A11) becomes

1
Ag=— > xH(x#)T
MUN L _<(Vk)TA VI =Nt (gkAg) + ot (AgAKG) -

is the covariance matrix of the inputs of the examples on .
which both studerk and studenk are trained. Only averages For the second term one finds
over training inputs now remain. The last term(&v) is, by

definition,
\/—<E Vi >
tr' (g = G(ay, N ) =Gy P
T
The first term can be simplified using the isotropy of the “
distribution of training inputs: p\/— 2 7| Mo \/—V;k 7| G

1 - 1 T , , 202 o2
NWo<gk9|>W0:NWoWotr (%) =tr' (g9 == Ttr<gkAk>: - 7(1— MGy,
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.

——: —1/X = tr'(gg) ~: A,
—: =1/ =: tr'(g:Aug) . A
——: 1/(AcA) @: Zy <O A
=>=: —Gy @: Z} A A
== —G

FIG. 5. Correspondence between the diagrams and the mathematical expressions.

where(A4) was used. Including the sum ovierthis can be There are now three terms that need to be averaged over
written as 0%/ @) = oo [(1- )\ka)+(1 A G,)] To- training inputs. In the last one, the average over the inputs

gether with the trivial average((#*)?) = o? = that are not part of the training set of studéntan be done
Swgw o2, one thus has directly, yielding
= wewel, tr'(geA) = (a— a)tr' (g +tr' (gAy)
. ! — (- ay) G+ 1- NGy (A13)
=07+ Z[)\k)\ltr,<gkAgl>+Uztr,<AgkAklgI> Similarly, the first average ifA12) can be reduced by split-

ting off the examples on which neither studé&mor student
—0%(2= MG — NG+ S Tytr' (gA)]. (A12) | are trained:

=.=:<(—»—+->J\.—+—M>—+....)X

(@
(—¢—+—‘V-4—+w+.... ))
l*‘ l*l ;*\ —’*‘~
=+ o+ >+ =+ e+ +
¥ ¥
‘*\ J*\ 1*\
¥ s ¥ ¥ . T

FIG. 6. Diagrams for calculation of 'ffg,g;). All the symbols are explained in Fig. %) g.g, is drawn as a product of expansions
O = (MLHAY T = —(ENTLENFANC N AN
xAk)\glJr ---) and similarly forg,. (b) All the terms arising from the above product must be averaged. The averaging can be done by
pairing the training inputs that occur in the products of the matgeandA, (see Ref[31]), as indicated by dashed lines withta Only
diagrams where the dashed lines do not cross survivélferc. (c) When all the irreducible diagrams are collected as show)inthe
expression becomes simple. The irreducible diagrams are those that cannot be cut in two without cutting a dashed line. In the last line the
subdiagrams corresponding toG,, —G;, and tf(g.g,) have been identified'dressing”).
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FIG. 7. Diagrams for calculation of'g,Ag;). In the last line those of the irreducible diagrams containih@yA,g;) itself are singled
out.

tr'(GeAG)) = (-t arg — a— a)tr' (Gegy) APPENDIX B: AVERAGES OVER TRAINING INPUTS

We now show how the averages over training inputs ap-

+tr' (g(Ac+ A —A
(O AHA~AWG) pearing in the expressions for the ensemble generalization

=(a+ay— ax—a)tr'(gg) and training error can be calculated. Two methods are de-
. scribed. The diagrammatic technique in Appendix B1 may
+r' (9 (1= Ng) + 91 (1= N) — 9AKG) be easier to follow for readers familiar with field-theoretic
= (a+ ay— a— aj— A= A (geg)) + Gy + G methods, while the differential equation method explained in
Appendix B2 is somewhat more basic, being based only on
—tr' (g AT - (A14) simple matrix identities.

The two averages in expressiohl4) also occur in the gen- 1. Diagrammatic technique

eralization error; seA8) and(A9). The only remaining new The diagrammatic technique we use here was introduced
average in(Al12) is shown in Appendix B to be in Refs.[24,31], to which we refer the reader for a detailed
exposition. The relevant notation is explained in Fig. 5,
, Gy G ’ while Fig. 6 gives a summary of the method, using the av-
tr' (AgkAKY) = I G, 110 + 1t (gAG)- erage th(g.g) as an example. From the diagrammatic ex-
(A15) pansion in Fig. €) one sees that
tr'(okg) = GiZiGi , (B1)

The final result(18)—(20) for the ensemble training error is
obtained by insertingA13)—(A15) into (A12) and simplify- whereZ&I is the sum of the irreducible diagrams shown in
ing by making extensive use ¢13). Fig. 6(d). This sum can be evaluated as

FIG. 8. Diagrams for calculation of #Ag,A,g,). They are naturally separated into four serizem the top: diagrams that contain
tr'(gAwg) as a factor, those in which,, cannot be incorporated in & ¢gA Q) average, and those containing an averagé aind
tr'{g«Ax ) in an irreducible combination, grouped according to whether orfnappears next to tg,Axg)).
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Z§|=1+ak|tf’<gkg|>Qk|, (B2) of studentsk andl. Denoting the resulting new “response
matrices” byg, andg’ we have, fromB4),
where
1 T 1 -
Qu=1-(Gy+G)+(GZ+ GG+ G+ - - 1 1 1| NXHAGX X AKX
=(1-Gy+G2—G3+ - )(1—- G+ G2—G¥+- - -) N9 O =RUGAT g 1 1
B i 7= 1+ NXTg"X 1+ Nng|x
1
- @ = 2
1+G(1+G))’ 1
(1+G(1+Gy) (NXTQKQIX
a series that will occur several times below. CombiniBg) + 1 1 (B5)
and(B2), we deduce the resulA8) stated above. 1+ —xTgx || 1+ = xTgx
For the second of the averages required,giA9), the N N

diagrammatic expansion is similé@Fig. 7). The irreducible

diagrams sum to To get an equation fdBy, , this has to be averaged over both

the new and the existing training inputs. The average over
72 — o + autr’ (LA ' the new input can be done by noting that for the assumed
4= e Qu+ ailr’ (8 8) Qu Gaussian input distributioR(x) <exp(—x?/2) one has
and using t{g A g) = GZ5 G, one derives the resulf9).

Finally, the diagrammatic expansion of the average EXTMXZtr/M_i_O(N—l/Z)

tr'(Ag, A required for the calculation of the ensemble N
training error is shown in Fig. 8. The four series into which
the diagrams can be sorted sum to whereM can be any product of powers gk andg, [32].
This yields
oG
tr'<A9kAk|gl>:(a’_ 1Jl:Gk tr'{gAug) + i GkGiQui dG [ (ANt geg (9l INDU GGy
k (?C(k| N 1+ tr,gk 1+ tl”g|
G, A ' 2
T1tG r'(GAKG) (tr'gkar) >
(1+tr'g)(1+1tr'g)
+ @G G Qutr (gAY - (B3)
up to terms ofO(N~*?); the remaining average is over the
From (A9) one sees that existing training inputs. Using the self-averaging property of
the response functions ()trg,,=Gy,+O(N"¥?) and
@G G Qi (1 +1tr' (GAg)) =tr' (AW (1IN)trg,g = Gy, + O(N~ 9 [which can be derived from the

recursion relatioriB5); compare the discussion in RE22]],
this average becomes trivial in the thermodynamic limit and
one obtains the partial differential equation

and inserting this intdB3) yields the resulfAl15) stated in
Appendix A.

2. Differential equation method Gy 1 9Gy 1 Gy G

An alternative method for calculating averages over train-  day 1+ Gy Iy _1+G| N (1+GY(1+G)) -
ing inputs, which we describe in the present section, was (B6)

introduced in Ref[22]. It is based on considering the effect

of incremental changes in the size of the students’ training NiS ¢an now be solved using the method of characteristic
sets, which in the thermodynamic limit result in partial dif- curves(see, e.g., Ref.33], or Ref.[22] for a brief review.

ferential equations for the required averages. The basi¢he characteristic curves ¢B6) are defined by
building block is the matrix identity

dak|_ d)\k_ 1 d)\|_ 1
1A 1 MM dt 7 dt  1+G, dt  1+G/’
Mt | =M S e (BY)
1+ NXTMflx dGy G

dt  (1+G(1+G)) (B7)

which, as can easily be verified, holds for any vectand
any positive definite symmetric matr. (t being the curve paramejerand the solution “surface”
Consider now the avera@®, =tr'(g,g), which is a func-  Gwi=Gui(ak \¢,\j) is the union of those characteristic
tion of the size of the training sets of studektandl, a, and ~ curves that satisfy the required initial condition
a;, their overlapey,, and the weight decay parametérs  Gkila,=0=GkGi - Using(14), which is, in fact, the solution
and\,. Writing ay=a+Ax and o= a+4,, we calcu- of the differential equatiorvG/da—(1+G) 19G/arn=0,
late the variation of5,; with «, for fixed A, andA,. Vary-  derived analogously t§B6) as described in Ref22], one
ing a by 1N means adding one new training exampleverifies thatG, andG, are constant along the characteristic
(whose input vector we simply write a3 to the training sets curves. This makes the integration (@?7) trivial: Selecting
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the arbitrary origin of the scale such thaty, ;=0 att=0,
the first and last equations @B7) yield directly

1 1 Q|

- = +
Gu  Gulay=0 (1+G(1+G))

_ 1 " ak|
GG (1+G(1+G)’

which gives the desired resuia8).

The remaining averages can be deduced famby ap-
plying the identity(B4). Considering tKgAg), we first
write explicitly

1

tr,gkAklgI:Nz > (M Tggx.

peSNsS

Because botlg, and g, depend onx*, one cannotreplace
(IN) (x*) Tgg x*— (1IN trgeg + O(N~Y?).  Instead, one
needs to “pullx* out” of g, andg, by using(B19) in re-

-verse: Writing @) ~1=(gf) 1+ (LIN)x*(x*)T, one has

Xt = 1 gox(x") ok Xt = Gix”
Ok Ok N 1 , 1 , '
1+ N(x“) Of x# 1+ NX Ok X

and similarly forgx*. Sinceg}’ andgf* are independent of
x*, one can now invoke self-averaging

(LIN)XTglx= (1IN)trgf*+ O(N~ Y2 =tr' (gl*)+ O(N~1?);

and since removing exampje corresponds to reducing,
by 1N, tr'{gf)=G,+O(N~1). One can thus write

1

N,LLESkmS|

Gy

N(XM)Tgkg|XM:(1+ Gk)(l+ GI) +O(N_1/2);

summing this overu, one obtains t{g A, 0)= @G/
(1+Gy)(1+G)) and henceA9).
The final average can be obtained by the same technique:

tr’(Ag A g}——tr’(gA g) (a—ay—ata )+—k K
kMAKIY kK1Y k I Kl 1+Gy
+ : K +tr’(A oA g) (B8)
1+G, kIGkMAKIFI/ -

The terms on the right-hand side correspond, from left to
right, to training examples not contained in eitl&ror S,
contained inS, but not inS, and vice versa, and contained in
SN S, . The last term can be written as

Ay~ iX“(X”)T
N

1 T
N(X“) Ok gix*

1 T 1 T
+N(X”) gkx“N(x“) gix*

M g A+ ag e
(1+G(1+ G \FAK T aTTs 157G,

+O(N™1).

Inserting this into(B8), one is led back t§B3), from which
the result(A15) follows.
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