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The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system
with different levels of resolution depending on the location of the molecules. The construction of a
Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles
and statistical mechanics. We present a number of exact and approximate results that provide a
statistical mechanics foundation for this simulation method. We also present simulation results that
illustrate the theory. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907006]

I. INTRODUCTION

Biological and soft matter systems are characterized by
the existence of processes with many different length and
time scales. These processes are usually coupled, making their
theoretical, experimental, and computer simulation description
a challenging task. The functioning of a protein, for example,
involves chemical processes at active sites as well as the overall
dynamics of the protein and its environment.1 Crack propaga-
tion is another example in which the atomic processes occur-
ring at the crack tip affect crucially the overall elastic behaviour
of the sample, and vice versa.2 From a computational point of
view, the brute force approach of treating the system with full
molecular detail is not possible, and one needs to deal with
simplified, or coarse-grained versions of the system.3 By defi-
nition, in any coarse-grained model, some atomic/molecular
detail is lost. In some fortunate cases, the need for atomistic
detail is confined in small regions of space as in the examples
above, and there is hope that a hybrid scheme coupling all atom
(AA) with coarse-grained (CG) descriptions may be a success-
ful approach. The coupling of different models describing the
system at different resolutions is an active field of research,4,5

and in our opinion, it will become useful in a broad range of
calculations, beyond the multi-scale community.5

We have recently developed an Hamiltonian Adaptive
Resolution Scheme (H-AdResS).6,7 Other proposals for Hamil-
tonian hybrid (AA/CG) schemes have been presented4 which
are technically challenging as compared with H-AdResS. As
opposed to previous versions of Adaptive Resolution Scheme
(AdResS), where a force interpolation principle was the crucial
element, in H-AdResS potentials are interpolated. The pro-
posed Hamiltonian in H-AdResS includes a switching field that
allows for a swift interpolation between the truly microscopic
Hamiltonian and a CG version of it. When a molecule crosses
the interface between the AA and CG regions, its interac-
tion with other molecules changes accordingly. Usually the

CG potential of interaction used in the CG region is only an
approximate version of the actual potential of mean force. The
discrepancies between the CG potential and the potential of
mean force are taken into account in the H-AdResS Hamilto-
nian through a free energy compensation term.6,7

The idea of interpolating AA and CG potentials through a
hybrid region is not new and was introduced in Refs. 8 and 9,
under the name of adaptive Multiscale Molecular Dynamics
(MMD).9 However, the detailed form of the interpolation is
slightly different in H-AdResS and leads to the existence of
a well-defined Hamiltonian that allows the natural use of the
principles of statistical mechanics. In MMD, energy was not
conserved10,11 and thermostats were required.8,12 In the orig-
inal thermostatted AdResS13 and also in more recent versions,5

the mass in the atomistic domain fluctuates according to the
grand-canonical ensemble; at least up to the second moment
of the probability density function, as it has numerically,14 and
theoretically shown.5 Density fluctuations are determined by
the fluid compressibility, specified by the integral of the radial
distribution function, and by finely tuning the CG potential one
can match the compressilibities of the CG and AA domains.
Having the same compressibility does not however ensure
the same pressure equation of state and to ensure a constant
density profile over the CG and AA domains, a recent work15

proposes the imposition of a “correction force field,” which is
iteratively evaluated according to the idea of imposing pressure
balance (and thus involving compressibilities). The existence
of a Hamiltonian permits us to derive a fundamental relation
between the force density and the density gradient, which turns
out to be independent on the compressibility. This relation
explains the basis of the “correction force field” used to control
the density profile, not only in Ref. 15 but also in many other
algorithms using domain decomposition (see, e.g., Refs. 16
and 17).

The Hamiltonian formulation of H-AdResS assures that
the method can be applied within all standard ensembles of
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statistical mechanics. Molecular dynamics simulations can be
performed both in the natural microcanonical NVE ensemble
and, with the help of a thermostat, in the canonical NVT en-
semble. The benefits include access to the Monte Carlo tech-
niques, see Ref. 7. This is fundamentally different from the
original AdResS scheme, which does not allow Monte Carlo
simulations and where special thermostats are required to keep
the system in a stationary state, resembling the canonical
ensemble.

In the present paper, we derive the statistical mechanics
basis for the H-AdResS method. Several exact results concern-
ing the local equations of state for the pressure and temperature
allow the formulation of the free energy compensation term
in an iterative way. We also show that under a local equi-
librium approximation (LEA), valid when the hybrid region
is wide, the iterative procedure can be simplified leading to
an approximate but very efficient way for the calculation of
the free energy compensation term in the Hamiltonian. We
have analyzed the effect of the width of the transition layer
where molecules gradually change their resolution. A relevant
outcome is that the H-AdResS total free energy compensation
is independent on the layer, even for widths of the same order of
the molecular diameter. Another very important observation is
that the H-AdResS total free energy correction is equal, within
error bars, to the free energy difference between both fluids
(atomistic and coarse-grained) evaluated from Kirkwood ther-
modynamic integration.18 Although more research is required
in this direction, this would allow H-AdResS to be used as
a flexible tool for estimation of free energy differences in
different scenarios.

In what follows, we first present the H-AdResS Hamil-
tonian formulation in Sec. II. The free energy corresponding
to the H-AdResS Hamiltonian is introduced in Sec. III. In
Sec. IV, we derive expressions for the temperature and the
pressure tensor fields. In Sec. V, we demonstrate that the
condition of constant pressure over the H-AdResS simulation
stems from the condition of translational invariance of the free
energy. The force balance equation derived in Sec. VI permits
to rationalize the different types of H-AdResS compensation
terms for either constant pressure or density fields. Section
VII shows that under local equilibrium (LE) conditions, the
free energy correction (FEC) is just the Kirkwood free energy
difference,18 thus justifying the non-iterative route used in our
previous works.6,7 Finally, the theoretical framework is vali-
dated through simulations in Sec. VIII where we also provide
relaxation schemes for the iterative route to the FEC. We also
study the effect of the transition layer width and the deviation
from the Kirkwood approximation to the FEC. Conclusions
and some future perspectives are given in Sec. IX.

II. THE AdResS HAMILTONIAN

Consider a classic molecular system composed of N
constituent atoms. The microscopic state of the system is
described by the positions and momenta of the atoms, denoted
generically by r,p. The system is coarse-grained by considering
the centers of mass (CoM) of M groups of atoms that are bound
together and that are termed blobs. A blob may be, for example,

a single molecule or a part of a bigger molecule. The position
of the µth blob CoM is R̂µ which is defined as the following
phase function:

R̂µ(r) =
N
i

δµ(i)ri mi

Mµ
=

Nµ
iµ

riµ
miµ

Mµ
,

Mµ =

N
i

δµ(i)mi, (1)

where the indicator symbol δµ(i) takes the value 1 if atom i is in
blob µ and zero otherwise. The last definition makes use of the
notation iµ that corresponds to the ith atom of blob µ and Nµ is
the number of atoms of blob µ. The microscopic Hamiltonian
governing the dynamics of the atoms is

H1(r,p) =
N
i

p2
i

2mi
+

M
µ

V intra
µ (r)+V 1(r), (2)

where the total potential energy of interaction of the atoms is
decomposed into the potential of interaction between atoms
within a blob V intra

µ (r) and the potential of interaction be-
tween atoms of different blobs V 1. This potential energy can
be decomposed as V 1=

M
µ V 1

µ where the terms V 1
µ(r) are the

potential energy of interaction of the atoms of different blobs
where one of the atoms of the pair is in blob µ. Explicitly,

V 1
µ(r) = 1

2

N
i j

δµ(i)φinter(ri j), (3)

where φinter is the pair potential between atoms i, j of different
blobs. It is understood that φinter(ri j) is zero if atoms i, j belong
to the same blob. Note that any Hamiltonian that differs from
the one in Eq. (2) by a constant term will produce exactly the
same dynamics. The usual convention is to choose the zero of
potential energy in such a way that when the particles are very
far apart and, therefore, non-interacting, the potential energy
is zero. This fixes the origin of the energy scale.

We will assume that the above Hamiltonian generates a
dynamics that leads to the microcanonical ensemble. The mi-
crocanonical ensemble and the canonical ensemble are equiva-
lent in the thermodynamic limit, and considering the relatively
large number of particles in our simulations O(103–104), we
assume that we are indeed in this limit. The use of the canonical
ensemble just facilitates some of the derivations presented
later on. One should note that the presence of the free energy
compensating term in the Hamiltonian, to be adjusted later on,
plays the role of a simple external field that should not modify
the equivalence of ensembles. In the present method, thermo-
stats are only required to prepare the system so as to ensure
that its energy is in agreement with the desired thermodynamic
state (i.e., temperature). However, once a representative initial
state is provided to the H-AdResS Hamiltonian, there is no
need to thermostat the system to keep it in the corresponding
equilibrium state.

The central idea of H-AdResS is to introduce a switching
field λ(r) that takes the value 1 in the region of space where
the system is described in full AA detail, and the value 0 in the
region of space where the system is described in a CG way.
In the transition region between the two zones, the switching
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field changes monotonously from 0 to 1. The field λ(r) gives
the degree of detail of the description. Instead of microscopic
Hamiltonian (2), the dynamics of the atoms is modified with
the following H-AdResS Hamiltonian:

H[λ](r,p)=
N
i

p2
i

2mi
+V[λ](r),

V[λ](r) =
M
µ

V intra
µ (r)+

M
µ

λ(R̂µ)V 1
µ(r)

+

M
µ

(1−λ(R̂µ))V 0
µ(R)+

M
µ

F (λ(R̂µ)). (4)

The potential V 0
µ(R) is assumed to depend on the atomic coordi-

nates r only through the position of the centers of mass, denoted
collectively as R= {R̂µ(r),µ= 1, . . ., M}.

The optimal choice for V 0
µ(R) would be the (many-body)

potential of mean-force, from which derive the average forces
between CG particles. In principle, the present formalism al-
lows for many-body CG potentials. However, the functional
form of the exact many-body potential is difficult (or impos-
sible) to compute (see, e.g., Ref. 19 and discussion below)
and we adopt the common practice to approximate V 0 with
a suitable pairwise potential for the coarse-grain interaction
between blobs

V 0
µ(R) = 1

2

M
ν

V 0(R̂µ− R̂ν). (5)

The term
M

µ F (λ(R̂µ)) in the Hamiltonian is referred to as
the free energy compensation term. Its effect is very much
like an external field acting on the blobs. We require that
F (1)= 0.

The rationale for postulating the above Hamiltonian is
the following. When λ(r)= 1 the above Hamiltonian coincides
with the microscopic Hamiltonian (2), that is, H[1] = H1. On
the other hand, when λ(r)= 0 the Hamiltonian becomes

H[0](r,p) =
N
i

p2
i

2mi
+

M
µ

V intra
µ (r)

+

M
µ

V 0
µ(R)+

M
µ

F (0), (6)

where, apart from the constant term
M

µ F (0), the potential
of interaction between atoms of different blobs is given by
the CG interaction. Therefore, the idea is that with a spatially
varying λ(r), the blobs change their interaction from their real
microscopic interaction V 1(r) to a CG interaction through its
centers of mass V 0(R). In fact, the equations of motion pro-
duced by Hamiltonian (4) are (assume that particle i belongs to
blob µ)

ṙi =
pi

mi
,

ṗi = −
∂V intra

µ

∂ri
−

M
ν

λ(R̂ν)∂V 1
ν

∂ri
−

M
ν

(1−λ(R̂ν))∂V 0
ν

∂ri

−∇λ(Rµ) mi

mµ

(
V 1
µ −V 0

µ +F ′(λ(R̂µ))
)
, (7)

where the prime (F ′ = dF /dλ) denotes the derivative with
respect to λ. When λ = 1, Eq. (7) corresponds to the fully
resolved microscopic dynamics, that is,

ṙi =
pi

mi
,

ṗi =−
∂V intra

µ

∂ri
−

M
ν

∂V 1
ν

∂ri
. (8)

When λ= 0, Eq. (7) becomes

ṙi =
pi

mi
,

ṗi =−
∂V intra

µ

∂ri
−

M
ν

∂V 0
ν

∂ri
(9)

that describes the motion of the atoms as given in terms of
microscopic forces due to the atoms of the same blob and CG
interactions between the centers of mass of the blobs. In this
way, in the CG region, the Hamiltonian of H-AdResS moves
the atoms with CG interactions.

In the transition region when 0 < λ < 1, the atoms move
with a combination of the microscopic and CG potentials and,
in addition, feel the presence of an “external field,” repre-
sented in the last term of the momentum equation (7), which
is proportional to the gradient of λ. The contribution F ′(λ)
that appears in Eq. (7) has the mission to make this “external
field” effect as small as possible, in a statistical sense. We
will give in Sec. VII a thermodynamic interpretation to the
F (λ) contribution in the Hamiltonian. A molecular dynamics
simulation with Hamiltonian (4) can be coded in a way that
the simulation proceeds much faster than the one given by full
microscopic Hamiltonian (2). Indeed, in the CG region, the
forces on the atoms need a search only of the neighbouring
blobs whose number is much smaller than the number of atoms
required in the microscopic evaluation, and indeed in the CG
domain, the number of force evaluations is drastically reduced.

Note that the way in which the AA and CG potentials are
interpolated in Hamiltonian (4) is different from the interpo-
lation in the MMD method8,12 where in the latter method the
switching function depends on the position of the centers of
mass of two blobs instead of just one blob in H-AdResS.

III. THE FREE ENERGY

The thermodynamic free energy corresponding to AdResS
Hamiltonian (4) is given by the usual statistical mechanics
formula

F[λ] =−kBT ln


d3Nrd3Npexp
�
−βH[λ](r,p)	

=−kBT ln


d3Nr
Λ3N exp

�
−βV[λ](r)	 (10)

and it is a functional of the switching field λ(r). In this expres-
sion, the momentum integrals of the kinetic energy in the
Hamiltonian have been performed giving rise to the factorΛ3N ,

Λ
3N ≡

M
µ

Nµ
iµ

Λ
3
iµ
, (11)

where the thermal wavelength of atom iµ is defined as
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Λiµ =

(
h2

2πkBTmiµ

)1/2

, (12)

with h the Planck’s constant.
The macroscopic thermodynamic free energy can be ex-

pressed in terms of a potential of mean force by introducing
the identity in the form

1=


d3MR
M
µ

δ(Rµ− R̂µ(r)). (13)

Recall that R̂µ(r) is a phase function that depends on the
positions of the atoms of blob µ, i.e., Eq. (1). Inserting (13)
into the free energy (10) leads to

F[λ] = −kBT ln


d3MR
Λ3M

0

exp


−β



M
µ

(1−λ(Rµ))V 0
µ(R)

+V mf
[λ] (R)+

M
µ

F (λ(Rµ))




, (14)

where the potential of mean force is defined as

V mf
[λ] (R) ≡ −kBT ln


d3Nr
Λ3N exp



− β


V intra(r)

+

M
µ

λ(Rµ)V 1
µ(r)





Λ

3M
0

M
µ

δ(Rµ− R̂µ(r)). (15)

Λ0 is an arbitrary length scale that renders the argument of the
logarithms in Eqs. (14) and (15) dimensionless.

The potential of mean force (15) is a functional of the
switching field λ. When λ(r)= 1, the effective potential V mf

[1] (R)
coincides with the potential of mean force of the fully micro-
scopic Hamiltonian H[1](r,p), this is

V mf
[1] (R) ≡ −kBT ln


d3Nr
Λ3N exp



− β


V intra(r)

+

M
µ

V 1
µ(r)





Λ

3M
0

M
µ

δ(Rµ− R̂µ). (16)

On the other hand, when λ(r)= 0, we have

V mf
[0] (R) ≡ −kBT ln


d3Nr
Λ3N exp

�
−βV intra(r)	

×Λ3M
0

M
µ

δ(Rµ− R̂µ(r))

= −kBT ln
M
µ


d3Nµr
Λ3N exp


−βV intra

µ (rµ)


×Λ3
0δ(Rµ− R̂µ)=

M
µ

F intra
µ , (17)

where we have introduced the actual thermodynamic free en-
ergy F intra

µ that a blob would have should it be isolated from the
rest of blobs, that is,

exp

−βF intra

µ


≡


d3Nµr
Λ3Nµ

exp

−βV intra

µ (rµ)


×Λ3
0δ(Rµ− R̂µ). (18)

Note that, in spite of the appearance of the Dirac delta function
in Eq. (18) depending on Rµ, this internal blob free energy
F intra
µ is independent of Rµ due to translational invariance.

Therefore, we may integrate both sides of (18) with respect to
Rµ leading to

exp

−βF intra

µ


=
Λ3

0

V


d3Nµr
Λ3Nµ

exp

−βV intra

µ (rµ)

, (19)

where V is the total volume of the system.
Therefore, in the two limits λ(r)= 1, λ(r)= 0, free energy

(10) becomes

F[1]=−kBT ln


d3MR
Λ3M

0

exp

−βV mf

[1] (R)

,

F[0] = −kBT ln


d3MR
Λ3M

0

exp


−β

M
µ


V 0
µ(R)+F intra

µ




+MF (0). (20)

The requirement of thermodynamic consistency between both
levels of resolution enforces that the thermodynamic free en-
ergy should be exactly the same in both limits, that is,

F[0] = F[1]. (21)

This thermodynamic consistency requirement sheds light to
the meaning of the free energy compensating term F (λ). In the
spirit of changing the resolution, we expect that V0(R) in Eq. (4)
is given by the potential of mean force of the microscopic
Hamiltonian (2). This potential of mean force can be measured
in different ways, from Boltzmann inversion20 to relative en-
tropy21 methods. These methods allow one to obtain V0(R) up
to an arbitrary constant. Indeed, V0(R) is a mesoscopic free
energy for which only relative values may be computed. This
constant is usually fixed by requiring that V0(R) vanishes as the
centers of mass become apart, i.e., |Rµ−Rν |→ ∞. On the other
hand, the potential of mean force V mf

[1] (R) of the microscopic
Hamiltonian contains information of not only the interactions
between blobs but also about the internal free energy of the
molecules. One way in which this clearly manifests is when the
blobs in which we have grouped the atoms correspond to full
molecules. In that case, it makes sense to look at the low density
regime in which the molecules are very far from each other.
In this limit, we obtain from Eq. (16) that when the centers
of mass are separated beyond the range of interaction of the
potentials, then we may neglect the term V 1

µ(r) in Eq. (16),
leading to V mf

[1] (R)=


µF intra
µ . As a result, the potential of mean

force V mf
[1] (R) does not vanish as the distance between particles

goes to infinity, as opposed to V0(R). If we momentarily assume
that the many-body potential of mean force V mf

[1] (R) could be
very well approximated by a pair-wise form, we would choose
the pair-wise potential V 0(R) as V 0(R) = V mf

[1] (R) −


µF intra
µ

(vanishing as the CoM separate). In that situation, consistency
(21) would imply F (0) = 0. It is clear, therefore, that the
contribution F (0) has the effect of “curing,” at the level of
thermodynamics, the errors due to the use of an approximate
pair-wise potential V0(R) for the actual many-body potential of
mean force V mf

[1] (R).
Free energy (10) is a functional of the switching field

λ(r). For future reference, we compute explicitly the functional
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derivative of the free energy with respect to λ(r), that is,

δF[λ]
δλ(r) =


δH[λ]
δλ(r)

[λ]
. (22)

In this expression, ⟨· ··⟩[λ] is a canonical average with the
AdResS Hamiltonian H[λ] in Eq. (4),

⟨A⟩[λ]= 1
Z[λ]


dz exp{−βH[λ](z)}A(z), (23)

where the normalization Z[λ] is just the partition function. By
using

δH[λ]
δλ(r) =

�
u1

r−u0
r+F ′(λ(r))nr

�
, (24)

where have defined the potential energy densities u0
r,u

1
r and the

center of mass density nr as

u1
r ≡

M
µ

V 1
µδ(R̂µ−r),

u0
r ≡

M
µ

V 0
µδ(R̂µ−r),

nr ≡
M
µ

δ(R̂µ−r). (25)

we finally obtain the explicit expression for the functional
derivative of the free energy of H-AdResS

δF[λ]
δλ(r) =



u1

r−u0
r
�[λ]
+F ′(λ(r))⟨nr⟩[λ]. (26)

This expression will be used below.

IV. THE TEMPERATURE AND PRESSURE FIELDS

In Sec. III, we have presented a consistency argument in
Eq. (21) based on the global thermodynamics of the H-AdResS
system. In this section, we formulate the local thermodynamics
of H-AdResS in terms of the equations of state for the tempera-
ture and the pressure. In order to achieve this, it is convenient to
look at the molecular momentum density field because its time
derivative will give information about mechanical equilibrium
and, hence, pressure. The molecular momentum density field
is defined as

ĝr ≡
M
µ

P̂µδ(R̂µ−r), (27)

where the momentum P̂µ of blob µ is given by

P̂µ(r) =
N
i

δµ(i)pi. (28)

The time derivative of phase function (27) is obtained by
applying the Liouville operator onto this function, providing

iLĝr = f̂r−∇K̂r, (29)

where the kinetic part of the stress tensor is defined as

K̂r ≡
M
µ

P̂µV̂µδ(R̂µ−r). (30)

The velocity is V̂µ = P̂µ/Mµ, and the force density is defined
as

f̂r ≡
M
µ

F̂µδ(R̂µ−r). (31)

Here, F̂µ is the force on molecule µ which is given by

F̂µ ≡−

i

δµ(i)∂H[λ]
∂ri

. (32)

In Appendix B, it is shown that the force Fµ on molecule µ
introduced in Eq. (32) has the following form:

F̂µ =

ν

Ĝµν−∇λ(R̂µ)(V 1
µ(r)−V 0

µ(R)+F ′(λµ(R))), (33)

where we have introduced the pair force

Ĝµν ≡


λ(R̂µ)+λ(R̂ν)
2


F1
µν(Rµν)

+


1−
λ(R̂µ)+λ(R̂ν)

2


F0
µν(Rµν). (34)

This force satisfies Newton’s third law Ĝµν =−Ĝνµ. The forces
F1
µν,F0

µν introduced in Appendix B are the original microscopic
and CG forces between blobs, respectively. We may compute
now the force density f̂r in Eq. (31) and obtain

M
µ

F̂µδ(R̂µ−r) =

µν

δ(R̂µ−r)Ĝµν

−∇λ(r)�û1
r− û0

r+F ′(λ(r))n̂r
�
. (35)

Note that the last term may be written as the divergence of a
tensor, because

µν

δ(R̂µ−r)Ĝµν =

µν

Ĝµν
1
2


δ(R̂µ−r)−δ(R̂ν−r)

=−∇Π̂r, (36)

where we have used the usual trick22

δ(R̂µ−r)−δ(R̂ν−r) =
 1

0
dϵ

d
dϵ

δ(R̂ν+ ϵR̂µν−r)

= −∇R̂µν

 1

0
dϵδ(R̂ν+ ϵR̂µν−r), (37)

where we have defined R̂µν = R̂µ − R̂ν and Rµν = |Rµν | and
introduced the virial part of the stress tensor

Π̂r ≡
1
2


µν

ĜµνR̂µν

 1

0
dϵδ(R̂ν+ ϵR̂µν−r). (38)

In summary, we may write the force density as

f̂r =−∇Π̂r−∇λ(r) δH [λ]

δλ(r) , (39)

where we have used (24). As a consequence, the momentum
equation (29) takes the form

iLĝr =−∇Σ̂r−∇λ(r) δH [λ]

δλ(r) , (40)
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where the full stress tensor Σ̂r= K̂r+Π̂r is given by the Irwing-
Kirkwood (IK) form, generalized for H-AdResS,

Σ̂r =

M
µ

P̂µV̂µδ(R̂µ−r)

+
1
2


µν

ĜµνRµν

 1

0
dϵδ(Rν+ ϵRµν−r). (41)

A. The temperature

It is worth considering the equilibrium average computed
with the canonical ensemble of the kinetic part of the stress
tensor in Eq. (30). It is computed easily because momentum
is distributed according to the Gaussian Maxwell distribution,
with the result

⟨K̂r⟩[λ] = kBT⟨nr⟩[λ]1. (42)

Closely related to the kinetic part of the stress tensor is the
kinetic energy density field of the centers of mass which is
defined as

kr ≡
M
µ

mµ

2
V2

µδ(r−Rµ) (43)

and whose average is

⟨kr⟩[λ] = 3kBT
2

⟨nr⟩[λ]. (44)

We may introduce a CoM temperature field as the kinetic
energy density divided by the number density, providing an
idea of the local kinetic energy of the system, through the
following definition:

kBT(r) ≡ 2
3
⟨kr⟩[λ]
⟨nr⟩[λ]

= kBT, (45)

where the last identity is just Eq. (44). This result states that in
all space including the transition region the temperature field
is constant, T(r)=T .

B. The stress and the pressure

The equilibrium average of the time rate of change of
the momentum density field is zero at equilibrium, that is,
⟨iLgr⟩[λ]= 0 (as can be shown by integrating by parts the Liou-
ville operator and use of LH [λ]= 0). By taking the equilibrium
average of Eq. (29), we obtain then

0 =−∇⟨K̂r⟩[λ]+ ⟨fr⟩[λ], (46)

where we have used the fact that the canonical average ⟨· ··⟩[λ]
does not depend explicitly on the position r and, therefore, the
nabla operator may go outside of the average. On account of
Eq. (42), this expression gives an explicit form for the force
density field

⟨fr⟩[λ] = kBT∇⟨nr⟩[λ]. (47)

In passing, we note that Eq. (47) is valid for any Hamilto-
nian system: notably, this intimate relation between the force
density field and the density gradients is independent on the

fluid compressibility. It explains the essence of many algo-
rithms15–17 designed to impose a flat density profile by adding
an external force “correction” to the system (which, according
to Eq. (47) has to ensure vanishing total force density field
fr = 0). Figure 1 (middle panel) offers a numerical check of
relation (47) in one of our H-AdResS systems (in that case with
fr, 0). Now, let us consider the equilibrium average of Eq. (40)

FIG. 1. Top panel: Energy of a H-AdResS simulation. There is practically
no drift in total energy over long simulation runs (here 5×105τ, with τ
=σ

(m/ϵ) the standard Lennard-Jones time unit of the atomic potential).
Middle panel: A numerical cross-check of relation (47). Bottom panel:
The temperature profile over the system. Simulations were done at density
n = 0.4σ−3 with fitted CG-potentials. FEC means “free energy correction”
(see text).
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by introducing

Σ(r) ≡ ⟨Σ̂r⟩[λ]= kBTn(r)+Π(r),
Π(r) = ⟨Π̂r⟩[λ]. (48)

Here, Σ(r) is the average of the IK stress tensor in Eq. (41),
which is decomposed into its ideal and interaction (or excess
over ideal) parts. With the IK stress tensor, Eq. (40) gives

∇Σ(r)= kBT∇n(r)+∇Π(r) =− δF[λ]

δλ(r)∇λ(r). (49)

Under equilibrium conditions, Eq. (49) just represents the
hydrostatic balance,23 i.e., the response of the system’s equi-
librium stress field to an external force. When the switching
field is sufficiently smooth for the local equilibrium to be a
valid assumption (see Appendix A), we expect from symmetry
reasons that the average of the interaction part of the stress
tensor is isotropic

Π(r) = pex(r)1, (50)

where we have introduced the excess (over ideal) part of the
pressure. The total pressure is defined as

p(r) ≡ pid(r)+ pex(r),
pid(r) ≡ kBTn(r),
pex(r) ≡ 1

3
Tr[Π(r)]. (51)

Therefore, Eq. (49) takes the form

∇p(r)= kBT∇n(r)+∇pex(r) =− δF[λ]

δλ(r)∇λ(r). (52)

The two exact results (45) and (49) give the local thermo-
dynamics of the system in terms of its equations of state. They
are one of the main important results of the present work.

V. TRANSLATION INVARIANCE

A. The free energy

A nice theorem about the free energy involves its behav-
iour under translations. Assume that there are no external
potential fields and that the system is either infinite or has
periodic boundary conditions. We may perform in definition
(10) the change of variables ri = r′i+a where a is an arbitrary
translation vector. Because all the potentials are translational
invariant, we arrive at the identity

F[λ] = F[Taλ], (53)

where Ta is a translational operator that when applied to a
function gives

Taλ(r) = λ(r+a). (54)

We may now take the derivative of both sides of Eq. (53) with
respect to a and obtain

0 =
∂F[Taλ]
∂a

=


dr

δF[Taλ]
δλ(r)

∂

∂a
Taλ(r), (55)

where the chain rule has been used. By using (54) and evalu-
ating the result at a= 0, we obtain

dr
δF[λ]
δλ(r)∇λ(r)= 0. (56)

One consequence of the translation invariance of free energy
(53) is that the average total force on the system is zero. The
average total force is

⟨F⟩[λ] = 1
Z[λ]


d3Nr
Λ3N exp{−βH[λ]}

N
i

(
−
∂H[λ]
∂ri

)

= kBT
1
Z


d3Nr
Λ3N

N
i

∂

∂ri
exp{−βH[λ]}. (57)

We may again perform a translation of the origin of coordinates
and produce the change of variables ri = r′i+a that becomes

⟨F⟩[λ] = kBT
1

Z[λ]


d3Nr ′

Λ3N

N
i

∂

∂r′i
exp{−βH[Taλ]}

= kBT
1

Z[λ]
∂

∂a


d3Nr ′

Λ3N exp{−βH[Taλ]}

= kBT
1

Z[Taλ]
∂

∂a


d3Nr ′

Λ3N exp{−βH[Taλ]}

=− ∂

∂a
F[Taλ]= 0, (58)

where the last identity follows from Eq. (55). More generally,
we have derived an important relation between the derivative
of the free energy functional and the total force on the system

⟨F⟩[λ]=−


dr
δF[λ]
δλ(r)∇λ(r) (59)

which indicates that−∇λ(r)δF[λ]/δλ(r) is the force density field
induced by the jump in potential energy densities (“the drift
force” in Ref. 6) and the free energy correction (see Eq. (26)).
However to reach a well-defined equilibrium state, any rule for
computing the free energy compensating term entering the free
energy F[λ] has to comply with Eq. (56). Otherwise, net force
(59) will appear in the system. In this sense, requirement (56)
provides global thermodynamic consistency. By integrating
Eq. (49) over the system volume and using Gauss theorem,
leads to 

Σr ·ndr2=−

∇λ(r) δF[λ]

δλ(r)dr. (60)

Therefore, in periodic systems (where by construction

Σr ·n

= 0), translational invariance (56) and global thermodynamic
consistency (in particular, mechanical equilibrium) are trivi-
ally satisfied for any choice of the free energy correction.

B. Averages of local functions

Consider a local function based on the CoM of the form

Ar(r,p) =
M
µ

Aµ(r,p)δ(R̂µ−r), (61)

where Aµ(r,p) is translation invariant, so the effect of changing
ri with ri+a for any vector a leaves Aµ invariant. Examples of
local functions are those defined in Eq. (25). In this case, we
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have the following identity:

⟨Ar⟩[Taλ] = ⟨Ar+a⟩[λ] (62)

as we can check explicitly

⟨Ar⟩[Taλ] =
1

Z[Taλ]


d3Nrd3NpAr(r,p)

× exp


−β


K +V intra+

M
µ

λ(R̂µ+a)V 1
µ

+

M
µ

(1−λ(R̂µ+a))V 0
µ +F (λ(R̂µ+a))






= ⟨Ar+a⟩[λ], (63)

where we have performed a change of variables ri → ri − a
in the last identity. By taking the derivative of Eq. (62) with
respect to a and setting afterwards a= 0, we have

∇⟨Ar⟩[λ] =


dr′∇′λ(r′) δ

δλ(r′) ⟨Ar⟩[λ]. (64)

The functional derivative of the average is given by

δ

δλ(r′) ⟨Ar⟩[λ] = β⟨Ar⟩[λ]

δH[λ]
δλ(r′)

[λ]
− β


Ar

δH[λ]
δλ(r′)

[λ]
= −β


δAr

δH[λ]
δλ(r′)

[λ]
, (65)

where δAr = Ar− ⟨Ar⟩[λ]. By using (24), we obtain the exact
result for local functions

∇⟨Ar⟩[λ] = −β


dr′∇′λ(r′)
δAr(u1
r′−u0

r′

+F ′(λ(r′))nr′)⟩[λ]. (66)

This expression clearly shows that the inhomogeneities of
any local function along space will show up basically in the
transition region 0 < λ< 1 for which∇λ, 0 and are exclusively
due to the correlations of this local function with the functional
derivative of the Hamiltonian. For example, take the center
of mass density field nr as the local function Ar. The above
expression gives

∇⟨nr⟩[λ] = −β


dr′∇′λ(r′)


δnr(u1

r′−u0
r′)
�[λ]

+F ′(λ(r′))⟨δnrnr′⟩[λ]

. (67)

This expression connects (linearly) the gradients of the density
field with the gradients of the switching function. It explains
why there should be molecular density variations in the region
where the switching function changes its value.

VI. THE FREE ENERGY COMPENSATION TERM F (λ)
THROUGH AN ITERATIVE ROUTE

Up to now, we have presented a number of exact results in
Eqs. (45), (52), and (66) that are valid for a general Hamiltonian
of form (4). The particular functional form of the free energy
compensation term F (λ) has not yet been specified. We will
now use these exact results in order to fix the functional form
of the free energy compensating term.

A. Constant stress field

The basic requirement that the free energy in the AA
region coincides with the free energy of the CG region, F[1]
= F[0] (i.e., that the free energy does not depend on the actual
value of λ) can be generalized to the case that the parameter
λ is space dependent. We require that the actual free energy
is independent of the switching field λ(r). This requirement is
mathematically expressed as the vanishing of the functional
derivative

δF[λ]
δλ(r) = 0. (68)

Condition (68) will be referred to as the local thermodynamic
consistency requirement of H-AdResS. Note that requirement
(68) ensures automatically the translational invariance of the
system expressed in Eq. (55). It also ensures, through Eq. (52),
that the stress field and, therefore, the pressure is constant
through space. In general, however, the density field will not be
constant and the system may experience differences between
the value of the density in the AA region and the GG region.
Of course, the variations of the density are compensated with
the variations of the excess pressure pex(r) in order to have a
constant pressure field.

By using Eq. (26), Eq. (68) becomes

0=


u1

r−u0
r
�[λ]
+F ′(λ(r))⟨nr⟩[λ]. (69)

This equation can be understood as a non-linear functional
equation to be solved for F (λ) (where F (λ) appears explicitly
as well as implicitly in the definition of the averages ⟨· ··⟩[λ]).
An iterative method to solve Eq. (69) is given in Sec. VIII.

B. Constant density field

The Hamiltonian (4), with F (λ) obtained from the condi-
tion that its free energy does not depend on the field λ(r)
(i.e., conditions (68) and (69)), ensures that the pressure field
is constant through the simulation box. However, it does not
ensure that the molecular mass density or the molecular energy
density is the same in the AA and CG regions. We expect
that, to the extent that the CG model is a good model (in
that it reproduces correctly the molecular radial distribution
function), the density mismatch between AA and CG regions
cannot be very large.

However, the CG potential is approximate and there may
be situations in which keeping constant the molecular density
field through the system may be more important than keeping
the pressure field constant. In these situations, an alternative
definition of the term F (λ(Rµ)) in Hamiltonian (4) is required.
Equation (49) suggests a route to an alternative definition of
F (λ) that ensures a constant density field. By setting ∇⟨n̂r⟩[λ]
= 0 in Eq. (49), we obtain

∇λ(r) δF[λ]

δλ(r) +∇


Π̂r

�[λ]
= 0, (70)

that is,

∇λ(r) ⟨û1
r⟩[λ]− ⟨û0

r⟩[λ]+F ′(λ(r))⟨n̂r⟩[λ]

+∇⟨Π̂r⟩[λ]= 0. (71)
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This equation is a non-linear implicit equation for F ′(λ(r))
that may be computed iteratively in a simulation because all
terms, except F ′, are explicitly computable. This F (λ) will,
by construction, ensure that ∇⟨n̂r⟩[λ] = 0, but will not satisfy,
in general, the thermodynamic consistency property (69). The
pressure field Σ(r) will not be constant across the system and
its gradient will be given by

∇Σ(r) =−∇λ(r) δF[λ]

δλ(r) , (72)

where we have used (48) and (70). Note that in general,
(70) does not comply with global thermodynamic consis-
tency requirement (56) that the free energy (10) is translation
invariant. However, as stated [see Eq. (60)], such requirement
is automatically fulfilled in periodic systems, where global
mechanical equilibrium is always guaranteed.

VII. THE FREE ENERGY COMPENSATING TERM F (λ)
THROUGH LOCAL EQUILIBRIUM

In this section, we explore the simplifications that result in
the calculation of the free energy compensation term when the
switching field is sufficiently smooth in the length scale of the
molecular correlations. As formally justified in Appendix A, in
this case, we may resort to a local equilibrium approximation
(LEA). The LEA essentially consists in assuming that the
average of any local microscopic quantity ⟨Âr⟩[λ] obtained from
the H-AdResS Hamiltonian H[λ] is close to the average where
the field λ is constant λ and equal to the value λ = λ(r) at the
space point r. Each value of this function determines a hybrid
molecular model. The (canonical) average of such “hybrid”
fluid (using H

λ
) is denoted as ⟨Â⟩λ,n,T , where the prescribed

values of n and T are indicated. If λ(r) is smooth enough, the
H-AdResS local average at r is close to the standard canonical
average of a fluid model with a constant λ= λ(r) (see Eq. (A8)
Appendix A)

⟨Âr⟩[λ]≈ ⟨Â⟩λ=λ(r),⟨nr⟩[λ],⟨Tr⟩[λ]≡ ⟨Âr⟩λr, (73)

where the last definition is introduced to alleviate the fully
explicit heavy notation of the local average. In fact, this nota-
tion indicates that according to the local equilibrium approxi-
mation, the function λ(.) in the Hamiltonian is considered as
a parameter so that quantities such as ⟨· ··⟩[λ] are parametric
dependent on this parameter.

In what follows, we use the LEA expressed in Eq. (73)
with two purposes. First, we derive a non-iterative route to find
the free energy correction F (λ). This non-iterative procedure
connects the H-AdResS formalism to the process used in ther-
modynamic integration,18,24 from which the H-AdResS idea
actually stems. Second, we use the LEA to explore the relations
between the thermodynamic variables along the transition re-
gion for the different forms of the free energy corrections
proposed hereby and in previous papers.6,7

A. Kirkwood route to constant stress field

When the switching field varies very smoothly, we may
use approximation (73) in Eq. (26) in order to obtain a method

that does not require an iterative procedure. Indeed, to first
order in gradients of λ(r), we have

0=


u1

r−u0
r
�λ
+F ′(λ)⟨nr⟩λ, (74)

where the actual value of λ is λ(r). According to the LEA, this
identity can be also understood in terms of averages of hybrid
fluids with constant λ. By integrating over space and using the
definitions (25), we obtain

0 =


U1−U0�λ+F ′(λ)M, (75)

where we have defined the inter-blob potential energy of the
microscopic and CG systems as

U1 =

M
µ

V 1
µ ,

U0 =

M
µ

V 0
µ . (76)

By integrating with respect to λ, we may write Eq. (75) as

F K(λ)=− 1
M

 λ

0
dλ′


∂U
∂λ′

λ′
+C, (77)

where we have defined the potential energy U ≡ λU1+ (1−
λ)U0. For consistency with Eq. (20), the arbitrary constant C
should be set to fix F K(1)= 0 (i.e., the free energy correction
is zero in the atomistic domain). On the right hand side of
Eq. (77), one recognizes the Kirkwood formula for standard
thermodynamic integration18 which indicates thatF K(0) is the
change in free energy over an alchemy transformation of the
interblob interaction from U1 to U0. This is consistent with the
interpretation given after Eq. (21). Evaluation of the RHS of
Eq. (77) from a series of simulations at fixed λ offers a non-
iterative protocol to the free energy correction F . Kirkwood
calibration of F relies however on the local thermodynamic
equilibrium [see (73)] as Eq. (77) does not ensure thermo-
dynamic consistency (68), except if the switching function
is smooth enough. Simulations presented in Sec. VIII show
that in practice Kirkwood non-iterative approximation works
quite well, at least for the test cases considered here. This was
also observed in previous works with different fluid models,6,7

although a study of the validity of Kirkwood TI as a function
of the transition layer length and the coupled fluid models was
not considered. We will perform such study in Sec. VIII.

B. Kirkwood route to constant density field

We now consider the LEA to find a non-iterative way to
compute the free energy compensation term when the target
is to keep the density field constant across the simulation box.
The exact result in Eq. (49) can be written as

kBT∇⟨n̂r⟩[λ]+∇
p̂ex
r
�[λ]
+
δF[λ]

δλ(r)∇λ(r)= 0,

kBT∇⟨n̂r⟩[λ]+∇
p̂ex
r
�[λ]

+
⟨û1

r− û0
r⟩[λ]+F ′(λ)⟨n̂r⟩[λ]


∇λ(r)= 0, (78)
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where the microscopic excess pressure is defined by

p̂ex
r =

1
3

Tr[Πr]. (79)

We assume that ⟨n̂r⟩[λ]= n is constant and, therefore, the first
term in Eq. (78) vanishes. The second term, with local equilib-
rium approximation (73), becomes

∇


p̂ex

r
�[λ] ≈ d

dλ
⟨p̂ex

r ⟩λ���λ=λ(r)∇λ(r). (80)

The term involving the difference between potential energy
densities is, under the local equilibrium approximation (73),



û1

r− û0
r
�[λ]≈



û1

r− û0
r
�λ����λ=λ(r)

. (81)

This may be written as a total derivative with respect to λ as



û1

r− û0
r
�λ
=

d
dλ

 λ

0
dλ′



û1

r− û0
r
�λ′
. (82)

By collecting these last results, Eq. (78) becomes

d
dλ


⟨p̂ex

r ⟩λ+
 λ

0
dλ′



û1

r− û0
r
�λ′
+F (λ)n

 �����λ=λ(r)
×∇λ(r)= 0. (83)

One way to ensure this identity and, therefore, a constant
density field through the system is by requiring

⟨p̂ex
r ⟩λ+

 λ

0
dλ′



û1

r− û0
r
�λ′
+F (λ)n =C, (84)

where C is a constant. Because the averages are performed with
a constant switching field, we have translation invariance and
we can get rid off the position dependence by simply averaging
(84) over the whole volume. This gives

⟨P̂ex⟩λ+ 1
V

 λ

0
dλ′



Û1−Û0�λ′+F (λ)n =C, (85)

where

P̂ex ≡ 1
V


drp̂ex

r =
1
V

1
6


µν

Ĝµν · R̂µν, (86)

where we have used (50) and (38). Therefore, the non-iterative
route for the free energy compensating term, valid for smooth
switching fields, that produces a constant density field is

F K(λ) =− 1
M

 λ

0
dλ′



Û1−Û0�λ′− ⟨P̂

ex⟩λ
n
+C (87)

to be compared with Eq. (77) that produces a constant pressure
field. Again, the constant C should be set to fix F (1) = 0.
The non-iterative calibration of F based on Eq. (87) involves
a series of simulations of constant-λ fluids in the canonical
ensemble at the target density n = M/V and temperature T .
The first term in the RHS of Eq. (87) is then the difference in
the Helmholtz excess free energy (per particle) f ex(0)− f ex(λ)
between the CG fluid model (λ = 0) and a fluid model with
fixed λ. The free energy correction F acts like an external
potential field in the system so the system’s chemical potential
is25 µ = g(λ) + F (λ), where g(λ) = f (λ) + p/n is the Gibbs
free energy per particle, containing ideal and excess parts g =
gid(n)+gex. At constant density, the ideal part contribution of

any thermodynamic function is constant and Eq. (87) can be
written as

g(λ)+F (λ)= g(1)= µ, (88)

showing that the constant density H-AdResS consistently pro-
vides a constant chemical potential µ over the system.

VIII. SIMULATIONS

This section presents molecular dynamics (MD) simu-
lations to illustrate and validate the H-AdResS theoretical
framework. Simulations of the microcanonical ensemble of the
H-AdResS Hamiltonian in Eq. (2) were done in periodic boxes
with dimensions Lx,Ly = Lz. We have used the tetrahedral
fluid model6,13,14,26 which has become one of the benchmark
models for adaptive resolution. Each tetrahedral molecule
contains four atoms bonded by FENE potentials. Non-bonded
interactions are described by a purely repulsive Lennard-

Jones potential (cutoff at rcut = 21/6σ where σ is the atomic
LJ-diameter). The coarse-grained potential used for λ = 0
(CG domain) corresponds to the Morse potential proposed in
Refs. 14 and 26

Ucg(r)= γ(1.0−exp[−κ(r−r0)])2. (89)

The parameters, γ = 0.105, κ = 2.4, and r0 = 2.31, were orig-
inally fitted so as to correctly reproduce the molecular radial
distribution function of the polyatomic fluid and its pressure.
In order to study the flexibility of H-AdResS to compensate
for free energy differences between the coarse-grained and
atomistic model, we have tweaked the CG potential to consider
two cases:

• Fitted CG: γ = 0.105, κ = 2.4, and r0= 2.31,
• Non-fitted CG: γ = 0.305, κ = 2.4, and r0= 2.31.

The inverse Boltzmann procedure was used to set the fitted
CG potential for a molecular density ρm = 0.1σ−3 (atomic
density n = 4ρm) and temperature T ≃ 1.0ϵ/KB. The CG
potential also ensures p0(n,T)= p1(n,T). We consider a simple
H-AdResS setup where the switching function only depends
on the x-coordinate, λ = λ(x) and its gradient is directed in
x-direction, ∇λ(r) = λ′(x)ex. The resolution function λ(x) is
λ= 1 at the AA domain and λ= 0 at the CG domain while in
the transition layer it varies like

λ(x)= cos2

π

2
x− x1

lhyb


(90)

with lhyb = |x1− x0| the width of the transition region, where
λ′ , 0. Here, x1 = x(λ = 1) is the position of the AA-HYB
border and x0 the location of the λ= 0 border.

A. Basic equilibrium thermodynamics of H-AdResS

The MD algorithm was implemented in single precision
arithmetic using a standard second order velocity-Verlet inte-
grator and a Verlet list for neighbours search. As shown in
Fig. 1 (top panel), the total energy is conserved (up to about
0.1% deviation) and the energy drift over long runs is prac-
tically zero. Figure 1 (middle panel) illustrates a numerical
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cross-check of the interesting relation (47), which relates the
force density with the density gradient (in the figure for a
system without free energy correction).

Also, in Fig. 1 (bottom panel), the temperature profiles
obtained in several type of H-AdResS simulations (with or
without correction) are presented. In all cases, thermal equi-
librium is attained and ensures a constant temperature profile
over the simulation box. In microcanonical simulations the
temperature is not an input simulation parameter so one should
expect small variations in temperature upon inclusion of some
form of the free energy correction (see for instance Fig. 1).
In fact, a modification of the FEC term changes the overall
Hamiltonian of the system and in general the heat capacity and
the caloric equation of state. For this reason, here we use a
standard (canonical) thermostat while adjusting the free energy
compensation in the iterative way.

B. Iterative evaluation of the free energy correction

The iterative evaluation of the FEC is based on the force
balance in Eq. (49), where the free energy derivative is given
by Eq. (26). The virial pressure gradient in Eq. (49) stems from
the inter-blob forces. Instead of evaluating its gradient, it is
more efficient to use Eq. (36). We assume that the field λ(r)
changes only along the x axis, i.e., λ(r) = λ(x) and that there
is translation invariance along the y , z axis due to the periodic
boundary conditions. This allows to average (49) with respect
to y , z. We introduce the following x dependent fields:

g(x) ≡ ⟨∇Π̂r ·ex⟩[λ]=


µν

δ(X̂µ− x)Ĝµν ·ex
[λ]

,

u1(x)−u0(x) ≡
 M

µ

(
V 1
µ −V 0

µ

)
δ(X̂µ− x)

[λ]
,

n(x) ≡
 M

µ

δ(X̂µ− x)
[λ]

. (91)

The density field a(x) of any microscopic quantity Aµ is
numerically evaluated by a binned Dirac delta: δh(r)=Θh(r)/Vh

where Vh is the volume of the bin and in 1D the characteristic
function is Θh(x) = 1 if |x | ≤ h/2 and zero otherwise. As
customary we assume ergodicity and use temporal averages
instead of ensemble averages

a(x)= 1
Tsample


Tsample

dt

µ

Aµ(t)δ∆x �x− xµ

�
. (92)

The sampling time is Tsample and the volume of the bin is V∆x
=∆xLy Lz with Lα the system’s size in α direction.

With definitions (91), mechanical equilibrium equation
(49) becomes in the 1D setting

Fc(x)= u1(x)−u0(x)
n(x) λ

′(x)+ g(x)
n(x) − kBT

d lnn(x)
dx

, (93)

where we have introduced the “compensation” force

Fc(x)≡−F ′(λ(x))λ′(x). (94)

As it is clear from Eq. (7), this is the x component of the force
due to the FEC acting on the atoms of the system when they
have the x coordinate.

Equation (93) is valid for any form of the FEC F (λ)
as it reflects the condition of mechanical equilibrium. The
requirement to have a constant pressure field in all the system,
i.e., Eq. (69), becomes in the 1D setting

Fc(x) = u1(x)−u0(x)
n(x) λ

′(x) (95)

while the condition of constant density field, Eq. (71), becomes

Fc(x) = u1(x)−u0(x)
n(x) λ

′(x)+ g(x)
n(x) . (96)

Note the fields n(x), u0(x), u1(x), g(x) depend implicitly on
F (λ) because they are given in terms of equilibrium averages
computed with a Hamiltonian that contains F (λ). Therefore,
we need to solve (95) and (96) iteratively. The general structure
of Eqs. (95) and (96) is

Fc=Φ(Fc). (97)

One way to solve this equation iteratively is

Fn+1
c =Φ(Fn

c ) (98)

with some initial good guess Fc
0. In the present case, the

Kirkwood estimate for F (λ) is a good guess that allows to use
(98). If we do not have such a good initial estimate, we need
to change the atomic forces Fc(x) slowly, otherwise the abrupt
change in the forces on the atoms may lead to undesirable
perturbations such as heat production (here we use thermostats
only during the FEC calibration), density waves (that in a
periodic system take a long time to be adsorbed), or even the
system explosion. For this reason, it is better to consider the
iterative protocol

Fc
n+1= Fc

n+α(Φ(Fc
n)−Fc

n), (99)

where α is sufficiently small. When convergence is reached
Fc

n+1 ≈ Fc
n implying Fc

n ≈ Φ(Fc
n). Note that α is related to

the inverse of a relaxation time (the solution ideally converg-
ing exponentially fast to the converged solution, Fc

n+1= Fc
n).

We update Eq. (99) each sampling interval Tsample = Ns∆t
and in such case α = α δKr

�
mod(n, Nf );0�, where δKr is the

Kronecker delta, n is the time step, mod(n;m) is the modulus
function and α̂ < 1. We have used α̂ ∈ [0.6–0.7] for those
cases where the initial guess is far from the targeted value
(notably Fc

0= 0). Although we have not performed a study of
the stability limits of Eq. (99), we observed that the sampling
frequency Nf should be large enough to guarantee the conver-
gence. In particular, Ts = Ns∆t should be several molecular
collision times to ensure thermalization and sufficient statistic
significance (we used Ns ∼ 103 time steps).

The iterative solution of constant pressure FEC equation
(95) becomes now

Fn+1
c (x)= Fn

c (x)+α
( 

u1(x)−u0(x)
n(x)

n
λ
′(x)−Fn

c (x)
)
, (100)

where the notation [· ··]n means that all averages are computed
with the force Fn

c (x) known at the nth iteration.
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The iterative solution of constant density FEC equation
(96) requires a further step in order to have a faster convergence
rate. The idea is to first perform an iteration of type (99)

F∗c = Fn
c (x)+α

( 
u1(x)−u0(x)

n(x)
n
λ
′(x)

+


g(x)
n(x)

n
−Fn

c (x)
)
. (101)

Then, we iterate the equivalent condition kBT∇ln n(x)= 0,

Fn+1
c (x) = Fn

c (x)+αkBT
d
dx

ln n(x) (102)

which we further integrate over the hybrid layer to have

F n+1(0) =F n(0)+αkT ln
n(x1)
n(x0) , (103)

where we have introduced

F n(0) ≡
 x1

x0

dxFn
c (x) (104)

and finally correct result (101) as

Fn+1
c (x) = F∗c (x)F

n+1(0)
F n(0) . (105)

The step in Eq. (103) involves integral (104) over the transition
layer so it permits to substantially reduce the fluctuations of
the (total) free energy jump estimation [F (0)]. This fastens
up the iterative evaluation of the compensation force Fc(x).
An analysis of the convergence rates is however left for future
work.

C. Fitted CG potentials

1. Kirkwood TI versus iterative evaluation of F :
The effect of hybrid layer width lhyb

This section analyzes the dependence ofF (λ) on the width
lhyb of the transition layer. Results will be compared with
the Kirkwood thermodynamic integration F K(λ) whose value
F K(0) at λ= 0 is the free energy difference between both fluid
models (CG and AA). Recall that by construction F (1) = 0,
and that for fitted CG potentials, by definition of fitted, we have
that F (0) = 0. At some 0 < λ(x) < 1, the agreement between
the Kirkwood free energy F K(λ) and the iterative evaluation
of F (λ) will indicate the validity of the local equilibrium
approximation introduced in Sec. VII. For large enough CG
and AA domains, the value of F (0) has to be independent on
the width of the transition layer.

The optimal result would be F (0)=F (0)K for any λ (i.e.,
for any width lhyb). Such result would allow the H-AdResS
scheme to act as a flexible and efficient tool for free energy
differences evaluation. Although we will not focus here on
this important thermodynamic aspect of H-AdResS, we will
analyze the effect of lhyb on F by considering systems with
fitted CG potentials (F (0) = F (1) = 0) in constant pressure
H-AdResS simulations. These issues will be also considered
later when analyzing constant density H-AdResS under non-
fitted potentials, F (0), 0.

The convergence ofF ′ is particularly fast in constant pres-
sure simulations because it only involves averages of extensive

quantities (energies). To get enough statistics for F ′ in each
iteration, Tsample can be chosen to be few molecular collision
times. We usually started the iterative FEC evaluation using
F (λ) = 0 as starting seed which is certainly a benefit, as it
avoids the pre-evaluation of the Kirkwood free energy F K

as starting point for the iterative route. It has to be said that
molecular dynamics H-AdResS only requires the derivative of
the FEC F ′ for time stepping. In this context, MD-H-AdResS6

offers a benefit over Monte Carlo H-AdResS7 because it per-
mits to use a force balance like Eq. (95) to iteratively eval-
uate/update the FEC on-the-fly.

Fig. 2 compares the Kirkwood approximation to F with
the iterative solution of Eq. (93) in a case with lhyb = 5σ. For
large enough transition layers, molecular correlations’ effects
lessen and we expect F ′ to approach to Kirkwood’s value. To
analyze how molecular correlations affect F ′we have reduced
the width of the hybrid layer lhyb up to quite small values.
Fig. 2 presents results for lhyb = 2, 2.5, and 5σ, which are
similar to the molecules’ diameters (about 2.5σ). Remarkably,
F ′ becomes quite close the Kirkwood free energy as soon as
lhyb is larger than about twice the molecular cutoff radius.
Maybe not unexpectedly, deviations between the iterative F
and F K (Kirkwood) increase around λ= 0 and λ= 1. Despite
differences in F (λ), it is important to stress that for any choice
of lhyb (see Fig. 2(b)), the iterative evaluation of F correctly
predicts F (0)= F (1). We shall come back to this later in the
case of non-fitted potentials.

Fig. 3 illustrates the effect of reducing lhyb in the density
and pressure profiles in H-AdResS simulations with constant
pressure. An interesting observation is that the jump of not-
compensated quantities over the transition layer (here density)
does not significantly increase as lhyb is made shorter. It is
important to notice that in a closed system, any mass difference
in the transition layer (which is a lower density region in

FIG. 2. The derivative F ′ (top) and FEC F (λ) (bottom) between the atom-
istic tetrahedral fluid and the fitted CG model as a function of λ in constant
pressure simulations. Comparison is made between Kirkwood TI (77) and the
iterative solution of Eq. (93) for several transition layer widths lhyb.
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FIG. 3. The effect of reducing lhyb in the density and
pressure profiles. Results correspond to fitted CG poten-
tial at constant H-AdResS pressure.

Fig. 3) induces finite size effects. The mass excluded from the
transition domain is transferred to the CG and AA domains
(according to their local chemical potential) so the density
in both domains will increase over the mean value n̄ = M/V
(which is n̄ = 0.1 in Fig. 3(a)). Paradoxically, for this reason
the density profile using lhyb = 2.5σ is closer to n̄ than the
profile using from lhyb = 5.0σ (see Fig. 3(a)). This mismatch
in the bulk densities is reflected in the total pressure, whose
(constant) value slightly depends on lhyb (see Fig. 3(b)).

2. Other finite box effects in closed systems

Fig. 4 shows the density and pressure profiles for lhyb
= 5σ in the case of fitted CG potentials. Comparison is made
between simulations with F given by pressure correction
Eq. (93) and with F = 0. Some conclusions can be extracted.
First, the non-compensated version presents a larger den-
sity jump over the transition regime when compared with
the pressure compensated H-AdResS. The overall density
mismatch across the transition region is slightly larger in
the non-compensated H-AdResS, although it is not a large
difference neither. Second, in closed boxes (here periodic)
a rarefied transition region induces finite size effects on the

bulk densities which become larger than n̄ =M/V . The effect
is larger for F = 0, although this effect is observed in both
simulations. This brings about consequences in the kinetic
and virial pressure profiles, shown in Fig. 4(b). Notably, the
kinetic pressure pid = ⟨kx⟩ is equal to kBT⟨nx⟩ (see Eq. (45))
so any mismatch in density is reproduced in pid. The total
pressure p(x)= pid(x)+ pex(x) is robustly fixed to a constant
value p(x) = P by the FEC. Consequently, pex compensates
any variation in pid across the transition layer.

D. Non-fitted CG potentials

We now explore one of the main benefits of H-AdResS
which is the possibility of working with non-fitted CG poten-
tials. This benefit is not only to alleviate the time consum-
ing and computational effort related to pre-evaluation of CG
potentials. In fact, fitting the CG potential is a good practice
as we have already seen that it minimizes the mismatch in
non-fitted thermodynamic variables. The benefits arise from
the possibility of performing simulations involving thermody-
namic processes, which involve changes in the global environ-
mental variables (temperature, pressure, chemical potential).
In these cases, H-AdResS permits to work with a single CG
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FIG. 4. (a) Density profile obtained from H-AdResS with fitted CG potentials
with constant pressure FEC and without FEC. (b) The kinetic pid and
virial pex contributions to the total pressure p = pid+ pex in the pressure
compensated H-AdResS with fitted CG potential. The mean pressure is P

= (1/L) L
0 p(x)dx.

model whose F is self-adapted over the whole process to keep
the desired global constraint (pressure, density, etc). In this
sense, H-AdResS offers an alternative to the (probably more
involved) problem of potential transferability. Other benefits
to be considered are the evaluation of free energies differences
in systems involving large solute molecules. For these applica-
tions, the estimation of the total free energy difference between
(CG and AA) models should be independent on the choice
of the hybrid layer and should coincide with the Kirkwood
thermodynamic value. On the other hand, we expect that the
iterative evaluation of F ′ will reduce or suppress the oscilla-
tions in the density (or pressure) profiles around the transition
layer. As stated around Eq. (67), these are due to molecular
correlations and have been reported in Kirkwood based pre-
evaluated FECs (see, e.g., Refs. 6 and 7).

FIG. 5. (Top) The FEC F evaluated from Kirkwood TI for constant pressure
and constant density. (Bottom) Derivatives of Kirkwood free energies. In
the constant pressure case, the H-AdResS FEC derivative F ′ is compared
with Kirkwood’s result. In this case, the total Helmholtz free energy differ-
ence (Kirkwood) is F K(0)= 0.85(2) while the iterative H-AdResS provides
F (0)= 0.86(4).

We start by presenting the free energy differences, pres-
sure and density profiles obtained for the three cases consid-
ered (constant pressure and constant density FEC and no FEC)
of a tetrahedral fluid facing a non-fitted CG fluid. These results
are shown in Fig. 5 (FEC) and Fig. 6 (pressure and densi-
ties). Note that in this case the Kirkwood free energy F K is
practically equal to the constant pressure FEC, reflecting again
the strong connection of H-AdResS with standard statistical
mechanics. We will in fact hereafter focus on the constant
density FEC and on its iterative evaluation. Constant density
results of Figs. 5 and 6, obtained with the Kirkwood route F K ,
reveal a relatively large free energy difference between both
fluids, of about F (0)≃ 2.7 kBT per molecule. Under no-FEC
contribution, this leads to substantial deviations in density and
pressure across the simulation box as reflected in Fig. 6.

FIG. 6. The density (left) and pressure
(right) obtained using H-AdResS in sim-
ulations of tetrahedral molecules with
the non-fitted CG potential. The corre-
sponding FEC F is shown in Fig. 5.
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1. Iterative constant density FEC

Fig. 7 compares the results for F ′ and F using the iter-
ative evaluation in Eqs. (101)–(105) and the Kirkwood TI in
Eq. (87) for constant density field. The first thing to highlight
from Fig. 7 (top, half) is that although F ′(λ) (and its integral
F (λ)) differ substantially, the overall H-AdResS free energy
difference F (0) results to be equal to the Kirkwood TI value.
For the reasons explained before, this is an important result.
Second, the density profile resulting from the iterative pro-
tocol is not completely flat, although the oscillations deviat-
ing from the mean density are softer and smaller than those
obtained from Kirkwood F K (maximum density deviations
are 2% while about 5% for Kirkwood). To understand the
origin of the density differences resulting from the iterative
protocol (101)–(105), we plot in Fig. 8 the terms involved in the
force balance over the x-direction. The system’s average force
per molecule [RHS of Eq. (96)] is compared with the imposed
compensation force Fc. Density variations along x arise with

FIG. 7. Free energies (top) and density profiles (bottom) for constant density
H-AdResS simulations of non-fitted CG potentials. The Kirkwood free energy
F K(λ) is compared with the relaxation algorithm of Eqs. (101)–(105) for
the FEC. Kirkwood total free energy jump is F K(0)= 2.67(0) and compares
quite well with the H-AdResS iterative result F (0)= 2.69(7).

FIG. 8. Details of the force balance of Eq. (96) at one of the hybrid layers
of a constant density H-AdResS simulation. The iterative evaluation of F ′
was performed with the algorithm of Eqs. (101)–(105) using ∆t = 0.005,
N f = 5000 and α̂ = 0.01 and Φ= λ′(x)�u1(x)−u0(x)�/n(x)+g (x)/n(x)
[see Eq. (96)]. Note that the correction force Fc equals its target Φ almost
everywhere inside the transition layer. The error (Fc−Φ) is indicated with
dashed lines (amplified for clarity). Precisely, the arrow points to one of the
borders of the transition where by construction Fc= 0, and thus Fc,Φ. This
local difference, due to the finite extent of the transition layer, necessarily
creates the small density mismatch observed in Fig. 7 (which peaks at the AA-
HYB border). Finally, we show the result of the Kirkwood approximation,
which presents larger deviations from Φ which are also perfectly correlated
with the larger density oscillations of Fig. 7.

any difference between both terms; from (93), such difference
is precisely kBTd lnn/dx and for clarity it has been amplified by
a factor 10 in Fig. 8. Indeed, Fc= 0 inside the atomistic domain
but due to the small width of the transition layer and the sharp
decay to zero of Fc(x) (particularly near λ = 1, indicated with
an arrow in Fig. 8), the fluid is compressed and creates density
oscillations. It seems reasonable that the density oscillations are
larger where the difference in compressibility is larger (i.e. near
the atomistic border, λ= 1). Fig. 8 shows that the transition of
Fc to zero is softer at λ = 0, where the density profile is also
softer. These observations indicate two things: first, that density
variations should eventually decrease with increasing lhyb (by
allowing smaller values of |dFc/dx | within the transition layer),
and second, that there might also be an optimal shape of λ(x).
A study of these issues is, however, left for future work.

IX. CONCLUSIONS

This work presented the statistical mechanics foundations
of H-AdResS.6,7 Because the method is based on a Hamilto-
nian, the standard techniques of statistical mechanics allow one
to obtain a wealth of information about the thermodynamics
of AA and CG models. The Hamiltonian in H-AdResS is an
interpolation of the actual microscopic potential with a CG
representation of the system in terms of blobs. In this way,
when a blob moves from the AA region to the CG region,
its interactions change accordingly. We have shown why and
how H-AdResS can be adapted to “connect” two different fluid
models (here the atomistic and the coarse-grained models)
by keeping both to coexist in the same fixed ensemble (for
instance, same density or same pressure) over the same simu-
lation box. The work required to do that is precisely the
free energy compensation F which is the central ingredient
of H-AdResS. We present numerical evidence that F (λ) is
close to the free energy difference obtained from Kirkwood
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thermodynamic integration F K(λ) and that both energies are
equal in the limit of local thermodynamic equilibrium (in
practice, wide enough transition layers). We have developed
schemes to iteratively evaluate the free energy correction under
either constant pressure or constant density simulations. This
iterative route has several benefits. The first is a practical one,
because it avoids the extra burden of implementing Kirkwood
thermodynamic integration each time a FEC needs to be eval-
uated. Moreover, iterative evaluation of F will permit to self-
adapt the FEC under a (slow enough) thermodynamic process.
It is important to stress that the overall free energy jump in
H-AdResS (∆F = F (0), recall that we impose F (1) = 0 as
reference value) is a thermodynamic quantity which should
not depend on the shape or width of the transition layer. This
is confirmed by simulation results which agree within error
bars with the Kirkwood TI free energy evaluation and indeed
explains the good performance of Kirkwood TI approxima-
tions to F used in Refs. 6 and 7. The limits and potentiality
of H-AdResS as a flexible, fast, and self-adaptive free energy
estimator will surely deserve further studies on denser and
more disparate systems.

The present scheme, as it stands, is a hybrid model where
interactions between atoms change depending on the location
of the atom. In the current implementation, all the degrees
of freedom are retained in the simulation box. We keep the
intramolecular forces acting on the atoms in the CG region, but
it should be clear that they play no role in the thermodynamics
of the system (as they provide a constant free energy contribu-
tion). There is no fundamental problem on freezing or deleting
the internal degrees of freedom of the molecules in the CG
domain, with real reduction of degrees of freedom, although
for simplicity we have decided in this work not to do so. In
whatever case, the time spent in the computation of the forces
in the CG region is obviously much shorter that in an all-atom
simulation because in the CG domain the interactions (and
neighbour search) run over pairs of blobs (molecules) instead
than over pairs of atoms. This is a computational advantage
over full atomic simulations which (depending on algorithmic
details) increases somewhat faster than the number of atoms
per molecule. Further speed-up may be gained by using multi-
step algorithms that take advantage of the softer CG potentials.
These technical details do not depend on the existence of a
Hamiltonian. In fact, the efficiency of the present version of
H-AdResS is essentially the same as the original implemen-
tation of AdResS, based on force interpolation. In this sense,
the value of the present approach does not lay in competing
with force-interpolated AdResS at the computational level.
Rather the Hamiltonian formulation provides a sounder statis-

tical mechanical base for adaptive resolution simulations and
allows to extend hybrid adaptive resolution to Monte Carlo
simulations.

The emphasis in the present paper has been on equilibrium
statistical mechanics. In order to look at problems in which
dynamics is of importance, it is necessary to include the possi-
bility in the algorithm of interpolating the full CG dynamics.
In addition to the CG potential of interaction, the full CG
dynamics requires the presence of friction and stochastic forces
in order to fully account for eliminated degrees of freedom in
the CG region.19 As it is well-known, the equilibrium prop-
erties should not be affected by the presence of these additional
forces that are, however, crucial in non-equilibrium or dynamic
situations. This further development is left for future work.
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APPENDIX A: LOCAL EQUILIBRIUM
IN THE TRANSITION LAYER

Exact result (66) leads to an interesting result when the
typical length of variation of λ(r) is much larger than the typical
length of decay of the correlations. In this case, because in
the length scale in which the correlation decays, the field λ(r′)
hardly changes, we may approximate (66) by taking ∇λ(r′)
≈∇λ(r) outside the integral as follows:

∇⟨Ar⟩[λ] ≈ −β∇λ(r)


dr′


δAr(u1

r′−u0
r′

+F ′(λ(r′))nr′)⟩[λ]. (A1)

This approximation is equivalent to set, in Eq. (64),

∇⟨Ar⟩[λ] ≈∇λ(r)


dr′
δ

δλ(r′) ⟨Ar⟩[λ]. (A2)

Now, let us consider the average of the local function ⟨Ar⟩[λ]
when λ(r) changes smoothly. Consider the following rewriting
of the Hamiltonian:

H[λ](r,p) =Hλ(r)+δH[λ], (A3)

where we have added and subtracted a λ(r) term by defining

Hλ(r) ≡

i

p2
i

2mi
+

M
µ

V intra
µ (r)+λ(r)

M
µ

V 1
µ(r)+ (1−λ(r))

M
µ

V 0
µ(R)+

M
µ

F (λ(r)),

δH[λ] ≡
M
µ

(λ(R̂µ)−λ(r))V 1
µ(r)−

M
µ

(λ(R̂µ)−λ(r))V 0
µ(R)+

M
µ

F (λ(R̂µ))−
M
µ

F (λ(r))

=


dr′(λ(r′)−λ(r))u1

r′(r)−


dr′(λ(r′)− λ(r))u0
r′(R)+


dr′(F (λ(r′))−F (λ(r)))n̂r′(r). (A4)
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Clearly, Hλ(r) is the Hamiltonian of a constant switching field
where the value of the constant is picked to be the local value
λ(r). We can now consider the average of a local function of
the form

⟨Âr⟩[λ] =


dz
1

Z[λ] exp{−βH[λ]}
M
µ

Aµδ(r−Rµ). (A5)

By expanding the exponential with respect to δH[λ], we have

⟨Âr⟩[λ] = ⟨Âr⟩λ=λ(r)+ ⟨δH[λ]δ Âr⟩λ=λ(r)+ · ··. (A6)

By using the definition (A4), we have

⟨δH[λ]δ Âr⟩λ=λ(r)

=


dr′(λ(r′)−λ(r))⟨u1

r′(r)δ Âr⟩λ=λ(r)

−


dr′(λ(r′)−λ(r))⟨u0
r′(R)δ Âr⟩λ=λ(r)

+


dr′(F (λ(r′))−F (λ(r)))⟨n̂r′(r)δ Âr⟩λ=λ(r). (A7)

It is apparent that if the switching field does not changes much
on the length scale of decay of the correlations, all the above
contributions may be neglected and we have

⟨Âr⟩[λ]≈ ⟨Âr⟩λ=λ(r). (A8)

This is a very natural result that tells that when the switch-
ing field does not vary appreciably in the length scale of the
molecular correlations, the average of a local function in the
spatially varying switching field is very well approximated
with the average at a constant value of the switching field with
the local value at the point r that we are considering. By using
this approximation in Eq. (A2), we obtain finally

∇⟨Âr⟩[λ] ≈∇λ(r)


dr′
δ

δλ(r′) ⟨Ar⟩λ=λ(r)

=∇λ(r) d
dλ

⟨Ar⟩λ
�����λ=λ(r)


dr′

δλ(r)
δλ(r′)

=
d
dλ

⟨Âr⟩λ���λ=λ(r)∇λ(r). (A9)

This expression allows one to express gradients of local func-
tions as simply proportional to the gradients of the switching
function whenever the switching function changes smoothly
on the length scale of correlations of the CoM variables. Equa-
tion (A9) could be very roughly interpreted as a sort of “chain
rule” where space derivatives are expressed in terms of deriva-
tives with respect to the switching field. Results (73) and (A9)
will be referred as the local equilibrium approximation for the
averages and its gradients.

APPENDIX B: THE FORCE Fµ

In this appendix, we compute explicitly the force

F̂µ = −

i

δµ(i) ∂

∂ri




ν

V intra
ν (r)+


ν

λ(R̂ν)V 1
ν (r)

+

ν

(1−λ(R̂ν))V 0
ν (R)+


ν

F (λ(R̂ν))

. (B1)

Consider the intra potential energy of molecule ν which is
defined as

V intra
ν (r) = 1

2


i′j′

δν(i′)δν( j ′)φintra(ri′j′), (B2)

where φintra(ri′j′) is the pair potential of particles i′, j ′ due to
intramolecular interactions. Then,

−

i

δµ(i) ∂

∂ri


ν

V intra
ν (r)

=−

i

δµ(i) ∂

∂ri


ν

1
2


i′j′

δν(i′)δν( j ′)φintra(ri′j′)

=−

i

δµ(i)

ν

1
2


i′j′

δν(i′)δν( j ′) ∂

∂ri
φintra(ri′j′)

=

i

δµ(i)

ν

1
2

×

i′j′

δν(i′)δν( j ′) f intra(ri′j′)ei′j′(δii′−δi j′)

=

i

δµ(i)

ν


i′j′

δν(i′)δν( j ′) f intra(ri′j′)ei′j′δii′

=

i

δµ(i)

ν


j′
δν(i)δν( j ′) f intra(ri j′)ei j′

=

i


ν


j′
δµνδν(i)δν( j ′) f intra(ri j′)ei j′

=

i j′

δµ(i)δµ( j ′) f intra(ri j′)ei j′= 0 (B3)

because ei j =−e j i and the indices are dummy. Indeed, the total
force on the molecule due to internal forces vanishes. Consider
now the term

−

i

δµ(i) ∂

∂ri
λ(R̂ν)

=−

i

δµ(i)∇λ(R̂ν) ∂

∂ri


i′
δν(i′)mi′

mν
ri′

=−

i

δµ(i)∇λ(R̂ν)

i′
δν(i′)mi′

mν
δii′=−∇λ(R̂ν)δµν.

(B4)

Next, the term

−

i

δµ(i) ∂

∂ri
V 1
ν (r)

=−

i

δµ(i) ∂

∂ri
1
2


ν′,ν


i′j′

δν(i′)δν′( j ′)φinter(ri′j′)

=
1
2


ν′,ν


ii′j′

δµ(i)δν(i′)δν′( j ′)F1
i′j′(δii′−δi j′), (B5)

where we have introduced the force F1
i′j′ that atom j ′ exerts on

atom i′. Therefore,

−

i

δµ(i) ∂

∂ri
V inter
ν (r) = 1

2


ν′,ν


i j′

δµ(i)δν(i)δν′( j ′)F1
i j′

− 1
2


ν′,ν


ii′

δµ(i)δν(i′)δν′(i)F1
i′i

= δµν
1
2


ν′,ν


i j

δµ(i)δν′( j)F1
i j
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− 1
2


ν′,ν

δµν′

i j

δµ(i)δν( j)F1
j i

= δµν
1
2


ν′,ν

F1
µν′+

1
2


ν′,ν

δµν′F1
µν

=

ν′,ν

F1
νν′(Rνν′)1

2
�
δµν−δµν′

�
, (B6)

where we have introduced the force that molecule µ exerts on
molecule ν as

F1
µν ≡


i j

δµ(i)δν( j)F1
i j . (B7)

Next, the term

−

i

δµ(i) ∂

∂ri
V 0
ν (R) = −


i

δµ(i) ∂

∂ri
1
2


ν′

V 0
νν′(R)

=
1
2


ν′

Fcm
νν′(Rνν′)


i

δµ(i)∂Rνν′

∂ri

=
1
2


ν′

Fcm
νν′(Rνν′)


i

δµ(i)∂Rνν′

∂ri
, (B8)

where we assumed pair-wise interactions. Then,


i

δµ(i)∂Rν

∂ri
=


i

δµ(i) ∂

∂ri


i′
δν(i′)mi′

mν
ri′

=

i

δµ(i)

i′
δν(i′)mi′

mν
1δii′

=

i

δµ(i)δν(i) mi

mν
1= δµν1, (B9)


i

δµ(i)∂Rνν′

∂ri
= eνν′ ·


i

δµ(i)∂Rνν′

∂ri

= eνν′
�
δµν−δµν′

�
, (B10)

then

−

i

δµ(i) ∂

∂ri
V 0
ν (R) = 1

2


ν′

Fcm
νν′(Rνν′)


i

δµ(i)∂Rνν′

∂ri

=
1
2


ν′

Fcm
νν′(Rνν′)eνν′�δµν−δµν′�

=
1
2


ν′

F0
νν′(Rνν′)�δµν−δµν′�. (B11)

In summary, we have

F̂µ ≡ −

i

δµ(i) ∂

∂ri




ν

V intra
ν (r)+


ν

λ(R̂ν)V inter
ν (r)

+

ν

(1−λ(R̂ν))V 0
ν (R)+


ν

F (λ(R̂ν))


(B12)

and have to substitute in this expression the following results:

−

i

δµ(i) ∂

∂ri


ν

V intra
ν (r)= 0,

−

i

δµ(i) ∂

∂ri
λ(R̂ν)=−∇λ(R̂ν)δµν,

−

i

δµ(i) ∂

∂ri
V inter
ν (r)= 1

2


ν′

Fintra
νν′ (Rµν′)�δµν−δµν′�,

−

i

δµ(i) ∂

∂ri
V 0
ν (R)= 1

2


ν′

F0
νν′(Rνν′)�δµν−δµν′�, (B13)

with the result

F̂µ = −



ν


i

δµ(i) ∂

∂ri
λ(R̂ν)(V inter

ν (r)− V 0
ν (R)−F ′(λν(R)))



−



ν

λ(R̂ν)

i

δµ(i) ∂

∂ri
V inter
ν (r)+


ν

(1−λ(R̂ν))

i

δµ(i) ∂

∂ri
V 0
ν (R)


= −∇λ(R̂µ)(V inter

µ (r)−V 0
µ(R)−F ′(λµ(R)))

+

ν

λ(R̂ν)1
2


ν′

F1
νν′(Rµν′)�δµν−δµν′�+


ν

(1−λ(R̂ν))1
2


ν′

F0
νν′(Rνν′)�δµν−δµν′�

= −∇λ(R̂µ)(V inter
µ (r)−V 0

µ(R)−F ′(λµ(R)))

+

ν

λ(R̂µ)+λ(R̂ν)
2

F1
µν(Rµν)+


ν

*
,
1−
λ(R̂µ)+λ(R̂ν)

2
+
-

F0
νν′(Rµν). (B14)

We may introduce the following pair force:

Ĝµν =



λ(R̂µ)+λ(R̂ν)
2


F1
µν(Rµν)

+


1−
λ(R̂µ)+λ(R̂ν)

2


F0
µν(Rµν). (B15)

The pair force satisfies Newton’s third law. With this definition,

we have

F̂µ = −∇λ(R̂µ)(V inter
µ (r)−V 0

µ(R)−F ′(λµ(R)))
+


ν

Ĝµν. (B16)
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