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A mathematical technique is introduced to sum the iteration series which occurs in the 
electron gas theory by Montroll and Ward. As a result summation over ring diagrams be­
comes easier to perform than the case of Montroll and Ward. The binary kernel of Lee 
and Yang is expressed as a sum of kernels which are solutions of integral equations obtained 
by iteration. This formalism provides a method to calculate the binary kernel. The grand 
partition function is calculated by solving the integral equation and is applied to the calcula­
tion of the Debye-HUckel equation of state. 

§ 1. Introduction 

Systematic perturbation theory follows directly from an analysis of the pro­
pagator kCN> (r2, /32; rh /31) =k (2, I) which has the property 

cjJ (r2, /32) = ikCN> (r2, /32; rh /31) cjJ (rb {31)d3Nr1. 

Here r1 and r2 schematically represent respectively the values of the 3N position 
coordinates of the particles /31 and /32. The parameter {3 is I/kT, T being the 
temperature and k the Boltzmann constant. cjJ is the wave function or character­
istic function of the Hamiltonian H. It can be shown1

),
2

) that k (2, I) satisfies 
the Green's function equation 

(I·I) 

the operator In the parenthesis operates on the variables r2 and /32. 
Let us write 

(1·2) 
and 

k (2, I) = ko (2, I) + k1 (2, I), (I·3) 

where H 0 is the free particle Hamiltonian and k0 (2, I) the free particle propaga­
tor which is the solution of 

[ _j_ + H 0 (2)]ko (2, I) = 0 ({32- /31) o (r2- r1). 
a !32 

Substitution of (I· 2), (I· 3) and (I· 4) into (I·I) gives 

(I·4) 

*) Present address; Department of Physics and Astrophysics, University of Delhi, Delhi-7, India. 
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Statistical Mechanics of Interacting Systems 1193 

i i fi 2 3N 
k1 (2, 1) = - k0 (2, 3) H 1 (3) k (3, 1) d radf3a. 

v fit 

Thus 

k (2, 1) = ko (2, 1) - r re 2

ko (2, 3) H1 (3) k (3, 1) d 3Nradf3s' (1· 5) Jv Jet 
which can be solved by iteration: 

If H 1 is proportional to a coupling constant }., this expansion is a power 
series in }. and therefore a perturbation series. Each term in this expansion can 
be identified by Feynman-type diagrams in (r, {3) space. Montroll and Ward1

)'
2
) 

gave a systematic treatment of the electron gas, based on the summation of this 
senes. 

In the following development we introduce a mathematical technique to sum 
the iteration series (1· 6). In this formalism, unlike that of Montroll and Ward, 
wave functions and energy levels play an important role. 

In § 2 a propagator k (P2, {32 ; Ph {31) for two interacting particles is calculat­
ed in terms of g (P2, {32 ; Ph !31). The function g (P2, /32 ; Ph {31) is a kernel of a 
certain integral equation. It is shown in § 3 that the binary kernel of Lee and 
Yang4

) can be expressed as a sum of the kernels which are obtained by iterat­
ing this integral equation. An expression for the function g (P2, {32 ; Ph {31) for 
the Coulomb potential is also obtained in this section. In § 4 the integral equa­

tion whose kernel is g (P2, {32; Ph /31) is solved and in § 5, k (P2, {32; Ph !31) is fur­
ther simplified. Finally, in § 6, the Debye-Htickel equation of state is calculated. 
Discussion is given in § 7. 

§ 2. The propagator k (P2, /32; P1, /31) for two interacting particles 

It is easier to make calculations in momentum space representation. Let 

then the partition function1
) 

(2·2) 

The free particle momentum space propagator is 

(2·3) 
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1194 P. C. Trivedi 

where o (p2 - p1) 1s to be interpreted as 

o CP2-P1) =Lim {E§_Pd!2
-} .• 

v~co (2rch) 8 
(2·4) 

When v is finite o (p2 - p 1) is to be replaced by the quantity m the bracket. 
In the presence of interactions we can find the momentum representation 

of our fundamental integral equation (1· 5) by employing (2 ·1), (2 · 3) and us­
ing the Fourier transform of the interaction energy u (q). That 1s, setting 

with 

one finds 

u(q) =-
1

- fu(r)exp[ -i(q·r)/h]d8r, 
(2rchY 

u(r) = S u(q)exp[iq·r/h]d3q, 

(2·5) 

(2 ·6) 

X f ko (p2, {32; Pa<1>, "·, p/k)- q, .. ·, P·/1> + q, .. ·, Pa<N>, f3a) U (q) k (Pa, f3a; Ph {31) d 3q · 

(2·7) 

The conservation of momentum. is apparent from the fact that through an in­
teraction the momentum of the jth particle has been increased by q and that of 
the kth particle has been decreased by q. 

For two interacting particles (2 · 7) is written as 

k (P2, {32; Ph !31) = ko (P2, {32; Ph {31) - s:2 s d 3Psdf3s 

X S ko (P2, {32; Ps(1
)- q, Pa(2

) + q, f3a) U (q) k (Pa, f3a; Ph f3t) d 3q, (2 · 8) 

where 

P _ {p (1) p (2)}, D _ {p (1) p (2)}. p _ {p (1) p (2)} 1- 1 , 1 ,L2- 2 , 2 , a- a , a · 

On iteration (2 · 8) gives 

k (P2, !32; Pb !31) = ko (P2, (32; P1, (31) - s:2 s d 3Padf3a 

X S ko (P2, (32; Pa(l)- Qa, Pa(2
) + Qa, f3a) U (qa) ko (Pa, f3a; Ph {31) d 3qa 

+ s:2 s s:s s d 3Padf3ad3P4d(34 s ko (P2, (32; Pa<1>- qa, Pa<2> + qa, f3a) u (qa) d 3
qs 

X f ko (Pa, f3a; p4<1>- q4, P/2
> + q4, {34) U (q4) ko (P4, {34; Ph {31) d 3q4" .... · (2 · 9) 
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Now 

S ko (3, 5) ko (5, 4) d 3P5 = k0 (3, 4), 

where 

Similarly 

fko(Pa, f3a; Po, /35)ko(P5, /3o;p4<1)-q4,p4<2)+q4, {34)d3P5 

= ko (Pa, /3a; P4(1)- q4, P4(2
) + q4, /34) • (2 ·10) 

Let 

s:2 s d 3Padf3s s ko (P2, {32; Pa<1)- qs, Pa<2) + qa, /3a) u (qa) ko (Pa, f3a; Ph !31) d 3qs=-U (2, 1). 

(2 ·11) 

Similarly 

s:2 s d 3Padf3s s ko CP2, /32; Ps<1)- qs, Ps<2) + qg, /3a) u (qa) ko (Pa, f3a; Po, f3o) d 3qs 

= s:2 s d 3Padf3s s ko (P2, /32; Ps<1
)- qs, Pa<2) + qa, /3a) u (qa) ko (Pa, f3a; Po, f3o) d 3qs 

=.g (2, 5)' (2 ·12) 

since 

ko (2, 3) =f) (/32- f3s) ko (2, 3) 

and 

ko (3, 5) =f) (f3a- /35) ko (3, 5), 

where f) (x) IS the Heaviside function defined as 

! 1 if x>O, 
f) (x) = 0 if x<O . 

Hence for g (2, 5) to be non-zero we have /32>/33>{35. Also 

s:a s d 3P4d{34 s ko (Po, f3a; p4<1>- q4,p4<2) + q4, /34) u (q4) ko (P4, {34; Pb /31) d 3q4 

= s:s s d 3P4d{34 s ko (Po, f3o; p4<1
)- q4, p4<2

) + q4, /34) u (q4) ko (P4, {34; Ph /31) d 3q4 

=.g (5, 1)' (2 ·13) 

since 
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---11 

Fig. 1. The {3 ordering. 

and 

(3 ordering is shown in Fig. 1. 
Substitution of (2 ·10), (2 ·11), (2 ·12) and (2 ·13) m (2 · 9) yields 

k(2, 1) =k0 (2, 1) -g(2, 1) + S g(2, 5)g(5, 1)d3P5 

- s s g (2, 5) g (5, 6) g (6, 1) d 3P5d3P6 + .. · . 

Now consider the integral equation 

where 

and 

(/j1~ (2) =(/jn (P2, {32), 

(/jn (1) =(/jn (Ph {31) 

(2 ·14) 

(2 ·15) 

{(/jn} and {An} are the normalized characteristic functions and associated charac­
teristic values respectively. It is known that 

g (2, 1) = ~ An(/jn (2) (/jn* (1) • (2 ·16) 
n 

From (2 ·16) and (2 ·14) we have 

k (2, 1) = ko (2, 1) - ~ Ai!Jn (2) (f)n * (1) + ~ ~ s AnAm(/jn (2) (f)n *(5) (/j"n(5) (]jm * (1) d 3P5 

- ~ ~ ~ SfAnA'lnAt(/)n (2) (/)n * (5) (/jm (5) (/jm * (6) (/)L (6) (/jt* (1) d 3P5d3P6 + .... 
n m l 

Since 

S (/)1~*(/jmd3P= Onm, 

k (2, 1) = ko (2, 1) -~CAn- An2 + A1,3 - "·) (/)n(2) (/jn * (1), (2 ·17) 
n 

(2 ·18) 
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Thus the iteration series (1· 6) has been expressed as a geometrical series which 
can be summed in a closed form. 

In this section we shall obtain an expression for the g (P2, {32; Ph {31) function 
for the Coulomb potential. It is defined by (2 ·11),. viz. 

g CP2, {32; Ph {31) = s:2 s df3ad3Pa s ko (P2, {32; Ps<1>- q, Ps<2> + q, i3s) 

(2 ·11) 

Using (2·3) and integrating over P3 we obtain 

g (P2, S2; Ph {31) = s:2 

df3s s d 3qo (p2<1>- P1<1> + q) o (p2<2>- p1<2>- q) 

Xexp{- ({32-{31)P12/2m}exp[- ({32-{33)q· {q+ (p/2>-p1<1>)}/m]u(q), 

(3 ·1) 

where 

The Coulomb interaction is characterized by the potential energy function u (r) 
= e2 

/ r. Its Fourier transform is obtained by taking the limit of vanishing screen­
ing constant c~~o) in 

(3 ·2) 

Substitution of u (q) from· (3 · 2) into (3 ·1) and its integration over q and {33 

yields 

2 

g(P2, {32; P1, {31) = ";;~;/(p2<2>+p2<1>-p1<2>-p1<1>)exp{- ({32-{31)P12/2m} 

1 1 X . -~--~--~---~----··--·-------
(p2C2)- p1<2>)2 + ~2fi2 (p2<2>- pl<2>) . (p2<2>- pl<l>) 

x [ 1- exp {- ({32 :{31) (p2<2>-p1<2>) · (p2<2>-p1<1>)} l (3 · 3) 

We introduce the relative momenta and the center of gravity momenta as 
follows: 

p/ = t (p1<2>- P1C1>), 

P/ = P1< 2
> + P1<1>, 

P / -1. (p (2) -p (1)) 
2 -2 2 2 ' 

P/ = P2<2
> + P2< 1>. (3·4) 
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1198 P. C. Trivedi 

Using (3 · 4) in (3 · 3) we obtain 

g (P. (.) . p (.) ) = me
2 

0 (P., _ p ') exp {- ({3 2- {3I) p 12} 
2, 1-12, h 1-11 27C2h 2 1 4m 1 

X [ exp { ({32-!I) p/2} - exp {- ({32 -:n{3I) p2 12} J I { (p/-p/Y + en2} (p/2-p/2) . 

(3 ·5) 

We can also express k (P2, !32; Ph {31) in terms of the binary kernel.3>• 4> 

where u2 IS the binary kernel and can be represented as in Fig. 2. Compari-

r-r + kl' + kr+ --- . 
1 2 1 2 1 2 

Fig. 2. The binary kernel. 

son of (3. 6) and (2 ·17) shows that u2 can also be expressed 111 . terms of g 
functions, 

U2= -Ut+U2-Us+ ... , 

where g1-.:::=g (2, 1) which is the kernel of the integral equation (2 ·15), g2 is the 
kernel of the integral equation obtained by iterating (2 ·15) once and has the 
eigenvalues A1~2 , g3 has eigenvalues A1l

3 and is the kernel of the integral equation 
obtained by iterating (2 ·15) twice etc. Thus we have a simple method of cal­
culating the binary kernel. 

§ 4. Solution of the integral equation 

In this section we consider the integral equation (2 ·15). Wave functions 
can be written as follows : 

We write (2 ·15) as 

(jjn (Ph {31) = exp (- ~~/
2

) ¢n (p/), 

(jjn (P2, {32) = exp (- {3~~
2

) ¢n (p/) · 

(jjn(P2, {32) =A.n- 1 s g(P2, {32; Pb {3I)(jjn(Ph {31)d 3P1. 

(4 ·1) 

(2 ·15) 

Substitution of g (P2, {32 ; Ph {31) from (3 · 5) and integration over P/ gives: 
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Statistical Jl.fechanics of Interacting Systems 1199 

Thus 

'""'(p')=A.'S[exp(-ap/,')-exp(-ap/
2
)]'"" (p')dsp' (4 · 2) 

'f'n 2 n { ( 1 ')2 /:'2.k2} ( 12 12 ) '.Pn 1 1 ' P2 - P1 + "'- n P2 - P1 

where 

For the convemence of notation let 

Then (4·2) becomes 

where 

t - ' =p1. 

(4·3) 

(4·4) 

(4·5) 

k (x, t) is a symmetric kernel of the homogeneous equation ( 4 · 4). We can use 
Hilbert-Schmidt theory to solve it. The Fredholm determinant D (A') is defined 
as5) 

where 

A - S··· s ... ... ... ... ... ... ... dt1···dt1£' 

,. - I ~· ~~~: ·; :; ::: ~· ~~~: ·; .. ) 
(n>O) 

Thus 

(4·6) 

Let A.o' be a value of A.' for which D (Ao') = 0. It is known in the Fredholm's 
theory of homogeneous integral equations that if DUo') = 0 and D (x, y 0 ; A.o') $. 0, 
then for a proper choice of y 0, u (x) = D (x, y 0; A. 0') is a continuous solution of 
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1200 P. C. Trivedi 

u (x) = J.o' Sab k (x, t) u (t) dt, 

and u (x) $0, where D (x, y 0 ; J.o') is Fredholm's first minor and is defined in ( 4 · 8). 

From (4·5) we have 

____.4n a 3 

-3 ~2fi2pF, 

where PF is the cutoff momentum. Using the above theorem and Eq. (4·3) we 

have 

_ 2e2 p/ 
Ao- 3nh ({32- [31) ~2fi2 . (4. 7) 

Fredholm's first mmor Is defined as 

oo ).'n+l 
D(x, y; ).') = ).'k(x, y) + :E ( -It-Bn(x, y), 

n=l n! 

where 

k(x,y) k(x,tl)···k(x,tn) 

(4·8) 

Thus the above theorem gives 

¢n (x) = D (x, Yo; J.o'), 

=A 'k(x ) -J,. 12 f I k(x, Yo) 
o 'Yo o k ( ) t, Yo 

k(x,t)l 
dt+ ... ' 

k (t, t) 

_____. Ao' k (x, Yo). (4·9) 

The electrons in the plasma are capable of displaying both collective and 

independent particle behavior, with the Debye length functioning as an indicator 

of the kind of behavior which might be anticipated. 6
> For phenomena involving 

distances greater than the De bye length, the system behaves collectively and 

is best characterized by a set of harmonic oscillators representing the plasma 

oscillations. For phenomena involving distances less than the Debye length, the 

electron gas is best described as a collection of independent electrons interact­

ing rather weakly via a screened Coulomb force. High electron density and strong 

interaction favor the collective behavior whereas high temperature opposes it. 

Let PD denote the momentum for which we begin to get an effective transition 

from collective to individual particle behavior then at high temperature 
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Statistical Mechanics of Interacting Systems 

or if we use a screened potential 

The cutoff momentum PF is determined by 

V lPp da -N 
(2nfi/ Jo P- ' 

or 

where N /v = p, the electron density. 

In this section we wish to simplify further Eq. (2 ·18), viz. 

From ( 4 ·1) and ( 4 · 9) we get an orthonormal set of wave functions 

@n (P2, /32) = exp (- !~/
2

) J.o' k (p/, Yo), . 

@r& (P1, /31) = exp (- {31P/
2
) J.o' k (p/, y 0). 

4m 

Substituting (5 ·1) in (2 ·18) and using (2 · 4) we obtain 

k CP2, /32; Ph /31) = ko (P2, /32; Ph {31) - L; _b__exp (- {32P/
2
) 

n 1 + A1~ 4m ' 

X J.o'k (p/, Yo) exp ( /!_~;;
2

) Ao1 k* (p/, Yo) 0 P 1' P 2 ' 

= ko CP2, /32; Ph {31) - exp {- ({32 ~:1) P/
2
} o (P/- P/) 

XL; (2nh)a 1 }.\ J.o'2k (p/' Yo) k (yo, p/). 
n V +An 

1201 

(4 ·10) 

(5 ·1) 

(5 ·2) 

Dropping the primes, and separation of the center of gravity and relative mo­
menta contributions yield respectively 

(5 ·3) 

and 
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1202 P. C. Trivedi 

(5·4) 

Fourier transforms of (5 · 4) and u (q) are 

k (r2, S2; rh (31) = (2~hy f f d 3p1d3
p2exp {- i CP2 · r2- P1 · r1) h-1} k CP2S2; ph (31) 

(5·5) 

and 

uCr2-r1) = f u(q)exp{ -iq· (r2 -r1)h- 1}d3q. (5·6) 

We shall use (5 · 5) and (5 · 6) to obtain a propagator for the ring diagrams. 

§ 6. The Dehye-Hiickel equation of state 

In this section we shall apply our formalism to the study of equation of 
state of an assembly of charged particles in the regions of high temperatures 
and low densities. This subject is of interest in physical chemistry regarding 
the properties of solutions of strong electrolytes, astrophysics and plasma physics. 
The first correct theoretical calculation of the correction due to interactions be­
tween charged particles to the classical perfect gas law, which must hold in the 
limit of very low densities, was made by Debye who derived the well-known 

formula 

(6 ·1) 

The thermodynamic properties of an electron gas are functions of the five 
independent parameters; the electron mass m, the charge e, the density p, h and 
(3 = 1/kT. The only dimensionless parameter which can be constructed from 
these for a classical gas (ft-?0) is e2(3p1!3

• Then since as e-?0 the perfect gas 
law P/kT= p must remain true, the correction must be contained in the form 

where f is some function such that Lim 6 _.of = 0.' Now 

I:-? Lim v fa3Yo. 
n V->CX> (2nftY 

Substitution of (6 · 3) in (5 · 4) gives 

k (p2, (32; Ph (31) = -~0 
1-Ao'2 fk (p2, Yo) k (yo, P1) d 3

Yo 
1+ Ao 

=~Ao12k2 (p2, P1). 
1 + Ao 

(6 ·2) 

(6·3) 

(6·4) 
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Combining (5 · 5) and (6 · 4) we obtain 

k (r2, {32; rb {31) -
1 

S S d 3p1d3P2 exp {- i CP2 · r2- P1 · r1) h-1} ~Ao12 k2 (p2, P1). 
(2n-h)3 1 + Ao 

Equation (6 · 5) along with (5 · 6) gives 

k (r2, r1; !32- !31) u (r2- r1) = 
1 

s sd3p1d3p2exp {- i CP2 · r2- P1 · r1) h-1} 
(2nhY 

(6 ·5) 

X -~Ao'2k2 (p2, P1) u (q1) exp {- iq1· (r2- r1) h-1} d 8q1 ' 
1 + Ao 

= 
1 

3 
~-Ao'2 Sd3p1d8p2d3q1k2 CP2, P1) u (q1) 

(2nh) 1 + Ao 

Xexp[ -i{(p2+q1) ·r2- CP1+q1) ·r1}h-1]. (6·6) 

0-0~----o--o- •. 
r 1 Rl R2 R3 RN-2 RN-1 RN 

p~ PI p2 p3 PN-2 PN-1 PN 

. qN ql !12 q3 qN-2 qN-l qN 

.,tN t:t ~ t:t ct' "d: <t 
J .2 3 N-2 N-1 .N 

Fig. 3. The open-ended ring cluster which is formed by combining many 1-torons. 

Chain integral for Fig. 3 is obtained by iterating (6 · 6) 

kN(rb RN; {3) = 1/1 s n:: {k(Rm+l' Rm; am) u(Rm+l-Rm)} 

X k (Rb r1; aN) u (R1- r1) dR1 · · · dRN -1da1 ···daN 

= r { cz!il)'l :· .;'·'f s- .. s 
x d 3p1d3p2d3q1k2 (pb P2) u (q1) exp [- i { CP2 + ql) · R2- CP1 + q1) · R1} h-1] d 3R1da1 

X d 3p2d3Pad3q2k2 (p2, Ps) u (q2) exp [- i {CPs+ q2) . Rs- (p2 + q2) . R2} h-1] d 3R2da2 

x'd 3Pad 3p4d3qsk2 (Pa, p4) u (qa) exp [- i { (p4 + qs) · R4- (Ps + qa) · Ra} h- 1
] d 3Radas 

X d 8PN-2d 8PN-ld 3qN-2k2 (PN-2, PN-1) u (qN-2) exp [- i { (PN-1 + qN-2) ·RN-1 

- (PN-2 + qN-2) ·RN-2}h-1]d3RN-2daN-2 

X d 3PN-1d 3pNd3qN-lk2 (PN-h PN)u (qN-1) exp [ -i{ (PN+ qN-1) ·RN 

- (PN-1 + qN-1) ·RN-1}h-1]d 3RN-1daN-1 . 

Xd 3pN'd8p1d 8qNk2(pN',p1)u(qN)exp[ -i{(pl+qN) ·R1- (pN'+qN) ·rl}h- 1]daN. 
(6 ·7) 
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Introducing OpN'PN={(2rchY/v}o(pN'-pN) in (6·7) one obtains 

kN(rr, RN; (3) = fR{ 1 " (~)Ao'2}N S··· Sd3Rr···d3RN-rdar···daN Jo (2rchY 1 + Ao 

X d 3qr· · ·d3qNd6Pr· · ·d6pNu (qr) · · ·U (qN) k2 (ph P2) k2 (p2, Pa) 

X k2 (Pa, P4) ... k2 (PN-h PN) k2 (PN', Pr) exp [- i { ( (PN+ qN-r) ·RN 

- (pN' +qN) ·rr) + (qN-qr) ·Rr + (qr-q2) ·R2+ ... 

+ (qN-2-qN-r) ·RN-r}h-1
] (

2rc_lj)_
3

0(pN' -pN). (6·8) 
v 

R integration yields 

O(qN-qr)o(qr-q2) "·O(qN-2-qN-r)exp[ -i{(pN+qN-1) ·RN- (pN+qN) ·rr}h- 1
] 

so that 

Also 

We close the chain by putting r 1 = RN and integrating over RN, obtaining . 

s kN(RN, a)dRN= f {1 ~ x/•"r dNa s d'q{u(q)}Nd'p,···d'pzi}(pN' -pN) 

X k2 (pr, P2) k2 (p2, Ps) · · ·k2 (PN-h PN) k2 (pN, Pr). (6 · 9) 

Now 

Also 

Equation (6 · 9) reduces to 

S
kN(RN, (3)dRN= ('~) f[4rcpF3 l

11

(~)dau(q)]N d 3q. 
4rcpF 3 Jo 1 + Ao 

(6 ·10) 

In computing the contribution of a particular ring integral to the log Za 
where Za is the grand partition function, we must assign the appropriate stati­
stical weight to that ring. 1

) In this case the weight factor is (1/ N!) { (N -1) !/2 · 2} 
X ( -1)NzN where z is the fugacity. The contribution of ring integrals to log Za 
is then (using Eq. (6 ·10) with the appropriate weight) 

( 
3 ) s 00 

( -1)N{4TC lp( ). ) l N -- ~ -- - - PF3 
-

0
- dazu (q) f d 3q. 

4rcp/ N=2 4N 3 o 1 + ).0 

(6 ·11) 
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The summation starts at N = 2 because the integral which corresponds to the 
emission and absorption of a single quantum by a single toron vanishes. 

Contribution of (5 · 3) to log ZG is 

fa (P2- P1) exp {-N(~2 - ~1) :~} d 3P1 

- V ·Jexp{-N(~2-~1)P12}o dsP 
(2-rth/ 4m P

2
P

1 1 

v (4nm\ 
312 

- (2rrhY ~ ) · 
(6 ·12) 

Using (6 ·11), (6 ·12) and adding the result to the perfect gas contribution 
(log zG<0>) we find the ring integral approximation to the equation of state: 

= lo Z <o> + v (4-;rm) 3/2 (-3 -) 1_ ~[Q -lo (1 + 0)] ds 
g G (2rrhY ~ 4nPF3 4 Jl g - q' 

(6 ·13) 

where 

(6 ·14) 

Now we substitute 

lo Z (o) = zv (2-;rm) 3/2 

g G (2rrh)3 ~ ' 
(6 ·15) 

(6 ·16) 

(6 ·17) 

and notice that q integral is of the form 

(6 ·18) 

Substitution of (6 ·14) rv (6 ·18) into (6 ·13) and expansion of log z in terms of 
z yield 

Pv _ zv ('2rrm)
312 + 2-;rv !!_zs;2 { e

2 
( 2/rrY/2 (m) 3/2 ~} 312

• 

kT (2rrh)3 ~ (2rrh)3 3 h ~ 
(6 ·19) 

The fugacity z is related to the density p through 
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z a p=- -log Za 
v az 

= z (2rcm)3/2 + 2rc ~ }!_z312{(~)1/2 ea (m)3/2 }3/2. 
(2rchY t3 (2rch)3 2 3 rc h t3 t3 

The appropriate value of z in the limit e~O is 

zo= (2rchY (_jj_) 312
P. 

2rcm 

(6. 20) 

(6. 21) 

When p Is small but finite we substitute z=z0 +oz m (6·20) and obtain 

TC2 z0o;2{ 112 e2 (m)3/2 }3/2 oz = - - (2/rc) - - t3 . 
(2rchY p h t3 

(6 ·22) 

Thus 

(6 ·23) 

' Substituting (6·23) in (6·19) we obtain the Debye-Hiickel equation of state 

!!_ = P {1 _l_rc112esfls;2p112}. 
kT 3 

(6 ·24) 

Higher order correction to the Debye-Hiickel formula (6 · 24) has been cal­
culated by Abe by using the giant cluster expansion theory,7

) and quantum and 
relativistic corrections have been investigated by Ninham8

) by using the electron 
gas theory by Montroll and Ward.1

) 

§ 7. Concluding remarks 

A mathematical technique is introduced to sum the iteration series which 
occurs in the electron gas theory by Montroll and Ward. As a result summa­
tion over ring diagrams becomes easier to perform than the case of Montroll 
and Ward. The binary kernel of Lee and Yang is expressed as a sum of kernels 
which are solutions of integral equations obtained by iteration. This formalism 
provides a method to calculate the binary kernel. The grand partition function 
is calculated by solving the integral equation, and its application is made to 
calculate the Debye-Hiickel equation of state. 

The formulation presented here can be generalized to fermions and bosons. 
Higher order diagrams can be taken into consideration. Its application to cal­
culate the correlation energy and the specific heat of an electron gas is in pro-
gress. 

The operator exp (- f3H) plays a decisive role in equilibrium statistical me­
chanics while exp (itHjh) is the operator from which dynamics can be developed~ 
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That is, the real part of the complex variable {3 + ith-1 is associated with thermody­

namics and the imaginary part with dynamics while both the real and imaginary 

parts find their place in the statistical mechanics of nonequilibrium processes. 

Most of the theories dealing with nonequilibrium processes start with Liouville 

equation which contains too much dynamical part through the Hamiltonian.9
l 

Perhaps by adjusting statistical and dynamical parts, as is possible in the above 

formulation, one might get better results. Work in this direction is under 

consideration. 
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