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8626), Université Paris-Sud, Bâtiment 100, 91405 Orsay Cedex, France
E-mail: Yan.Fyodorov@nottingham.ac.uk, ledou@lpt.ens.fr and
rosso@lptms.u-psud.fr

Received 14 July 2009
Accepted 15 September 2009
Published 7 October 2009

Online at stacks.iop.org/JSTAT/2009/P10005
doi:10.1088/1742-5468/2009/10/P10005

Abstract. We compute the distribution of the partition functions for a class of
one-dimensional random energy models with logarithmically correlated random
potential, above and at the glass transition temperature. The random potential
sequences represent various versions of the 1/f noise generated by sampling the
two-dimensional Gaussian free field (2D GFF) along various planar curves. Our
method extends the recent analysis of Fyodorov and Bouchaud (2008 J. Phys. A:

Math. Theor. 41 372001) from the circular case to an interval and is based on an
analytical continuation of the Selberg integral. In particular, we unveil a duality

relation satisfied by the suitable generating function of free energy cumulants in
the high temperature phase. It reinforces the freezing scenario hypothesis for
that generating function, from which we derive the distribution of extrema for
the 2D GFF on the [0, 1] interval. We provide numerical checks of the circular
case and the interval case and discuss universality and various extensions. The
relevance to the distribution of the length of a segment in Liouville quantum
gravity is noted.
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Statistical mechanics of logarithmic REM

1. Introduction

Describing the detailed statistics of the extrema of M random variables Vi with logarithmic
correlation built from those of the two-dimensional Gaussian free field (2D GFF) V (x)
is a hard and still mostly open problem. It arises in many fields from physics and
mathematics to finance. The 2D GFF is a fundamental object intimately related to
conformal field theory [1], and being also a building block of the Liouville random measures
eV (z,z̄)dz dz̄, attracted much interest in high energy physics, quantum gravity, and pure
mathematics communities; see [2] for an extensive list of references. In the context
of condensed matter physics the 2D GFF is of interest for describing e.g. fluctuating
interfaces between phases [3], e.g. their confinement properties, multi-fractal properties of
wavefunctions of Dirac particles in random magnetic fields [4] and associated Boltzmann–
Gibbs measures [5], glass transitions of random energy models with logarithmic correlated
energies [6], 2D self-gravitating systems [7] etc. Descriptions of the level lines of the GFF
such as Schramm–Loewner evolutions (SLE) and conjectured relations to the welding
problem [8] have also contributed to a revival of interest in the statistics of the GFF. In
mathematical finance there is a strong current interest in limit log-normal multi-fractal
processes [9] (also called log-infinitely divisible multi-fractal random measures), which is
just a closely related incarnation of the same object; see e.g. [10, 11]. Last but not least
important is looking at the logarithmically correlated random sequences such as those
representing various instances of 1/f noises; see e.g. [12] and [13]. Such noises regularly
appear in many applications, and were recently discussed in the context of quantum
chaos, where logarithmic correlations arise in sequences of energy levels [14] or, as one
can surmise, in the zeros of the zeta Riemann function. All of this makes understanding
extreme value statistics of such noises an interesting and important problem.

While the leading behavior Vmin ∼ −2A ln M is rigorously proved [15], surprisingly
little knowledge exists on finer properties of the statistics of the GFF-related minima, even
heuristically. To serve to remedy this as well as for many other purposes it is of great
interest to study the canonical partition function Z(β) =

∑M
i=1 e−βVi for the corresponding

random energy model (REM) as a function of the inverse temperature β = 1/T . The
distribution P (F ) of the free energy F = −T ln Z reduces in the limit of zero temperature
T = 0 to the distribution of the minimum Vmin. A few instances of REMs can be solved
explicitly, and are frequently useful as approximations: (i) uncorrelated energies with
variance ∼ ln M , i.e. Derrida’s original REM [16], which gives the correct constant A [4];
(ii) paths with random weights on trees, whose energies exhibit a similar logarithmic
scaling of correlations, but with a hierarchical structure rather than a translationally
invariant one [17, 18]; (iii) the infinite-dimensional Euclidean version of the logarithmically
correlated REM and its further ramifications [5, 19]. In particular, the close analogy of
GFF-related statistical mechanics with the models on trees [4, 6], also noted in probability
theory [15], arises naturally in an approximate, i.e. one-loop, RG method, and led to the
conjecture [6] that

Vmin = aM + bMy (1)

with

aM = A(−2 lnM + γ̃ ln ln M + O(1)), bM = A + O(1/ ln(M)) (2)

doi:10.1088/1742-5468/2009/10/P10005 3
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Statistical mechanics of logarithmic REM

where γ̃ = 3/2 and y is a random variable of order unity whose probability density
has universal tails p(y) ∼ |y|ey on the side y → −∞. In addition it was convincingly
demonstrated that the log-correlated REM exhibits a freezing transition to a glass phase
dominated by a few minima, at the same Tc as predicted by (i) and (ii) [6, 19]. An
outstanding problem left fully open was that of characterizing the shape of the distribution
of the minimum beyond the tail, and in particular investigating whether the universality
also extends to that regime.

To address this issue, Fyodorov and Bouchaud [13] (FB) recently considered a
particular circular-log variant of the REM. Denoting here and henceforth the averaging
over the random potential with the overbar, the circular-log model is defined via
the correlation matrix Cij = ViVj identical to those of M equidistant points zj =
exp(i(2πj/M)) on a circle Cjk = 2G(zj−zk), where G(z−z′) = − ln |z−z′| is the full plane
Green function of the 2D GFF. Equivalently, the above covariance function represents a
2π-periodic real-valued Gaussian random process V (x) =

∑∞
l=1(vl e

ilx + v̄l e
−ilx) with a

self-similar spectrum 〈vlv̄m〉 = l−(2H+1)δlm characterized by the particular choice of the
Hurst exponent H = 0. Such a process therefore represents a version of the so-called 1/f
noise.

From the moments Zn FB reconstructed the distribution P (Z) above and at Tc. From
such a point they proceeded by assuming that for such a model the same freezing scenario
as found in [6] holds so that the generating function

gβ(y) = exp(−eβyZ/Ze), Ze = M1+β2

/Γ(1 − β2) (3)

remains in the thermodynamic limit M ≫ 1 temperature independent everywhere in the
glass phase T ≤ Tc. As a result of such a conjecture they arrived at the distribution of the
minimum of the random potential in their problem. The corresponding probability density
for the variable y (defined in (1) with A = 1) turned out to be given by p(y) = −g′

∞(y)
where

g∞(y) = gβc(y) = 2ey/2K1(2ey/2). (4)

Such a density does indeed exhibit the universal Carpentier–Le Doussal tail p(y → −∞) ∼
−yey.

Our broad aim is to investigate analytically and numerically the validity and
universality of the above result, and to extend it to other models with logarithmic
correlations. In pursuing this goal we will be able, in particular, to extract statistics
of the extrema of the (full plane) GFF sampled along an interval, [0, 1], with eventually
some charges at the endpoints of the interval. This breaks the circular symmetry of the
correlation matrix and one finds a different distribution. The moments Zn turn out to be
given in some range of positive integer n by the celebrated Selberg integrals [20]5 and a
first (non-trivial) task is to analytically continue them to arbitrary n. After suggesting
a certain method for such a continuation we are able to deduce the distribution of free
energy P (F ) and gβ(y) at the freezing temperature β = βc. The same conjecture as in FB
then yields the distribution of the minimum. As a by-product of our method we reveal
a remarkable duality property enjoyed in the high temperature phase by the generating
function precisely defined as in (3) and unnoticed in [13]. We conjecture such a duality

5 In a somewhat different but related context this fact was noticed, but not much exploited; see [9].
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Statistical mechanics of logarithmic REM

to be intimately related to the mechanisms behind the freezing phenomenon. Finally we
use direct numerical simulations to verify the freezing scenario for the circular ensemble
and the resulting distribution (4), as well as to test the new results of this paper for the
interval case. Universality and other cases are discussed at the end.

2. The model and moments

2.1. The interval model

Our starting point is the following continuum version of the partition function of the
random energy model generated by a Gaussian-distributed logarithmically correlated
random potential V (x) defined on the interval [0, 1]:

Z = ǫβ2

∫ 1

0

dxxa(1 − x)be−βV (x) (5)

with a, b > −1 real numbers and β > 0. The potential V (x) is considered to have zero
mean and covariance inherited from the two-dimensional GFF:

V (x)V (x′) = C(x − x′) = −2 ln |x − x′|. (6)

For the integral (5) to be well defined one needs to define a short scale cutoff ǫ ≪ 1.
We therefore tacitly assume in the expression (6) V → Vǫ, with the regularized potential
being also Gaussian with a covariance function Cǫ(x − x′), such that the variance is

Cǫ(0) = 2 ln(1/ǫ). We put for convenience the factor ǫβ2
in front of the integral to ensure

that the integer moments Zn are independent of ǫ in the high temperature phase; see
equation (7) below. At this stage we do not need to specify the ǫ-regularized form6, but
it is convenient for our purposes below to require that Cǫ(x) = C(x) for |x| > ǫ. Note
that for a = b = 0 the Gibbs measure of the disordered system becomes identical to the
random Liouville measure, and that Z can be interpreted as the (fluctuating) length of a
segment in Liouville quantum gravity; see e.g. [2].

Below we will also consider a grid of M points xi, uniformly spaced w.r.t. the length
element dl = dxxa(1−x)b and the set of values Vi = V (xi), i = 1, . . . , M . The elements of
the correlation matrix ViVj = Cij at these grid values are Cij = −2 ln(|i− j|/M) for i 
= j,
and Cii = 2 lnM + W where W = ln(1/(ǫM)) is a constant of order unity, and we will be
interested in the limit7 of large M at fixed ǫM . This generalizes the grid on the unit circle
studied in [13] where xj = eiθj with θj = 2πj/M and Cij = C(xi − xj) = − ln | sin θi−θj

2
|.

We will compare below the two situations. In each case one defines the corresponding
(discretized) REM using the partition function ZM =

∑M
i=1 e−βVi . We expect, as shown

in [13] and discussed below, that there is a sense in which universal features of the
discretized version can be described in terms of those of the continuum one in the large
M limit.

6 There are various useful cutoffs, e.g. the circle average (see e.g. [2]) or the scale invariant cone construction (see
e.g. [10]).
7 In practice we want to have mini(|xi − xi+1|) > ǫ.
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http://dx.doi.org/10.1088/1742-5468/2009/10/P10005


J.
S

ta
t.

M
e
c
h
.

(2
0
0
9
)

P
1
0
0
0
5

Statistical mechanics of logarithmic REM

2.2. Positive moments

Let us now compute the positive integer moments of Z. Defining γ = β2, a straightforward
calculation gives

Zn =

∫ 1

0

· · ·
∫ 1

0

n
∏

i=1

dxi x
a
i (1 − xi)

b
∏

1≤i<j≤n

1

|xi − xj|2γ
(7)

where the small scale cutoff is implicit and modifies the expressions for |xi−xj | < ǫ. For a
fixed n = 1, 2, . . . , a well defined and universal ǫ → 0 limit exists whenever the integral (7)
is convergent, in which case it is given by the famous Selberg integral formula [20] Zn = sn,
with

sn(γ, a, b) =

j=n
∏

j=1

Γ[1 + a − (j − 1)γ]Γ[1 + b − (j − 1)γ]Γ(1 − jγ)

Γ[2 + a + b − (n + j − 2)γ]Γ(1 − γ)
(8)

where Γ(x) is the Euler gamma function. For a, b > 0 the domain of convergence is given
by γ < 1/n. It corresponds to the well known fact that for continuum REM models the
distribution of P (Z) develops algebraic tails8; hence integer moments Zn become infinite

at a series of transition temperatures T
(n)
c =

√
n. The true transition in the full Gibbs

measure happens however only at Tc = 1, i.e. γ = γc = 1. Above Tc the distribution P (Z)
exists in the limit ǫ = 0, while the formally divergent moments start depending on the
cutoff parameter ǫ. An analogous result arises in the circular-log ensemble [13] where the
moments of ZM were analyzed, as recalled below. The generalizations for complex a, b, β,
which connect to sine–Gordon physics, as well as a detailed study of the competition with
binding transitions to the edges for a, b < −1 (in the presence of a cutoff), are mostly left
for future studies, although some remarks about the binding transitions are made below
in section 3.29.

2.3. Negative moments

Our first aim is to reconstruct the distribution P (Z) from its moments in the high
temperature phase γ ≤ 1. This entails analytical continuation of the Selberg integral
which is a well known difficult problem. Here we present a solution of this problem at
Tc, the most interesting point. Let us first obtain the negative integer moments for any
T ≥ Tc. It is convenient to define

z = Γ(1 − γ)Z = e−βf , zn = zn (9)

which, as found below, and in [13], has a well defined limit as T → T+
c . One then checks

for a = b = 0 the following recursion relation:

zn

zn−1

=
Γ[1 − nγ]Γ2[1 − (n − 1)γ]Γ[2 − (n − 2)γ]

Γ[2 − (2n − 3)γ]Γ[2 − (2n − 2)γ]
(10)

with z1 = Γ(1 − γ) (which also implies z0 = 1), and a similar formula for any a, b. Let
us now perform the formal analytic continuation to negative integer moments mk ≡ z−k

8 For finite grid 1/M these tails are cut far away by log-normal behavior; see a detailed discussion in [13].
9 The full conditions for convergence in (8) are ℜ(a),ℜ(b) > −1, ℜ(γ) < min(1/n, (a+1)/(n−1), (b+1)/(n−1)).
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in the above recursion (10) as mk/mk+1 ≡ zn/zn−1|n→−k. It is then easy to solve the
recursion starting from m0 = z0 = 1. Restoring a, b we find

z−k =
k

∏

j=1

Γ[2 + a + b + (k + j + 1)γ]

Γ[1 + (j − 1)γ] Γ[1 + a + jγ]Γ[1 + b + jγ]
. (11)

We have checked that these expressions satisfy the convexity property zp−m
n zm−n

p ≥ zp−n
m

for any integers n < m < p of arbitrary sign, which is a necessary condition for positivity
of a probability. For a = b = 0 the formula (11) was announced very recently in [11] as a
rigorous consequence of certain recursion relations for Selberg integrals.

Note that the domain in a, b where (11) remains well defined extends to a > −1 − γ,
b > −1 − γ, a region larger than the naive expectation a, b > −1. This is a signature
of the competition between binding to the edge and the random potential as discussed
below.

2.4. From moments to distribution: the circular case and duality in the high temperature
phase

Let us recall for comparison the corresponding analysis for the circle [13]. There, the
corresponding Dyson Coulomb gas integrals give zn = Γ(1 − nγ), and such a simple
formula admits the natural continuation to negative moments n = −k. This allows to
immediately and uniquely identify the distribution of 1/z and leads to the probability
densities:

P (z) = β−2z−1/β2−1 exp(−z−1/β2

), P̃ (f) = β−1 exp(f/β − ef/β). (12)

The latter formula implies that the free energy is distributed with a Gumbel probability
density for all T ≥ Tc. Alternatively the (formal) series for positive moments gβ(y) :=

e−zeβy =
∑∞

n=0((−1)n/n!)znenβy is directly summed using Γ(z) =
∫ ∞
0

e−ttz−1 dt into the
following generating function:

gβ(y) =

∫ ∞

0

dt exp{−t − eβy t−β2}. (13)

What went unnoticed in [13] was the remarkable duality relation satisfied by the exact
expression for this function10:

gβ(y) = g1/β(y). (14)

To see this directly define τ = eβy t−β2
implying t = τ (−1/β2)e−y/β , and after substituting

this back to the integral (13) we see that

gβ(y) = − 1

β2

∫ ∞

0

dτ τ−1−(1/β2) ey/β exp{−τ − ey/βτ−(1/β2)} (15)

=

∫ ∞

0

dτ

[

1 +
d

dτ

]

exp{−τ − ey/βτ−(1/β2)} ≡ g(1/β)(y) (16)

as the second term in the integrand gives no contribution, being the full derivative of
the expression vanishing at the boundaries of the integration region. This transformation

10 In general such duality holds for the transformation β → β2
c /β but we specialized in this paper to βc = 1.

doi:10.1088/1742-5468/2009/10/P10005 7
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is formal in the sense that the function g1/β(z) defined above for β < 1 has nothing to
do with the true generating function in the low temperature phase β > 1. Rather, it is
just obtained by taking the formula valid in the high temperature phase and making the
change β → 1/β everywhere. However the duality relation still gives precious information,
e.g. it implies that an infinite set of derivatives (β∂β)ngβ(y) = 0 for any n ≥ 1, odd, at
the self-dual point β = 1−. In particular the exact result

∂βgβ(y)|β=β−
c

= 0, for all y (17)

shows that the ‘flow’ of this function as a function of temperature vanishes at the
critical point, quite consistently with a freezing of the whole function (with continuous
temperature derivatives). It is in fact quite amazing that precisely this generating

function gβ(y) = exp(−eβyz), with precisely this built-in temperature dependence, is
both conjectured to freeze and shown to be self-dual. It is thus tempting to conjecture
that freezing and duality are related, i.e. it is gβ(y) and no other variation of it (such
as e.g. replacing eβy by any other function of both y and β) which freezes because it is
self-dual in the whole high temperature phase. The same type of self-duality relation, as
we demonstrate below, extends to the interval case supporting the conjecture.

Unfortunately, the direct methods of resummation which work for the circular case
fail for the more complicated problem at hand, the interval [0, 1]. For this reason one
needs to develop a more general procedure, which is done below.

2.5. From moments to distribution: generalities

Instead here we now define the generic moments Mβ(s) = z1−s, Mβ(1) = 1 for any complex
s, at fixed inverse temperature β. In particular, the generating function of the cumulants
for the free energy f = −β−1 ln z is related to Mβ(s) via

∞
∑

n=0

sn

n!
βnfn

c
= ln Mβ(1 + s). (18)

Definition of the probability density P (z) implies the relation
∫ +∞

−∞
e2tP (et)e−st dt = Mβ(s) (19)

which can be inverted as the contour integral

e−2tP (e−t) =
1

2iπ

∫

e−stMβ(s) ds, (20)

e.g. along a contour parallel to the imaginary axis s = s0 + iω, provided the integral is
convergent, s0 being chosen larger than any singularity of the integrand.

Further using the definition (3) the function gβ(y) is found to satisfy the identities

β

∫ +∞

−∞
eβy(s−1)gβ(y) dy = Mβ(s)Γ(s − 1) (21)

gβ(y) = β−1eβy 1

2iπ

∫

e−syMβ

(

s

β

)

Γ

(

s

β
− 1

)

ds. (22)

doi:10.1088/1742-5468/2009/10/P10005 8
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Hence once we know Mβ(s) we can retrieve all the interesting distributions. Moreover,
relation (21) defines after integration by parts the generating function of the cumulants
for the probability density defined by pβ(y) = −g′

β(y):

∞
∑

n=1

sn

n!
ync ≡ ln

∫ ∞

−∞
pβ(y) eys dy = ln Mβ

(

1 +
s

β

)

+ lnΓ

(

1 +
s

β

)

. (23)

Comparison with (18) yields after recalling the series expansion for ln Γ(1+ s) in terms of
the Euler constant γE and Riemann zeta function ζ(n) the following model-independent
relations:

y = f − γET, ync|n≥2 = fn
c
+ (−1)n(n − 1)!ζ(n)T n. (24)

This relation is valid at all temperature and comes only from the definition of gβ(y). It is
most useful at β = βc = 1, if we accept the freezing scenario. Given that in that case the
lhs freezes at its value at β = 1 then we easily retrieve all cumulants of the free energy for
all T ≤ Tc just from the knowledge of gβ=1(y). Conversely, it is useful to test the freezing
hypothesis in numerics, as we will see below.

Let us now discuss how these moment relations reflect duality for the circular case.
In the latter model Mβ(s) = Γ(1 + (s − 1)γ); hence from (23) one finds

∞
∑

n=1

sn

n!
ync

= lnΓ(1 + sβ) + ln Γ

(

1 +
s

β

)

(25)

which is manifestly invariant under the formal transformation β → 1/β. The latter fact
implies, via (23), the self-duality for pβ(y), and hence for gβ(y). Such an indirect method
of proving self-duality for gβ(y) has an advantage when direct verification is difficult in
view of the cumbersome and/or implicit form for the generating function in the whole
high temperature phase. We shall see later on that it does indeed work for the interval
case.

3. Analytical continuation at the critical temperature and distribution of minima
on the interval

3.1. No edge charges

Let us keep focusing on the critical temperature β = 1. Defining Mβ=1(s) ≡
M(s), gβ=1(y) ≡ g(y), we start with the a = b = 0 case (no charges at the end of
the interval) for the sake of simplicity. For negative integer values s = 1 − n one finds
from (10) after exploiting the doubling identity Γ(2z) = 22z−1Γ(z)Γ(1/2 + z)/

√
π the

relation

M(s + 1)

M(s)
= 23+4s(1 + s)

[Γ((3/2) + s)]2

πΓ(s)Γ(3 + s)
. (26)

To continue this formula to any s we will use the Barnes function, which under some mild
conditions is the only solution [21] of

G(s + 1) = G(s)Γ(s) (27)
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Figure 1. Analytical predictions for the interval [0, 1] with no edge charge:
(i), left: plot of gβc(y) which, according to the freezing scenario, is also, up
to a shift, the cumulative distribution of the minimum Vmin; (ii), right: the free
energy density P̃ (f) at the critical temperature βc for the interval. Both are
obtained by the appropriate inverse Laplace transforms (20) and (22) from the
analytical continuation (29) of the moments as indicated in the text.

with G(1) = 1. The Barnes function G(s) is meromorphic in the complex plane and has
zeros at all negative integers s = 0,−1,−2, . . . , [21]. It can be computed as

G(z) = (2π)(z−1)/2e−(1/2)(z−1)(z−2)+
∫ z−1
0 dx xψ(x) (28)

where ψ(x) = Γ′(x)/Γ(x), the integral being on any contour not crossing the real negative
axis. Using (27) one finds the following analytical continuation for the moments, which is
one of the main results of this paper:

z1−s = M(s) =
22s2+s−2

G(5/2)2πs−1

1

Γ(s)Γ(s + 2)

[

G(s + (3/2))

G(s)

]2

(29)

with G(5/2) = A−3/2π3/4e1/82−23/24 where A is Glaisher–Kinkelin constant A =
e1/12−ζ′(−1) = 1.282 427 12. To guarantee that this is the correct continuation, we have
checked: (i) positivity: M(s) given above is finite and positive on the interval s ∈ [0, +∞[,
i.e. all real moments n = 1 − s < 1 exist; (ii) convexity: on this interval ∂2

s ln M(s) > 0;
(iii) convergence of the integrals (20) and (22) for s0 > 1. The latter can be used to
compute gβ=1(y) and P̃ (f) = ef/(2πi)

∫

e−fsM(s) ds, which are plotted in figure 1. Note
finally that it reproduces the negative integer moments (11) for a = b = 0, γ = 1.

The free energy cumulants are to be determined from (23) and (24), and one finds
〈y〉 = 7

2
− 2γE − ln(2π), 〈y2〉c = (4π2/3) − 27

4
, and for general n ≥ 3,

〈yn〉c = (−)n−1(n − 1)!(ζ(n − 1)(2n − 4) − ζ(n)(2n3 − k) + 2n+1 − 1 − 2−n) (30)

with k = 4 and the same formula for 〈fn〉c with k = 3. As a comparison for the circle,
M(s) = Γ(s), hence 〈y〉 = 2〈f〉 = −2γE, and 〈yn〉c = 2〈fn〉c = 2(−1)n(n − 1)!ζ(n) for
n ≥ 2.

An important property of g(y) at criticality is its decay for y → −∞. Deforming the
integration contour in (22) one obtains g(y) as a sum of residues over the (multiple) poles
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of M(s) at s = −n, which generates the expansion in powers of ey:

g(y) = 1 + (y + A′)ey + (A + By + Cy2 + 1
6
y3)e2y (31)

+ ey
∞

∑

n=2

1

(2n)!
∂2n

s e−sy2−(n+1)(2n+3+4s)πn+1

× Γ(n + 1 + s)2n+1Γ(n + 3 + s)G(s + (3/2))2M(n + 1 + s)

(s − 1)s2(s + 1)4 · · · (s + n − 1)2n−1G(n + 1 + s + (3/2))2

∣

∣

∣

∣

s=−n

(32)

with A′ = 2γE + ln(2π) − 1 and C = −0.253 846, B = 1.253 88, A = −5.097 28. Let us
recall that for the circular model the expression (4) implies

g(circ)(y) = 1 + ey(y − 1 + 2γE) + e2y(1
2
y − 5

4
+ γE) + · · · . (33)

The behavior g(y) − 1 ∼ yey (see (31) and (33)) is precisely the universal tail found
by Carpentier and Le Doussal [6]. It has its origin in the 1/z2 forward tail which the
probability density of z develops at critical β = 1, with the first moment 〈z〉 becoming
infinite. On the other side y → +∞, one expects much faster decay, for example

g(circ)(y) =
√

πe(y/4)−2ey/2
(1 + 3

16
e−y/2 + · · ·).

3.2. Extension to edge charges; the binding transition

Extending these considerations for any a, b, one finds

M(s) = 22s2+s(1+2(a+b))−3−2(a+b)π1−s

× G(2 + a)G(2 + b)G(4 + a + b)

Γ(2 + ((a + b)/2))G(2 + ((a + b)/2))2G((5/2) + ((a + b)/2))2

× Γ(1 + ((a + b)/2) + s)G(1 + ((a + b)/2) + s)2G((3/2) + ((a + b)/2) + s)2

G(s)G(1 + a + s)G(1 + b + s)G(3 + a + b + s)

(34)

and checks again positivity and convexity for s ∈ [0, +∞[ (for a, b > −1). We give only

y2
c

a,b =
π2

6
+ γE + 3φ(4 + a + b) − φ(2 + a) − φ(2 + b) (35)

with φ(x) = ψ(x)+ (x− 1)ψ′(x), and the case a = b in the limit a → +∞ where one then
finds

y2
c

a,a = ln(8a) +
π2

6
+ γ + 1 + O(a−1) y3

c

a,a = −π2

3
− 2ζ(3) + O(a−1) + · · · , (36)

i.e. all cumulants have a limit except the second one. This limit is discussed again below.
A remarkable case is a = b = −1/2. Then a simplification occurs:

M(s) = M−1/2,−1/2(s) = 22s2−s−1π1−s Γ((1/2) + s)

sΓ(3/2)
. (37)

One can trace this simplification to the fact that the structure of the correlation matrix
becomes much simpler in that case, as detailed in appendix A. The corresponding
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distribution is easily found as (again this is for β = βc = 1)

P (z) =

(

π

8

)3/2
1

Γ(3/2)z2

∫ z

0

dz1

z
3/2
1

∫ +∞

−∞

dt√
2π

e−(t2/2)−3
√

ln 2t−(π/8)(1/z1)e−2
√

ln 2t

(38)

which reproduces the above moments, and behaves as P (z) ∼ π/z2 at large z. This yields,
after some manipulations,

g(y) =
π

4

∫ +∞

−∞

dt√
2π

e−(t2/2)−2
√

ln 2t

∫ ∞

ey

(

1 − ey

u

)

e−
√

πu/2 e−
√

ln 2t

du (39)

and one finds y2
c
= 4 ln 2−3+2π2/3 = 6.352 32 and y = 1−2γE − ln(π/2) = −0.606 014;

hence f 2
c
= 4 ln 2 − 3 + π2/2.

Let us now discuss briefly the case a, b < −1; for simplicity we focus on b = a. In that
case, the model (5) requires, at least naively, a short scale cutoff to avoid the divergence
near the edges. However, from e.g. the discussion of appendix D in [6] we know that
there should be a competition between the random potential in the bulk and the binding
effect by the edge: in the presence of disorder it may be more favorable for the particle to
explore the bulk and to remain unbound from the edge. It is quite nice that our analytical
continuation captures that effect. As mentioned in section 2.3, from the negative moments
one can guess that the complete domain over which the high temperature phase extends
is

a ≥ −1 − γ and γ ≤ 1 (40)

with γ = β2 (here βc = 1), where equality in the first condition corresponds to the binding
transition, to the edge, while that in the second corresponds to the freezing transition.
This implies in particular that for γ = 1, the case studied above, the binding transition
occurs at a = −2, and that for any larger value of a the system should be at bulk critical
freezing, with however some continuous dependence in a. We can indeed check that the
result (34) for M(s) leads to a well defined probability P (z) for any a > −2. For instance

one sees that the formula (35) yields a finite y2
c
for any a > −2, which however diverges as

a → −2+. The domain of definition becomes s > −1−a for −1 > a > −2, as the resulting
P (z) acquires now a broader tail ∼1/z3+a at large z, while it was ∼1/z2 for a > −1. As
a → −2 the tail becomes non-normalizable as ∼1/z, a signature of the binding transition.
The case a = −3/2 provides a good illustration as (34) again simplifies to

M(s) = M−3/2,−3/2(s) = 22s2−5s+3π1/2−sΓ(s − 1
2
) (41)

which implies that the random variable z can be written as z = z1e
−f2 where z1 > 0 and f2

are two independent random variables, f2 being Gaussian distributed with f2 = − ln(2π)

and f 2
2

c
= 4 ln 2, and z1 with distribution P1(z1) = z

−3/2
1 e−1/z1/

√
π, leading to the explicit

form

P (z) =
1

z3/2π
√

8 ln 2

∫ ∞

−∞
dt exp

(

−3

2
t − 1

z
e−t − (t + ln(2π))2

8 ln 2

)

(42)

which does exhibit the ∼1/z3/2 tail at large z. We leave further studies of the global phase
diagram for arbitrary a, b to the future.

doi:10.1088/1742-5468/2009/10/P10005 12

http://dx.doi.org/10.1088/1742-5468/2009/10/P10005


J.
S

ta
t.

M
e
c
h
.

(2
0
0
9
)

P
1
0
0
0
5

Statistical mechanics of logarithmic REM

4. The high temperature phase for the [0, 1] interval with no end charges

Let us consider the segment [0, 1] at any β ≤ βc = 1, i.e. γ = β2 < 1. The moments must
satisfy (using again the doubling identity)

Mβ(s + 1)

Mβ(s)
=

22+γ+4sγ

π

Γ((3/2) + sγ)Γ(1 + (γ/2) + sγ)Γ((3/2) + (γ/2) + sγ)

Γ(1 − γ + sγ)Γ(2 + γ + sγ)Γ(1 + sγ)
. (43)

We need to find a way of continuing the moments to the complex plane. To this end we
define the function Gβ(x) for ℜ(x) > 0 by [23]

ln Gβ(x) =
x − Q/2

2
ln(2π) +

∫ ∞

0

dt

t

(

e−(Q/2)t − e−xt

(1 − e−βt)(1 − e−t/β)

+
e−t

2
(Q/2 − x)2 +

Q/2 − x

t

)

(44)

where Q = β + 1/β. This function is self-dual:

Gβ(x) = G1/β(x) (45)

and satisfies the property that we need (see e.g. [23] and appendix B),

Gβ(x + β) = β1/2−βx(2π)((β−1)/2)Γ(βx)Gβ(x). (46)

One can check that Gβ(x) for β = βc = 1 coincides with the Barnes function G(x) defined
in section 3.1, e.g. setting β = 1 in (46) one sees that G1(x + 1) = Γ(x)G1(x), and, using
Q = 2 we have G1(1) = 1. Like the standard Barnes function the new function Gβ(x)
has no poles and only zeros, and these are located at x = −nβ − m/β, n, m = 0, 1, . . ..
It provides us with a natural generalization which can be used to perform the required
analytical continuation for any temperature.

Using the above properties we find that

Mβ(s) = Aβ2(s−1)(2+β2(2s+1))π1−s

×
Γ(1 + β2(s − 1))Gβ(β

2
+ 1

β
+ βs)Gβ( 3

2β
+ βs)Gβ(β

2
+ 3

2β
+ βs)

Gβ(β + 2
β

+ βs)Gβ( 1
β

+ βs)2
(47)

with

Aβ =
Gβ((1/β) + β)2G(2β + (2/β))

Gβ((3β/2) + (1/β))Gβ((3/2β) + β)Gβ((3β/2) + (3/2β))
(48)

reproduces correctly the recursion relation (43), and hence provides an analytical
continuation for the moments valid for β < βc = 1. We have checked numerically that it
does satisfy positivity, convexity and a convergent inverse Laplace transform from which
one can compute P (z) and gβ(y) using (20) and (22). We will not study these in detail
here, but give just a few properties.

Let us first check the duality. One easily sees that if one defines

Mβ(s) = 21−sM̃β(s), (49)

then ln M̃β(1 + (s/β)) + ln Γ(1 + (s/β)) is fully invariant under β → 1/β. From (23) it
implies that all ync

with n ≥ 2 are invariant by duality, only the average y is not. This is
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not a problem since this average is not expected to be universal, and is easily remedied by
defining z̃ = z/2 (which could have been done from the start) and g̃β(y) = exp(−eβyz/2).
Hence we conclude that up to such a trivial shift the probability p̃β(y) = −g̃′

β(y) is self-
dual, i.e. p̃1/β(y) = p̃β(y). From the discussion in the previous section we conjecture that
it is this function which freezes at β = βc = 1.

From the result (47) we can extract the cumulants of the free energy using (18). We
only discuss here the lowest non-trivial cumulant, given by

f 2
c
= y2

c − π2

6
T 2 =

1

β2
∂2

s ln Mβ(1 + s)|s=0 (50)

= 4 ln 2 + hβ

(

3β

2
+

1

β

)

+ hβ

(

β +
3

2β

)

+ hβ

(

3β

2
+

3

2β

)

− 2hβ

(

β +
1

β

)

− hβ

(

2β +
2

β

)

+
β2π2

6
(51)

where we have defined the self-dual function (see appendix B):

hβ(x) = h1/β(x) = ∂2
x lnGβ(x) = ln x +

∫ ∞

0

dt

t
e−xt

(

1 − t2

(1 − e−βt)(1 − e−t/β)

)

(52)

and we have used ψ′(1) = π2/6. The resulting curve f 2
c

as a function of β is plotted in

figure 11. One finds that it increases from f 2
c
(β → 0) = 3 to f 2

c
(β = 1) = 7π2/6−27/4 =

4.764 54. More discussion is given later and in appendix C, together with high temperature
expansions.

5. The Gaussian weight model

We now briefly discuss a case where the above considerations fail, and present below some
hints as to why this may happen.

We consider now the continuum partition function for the log-correlated field on the
full real axis but with a Gaussian weight:

Z = ǫβ2 1√
2π

∫ ∞

−∞
dx e−x2/2e−βV (x).

This problem is appealing as it leads to Mehta integrals and moments z
(G)
n = zn =

ZnΓ(1 − β2)n =
∏j=n

j=1 Γ[1 − jβ2], i.e. simpler expressions than for the interval case
considered above.

At criticality β = 1 this implies M (G)(s + 1)/M (G)(s) = 1/Γ(s) for s = −n, which
naturally suggests M (G)(s) = 1/G(s). This is positive for s > 0 but, surprisingly,
convexity fails for s > sc = 1.925 86 . . .. Hence this is not an acceptable analytic
continuation.

To get another handle on the problem one notes that this model can be obtained from
the large a limit of the interval problem [0, 1]aa. Writing x = 1/2 + y and performing the
change of variable in (7) one finds

lim
a→+∞

(2π)−n/222an(8a)(n/2)−((n(n−1))/2)γzn(a, a, γ) = z(G)
n (γ). (53)
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Not surprisingly one finds that the pointwise limit

M (G)(s) = lim
a→+∞

(2π)−(1−s)/222a(1−s)(8a)(1/2)(1−s2)Ma,a(s) (54)

yields 1/G(s) as expected. From this we also get that for large a,

∂2
s ln M (G)(s) = − ln(8a) + ∂2

s ln Ma,a(s). (55)

While the second term is nicely positive for all s > 0, the additional factor − ln(8a)
makes the total sum negative for s > sc, violating convexity. In other words while Ma,a(s)
corresponds to a well defined distribution of probability, corresponding to the problem on
the interval with edge charges, MG(s) corresponds then to this probability ‘convoluted
with a Gaussian of negative variance’ and fails to be a probability. Note that such a shift
in the second cumulant y2 is indeed needed to obtain a finite final result in (36). All higher
cumulants ync|aa with n ≥ 3 have a nice finite limit as a → ∞, and can be extracted from
the generating function

∞
∑

n=0

sn

n!
y1+n

c
=

1

s
− (s − 1)ψ(s) + s − 1

2
ln(2π) − 1

2

obtained from 1/G(s). Hence the main problem seems to lie in the second cumulant, and
one may speculate that it is related to an inadequate treatment of zero-mode fluctuations.
Another (possibly related) observation is that for a ≫ 1 the whole contribution to the
[0, 1]aa integral comes from a very small vicinity (of the width of La ∼ 1/

√
a) of the mid-

point x = 1/2 of the integration domain. One expects a competition between La and the
regularization scale for the logarithm, so it may be that the result depends on the order
of limits ǫ → 0 and a → ∞. We leave further study of this problem to the future and now
turn to numerical studies.

6. Numerical study

6.1. The circular ensemble

We now turn to the numerical checks for the random variables Vi on i = 1, . . . , M grid
points and their associated REM of partition function ZM =

∑M
i=1 e−βVi . We start with

the circular-log ensemble and study the M × M cyclic correlation matrix (choosing here
W = 0):

Cij = −2 ln

(

2

∣

∣

∣

∣

sin
π(i − j)

M

∣

∣

∣

∣

)

i 
= j, Cii = 2 lnM + W (56)

whose eigenvalues λk = 2 lnM−2
∑M−1

n=1 cos{(2π/M)nk} ln{2 sin (π/M)n} are all positive,
with the uniform mode λ0 = 0 for any M . Let us recall that the relation to the continuum
model defined above was established in [13] where it was shown that at large M one has

Zn
M = znZn

e for β2n < 1 and Zn
M ∼ M1+n2β2

for β2n > 1 (the positive moments which
formally diverge in the continuum).

The random variables Vi are generated (for M even) as

Vl =

√

2

M

M/2
∑

k=1

√

λk

[

xk cos

{

2π

M
kl

}

+ yk sin

{

2π

M
kl

}]
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Figure 2. Left: finite size scaling of aM for variables with logarithmic correlations,
circular ensemble equation (56), and interval equation (60), from M = 28 to 219.
The predicted slope is γ̃ = 3/2; numerically we find γ̃ = 1.4 ± 0.1. This is
compared with independent random variables, the standard uncorrelated REM,
where the prediction is γ̃ = 1/2 as observed. Right: finite size effect for bM for
variables with the same correlations. The data are consistent with a convergence
as 1/ log M and extrapolate to bM = 1 ± 0.02, consistently with the predicted

value bM = 1 in each case (which means an unrescaled variance V 2
min

c
in agreement

with the prediction given in the text, in each case).

where the xk and yk are two uncorrelated sets of i.i.d. real unit centered Gaussian variables.
This is done using a fast Fourier transform (FFT).

From the distribution of the minimum Vmin in systems of up to M = 219 we have
computed the coefficients aM , bM and the distribution of the variable y in (1) by fixing

y and the variance y2
c

to their value for the distribution (4). The asymptotics of the
coefficients aM and bM in (1) are shown in figure 2. They exhibit a reasonable agreement
with the conjecture (2) with A = 1 but one clearly sees that convergence is slow.

Convergence to bM = 1 would mean that the prediction V 2
min = π2/3 is correct. The

cumulative distribution QM(y) of the rescaled minimum, i.e. the variable y, is shown in
figure 3 where the cumulative distribution (4) has been subtracted. One sees that although
the difference is small, its convergence, if any, to zero is extremely slow (empirically,

∼1/
√

ln M seems to roughly account for the data, but we do not wish to make any strong
claim here).

Then we computed the distribution of the free energy at various temperatures.
In figure 4 we have first normalized the free energy distribution to the same average
and variance as the unit cumulative Gumbel distribution, i.e. exp(−ex), then plotted
the difference between the resulting cumulative distribution Qresc(f) and the Gumbel
expression. This shows that the convergence is very fast at β = 1/2 but rather slow
already at β = 1, where we have little doubt of the result. This is consistent with the fact
that the convergence for the minimum is so slow.

To test the freezing scenario we also compute numerically gβ(y) for various
temperatures. First in figure 5 we test the convergence of the numerically determined
gβc=1(y, M) to the analytical prediction gβc(y) in (4) as a function of M . Then in
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Figure 3. Circular case: cumulative distribution of the rescaled minimum QM (y)
minus the prediction (4) based on the freezing scenario gβc(y). The number of
samples is 107. The difference is small compared on the scale of unity. Although
it is slow, the convergence is apparent.

Figure 4. Circular case: distribution of the free energy in the high temperature
phase, for various temperatures.

figure 6 we test whether gβ(y, M) − gβc(y, M) at fixed β > βc decreases to zero
as M becomes large, which is the freezing conjecture. In practice we first compute
the free energies fi, compute their mean f̄ and variance σ, define rescaled energies
f ′

i = (f − f̄ + γET − 2γE)
√

(π2/3)(1 − T 2/2)/
√

σ and define gβ(y, M) as the mean of

e−eβ(y−f ′
i) which, by construction and by virtue of (24), has then the same average, −2γE,

and variance, π2/3, as gβc(y) in (4). Comparing figures 3 and 5 we see that a good
fraction of the difference in figure 3 is already due to finite size corrections at βc (which
have nothing to do with the testing the freezing scenario).

6.2. Universality of the circular ensemble: cyclic matrices, and s GFF inside a disk with a
Dirichlet boundary condition

It is important to discuss now the universality of this result, as it is a rather subtle point.
The general issue of universality for logarithmic REMs can be formulated as follows.
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Figure 5. Circular case: convergence of gβ(y,M) at β = βc. We see that the
scale is smaller than in figure 2 but that convergence is very slow.

Figure 6. Circular case: direct test of the freezing scenario: convergence of
gβ(y,M) − gβc(y,M) (both are numerically measured and rescaled as explained
in the text). We see that the scale is smaller by a factor around 2–4 than in
figure 3, but that convergence is very slow.

Consider sequences of M-dependent correlation matrices C
(M)
ij . What are the possible

universality classes for the associated REM in the limit M → +∞, what are their basins
of attraction and conditions for convergence? One may ask questions for two cases: (i) for
extremal universality classes, i.e. correlation matrices which have asymptotically the same
distribution of the minimum Vmin (up to a shift by an M-dependent constant); (ii) for
more restrictive universality classes valid for any β, i.e. correlation matrices which have
asymptotically the same distribution of free energy, and generating function gβ(y) (up to
a shift by an M-dependent constant) for any β. It is reasonable to expect each latter
universality class (ii) to correspond to a continuum model. Obviously, two sequences

C
(M)
ij which belong to the same class (ii) also have the same distribution of extrema. But

there are counterexamples to the reverse (see below). Classifying these classes being a
formidable problem, here we only make a few remarks about the universality class of the
circular ensemble. The class corresponding to the interval is discussed below.
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Let us start from (56) and discuss various generalizations in the subset of cyclic (called
also periodic or circulant) matrices, i.e. which can be written as

Cij =
1

M

M−1
∑

k=0

λke
2iπ(i−j)(k/M), (57)

with (M-dependent) real eigenvalues λk. The eigenvalue λ0 corresponds to the uniform
mode (often called the zero mode in the GFF context). Logarithmic correlations mean
that we assume that λk ∼ 1/k in some broad range of k at large M , as specified below.

Starting from (56) let us first make the observation that adding a fixed W > 0 of
O(1) on the diagonal of Cij shifts all eigenvalues by a constant O(1) and does not change
the universality class, in both sense (i) and sense (ii), at large M . On the other hand, a
shift

Cij → Cij + σ (58)

for all (i, j) shifts only the uniform mode λ0 → λ0 + σ. It is equivalent to adding a global

random Gaussian shift v to all Vi, i.e. Vi → Vi + v where σ = v2. It thus results in
the convolution of the distribution of Vmin (and of the free energy) with a Gaussian of
variance σ. One such example, discussed again below, is considering the distribution of
the GFF (using the full plane Green function) on a circle of radius R < 1 (and cutoff Rǫ,
i.e. performing a global contraction): it imposes the shift Cij → Cij − 2 ln R in all cases
in (56). Hence we keep in mind that there is really a family of distributions differing by

their second cumulant, and will enforce in our numerics the condition λ0 = 0 which we
believe selects the distribution (4).

6.2.1. A GFF along an arbitrary circle. One possible generalization of the circular
model (56) along these lines is the GFF inside a disk of radius L with V = 0 on the
boundary as studied by e.g. Duplantier and Sheffield [2]. Using the Dirichlet Green
function GL(z, z′) = − ln (L|z − z′|)/(|L2 − zz̄′|), the correlation matrix for the discrete
model on a circle of radius R inside the disk is then, for i 
= j and writing ρ = R/L,

Cij = −2 ln
2ρ| sin((θi − θj)/2)|

√

1 + ρ4 − 2ρ2 cos(θi − θj)
, Cii = 2 lnL + 2 ln(1 − ρ2) − 2 ln ǫ. (59)

In the small ρ = R/L limit, equivalently for fixed R and large L one finds Cij ≈
−2 ln ρ−2 ln(2| sin((θi − θj)/2)| and Cii ≈ 2 lnL−2 ln ǫ. Choosing11ǫ = R/M one sees that
one does indeed recover the FB model (56) (with W = 0) up to a shift σ = 2 ln(L/R) in

the zero mode λ0 of the matrix, i.e. all eigenvalues of the correlation matrix are the
same as those of FB except the uniform mode. This gives us the precise meaning of the
universality of the results of FB [13]: it holds for small ρ = R/L for the Dirichlet GFF
on the disk and up to a (trivial) convolution with a Gaussian of width 2 ln(L/R). The
next question is whether the universality extends to other circular contours on the disk
with R/L not necessarily small. The answer is no, as can be argued from examination of
the eigenvalues, diagonalizing (59) for arbitrary ρ. As shown in figure 7, at large M the

11 Equivalently one can choose ǫ = 1/M and W = −2 ln R which, as we know, does not change the distribution
of the maximum.
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Figure 7. Eigenvalues of the correlation matrix corresponding to the GFF along
a circle in a disk domain with zero boundary condition (Dirichlet).

eigenvalues are essentially the same as the ones for FB, i.e. small ρ, apart from the few
largest ones—whose number does not change and remains finite as M becomes large. We
expect however that since these are the largest eigenvalues, despite being few, they will
change the distribution of the maximum which hence will depend continuously on the ratio
R/L (with a discussion similar to the above concerning the zero mode and convolution
with a Gaussian).

6.2.2. Other periodic models. On the other hand a much stronger universality property
appears to hold when only the smallest eigenvalues are changed. Hence we now test
whether the results obtained for the circular case remain valid for all periodic cases (57)
with the same behavior of λk ∼ 1/k. Again it is important that λ0 be fixed to zero. If
λ0 > 0 this amounts to convoluting the distribution of the minimum with a Gaussian of
variance λ0. For the model to be logarithmic and strong universality to hold we require
that λk → 1/k as M → ∞ for 0 < k ≪ M . We have tested this conjecture for two
models.

Model 1: The Sharp model (SM) λk = M/k for k = 1, . . . , M/2 and λk = M/(M −k)
for k = M/2, . . . , M − 1.

Model 2: The long range model (LRM) which is some discretization of the Joanny–de

Gennes elasticity of the contact line [24], λk = 2π/
√

2(1 − cos(2πk/M)).

The eigenvalues of these models are compared to that of the circular case in figure 8
and one can see that they differ only for k near M/2. As can be seen in figure 9, the
convergence of these models to the circular case at fixed M is much faster than their
(common) convergence to the analytical prediction. We take this as a signature of the
strong universality with respect to variations of the correlation matrix which change only
the smallest eigenvalues, within the cyclic class. We check in the appendix C that the
first terms in the expansion of f 2

c
are the same for all these models which supports the

assertion that the universality holds at any β, i.e. both in sense (i) and in sense (ii) defined
above.
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Figure 8. Eigenvalues of the correlation matrix corresponding to the periodic
models defined in the text.

Figure 9. Universality in the case of periodic (circulant) correlation matrices:
cumulative distribution of the minimum, with subtraction as in figure 3:
convergence to a common curve is faster than to the global analytic prediction.

6.3. The interval

We now discuss the [0, 1] ensemble. We take for the correlation matrix the Toeplitz form
Cij = C(i − j), i, j = 1, . . . , M :

Cii = 4

M−1
∑

1

(−1)k log
k

M
+ W Ci�=j = −2 log

|i − j|
M

(60)

with W = 0. This matrix is not diagonal in Fourier space and we cannot use the FFT
method. In practice we find the eigenvalues λk and the normalized eigenvectors ψk(i)
by a direct diagonalization of the matrix Cij. We then generate the correlated random

potential as Vi =
∑M−1

k=0

√
λkxkψk(i), where the xk are i.i.d. real unit centered Gaussian

variables. Performing this sum together with the direct diagonalization is numerically
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Figure 10. Interval case: cumulative distribution of the rescaled minimum QM (y)
minus our analytical prediction, gβc(y), shown in figure 1 and based on the
freezing scenario. The number of samples is 107. The difference is small compared
on the scale of unity. Although it is slow, the convergence is apparent.

expensive and limits the size of the number M of correlated numbers. In order to achieve
a good statistics (∼107 samples) we analyze here data only up to M = 212.

To justify our choice for the diagonal element in (60) let us recall a useful property

of any Toeplitz matrix: if the function f(θ) = C11 + 2
∑M−1

k=1 C1,k+1 cos (kθ) is positive
∀ θ ∈ [0, 2π), then C is positive definite (for any M). This is seen by noting that for any

vector vk, k = 0, . . . , M − 1, one has
∑M

k,ℓ=0 vkvℓC(k − l) =
∫ 2π

0
(dθ/2π)f(θ)|v(θ)|2 where

v(θ) =
∑M−1

k=0 vke
iθk and C(k) =

∫ 2π

0
(dθ/2π)f(θ)eikθ. More importantly it can be shown

that the reverse is true for large M [25]. For the choice of equation (60) this function has
a global minimum at θ = π, for which f(θ = π) = 0. As a result the matrix Cij is positive
definite and in the large M limit, one finds that the smallest eigenvalue goes rapidly to
zero and the eigenvector components alternate as (−1)k. Note that the diagonal element
in (60) behaves as Cii ∼ 2 lnM + O(1) at large M—hence as expected, and like for the
circular case. Though this is a convenient choice for proving positivity, there are other
choices with similar behaviors at large M which would do as well.

We have analyzed the distribution of the minimum Vmin and computed the coefficients
aM , bM and the distribution of the variable y in (1) by fixing y = 7/2−2γE−ln(2π) and the

variance y2
c
= 4

3
π2− 27

4
to their value given by the analytically prediction. The convergence

to bM = 1, shown in figure 2 (right), is thus a test of our prediction V 2
min

c
= 4

3
π2 − 27

4
.

The convergence of the coefficients aM and bM is quite similar to the circular case. The
cumulative distribution QM(y) of the rescaled minimum, i.e. the variable y, is shown in
figure 10 where the cumulative distribution of figure 1 (our analytical prediction) has been
subtracted. Again, the behavior resembles that for the circular case.

The discussion of the universality for the interval class is more delicate since now the
lowest eigenvector is no longer generically the uniform mode. However a way to realize it
from the GFF can be suggested like in the above discussion. One can consider the interval
embedded near the center in a large disk with Dirichlet b.c. In the limit of small ratio ρ
of interval size to disk radius the above interval model applies, again up to a convolution
with a Gaussian of variance 2 ln(1/ρ).
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Figure 11. Second cumulant f2
c

of the free energy as a function of inverse
temperature β for various sizes, as compared to the analytical prediction given
in the text. Left: circular ensemble. Right: interval case.

6.4. Temperature dependence of the second cumulant of the free energy

Finally we have also performed some numerical tests of the temperature dependence of
our analytical results in the high temperature phase. We have computed numerically, and
plotted in figures 11 and 12 as functions of β, the variance of the free energy distribution
f 2

c
as well as y2

c
for the circular case (56) and f 2

c
for the interval case (60). They are

compared to the analytical predictions, i.e. (i) for the circular case:

f 2
c
= (π2/6)β2 (β < 1) and f 2

c
= (π2/6)(2 − T 2) (β > 1), (61)

which via equation (24) corresponds to y2
c
= (π2/6)(β2 + (1/β2)) for β < 1 which freezes

into y2
c

= π2/3 for β > 1, and (ii) for the interval case formula (50) for β < 1 and

f 2
c
(β) = f 2

c
(βc = 1) + (π2/6)(1− T 2) for β > 1. One can verify the good convergence in

the high temperature phase. Questions related to the behavior for small β, and how the
numerical convergence could be further improved, are discussed in the appendix C.

6.5. More open questions on universality

Let us now indicate a simple example where universality (i) of distribution of the minimum
and (ii) of the free energy at any temperature, discussed above, may differ from each
other. Consider the continuum problem on the circle but with an arbitrary smooth and
nonsingular weight 0 < ρ1 < ρ(θ) < ρ2 < 1:

Z = ǫβ2

∫ 2π

0

dθ̃ ρ(θ̃)e−βV (eiθ̃) = ǫβ2

∫ 2π

0

dθ e−βV (eif(θ)) (62)

and we consider for instance θ̃ = f(θ) = θ + a sin(θ) with a < 1 and ρ(θ̃) = 1/f ′(θ).
From the second form in (5) one sees that the associated REM can be chosen as
ZM =

∑

i e
−βVi with correlation matrix Cij = −2 ln |2 sin(1

2
f(θi) − 1

2
f(θj))| for i 
= j

and θi = 2πi/M , neither a circulant nor a Toeplitz matrix. As shown in appendix C, at

small a, f 2
c

= 1
2
a2 + O(a4) + O(β2); hence the free energy distribution clearly depends
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Figure 12. Circular case: second cumulant y2
c

as a function of inverse
temperature β for various sizes M as compared to the analytic prediction given
in the text.

on a. On the other hand, the first form in (62) suggests that it should have the same
distribution of the minimum Vmin as ρ(θ) = 1. Indeed, V (θ) − T ln ρ(θ) as T → 0 should
have same extremal statistics for a given ǫ regularization (with T → 0 before ǫ → 0) as
V (θ) provided ρ(θ) is nonsingular. The questions of how the freezing scenario works in
such circumstances and what the universality classes are will be left for future studies.

Finally, another challenging question about universality, related to the GFF, is about
REMs constructed along curves in the plane different than the circle, or in an interval,
i.e. Vi = V (zi), where the zi lie along a curve and sample it at large M with a density

described in terms of some given arc length
√

dz dz̄ρ(z, z̄). One can use conformal maps
to relate various curves to each other, e.g. a circle to a slightly deformed circle, with
different weight functions ρ(z, z̄). Hence we are back to understanding the type of problem
described in the preceding paragraph, and one should expect some universality in the
distribution of the minimum.

7. Conclusion

To summarize, we have studied analytically and numerically random energy models based
on Gaussian random potentials with logarithmic correlations. We have extended the
Fyodorov–Bouchaud (FB) results from the circular ensemble to the interval. We have
found the proper analytic continuation from the positive integer moments of the partition
function, expressed as Selberg integrals, to arbitrary moments. This analytic continuation
of the Selberg integrals, previously an outstanding open problem, is solved here. The
solution involves Barnes functions and their generalizations which appear in studies of
the Liouville field theory, hence strengthening the already noted link between the two
problems. This solution, valid in the high temperature phase, allowed us to obtain the
full distribution of the free energy f for β ≤ βc and up to the critical point. It was
generalized, at β = βc, to the case where additional charges exist at the end of the
interval.
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The knowledge of the generating function gβ(y) = exp(−eβ(y−f)) at β = βc allowed
us, via the same freezing scenario hypothesis as was put forward by FB for the circular
ensemble, to obtain the distribution of the minimum of the Gaussian free field (GFF)
on an interval, expressed as an integral transform of a Barnes function. The freezing
scenario, which asserts that precisely this generating function gβ(y) becomes temperature
independent in the glass phase for β ≥ βc, was until now based on a traveling wave
analysis. While rigorous for the Cayley tree based REM, for which it was introduced,
it was only based on a one-loop RG analysis for the type of model at hand [6]. Here
we made what we believe should be considered as a step towards better understanding
of this freezing scenario: we discovered that, both for the circular ensemble and for its
interval counterpart, the analytic expression for gβ(y) obeys, in the high temperature
phase, duality with respect to the transformation β → 1/β. This implies in particular
∂βgβ(y) = 0, for all y, at β = βc, in perfect agreement with a continuous freezing scenario.
While one may notice that the generating function gβ(y) is special, being the partition
function of the Liouville model (see e.g. the discussion in [6]), further connections to
duality in Liouville field theory remain to be understood (the high temperature phase
being the analog of the weak coupling phase in the Liouville case).

Detailed numerical calculations of the free energy distribution and of the function
gβ(y) associated with discrete REM versions of the circular and interval models were
performed. The freezing scenario is consistent with our results, in both cases, though
convergence is found to be very slow. The numerically obtained distribution of the
minimum Vmin of M random Gaussian variables Vi with logarithmic correlation matrices
Cij is found to lie close to the predictions, but with only very slow convergence as a
function of M . In the high temperature phase the convergence to the FB result for the
circular case and to the present one for the interval is found to be very convincing, and
in full agreement with various high temperature expansions also performed here.

The important question of the universality classes for discrete REMs based on
logarithmic matrices Cij and for their continuum analogs is discussed. The continuum
circular ensemble of FB is found to provide a single universality class for all circulant
matrices with appropriate behavior of their spectrum at large M , for which we provide
several examples. This strong version of universality holds for any temperature,
i.e. identical distribution of free energy for all β, up to a shift. A weaker version of
universality, holding only for the distribution of the minimum Vmin, is discussed through
an example. As far as the connection to the GFF is concerned, we discuss the case where
the field is sampled along a circle of radius R inside a disk of radius L with Dirichlet
boundary condition. We demonstrate universality, up to the convolution with a Gaussian,
in the limit of a small ratio R/L, while in general the distributions depend on the aspect
ratio R/L.

The present progress opens many more fascinating questions. First one would want
to extend these results to other curves in the plane, and even to two-dimensional regions.
The simplest extension, i.e. the case of the real axis with Gaussian weight, also studied
here, and for which the present methods are found to fail, shows that more remains to be
understood before this can be achieved. Unbounded regions seem to pose a problem, and
so does the control of the zero mode. The question of classifying the universality classes
remains a tantalizing open question. One can expect that the conformal invariance of
the 2D GFF will play a crucial role in that classification, as it allows us to map one
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curve into another one, with a change in the local length element. The questions of
which models obey duality and what is the precise connection to the freezing scenario
are also outstanding. Further exploration of the connection to the Liouville model, to the
Liouville field theory and to Liouville quantum gravity measures is an important direction
for further research. In particular, the distribution of the length of a segment in Liouville
quantum gravity seems to directly connect to our results.
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Appendix A. The special case of [0, 1]
−1/2,−1/2

Here we study the model defined by the partition sum

Z =

∫ +1

−1

dx√
1 − x2

eβV (x) (A.1)

V (x)V (x′) = −2 ln |x − x′| (A.2)

which is a special case of the interval [0, 1]ab defined in the text for a = b = −1/2. We
show that it corresponds to a REM with a correlation matrix which can be diagonalized
in the Fourier basis.

Using the change of variable x = cos θ, and hence dx = sin θ dθ =
√

1 − x2dθ, we
see that Z can also be written as an integral over a half-circle, involving a new Gaussian
random potential with a modified correlator:

Z =

∫ π

0

dθ eβṼ (θ) (A.3)

Ṽ (θ)Ṽ (θ′) = −2 ln | cos(θ) − cos(θ′)| =

∞
∑

n=1

4

n
cos(nθ) cos(nθ′) + 2 ln 2 (A.4)

where we have used the formula
∞

∑

n=1

2

n
cos(nA) cos(nB) = − ln(2| cosA − cos B|). (A.5)

To define the corresponding REM we now take a grid θ = 2πi/M for the full circle

and take for correlation matrix

Cij =

∞
∑

n=1

4

n
cos(2nπi/M) cos(2nπj/M) + 2 ln 2 (A.6)

for i 
= j. The sum is still infinite, but it has the nice property that it can be made finite.
Indeed using that

cos(2(k + mM)πi/M) cos(2(k + mM)πj/M) = cos(2kπi/M) cos(2kπj/M) (A.7)
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we can now write

Cij =
M

∑

n=1

λn cos(2nπi/M) cos(2nπj/M) + 2 ln 2 (A.8)

λn =
1

n
+

∞
∑

m=1

(

1

n + mM
− 1

mM

)

=
1

n
− γ + ψ(1 + (n/M))

M
. (A.9)

One can check numerically that all the eigenvalues are positive. Note that we have
subtracted an infinite part on the diagonal so now the diagonal element is also well defined:

Cii =

M
∑

n=1

λn cos(2nπi/M)2 + 2 ln 2. (A.10)

Hence for this particular interval model a = b = −1/2 we can use the Fourier basis to
generate the variables on the full circle and take the minimum only for the half-circle
(i.e. the M/2 × M/2 submatrix). It remains to be understood how this links to the
simplification observed in formula (37) in the text, and whether there are other examples
of such cases where a Fourier basis can be used.

Appendix B. Some properties of the generalized Barnes function

Let us first check that the function Gβ(x) defined by (44) does indeed satisfy the
property (46). We start from the formula (see [22] 8.341.3, p. 889)

ln Γ(xβ) =

∫ ∞

0

dt

t

[

e−βxt − e−t

1 − e−t
+ e−t(βx − 1)

]

. (B.1)

Now, by straightforward algebra, (44) implies

ln Gβ(x + β) − ln Gβ(x) =
β

2
ln(2π) +

∫ ∞

0

dt

t

[

e−xt

(1 − e−t/β)
+

e−t

2
(2βx − 1) − β

t

]

. (B.2)

Making now the change t → βt, and subtracting (B.1) gives

φβ(x) ≡ ln Gβ(x + β) − ln Gβ(x) − ln Γ(xβ) − β

2
ln(2π) (B.3)

=

∫ ∞

0

dt

t

[

e−t

1 − e−t
− e−tβ

2
+ βx

(

e−tβ − e−t
)

+ e−t − 1

t

]

. (B.4)

Now using the identity
∫ ∞

0

dt

t

(

e−t − e−tβ
)

= ln β (B.5)

we see that (∂/∂x)φβ(x) = −β ln β which implies

φβ(x) = −βx ln β + φβ(0),
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with

φβ(0) =

∫ ∞

0

dt

t

(

e−t

1 − e−t
− e−tβ

2
+ e−t − 1

t

)

. (B.6)

In turn, it is easy to see this integral converges and (d/dβ)φβ(0) = (1/2β), and hence
φβ(0) = 1

2
ln β + φβ=1(0). Combining the above, we see that φβ(x) = (1

2
− βx) lnβ + c,

where

c =

∫ ∞

0

dt

t

(

e−t

1 − e−t
+

e−t

2
− 1

t

)

≡ lim
z→0

∫ ∞

0

dt e−zt

t

(

1

et − 1
+

1

2
− 1

t

)

+

∫ ∞

0

dt e−zt

t

e−t − 1

2
(B.7)

which, using [22] 8.341.1, p. 888, yields

c = lim
z→0

[

ln Γ(z) + z − (z − 1/2) ln z − 1

2
ln 2π +

∫ ∞

0

dt e−zt

t

e−t − 1

2

]

. (B.8)

The last integral is equal to 1
2
ln (z/(z + 1)), and after straightforwardly taking the limit

we find finally c = −1
2
ln 2π, in full agreement with (46).

Next we want to obtain the asymptotics. For this it is useful to note that

hβ(x) := ∂2
x ln Gβ(x) =

∫ ∞

0

dt

t

(

e−t − t2e−xt

(1 − e−βt)(1 − e−t/β)

)

. (B.9)

Exploiting again the identity (B.5) we can rewrite the above formula in a form more
convenient for applications; see equation (52) in the text. For example, by making the
change of variables t = τ/x in (52) we can immediately find the asymptotic behavior for
x → ∞ at fixed β to be given by

hβ(x) = ln x − 1

2x

(

β +
1

β

)

+ · · ·

as long as x ≫ max(β, β−1). The same asymptotic behavior holds for hβ(z) in the complex
plane for ℜz > 0 and |z| → ∞.

Note also the useful doubling formula (N.1) for Gβ(x) which we were not able to trace
in the available literature.

Appendix C. High temperature expansions

C.1. High temperature expansion of REM models

It is useful to derive high temperature expansions for a Gaussian REM ZM(β) =
∑M

i=1 e−βVi with an arbitrary correlation matrix ViVj = Cij. One uses the expansion

ZM(β) = M − β
∑

i

Vi + 1
2
β2

∑

i

V 2
i − 1

6
β3

∑

i

V 3
i + O(β4) (C.1)
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which leads to

ln ZM(β) = ln M − β

M

∑

i

Vi +
1

2
β2

(

1

M

∑

i

V 2
i − 1

M2

∑

ij

ViVj

)

−1

6
β3

(

1

M

∑

i

V 3
i − 3

1

M2

∑

ij

ViV
2
j + 2

1

M3

∑

ijk

ViVjVk

)

+ O(β4). (C.2)

This leads to the average free energy

FM (β) = − 1

β
ln ZM(β) = − 1

β
ln M − 1

2
β

(

1

M

∑

i

Cii −
1

M2

∑

ij

Cij

)

+ O(β3) (C.3)

and the variance

f 2
c
=

1

β2
ln2 ZM(β) − ln ZM(β)

2
=

1

M2

∑

ij

Cij + β2

(

1

M2

∑

ij

(CiiCij +
1

2
C2

ij)

− 1

M3

∑

ijk

(3CijCik + CiiCjk) +
5

2

1

M4

∑

ijkl

CijCkl

)

+ O(β4). (C.4)

This result for f 2
c
is useful for testing universality in the sense (ii), i.e. at any temperature.

Let us examine several cases.
Consider first the periodic case discussed in the text, where Cij is a cyclic

(i.e. circulant) matrix, i.e. of the form (57). Then (1/M2)
∑

ij Cij = λ0/M . Fixing
λ0 = 0 as we did here, we find that the expression for the second cumulant of the free
energy simplifies and that it vanishes at β = 0 as

f 2
c
=

β2

2M2
Tr C2 + O(β4) =

β2

2M2

∑

k �=0

λ2
k + O(β4). (C.5)

It is now easy to check that the discrete circular model (56), the Sharp model (SM) and
the long range model (LRM) behave in the limit M → +∞ as

f 2
c
= β2

∞
∑

k=1

1

k2
+ O(β4) =

π2

6
β2 + O(β4), (C.6)

i.e. as the continuum circular model for which one has (61). This is consistent with the
conjecture that these models belong to the same universality class at any temperature.
Furthermore the coefficient of β2 can also be obtained, e.g. for the discrete circular
ensemble (56), as

lim
M→∞

1

2M2

∑

ij

C2
ij =

1

2

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π

[

2 ln 2

∣

∣

∣

∣

sin

(

θ1 − θ2

2

)
∣

∣

∣

∣

]2

=
π2

6
. (C.7)

Note that the diagonal does not contribute to this limit (its contribution is O(ln2 M/M))
and that will be a general fact.

For the discrete interval model (60) we compute the two first terms in the high
temperature expansion. We see that the terms involving Cii cancel out, as they should.
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In the limit M → ∞ we replace remaining sums by integrals and get

f 2
c
= −2I0 + 2β2

[

I1 + 5I2
0 − 6Ĩ

]

+ O(β4), (C.8)

where we have defined the integrals

I0 =

∫ 1

0

dx1

∫ 1

0

dx2 ln |x2 − x1|, I1 =

∫ 1

0

dx1

∫ 1

0

dx2 ln2 |x2 − x1| (C.9)

Ĩ =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3 ln |x2 − x1| ln |x3 − x1|. (C.10)

Calculation of these integrals gives

I0 = −3/2, I1 = 7
2
, Ĩ =

17

6
− π2

18

which gives the final result

f 2
c
= 3 + β2

[

2

3
π2 − 9

2

]

+ O(β4). (C.11)

As we show below, this coincides with our analytical prediction from the continuum model;
see (C.17) below.

As we see in figure 11, for the discrete interval model (60) at finite M, f 2
c
(β = 0) is

smaller than 3. In fact, one can add a WM on the diagonal in (60) so as to tune this value
to exactly 3 for any M , without changing the universality class (i.e. WM goes to zero fast
enough). One could try to systematize this idea, e.g. to add to the correlation matrix
of the discrete model some other matrix, subdominant in the limit M → ∞, so as to fit
the lowest order coefficients in βp to their actual values for the continuum model—those
are given below for the interval; see formula (C.17). We have checked for the circular
case that it can be easily implemented up to p = 2. Whether this will allow us to select
better discrete models with faster convergence even at lower temperature is left for future
studies.

Concerning the class of model (5), we can similarly check that for the associated
discrete REM, i.e. Cij = −2 ln |2 sin(1

2
f(θi) − 1

2
f(θj))| for i 
= j and θi = 2πi/M , one has

lim
M→∞

1

M2

∑

ij

Cij = −2

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
ln

[

2

∣

∣

∣

∣

sin

(

f(θ1) − f(θ2)

2

)
∣

∣

∣

∣

]

=
1

2
a2 + O(a4) (C.12)

for f(θ) = θ + a sin(θ); hence at small a, f 2
c
= 1

2
a2 + O(a4) + O(β2) as announced in the

text, and there is no universality valid at all temperature (the universality class in the
sense (ii) defined above depends on the function f(θ)).

Finally the same expansion (C.4) holds for any continuum REM of the form
Z =

∫

dx ρ(x)e−βV (x) and can be obtained from the above just by making the
replacement (1/Mn)

∑

i1,...,in
→ (1/(

∫

dx ρ(x))n)
∫

x1,...,xn
and replacing Ci1,i2 by its

continuum expression C(x1, x2).
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C.2. High temperature expansion of the analytical result for the interval

Let us derive the high temperature expansion of our analytical result (50)–(52) for the
second cumulant of the free energy. Since an independent method also exists for obtaining
this expansion, as displayed in the discussion above, this constitutes a check of our solution
for the high temperature phase. For this we need to use (52) for x = α1β+α2(1/β), where
α1,2 are given positive constants. On introducing τ = t/β we have

hβ

(

α1 β +
α2

β

)

= ln
α2

β
+ ln

(

1 +
α1

α2
β2

)

+

∫ ∞

0

dτ

τ
e−α2τ−α1β2τ

×
(

1 − τ 2β2

(1 − e−β2τ )(1 − e−τ )

)

(C.13)

which can be easily used for expanding in powers of β2. In particular, the leading term
from (50) is a constant given by

f 2
c
= 2 ln 3 + ln 2 +

∫ ∞

0

dτ

τ

(

1 − τ

1 − e−τ

)

(2e−(3/2)τ − e−τ − e−2τ ) (C.14)

where the integral can be computed in pieces using the formulae (see 3.311.7 [22])

∫ ∞

0

dτ
e−μτ − e−ντ

1 − e−τ
= ψ(ν) − ψ(μ), and

∫ ∞

0

dτ

τ

(

e−μτ − e−ντ
)

= ln
ν

μ
. (C.15)

Combining the above, we find

f 2
c
(β = 0) = 4 ln 2 − [ψ(1) + ψ(2) − 2ψ(3/2)] = 3, (C.16)

in agreement with the result obtained above in (C.9) by a direct method.
This expansion can be carried to higher order. Using Mathematica and some heuristics

we find that it can be put in the form

f 2
c
= 3 +

(

2

3
π2 − 9

2

)

β2 +
∞

∑

k=2

(−1)k+13k

(

ζ(k + 1) −
(

1 +
Bk

k

))

β2k (C.17)

where the Bk are the Bernoulli numbers (Bk = 0 for k odd).

Note added. After submission, we learned of a recent independent study by Ostrovsky [26] who obtained a
high temperature expansion of arbitrary moments for the [0, 1] problem with no edge charges, and conjectured a
formula for these moments. Exploiting the integral representation (44) for the generalized Barnes function Gβ(z)
together with the following doubling formula:

Gβ(2z) = Cβ22z2−(1+β+(1/β))zπ−zGβ(z)Gβ

(

z +
1

2β

)

Gβ

(

z +
β

2

)

Gβ

(

z +
1

2β
+

β

2

)

(N.1)

where Cβ is determined from e.g. z = 1, we were able to show that his conjecture is equivalent to our formula (47).
Note however that no discussion of the critical case, duality and freezing is given in [26]. We have also shown
that using Dirichlet boundary conditions at large distance |x| = L for the 2D GFF gives a proper meaning to the
problematic Gaussian weight case (at βc it yields a shift 2 ln L in the second cumulant y2, while maintaining all
higher cumulants as given in the text).
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