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To derive the consequence of heritable traits of individual organisms upon the feature of their 
populations, the lattice Lotka-Volterra model is studied which is defined as a Markov process of the 
state of the lattice space. A lattice site is either vacant or occupied by an individual of a certain type 
or species. Transition rates of the process are given in terms of parameters representing the trait of 
an individual such as intrinsic birth and death and migration rate of each type. Density is a variable 
defined as a probability that a site is occupied by a certain type. Under a given state of a site the 
conditional probability of its nearest neighbor site being occupied by a certain type is termed environs 
density of the site. Mutual exclusion of individuals is already taken into account by the basic 
assumption of the lattice model. Other interaction between individuals can be taken into account by 
assuming that the actual birth and death and migration rates are dependent on the environs densities. 
Extending the notion of ordinary Malthusian parameters, we define Malthusians as dynamical 
variables specifying the time development of the densities. Conditions for the positive stationary 
densities and for the evolutional stability (ES) against the invasion of mutant types is given in terms 
of Malthusians. Using the pair approximation (PA), a simplest decoupling approximation to take 
account of spatial correlation, we obtain analytical results for stationary densities, and critical 
parameters for ES in the case of two types. Assuming that the death rate is dependent on the 
environs density, we derive conditions for the evolution of altruism. Comparing with computer 
simulation, we discuss the validity of P A and its improvement. 

§ 1. Introduction 

Since Lotka and Volterra 1) studied population dynamics of interacting species 

of organisms, their models have been considered as basis for ecological processes, and 

a number of studies have been done on them. Kerner2
) has shown that the Lotka

V olterra model (L VM), which is described by a system of differential equations, 

admits a Liouville's theorem and a universal integral of 'motion'. On this basis he 

tried to develop statistical mechanics of LVM introducing the concept of mi

crocanonical and canonical ensembles as well as a notion of temperature to L VM. 

Extending Kerner's studies, Goel, Maitra and Montroll3
) gave a good review of such 

models of interacting populations. They tried to obtain salient properties of popula

tions which are rather insensitive to initial conditions and details of assumptions. 

In their 'statistical mechanical' treatment of population dynamics, they regarded 

LVM as a first principle. However, in Lotka-Volterra type model parameters 

specifying the dynamical system are given in terms of groups and not in terms of 

individuals. Namely, the growth rate of population of each species called Mal

thusian parameter is given in terms of the intraspecific and interspecific interaction, 

and not in terms of the trait of each individual of a species, such as viability, 

fecundity, motility, and social behaviors such as helping or attacking towards neigh

bors. In this sense their treatment is not fully statistical mechanical, but rather 
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1036 H. Matsuda, N. Ogita, A. Sasaki and K. Sattf 

phenomenological. Because the spirit of statistical mechanics is to derive the 

macroscopic properties of the set of many particles from assumed properties of each 

particle. For instance, statistical mechanics has tried to derive hydrodynamic equa

tion of motion from the equations of motion of the constituent particles. Likewise, 

it is desirable to study the logical relationship between the property of the population 

and that of the individual organism which constitutes the population. 

Meanwhile, since Hamilton4
) sought for an 'unbeatable strategy' for the sex ratio 

in the presence of local competition of mates, the concept of theory of games has 

stimulated the development of evolutionary ecology. Here, the unit of selection is an 

individual, or ultimately is a gene rather than a species of organisms as a whole. 

This unbeatable strategy is now called 'evolutionarily stable strategy' or ESS, which 

is the stability of the wild-type against the invasion of a mutant of the same species. 

The mathematical theory of evolutionary ecology was excellently reviewed by 

Maynard Smith.5
) They are trying to understand the population on the bases of the 

act of individual organisms. However, in usual treatises of ESS the effect has been 

neglected that the difference of the trait between the invader and the wild-type may 

subsequently cause the difference in their respective environments. Organisms of 

different type may tend to form different environments which affect their respective 

fitnesses. For instance, altruists may live in an environment where mutual helping 

act is more prevalent, which may facilitate the former to invade the population of 

egoists. 

Generally, the area in which each individual lives during its life is much smaller 

than the whole region inhabited by the total population of species. In L VM the 

biological environment affecting the growth rate of each species is represented by a 

set of population numbers or global densities of coexisting species. However, in 

reality it should be the local density that directly affects the fitness of each individual, 

and if the relevant local population number is small as on the verge of invasion or 

extinction, stochasticity cannot be ignored. Therefore, in order to get proper under

standing how the feature of a population depends on various traits of an individual, 

stochastic dynamical models must seriously be studied. In physics, in order to 

understand how the feature of matter depends on the nature of atoms and molecules 

statistical mechanics is needed beyond thermodynamics. Also in population biology, 

we consider it worthwhile to regard L VM not as a first principle but as a model to be 

derived from more basic assumptions about the individual, and to study the feature of 

population beyond L VM. Our approach is nothing but to study population dynamics 

as a many body problem of statistical mechanics. 

In statistical mechanics, in order to reduce mathematical complexity of many 

body problems in the continuous space, the lattice space has been found useful. The 

lattice gas model was shown to have a close relationship with spin models of 

magnetism not only classically but also quantum mechanically.6) The lattice model 

is amenable to computer simulation and is suited to get a unified understanding of 

nature. 

In population genetics, Kimura7) introduced 'stepping stone model' to study the 

decrease of genetic correlation with distance in a geographically structured popula

tion. Although his motive of study was not for the approximation of the continuous 
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Statistical Mechanics of Population 1037 

space for which Malecot8
) had studied, in effect Kimura's model can be regarded as a 

lattice model in which a site may contain a fixed number of individual organisms. 

Using the stepping stone model a number of studies have been done on the effect of 

geographical structure for the genetic correlation in a species. But the effect of 

individual traits and interactions between individuals was not fully studied. 

In dynamical epidemiology, Kermack and McKendrick9
) introduced 'SIR model' 

which deals with dynamics of the change of population densities of susceptibles S, that 

of infected I, and that of recovered R. This model can be looked upon as a kind of 

L VM. Because the density of either predator or infected cannot grow without prey 

or host, and Sand R can be associated with two different states of the host or prey, 

and the time development of both models is given as a dynamical system. In order 

to incorporate the spatial non-uniformity of these densities, as is necessary to study 

the spatial spread of pathogens, diffusion terms have been added to the traditional 

SIR-type mode1.10
) This approach is useful, but the range of applicability of such 

diffusion-reaction type treatment of the spread of pathogens, as well as the biological 

meaning of diffusion constants are to be questioned. Before such deterministic 

approach, the problem of spatial structure had been introduced and studied by the 

Markov process of the state of the lattice space under the name of 'contact process'. 

Recently, rigorous results as well as simulation results have been accumulated on the 

contact process.ll) 

In such studies of the contact process, however, it is usually assumed for simplic

ity that in the lattice space each site is occupied by an individual which is either 

healthy or diseased. However, survival and extinction of species of organisms as 

well as their invasion and coexistence are important especially for ecological and 

evolutionary biology. As a lattice version of L VM the inclusion of the vacant site is 

inevitable for such a problem. In order to overcome the mathematical difficulty 

coming from the increase of a number of possible states of a site, we study the use of 

a decoupling approximation as a generaLtool. It would be worthwhile to study the 

lattice model as a microscopic version of the Lotka-Volterra model with the effect of 

local environment of individuals, which the original L VM has not properly consid

ered. The purpose of this thesis is to give an introduction toward such studies. 

Prior to our studies Tainaka12
) had introduced the lattice Lotka-Volterra model 

(LL VM) and pointed out some interesting spatial patterns at a phase transition. 

However, at a moment his study is restricted to a case of a special interspecific 

interaction and without vacant site, while our object is for more generality. Early 

versions of the present study were already published/S) but their treatment was not so 

systematic. 

In the following, we give in § 2 the definition and the evolution equation of LL VM. 

Introducing the concept of environs densities and Malthusians, we derive conditions 

for the stationary state and for evolutional stability. In § 3 we apply these conditions 

to study a single species case as a simplest example. We obtain the densities at a 

stationary state in terms of the birth and death and migration rate under a pair 

approximation, which is the doublet decoupling approximation. We obtain the 

critical condition for the sustenance of the population. In § 4 we study the stability 

of the stationary state against the invasion of a mutant. Here, we consider a case in 
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1038 H. Matsuda, N. Ogita, A. Sasaki and K. Sato 

which the death rate of an individual depends on its environs densities, hoping that it 

will give an insight to the evolution of altruism. Finally, we discuss in § 5 use of 

LL VM and of the decoupling approximation, comparing our analytical result with the 

result of computer simulation. 

§ 2. The Lattice Lotka-Volterra Model (LLVM) and Malthusians 

Consider the infinite lattice space in which the state of each lattice site is +, -, 

or o. The state + or - represents the site being occupied by an individual of + type 

or - type and 0 represents the vacant site. A generalization to the case in which 

there are more than two types is straightforward, so that in this paper we only 

consider the case of two types for simplicity. In an infinitesimal time interval at, the 

state of each occupied site changes to 0 with probability da.Qt by death, where dtJ is the 

death rate of 6 type (6E{ +, - }). Assume that each site has Z nearest neighbor (n.n.) 

sites. Each pair of n.n. sites of state (6, 0), which means that one is of state 6 and the 

other is of state 0, undergoes duplicated migration with probability (btJ/z)Ot, and the 

state changes to (6, 6). We call btJ simply birth rate of 6, althouth btJ represents a 

possible maximum birth rate which is attained when all the Z n.n. sites are vacant. 

We consider that unless there is enough room for the child to live, a born child cannot 

successfully survive to an adulthood. The value of btJ may depend on other environ

mental situations, but in the simplest case we assume that it is a constant inherent to 

the type of an organism. The above pair of n.n. sites also undergoes the change of 

state from (6, 0) to (0, 6) with probability (mtJ/z) at due to migration without duplica

tion. We call mtJ migration rate. If the individual has no motility like a plant, we 

may put mtJ=O. Moreover, if there is a birth by parasitism or infection, as mainly 

treated in dynamical epidemiology, we may assume that -type corresponds to a 

parasite, pathogen, or an infected individual, and the birth of -type may occur by 

infection or transmission from the n.n. site. Namely, we assume inside the frame

work of our LL VM that the state ( -, +) of n.n. pair changes to ( -, -) with certain 

probability proportional to the infection rate. In this paper, however, we only 

consider the case of birth by duplicated migration, and the case of birth by infection 

will be treated in a separate paper.14
) 

Let PtJ(x, t) be the probability that the state of the site at xEZd (site x) is 6 at 

time t, where Zd denotes the d-dimensional lattice space. Let PtJtJ'(xx', t) be the 

probability that the state of site x is 6 and the state of site x' is 6' at time t, where 

x and x' represent n.n. sites. The variable PtJ(x, t) represents the density of 6( E{ +, 

-,O}) at (x, t). Let us call PtJtJ'(xx', t) for (6, 6'E{ +, -, O}) doublet density. The 

ordinary density can be referred to as singlet density as well. In this paper we only 

consider the uniform case in which these densities are independent of the coordinates 

x and x', so that in the following we suppress writing the coordinates. In LL VM 

clustering property has an important role for population dynamics due to nearest 

neighboring interactions so that we introduce the following notations. Let qtJ/tJ' be 

the conditional probability that a randomly chosen nearest-neighbor of 6'-site is 6-site 

(6, 6'E{+, -, O}). Let also qtJ/tJ'tJ" be the conditional probability that under a condi

tion that a nearest-neighbor of 6'-site is 6"-site, another randomly chosen nearest-
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Statistical Mechanics of Population 1039 

neighbor of 6'-site is 6-site (6,6', 6"E{ +, -, O}). When 6 is not 0, let us call these 

conditional probabilities qer/er' and qer/er'er" representing the density of the n.n. of the site 

under consideration environs density of the site. In contrast singlet and doublet 

densities in this paper will be referred to as global densities. 

According to the assumption of birth and death and migration processes, the time 

development of the densities is given by 

and 

P er={ - der+ berqo/er}Per , 

P erer= - 2{der+ mer(l - Z-l)qo/c1c1} Perer 

+2[ber{Z-1+(l- Z-l)qer/oer} + mer(l- [l)qer/Oc1]POc1 , 

P erff= - [(der+ dff) + mer(l - [l)qo/erff+ mff(l- z-l)qolffer ]Perff 

+ (ber+ mer)(l- Z-l)qerIOffPOff+ (b ff + mO' )(1- [l)qO'IOc1Poer . 

(0-, O'E{+, -}, 6=1=0') 

By definition we have 

(6, 6'E{0, +, -}) 

When Eq. (2·1) is written in a form: 

Per=MerPer, (6E{+,-}) 

(2·1) 

(2'2) 

(2·3) 

(2·4) 

(2·5) 

(2'6) 

(2'7) 

Mer is usually called Malthusian parameter of 6. Since here Mer is not a constant 

parameter but generally a dynamical variable, let us call Mer simply Malthusian of 6. 

Likewise, we call the variable Merer,= Perer'/Perer' Malthusian of (66') which is written as: 

and 

Merer= -2{der + mer(l- [1)qo/erer}+2[ber{z-1+(1- [l)qer/oer} 

MerO'= - [(der+ dO') + mer(l - z-l)qo/erO'+ mO'(l - z-l)qoIO'er] 

+ (ber+ mer)(l- Z-l)qer/oO'qoIO'/qerIO' 

+ (bO'+ mO' )(1- z-l)qO'IOc1qo/er/qO'ler . 

(2'8) 

(2·9) 

Thus, Malthusians are given in terms of environs densities, and specify the 

growth of the global densities. In the stationary state with a positive density, the 

corresponding Malthusian must vanish. 

We note from (2'4), (2·6) and the definition of Malthusian of (66') that 
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1040 H. Matsuda, N. Ogita, A. Sasaki and K. SattJ 

P 66'= P r5qr5'16+ Pr5q r5'/r5 = (Mr5qr5"r5+ q r5'/(5)Pr5 = M r5r5,pr5qr5'/r5 . 

Thence, we obtain for Pr5>O: 

q r5"r5=(Mr5r5,-M (5 )qr5"r5 .-

(2'10) 

(2·11) 

When the density Pr5 of (J is infinitesimal, its time derivative is also infinitesimal 

according to (2'6) and (2'7). On the other hand, the time derivative of environs 

density qr5/r5 is not infinitesimal but finite according to (2'11),(2'7) and (2'8). Note 

that even when qr5/r5 is infinitesimal, the product M r5r5qr5/r5 becomes finite so long as br5 

>0, due to a finite positive term br5z-
l
qo/r5. When the environs density qiflr5 is finite 

positive, as is supposed usual for finite positive Pif, its time derivative is also finite 

according to (2'11), (2·7) and (2·9). 

Therefore, on the verge of invasion or extinction of (J type, where its density Pr5 

is close to 0, the environs density qr5'/r5 will reach a stationary state before the global 

density significantly changes. Thus, the environs density is a fast variable and the 

global density is a slow variable when the latter is infinitesimal. Then, we must have 

from (2·11) for 0 < pr5<{::l: 

(2 ·12) 

In addition if Pif >0 we must have 

(2'13) 

It is to be noted that these equations hold in the low density limit Pr5~O, whether the 

population is stationary or not. Therefore, the condition for the invadability and 

sustainability of the (J type is given by 

M r5 >O (2·14) 

together with (2 ·12) and (2 '13). 

Consider a population consisting only of + type organisms and assume that it is 

in a stationary state with positive densities. Then, the following condition must be 

satisfied: 

(2·15) 

Here, we ask if few individuals of different type, say -type organisms appear in the 

population what will happen? Since the density P- is very small at this moment, if 

the conditions 

M--=M+-=M-<O (2 '16) 

are satisfied together with (2'15), then the density of -typ~ will tend to 0 as time goes 

on and the original stationary state will persist; in other words, the stationary state 

is evolutionally stable (ES). 

If the stationary state is not ES, ultimately either the +type population goes to 

extinction, or both types coexist in the population. If the coexisting population 

ultimately reaches the stationary state, we must have: 
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Statistical Mechanics of Population 1041 

(2'17) 

Thus, we have derived conditions for the sustainability, invadability and station

ary state of a population in terms of Malthusians. Malthusians are given as a 

function of environs densities as variables and birth and death and migration rates as 

parameters. If the environs densities are known, then the global densities can be 

obtained by using (2'4) and (2·5). However, the number of unknown variables is 

generally larger than the number of equations. 

For example, from M+=O, we have rigorously 

(2 ·18) 

at the stationary state of the population containing +type organism. But we cannot 

determine the stationary density p+ by (2·15), (2'8) and (2'5), since there 4 independ

ent variables are involved against :2 independent equations. Therefore, in order to 

get useful results from the knowledge of Malthusians some approximations are 

necessary. We shall study it in the following sections. 

§ 3. Single species case or lattice logistic model (LLM) 

As a simplest case of LL VM let us consider single species of organisms, so that 

the state of a site is either + or O. Without loss of generality we set death rate d+ 

=1, which means that an average lifetime of the organism is taken as a unit of time. 

We suppress writing suffix + when no confusion is supposed to occur. We put 

By (2·4) and (2'5) we have 

p=p+=q/(I-p+q) . 

(3·1) 

(3·2) 

In order to obtain the stationary density by (2'7), (2'8) and (2'15), we approxi

mate: 

(3·3) 

We call this approximation pair approximation (PA) or doublet decoupling approxima

tion (DDA). The decoupling approximation is based on the intuition that the effect 

of the second neighbor site will be less important than that of the nearest neighbor 

site. We shall discuss in § 5 the range of applicability of P A and its improvement by 

comparing with the result of computer simulation. 

Using PA (3'3), Malthusians given by (2'7) and (2'8) become 

M+=-I+b(l-p) , 

M++=-2{1 +m(l-z-1)(I-p)}+2[b{z-I+(I-Z-1)q} 

+m(l-z-1)q](I-P)/P, 

where we put b=b+ and m=m+. 

N ow, from (2 ·15) we obtain the following stationary environs densities: 

(3'4) 

(3·5) 
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1042 H. Matsuda, N. Ogita, A. Sasaki and K. Sato 

(1- b-1){1 +(1- z-1)m} - [1 

(l-z 1)(1+m) 

(3·6) 

(3'7) 

where we put m=m/b. Thence, we obtain the stationary global density using (3'2): 

p 
(1- b-1){1 +(1- z-1)m}- Z-1 

(l-z 1)(1+m)-b 1z 1 
(3'8) 

For finite migration rate the global density p is smaller than the environs density 

P of the occupied site and is larger than the environs density q of the vacant site. In 

the infinite migration rate limit all the three densities become equal as in L VM. 

Thus, the Lotka·Volterra model corresponds to the infinite migration rate case of the 

lattice Lotka-Volterra model. 

Consider the low density limit: p-->O, where the environs density q tends to ° by 

(3'2), and Malthusians (3·4) and (3'5) tend to the limit: 

M2=-1+b(l-p) , 

M2+= -2{1 +m(l- z-1)(1- P)}+2bz-1(1- p)/p, 

Setting M=M2=M2+, we obtain for IMI<l: 

M 
2{ 1 + m(l- Z-1) 1 :-~ 1} 

2z 1b 1 

1+ (l-b 1)2 

For M=O, we have 

b=be 
1+m(1-[1) 

(1- z 1)(1 + m) . 

(3'9) 

(3'10) 

(3'11) 

(3 '12) 

If b > be, then the population is sustained, since MO + = M > 0, even when p happens to 

approach 0. On the other hand, for b< be, we have no stationary positive environs 

density in view of (3'7), and M <0 for p-->O. Thus, be is the critical birth rate for 

sustenance of the population. Note that be is a decreasing function of the relative 

migration rate m, and that the corresponding critical environs density Pe=q+1+ is 

given using (3·6) by 

Pe l+m(l-z 1) . (3'13) 

So far we have considered only the case in which all the organisms are of the 

same type. The model is just the lattice version of the so-called logistic model, which 

is a special case of L VM. In the next section we consider the invasion of a mutant 

type in the stationary population of a wild type. 

§ 4. Evolutional stability of a stationary population 

In the preceding section we have assumed that the death rate d(1 is a constant, so 
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Statistical Mechanics of Population 1043 

that by taking an average lifetime as a unit of time we have set d rr at 1 without loss 

of generality. However, in the presence of social interaction between organisms such 

as helping or attacking of animals or allelopathy of plants, the death rate may depend 

on the environs density. 

To study the effect of such social interaction, let us assume as a simplest case that 

the death rate of an organism at site x is given by 

(4·1) 

where /3- is a constant parameter inherent to - type, and n-(x) is a number of nearest 

neighbor sites of x which are occupied by - type. Here, mutants are of - type and 

the wild type organisms are of + type. 

The assumption (4 '1) means that the wild type makes no social interaction and 

the death rate depends only on the number of mutants of the n.n. sites. If /3- >0, the 

mutant is a helper, because it decreases the death rate of its neighbor. The helper is 

benevolent, because it helps neighbors to live without discriminating their types. It 

is altruistic, because the helping reduces its fecundity by decreasing a number of n.n. 

vacant sites for sending its children. In spite of such altruism the mutant may invade 

by increasing their number, because a helper may enjoy a reduced death rate by 

having more helpers in its n.n. sites than non-helpers, since the child of a helper is also 

a helper by assumption and the child is likely to live in the neighborhood of its parent. 

Whether the invasion of such altruists can actually happen is a subtle problem and 

needs a detailed analysis. In the following we look into this problem by studying the 

invadability of the - type into the stationary population of the + type according to 

the formulation developed in § 2. 

N ow, using PA, we get the following Malthusians in the limit of low density of the 

mutant, p- --> 0: 

M~=-(l-/3P-¢-)+b(l-p-) , 

M~-= -2[1- /3{z-l+(l- [1)p_¢_}]+2bz-1(1- p_)/(p_¢_) , 

M~-= -[(1- /3z~l)+{l- /3(1- Z-l)p_¢_}] 

+ b(l- z-l){q+(l- p-)/(p-<p-)+ q-(l-P+)/(P+<p+)} . 

(4'2) 

(4 ·3) 

(4·4) 

Here, we have assumed for simplicity no migration, m=O, and type-independent birth 

rate brr=b(aE{+, -}). We have put /3=/3-, and 

Because of the identity: 

and 

(4'5) 

(4'6) 

(4'7) 

(4'8) 
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1044 H. Matsuda, N. Ogita, A. Sasaki and K. Sato 

(4·9) 

we have 

(4·10) 

so that we can rewrite (4·4) as 

(4 ·11) 

Remembering (2·15) and (2·16), we can discriminate the invadability of - type 

referring to the sign of M-==M~=M~-=M~-, which can be obtained by solving the 

following simultaneous equations for X-==P-, Y-==p-¢- and M: 

M= -1 +,8Y +b(l- X), (4·12) 

M=-2+2,8{Z-1+(1-z-1) Y}+2bZ- 1(1- X)/Y, (4·13) 

M= -2+ ,8{z-1+(1-z-1) Y}+2b(1-z-1)q+(1- X)/(X - Y). (4·14) 

For ,8=0 both types have just the same traits, so that we must have M = O. Then, 

we get from (4·12) 

X=1-b-1, (4·15) 

so that p- is equal to p+= P which is given by (3·6). From (4 ·13) and (4 ·14) we obtain 

(4 ·16) 

using q+=q in (3·7) for m=O. This indicates that for 1,81<1, the probability q-/- that 

the n.n. of the mutant site is also a mutant site is close to Z-1. 

Therefore, we can solve (4·12)~(4·14) within the accuracy of the first order of 

magnitude of ,8 by putting 

X=1-b-1+oX=p+oX, Y=Z-l+ oY, 

M=,8z-1_bOX 

(4 ·17) 

(4·18) 

and assuming that oX, oY are infinitesimal. We obtain after somewhat lengthy 

calculations: 

where 

oX =z-l{l +(2- z-1)(2- p)-l(p_ Pd)}(l- p),8 , 

oY=z-2{(2-Z-1)(2-p)-1(p-Pd)-2(1-z-1)},8/2, 

M =z-1(2- z-1)(2- p)-l(p~_ p),8 , 

{ 

~ (z=2) 

25 
28 (z=4) 

(4·19) 

(4·20) 

(4·21) 

is the demarcation environs density below which (P<Pd) a helper (,8 >0) is invadable, 
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and above which (P>Pd) an attacker is invadable in view of (4·20). 

It is to be noted from (4·18) and (4·20) that M is a decreasing function of P, 

because the benefit of helping [1/3 is independent of P, whereas the cost of helping 

MX increases with p. By (3 ·13) the minimum environs density Pc for sustenance of 

the wild type population is [1 in the present case. Then, it is also notable that the 

range of P in which a helper is invadable is considerably wider than that in which an 

attacker is invadable; the ratio of their widths is 2 for z=2, and 6 for z=4. 

The evolution of social behaviors of animals has been much debated; especially 

on the evolutional origin of altruism. Since Hamilton15
) has proposed kin selection 

theory against the group selection theory of altruism, they have tended to pay more 

attention to the kin-discriminating aspects of seemingly altruistic behavior. We do 

not deny its importance, especially for strong altruism in eusociality in which individ

uals of some caste completely lose fecundity. However, in the case of weak altruism 

as we have considered here, the above result may suggest that the kin recognition is 

not necessarily vital for its evolution, but too high environs density tends to suppress 

it and promote egoism instead. Although we must consider other factors for discuss

ing the evolution of altruism, it is beyond the scope of this paper, and we proceed to 

the next section to discuss the validity of P A on which our analytical study is based. 

§ 5. Comparison of pair approxima-

tion (P A) with computer simulation 

In order to check the validity of 

decoupling approximations, we compar

ed the stationary values of p+, q+/O, q+1+ 

for lattice logistic model calculated by 

pair approximation and that obtained by 

Monte Carlo simulations (Fig. 1). Note 

that singlet decoupling approximation 

(SDA), which approximates qO'1O" simply 

by PO', corresponds to the logistic model 

without any spatial structure. Figure 1 . 

indicates that the pair approximation, 

thq.t is doublet decoupling approxima

ti~n (DDA), gives more accurate approx

imation than SDA. 

We expect that triplet decoupling 

approximation (TDA), in which time 

development of the triplet densities 

PO'O',O',,(a, a', a"E{+, o}) is described by 

environs densities of double sites 

qO'1O',O',,(a, a', a"E{ +, O}), should give bet

ter agreement with the simulation than 

DDA or SDA does. Figure 1 shows that 

this is really the case. 

As we can see in Fig. 1, DDA agrees 

0.8 

0. 

~ 
III 
£: 

~ 
0.6 

:g 
.S! 
(!) 

0.4 

• 0.2 

o 0.1 0.2 0.3 0.4 0.5 

Relative death rate 1/b 

Fig. 1. Comparison of singlet density between 

singlet decoupling approximation (SDA), dou

blet decoupling approximation (DDA), triplet 

decoupling approximation (TDA) and Monte 

Carlo simulation. 

Singlet densities are calculated by SDA, 

DDA and TDA. The simulation was conduct

ed on the one-dimensional 10000 lattice torus 

for several values of b+ with initial condition at 

p+=l. Coarse dotted line, SDA; fine dotted 

line, DDA; solid line, TDA; circles, simulation. 
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C> 
0.8 !i;! 

~ .. 
~ 
0- 0.6 
!$ 

l 
~ 
'iii 

~ 
0.4 

:g 
.~ 
ill 0.2 

0.1 0.2 0.3 0.4 0.5 

Relative death rate 11b 

Fig. 2. Comparison between environs densities 

q+/O, q+/O+ and q+/OO by TDA. 

Differences between q+/O, q+/O+ and q+/OO are 

shown. Curves are calculated by TDA. Solid 

line, q+/O; coarse dotted line, q+/O+; fine dotted 

line, q+/OO; filled circles, q+/O; open circles, q+/O+; 

gray circles, q+/OO. The condition for simula

tion is the same as in Fig. 1. 

~ 0.8 
':j: 
0-.. 
'$ 
0- 0.6 

.:£ 
~ 
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~ 0.4 

~ 
:g 
e 
'S 
ill 0.2 

0.1 0.2 0.3 0.4 0.5 

Relative death rate 11b 

Fig. 3. Comparison between environs densities 

q+I+, q+l++ and q+I+O by TDA. 

Differences between q+I+, q+l++ and q+I+O 

are not so significant compared to the ones 

between q+/O, q+/O+ and q+/OO. Curves are calcu

lated by TDA. Solid line, q+I+; coarse dotted 

line, q+I++; fine dotted line, q+I+O; filled circles, 

q+I+; open circles, q+I++; gray circles, q+I+O. 

The condition for simulation is the same as in 

Fig. 1. 

well at the high density of organism (say p+ >0.5), but not at low density. At the low 

density the difference between q+/OO and q+/O+ neglected in DDA will become serious, 

since even if q+/OO approaches 0, q+/O+ does not, reflecting the clustering property of 

organisms due to assumed nearest neighbor interactions. To improve this, we must 

incorporate triplet decoupling approximation (TDA). 

Environs densities q+/O+, q+/OO calculated by TDA (see Appendix for the deriva

tion) agree much better with that observed in Monte Carlo simulations (Fig. 2), and 

significantly differ from q+/O which is used in place of q+/O+ and q+/OO in DDA. It is 

notable that the difference between q+l++ and q+1+0 is relatively insignificant (Fig. 3). 

In regard of the comparisons between SDA, DDA and TDA, we expect that we can 

further improve approximation by increasing the order of decoupling. 

§ 6. Conclusion 

In our series of papers we have stressed the use of analogy between statistical 

physics and population biology. In the present paper we regarded individual organ

isms as constituents of a population, since the Lotka -Volterra model is primarily a 

model of population ecology and not of population genetics. However, from the 

mathematical point of view the constituent need not be an individual, nor the model 

need be considered only of ecology. It may be of population genetics and of dynami

cal epidemiology if we regard the constituent as a gene or a pathogen. In this sense, 
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Statistical Mechanics of Population 1047 

such particle-like element of population biology may be termed 'replicon' broadly in 

its theoretical study. The vital property to be attached to the constituent element of 

population biology is that it undergoes birth and death with the law of heredity, 

besides its particle-like property. Particles as a constituent of matter behave in

dependently of each other in the first approximation, and the interaction modifies their 

behavior; sometimes in a significant way .. The variety of matter is disclosed in 

various environments under a given interaction characteristic to the constituent 

particles. 

Owing to the action of birth and death with the law of heredity, the object of study 

of theoretical population biology can be much wider than that of statistical physics of 

matter. For instance, the latter has little to do with evolution nor to do with social 

or human science, whereas the former surely does, even though its extent is yet to be 

seen. 

In this paper we have treated evolutional stability and the problem of altruism in 

a fashion of statistical mechanics. Corresponding to Hamiltonian in mechanics or in 

statistical physics, we have introduced the concept of Malthusian as a dynamical 

variable which specifies the dynamics of a population. By virtue of the notion of 

environs density, Malthusians can be given in terms of environs densities. Instead cif 

starting from the deterministic dynamical system, we have set Markovian process as 

a first principle, because the biological system is inherently an open system, so that 

there is no reason to exclude stochasticity from the basic assumption. Thus, unlike 

the Hamiltonian dynamical system, our Malthusian dynamical system includes sto

chasticity in its background, which bec'Omes apparent when the number of replicons 

become small as on the verge of invasion or extinction in a finite system. 

As we have mentioned in Introduction, the Markovian lattice model has already 

been vigorously studied, and its scope is wider than the lattice Lotka -Volterra model 

studied here. For instance, the kinetic Ising model is one of typical examples of the 

Markovian lattice model, but we cannot reasonably associate the notion of Malthu

sian with it, because here the number of sites of a given state changes by the process 

of transition of state of each site without the process of reproduction. In contrast, in 

Malthusian dynamical system, without the process of reproduction a new state seldom 

appears; its appearance corresponds to a mutation process, but its rate is usually very 

small in reality. Thus, Malthusian dynamical system will have its common general 

feature distinguishing itself from other type of systems. The distinction of slow and 

fast variables on the verge of invasion, which we have shown in this paper, is one of 

such features. Our study has also indicated the use of decoupling approximation as 

a systematic approximation method. So far as we are aware, in contrast to the 

traditional study of statistical mechanics the study of approximation methods has 

been rather scarce in population biology. To have the systematic approximation 

method will be useful to know a global feature of a model and to give a good 

orientation in doing computer simulation to confirm the results. 

There may be many possible directions toward which theoretical physics will 

progress. We hope that statistical mechanics of population as an extension of 

traditional statistical mechanics will be one of them. 
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Appendix 

Here we derive several equilibrium values by triplet decoupling approximation 

(TDA). In contrast to doublet decoupling approximation (DDA), in which the time 

development of doublet densities in the system is considered, we must analyse master 

equations about triplet densities described as follows: 

.0+00= -{1 + 1/2b(1 + q+/oo)}P+oo+ P++o+ P+o+ + 1/2bq+/ooPooo , 

.00+0= -{1 + b(l + q+/o+)}Po+o+2p++o, 

.0000= - bq+/ooPooo+2p+oo+ Po+o. (1) 

Note that qr1/r1'r1"r1",=qr1/r1'r1" in order to close these equations. Then using (1) we can 

get the time development of doublet densities: 

(2) 

Finally singlet densities change as follows from (2): 

(3) 

From (1) ~ (3) we can get the following global densities and environs ones at equilib

rium: 
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2(b2 -2b-l) 

b(2b+ 1) 

1 
q+I+=I-qo/+=I~b ' 

b(2b-3) 
(b-l)(2b+l) , 

2 
q+l+o=l-qol+o=l- 2b+l ' 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

In Fig. 1 we use (10) as singlet density, in Fig. 2 (4)~(6) as environs densities 

around a vacant site and in Fig. 3 (7)~(9) as environs densities around an organism. 
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