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STATISTICAL MECHANICS ON A COMPACT SET WITH Z' ACTION
SATISFYING EXPANSIVENESS AND SPECIFICATION

BY
DAVID RUELLE

ABSTRACT. We consider a compact set Q with a homeomorphism (or more generally
a Z' action) such that expansiveness and Bowen's specification condition hold. The entropy
is a function on invariant probability measures. The pressure (a concept borrowed from
statistical mechanics) is defined as function on ¿?(ß)—the real continuous functions on ft.
The entropy and pressure are shown to be dual in a certain sense, and this duality is
investigated.

0. Introduction. Invariant measures for an Anosov diffeomorphism have been
studied by Sinai [16], [17]. More generally, Bowen [2], [3] has considered invariant
measures on basic sets for an Axiom A diffeomorphism. The problems encoun-
tered are strongly reminiscent of those of statistical mechanics (for a classical
lattice system—see [14, Chapter 7]). In fact Sinai [18] has explicitly used
techniques of statistical mechanics to show that an Anosov diffeomorphism does
not in general have a smooth invariant measure.

In this paper, we rewrite a part of the general theory of statistical mechanics
for the case of a compact set ß satisfying expansiveness and the specification
property of Bowen [2]. Instead of a Z action we consider a Z' action as is usual
in lattice statistical mechanics, where Q = Fz' (F: a finite set). This rewriting
gives a more general and intrinsic formulation of (part of) statistical mechanics;
it presents a number of technical problems, but the basic ideas are contained in
the papers of Gallavotti, Lanford, Miracle, Robinson, and Ruelle [7], [11], [12],
[13], etc. The ideas of Bowen [2] and Goodwyn [8] on the relation between
topological and measure-theoretical entropy are also used.

We describe now some of our results in the case of a homeomorphism F of a
metrizable compact set ñ satisfying expansiveness and specification (see §1).

Let na = {x G ñ: T"x = {x}}, and let <3(ß) be the Banach space of real
continuous functions on ñ. The pressure F is a continuous convex function on
ú(fi) defined by

1 "P(w) = Hm -logZ(<p,a),       Z(<p,a) =   2  exp 2 <p(Tmx)
«-»» O IEII, m=l

(§2). Let / be the set of probability measures on fl, invariant under F with the
vague topology. The (measure theoretic) entropy s is an affine upper semicontin-
uous function on / defined in the usual way (§4). The following variational
principle holds (§5)

Received by the editors June 20, 1972.
AMS (A/OS) subject classifications (1970). Primary 28A65, 54H20; Secondary 58F99, 82A30.

Copyright © 1974, American Mathematical Society

237

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



238 DAVID RUELLE

(0.1) F(<p) = max[í(/t) + /t(<p)],       s(¡i) =   inf [P(<p) - n(<p)].

Those ¡t for which the maximum is reached in (0.1) form a nonempty set Ir 7, is
a Choquet simplex and consists of precisely those n E I such that

P(<p + xft- P(<p) > M),   all xp E C(Q).

Let Pyj, be the measure on £2 which is carried by Tla and gives jc G no the mass

JV,(M) = Z(<p,a)-Xexp ¿ <p(Tmx).

Then, any limit point of /j^, as a -> oo is in /9 (§3). There is a residual subset D
of ¿3(fi) such that Iv consists of one single point fi^ if <p G £>. In that case
linv,«,^ = ¿y

Miscellaneous properties of invariant states are reviewed in §6.
I am indebted to J. Robbin for acquainting me with Bowen's papers, starting

the present work.

1. Notation and assumptions. We denote by |S| the cardinal of the set S. If
m = (mx,... ,m,) G Z", p > 1, we let ||w|| = sup,|m,|. Given integers ax, ,,,,
a, > 0, we define A(a) — {m E Z' : 0 < m¡ < a¡}. If (A„) is a directed family of
finite subsets of Z", A0 Î oo means |An| -» oo and |A„ + £|/|Aa| -♦ 1 for every
finite F C Z". In particular A(d) Î oo when a -* oo (i.e. when ax,..., a, -* oo).

Let Z' act by homeomorphisms on the compact set ñ. We suppose that Q is
metrizable with metric d. ¿2(fl) is the space of real continuous functions on ß with
the sup norm. On the space ¿Xti)* of real measures on fi, we put the vague
topology. We denote by Sx the unit mass at jc.

The following assumptions are made.(')
1.1. Expansiveness. There exists Ô* > 0 such that

(d(mx,my) < S* for all m6Z')=>(j( = v).

1.2. Weak specification. Given Ô > 0 there exists p(8) > 0 such that for any
families (A,)íe¿, (x¡)ieu satisfying

if i ¥= j, the distance of A,, Aj
0)

(as subsets of Z", with the distance ||-||) is > p(ô),

there is jc G A" such that

d(mix,mixi) < 8,   all i G Û, all m¡ G A,.

1.3. Strong specification. Let Z"(a) be the subgroup of Z' with generators
(c,,0,... ,0), ..., (0,... ,ar), and let Yla = {x E 2: Z'(a)x = {jc}}. For any

(>) Cf. Bowen [2].
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STATISTICAL MECHANICS ON A COMPACT SET 239

families (A¡)ieu, (x¡)ie¡, satisfying

A, C A(a) for all i and, if i ¥= j,
the distance of A, + Z'(a) and A, is > p(8),

there is x G II,, such that

¿(iMjX.m/Xi) < 8,   all ï G Û, all m, G A,.

It is easily seen that strong specification implies weak specification. If B is a
basic set for an Axiom A diffeomorphism (v = 1), it is known that expansiveness
[19] holds, and that (strong) specification [2] holds for some iterate of the
diffeomorphism.

We note that expansiveness has the following easy consequence.

1.4. Proposition [9]. If 0 < 8 there exists q(8) such that (d(mx,my) < 8* if
H < q(8)) => (d(x,y) < 8).

2. Partition functions and pressure.
2.1. Definitions. Let 8 > 0; E C Q is (8, A)-separated if (x,y G E, and

d(mx,my) < 8 for all m G A) => (x = y). Let <p G ¿?(ß). Given 8 > 0 and a
finite A C Z', or given a = (ax,..., a,) we introduce the partition functions

(2.1) Z(<p,ó\A) = max 2 exp 2 <&mx)
E    xeE me\

where the max is taken over all (5, A)-separated sets, or

(2.2) Z(<p,a) =   2  exp   2   <K»»x).
xen« meA(a)

We write

(2.3) P(<p,8, A) = (l/|A|)log Z(<p,8, A),

(2.4) P(<p,a) = (l/|A(a)|)log Z(<p,a).

2.2. Theorem. If0<8<8*, the following limits exist:

(2.5) lim P(m,«, A) = F((p),
At»

(2.6) Hm P(<p,a) = P(<p),
a—* oo

and define a finite-valued convex function P on (XX). Furthermore

(2.7) |P((p) - PO)| < ||qp - *||
andifTmí¡^x) = #?ix), r G R,

(2.8) P(<p + rm^ - * + t) = P(q>) + t.
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240 DAVID RUELLE

P is called the pressure.

Let e > 0; we choose 5' > 0 so small that 8 + 28' < 8* and

(2.9) (d(x,y) < 8') => \<p(x) - «K v)| < e;

then take p(8') according to 1.2. Given a, write b = (ax + />(§'),... ,a, + p(8')).
We consider the partition (A(è) + r)rSZ.(d) of Zr. For a finite A C Z", let
R = {r: A(b) + r C A}. Using specification we obtain

Z((p,5,A)

(2.10) > [Z(<p,5 + 2ô',A(a))exp(-|A(a)|e)exp(-(|A(6)| - |A(a)|)||<p||)]l*l

•exp(-(|A|-|Ä||A(6)|)|M|).

Since na is (8*, A(a))-separated by expansiveness, we have also

(2.11) Z(tp,8*,A(a)) > Z(<p,a).

If A T oo we have \R\ |A(6)|/|A| -> 1, and therefore (2.10) and (2.11) yield

(2.12) Urn inf FM, A) > {f|} • [P(<p,a) - e] - (l - jf|}) W.
Suppose now that 8' < £6, and let ./V be the cardinal of a finite cover of ß by

sets of diameter < 5. Let £be a (ó", A(¿>)) separated set such that

Z(<p,8',A(b)) = 2 exp   2   <p(wy).
y^F mEA(i)

Given jc G £ and r G Ä we choose y E F such that d((r + m)x, my) < 8', for
all m E A(b). The mapping (jc, r) -» v defines an injection £ -* £Ä, and therefore

(2.13) Z(<p,8,A) < [Z(q>,8',A(b))exp(\A(b)\€)rKNexp\\tp\\)W-^^bK

Taking c = (bx+ p(8'), ...,b,+ p(8')), strong specification gives

(2.14) Z(<p,5',A(¿))exp(-|A(6)|£)exp(-(|A(c)| - |A(è)|)IMI) < Z(<p,c).

From (2.13) and (2.14) we obtain

(2.15) lirnsup />(»«, A) < ^P(<p,c) + 2c + (jM - l)M.

Letting a -»■ oo in (2.12) and (2.15) we obtain (2.5) and (2.6).
The     finiteness    of    P(q>)    follows    from     exp(-|A| ||<p||) < Z(<p,"S,A)

< NW exp(|A| \\q>\\). The other properties follow from Lemma 2.3 below.

2.3. Lemma. P(<p,8,A) is a convex function of <p. Furthermore |F(<p,8,A)
- P(xp,8,A)\ < \\<p - <^|| and F(qj + t,8, A) = P(<p,8,A) + t, if t E R. Similar
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STATISTICAL MECHANICS ON A COMPACT SET 241

properties hold for P(q>, a), and also P(tp + rm\¡/ - \¡/,a) = P(q>,a).

We have P(<p, 8, A) = max£/»(<p) where

p(tp) = (l/|A|)log Z(<p),       Z(m) = 2 exp 2 tfmx),
xeE

It** + '« = zöpTT^} ? ¿fe «m'x)hp 2 ̂ mx) + '«*&
Therefore

d2

= -L 2 2 \ Í2 *(m*) - 2 <Kmy)l exp 2 Wfnx) + cp(my)} > 0.
d     x    y   *• \_m m J m

On the other hand \dp(<p + t\p)/dt\ < |M|; hence

\p((p) - p(rp)\ <  sup
0</<l JtÁV + '(* - <ï>))< II* - «Pli-

Finally Z(<p + f) = t?lAl'Z(<p), Z(<p + Tmi// - uV,a) = Z(<p,a).
2.4. Remark. Let 2 be the subgroup of Z' with linearly independent generators

sx,..., s„ and define A(2) = {m G Z": m = 2' '¿5, with r, real, 0 < /, < 1}. If
a suitable extension of the strong specification property holds, one can prove

A(2)Too |A(2,)| xenj; meA(2)

where II2 = {x: 2x = {x}}.
On the other hand, except for (2.6), Theorem 2.2 can be proved without the

strong specification property (but assuming expansiveness and weak specifica-
tion).

3. Equilibrium states.
3.1. Definition. Let p^^ be the measure on 0 which is carried by IIa and gives

x G Tig the mass

(3.1) rV(M) = Z(ç,a)_l«P   2   <p(wx).
me Ma)

3.2. Theorem, (a) Let I^, C ¿?(ñ)* ¿»t? the set of measures p such that

(3.2) P(<p + *)> P(<p) + M)
for all \}/ (equilibrium states for rjp). Then 1^ is nonempty and there is a residual (2) set
D C ¿?(Q) such that /ç consists of a single point p^ify G D.

(2) I.e. D is a countable intersection of dense open subsets of <?(ß); in particular D is dense in
£(fl) by Baire's theorem.
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242 DAVID RUELLE

(b) 7ç is convex, (vaguely) compact, and consists of Z' invariant probability
measures.

(c) The probability measure ^A is If invariant, and

(3.3) ¡i^(xf) = dP(<p + t xp,a)/dt U •

(d) // ¡i is a (vague) limit point of the (n^,) when a -» oo, then /i G £,. In
particular, iftpED,

(3.4) ]im^ = N.

(e) If S is dense in (tß) and is a separable Banach space with respect to a norm
Ill-Ill > INI. then D n Sis residual in S.

(a) holds for any convex continuous function P on a separable Banach space
(see Dunford-Schwartz [6, Theorem V.9.8]). This proves also (e).

Let /i satisfy (3.2). Then by (2.8),

0 = F(g> + rmxp -xf)- P(cp) > rfrmxP -xp)> -[P(<p - rmxp + xf) - P(<p)] = 0

so that ¡i is Z' invariant. Using (2.7) and (2.8) we obtain also ±n(xp) < P(q> ± xp)
- P(<p) < \\xp\\ and ,x(l) = -fi(-\) > -[P(<p - 1) - P(<p)] = 1. Therefore ||M||
< L mO) ̂  1 which implies that ft > 0, ||fi|| = 1, i.e. /i is a probability measure.
Clearly, /ç is convex and compact, and (b) is thus proved.

(c) follows readily from the definitions. From (3.3) and the convexity of P(-, a)
(Lemma 2.3), we obtain

P(tp + x¡,,á) > P(<p,a) + ^(xp).

If p^, -» p. this yields (3.2), proving (d).

4. Entropy.(3)
4.1. Definitions. Let c/f = (A¡)ie!j be a finite Borel partition of ß, and A a finite

subset of Z'. We denote by <=4A the partition of ß consisting of the sets
A(k) = f)mS\(-m)Ak^ indexed by maps k: A -* Û. We write

(4.1) S(/l,c4) = - 2 M)log KAi).i
Let / be the (convex compact) set of Z'-invariant probability measures on ß.

4.2. Theorem. If <Jf consists of sets with diameter < 8*, and p E I, then

(4-2)        Its w\s^X) - ¥ iii 5(^A) = i0°-
(3) See also J.-P. Conze, Entropie d'un groupe abélien de transformations [Z. Wahrscheinlichkeits-

theorie Verw. Gebiete 25 (1972), 11-30].
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STATISTICAL MECHANICS ON A COMPACT SET 243

This limit is finite > 0, and independent of <=A. Furthermore, s is affine upper
semicontinuous on I; s is called the entropy.

S(p,<=4A) is an increasing function of A, and satisfies the strong subadditivity
property

(4.3) 5(ji,^A'uA0 + S(/t,<=4A'nA>) < S(jtt,<=4A>) + S(ji,c4Ai).

[These are well-known properties. The increase follows from increase of the
logarithm. To prove strong subadditivity we write S(p,<=4A) = SA, and use the
inequality -log(I/O < t — 1, then

■SaiuAj + Sa, nA2 - Sa, - SAl

*. ^ ^      IÂA(k,k ,k ))log   ,   ,       ..  .  .      „u
*:A,nAj-»i7t':A1\A2-.rr*:-:A2\AI-»ír /i(/4(/C,AC ))fl(^(K, «   ))

**'     p(A(k))     k" kk'k"

= 2 li(A(k,k')) -1 = 0.]
fc/c'

If A, n A2 = 0, (4.3) becomes subadditivity:  SOt,o?A'uA0 < SQi,^)
+ S(p,c4Ai). Since p G /we have also S(/i,ö?a) = Siji,^A+m) and therefore(")

(44)      jhs râ^-^*) = ¥ râsfa-fM*)=*
Given c > 0, choose a such that |A(a)|"'SQi,c^A<a>) < s + e. Consider the
partition (A(a) + r)reZ,(a) of Z', and let R = {r G Z'(a): (A(a) + r) n A # 0}.
If A+ = Ure/j(A(a) + r) we have by increase and subadditivity

S(p,c#A) < S(p,^fA+) < \R\S(p,c4AW) < \R\\A(a)\(s + e).

But \R\ |A(a)|/|A| -» 1 when A T oo, and therefore

(4.5) Hm sup|A|"'S(/t,^A) < s + e.
AT»

Strong subadditivity shows that

(4.6) S0i,c4AuW) - S(/i,^A) > S0t,^A'uW) - S(u,^A')

when m $ A' D A. This permits an estimate of the increase in the entropy for
a set A to which points are added successively in lexicographic order. In

(4) See for instance [14, Proposition 7.2.4].
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244 DAVID RUELLE

particular if A is fixed and one takes for A' the sets successively obtained in the
lexicographic construction of a large A(a), (4.6) holds for most A'. Therefore

S(ft,^AuW) - S(pL,<JfA) > lim \A(a)\~lSQi,^m) = s
a—* co

and hence

(4.7) S(p,^) > |A|s

for all A; (4.2) follows from (4.5) and (4.7).
Let jc G ß and for each m E A, let Bm be the union of those A¡ which contain

jc in their closure. Then BA = f)meA(—m)Bm contains jc in its interior and is a
union of elements of ^4A. If v G 5A and A = {m: \m\ < q(8)}, then d(x,y) < 5
(see (1.4)). Therefore the o-field generated by the <=4A is the Borel o-field. The
Kolmogorov-Sinai theorem (see [20, 5.5]) holds for the group Z' and implies that
the limit (4.2) is independent of cA (it is clearly finite > 0).

If /i, fi' G /, and 0 < a < 1, the following inequalities are standard:

aS(ji,c#) + (1 - a)S(ft',<=#) < S(afi + (1 - a)fi',c4)
(4.8)

< aSQi,<=4) + (1 - a)S(ja',^) + log 2.

[Writing ja, = ¡i(A¡), n'j — ft A) we have indeed, using the convexity of t log t and
the increase of log t,

- 2 [«ft log n¡ + (1 - a)fi; log fi'¡]i
< - 2 [«ft + (1 - a)íi;.]log[afi,. + (1 - a)ft;]

1

< - 2 [«ft, log «ft, + (1 - a)ft- log(l - a)¡i',]i
= - 2 [aft log ft, + (1 - a)ft¡ log ¡i]] - a log a - (1 - a)log(l - a)

< - 2 [«ft log ft + (1 - a)/»'( log n',] + log 2.]
z

(4.8) implies that s is affine.
To prove that s is upper semicontinuous at ft, choose c4 such that the

boundaries of the A¡ have ft-measure zero. [If x E ß one can choose 8 < \8*
such that the boundary of the sphere of radius 8 centered at jc has ft-measure 0.
Take a finite covering of ß by such spheres and let 0? be generated by this
covering.] The boundaries of the A(k) G <=/fA have also measure 0, hence

lim u'(A(k)) = u(A(k)),       lim S(fi',<=4A) = S(fi,<^A),

and s is upper semicontinuous as inf of continuous functions.
4.3. Remarks, (a) Theorem 4.2 reduces to the usual definition of the measure

theoretic entropy for v = 1.
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(b) The condition that the diameters of the A¡ are < 8* can be replaced by the
weaker condition that the <=^A generate the Borel a-field (see the proof).

(c) The proof of Theorem 4.2 assumes expansiveness, but specification is not
used.

5. Variational principle.

5.1. Theorem. For all <p G û(Q),

(5.1) P(<p) = max[j(/i) + p(<p)]

and the maximum is reached precisely on ^,. For all p G I,

s(p) = inf [P(<p) - p(<p)].

Let <p G ¿?(ñ) and p G I be given. Since ß is metrizable compact, there exists
a finite set {ft,...,*,} of elements of ¿3(ß) such that if \\¡/t(x) — \¡>i(y)\ < 1 for
/ = 1.i, then d(x,y) < 8*. Given e > 0 and a we construct a partition
¡B = (B¡)iea consisting of sets of the form B¡ = {x: uUm < ^¡(mx) < vib„ and
«/m < <p(wx) < v'im for aU i, /, and m G A(a)}. By suitable choice of the uUm, vUm,
u'im> v'im we can achieve that

(a) the diameter of each set (—m)B¡, for m G A(a), is < 8*;
(b) if Bj, Bj are adjacent (i.e. 2?, n 5, # 0) and x G B¡, y G B¡, then

|<¡p(mx) - <p(my)| < e/2 for all m G A(a);

(c) each x G X is contained in the closure of at most (t + 1) |A(a)| + 1 sets

Because of (c) there exists 8,0 < 8 < 5*, such that for each x there are at most
(t + 1) | A(a)| + 1 sets B¡ with distance < 8 to x, and these sets are aU adjacent to
that containing x.

Let R be a subset of Z'(a), then

(5-3) vg±S(p,SS*) = \A(a)\s(jL).

To see this notice that the ¡BR generate the Borel a-field (by (a) above), and apply
Remark 4.3(b) with Z' replaced by Z'(a). It follows that the left-hand side of (5.3)
is not changed if S is replaced by <=#A(o), and (5.3) follows. If F is a maximal (8,
/?)-separated set, for each k:R^> O such that B(k) # 0, one can choose
x G B(k) and then xk G E such that d(rxk,rx) < 8, all r G R. By the choice of
8, rxk is in a set B¡ adjacent to Bk(ry Therefore, by (b),

2   <p((r + m)xk) -   2   ¥jny)
ffl£A(a) meA(o)

< |A(a)|e/2

(s) The B¡ may be viewed as (t + l)|A(a)|-dimensional rectangles and they can be adjusted so
that at most (t + 1) |A(a)| + 1 meet at a corner. This idea is used by Goodwyn [8].
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246 DAVID RUELLE

for all v G Bk(ry Choose y¡ E B¡ for each î G Û, then

4}   2   mk)) 2    2    <l((r+m)xk)
|A| k:R-*a r£R m6A(a)

>]422    2    KB(k))\   2   rtmy,) - \A(a)W2]
\K\ reR iett k:k(r)=i L meA(<i) J

(5.4) != TO 2  2 KB,)   2    f(myi) - \A(a)W2
\K\reRiea biea(o)

= 2 KB,)   2   dm) - |A(a)k/2
• et) meA(j)

> \A(a)M<p) - e).

Notice that each jc* G £ comes from at most [(t + l)|A(a)| + lp1 different
k's. Using this, and also (5.3), (5.4) and the concavity of the log, we obtain

|A(a)|(sOi) + M(v)-e)

< FET 2 KB(k)) [-log KB(k)) +2    2   rf(r + «)**)!

= ¿f 2 ft(5(A:))log(exp(2 2 rf(r + /*)**))//«)))

< r^r log 2 exp 2 2 <p((r + w)jct)

< TO log[(/ + 1)|A(«)| + lp' 2 exp 2 2 «P((r + m)x).
\K\ xeE r    m

If A = U,e/i(A(a) + r) then £ is (S, A)-separated; therefore

¿I log 2 exp 2 2 <p((' + «)*) < |A(a)|P(<p,o, A),

so that

s(fi) + fi(«p) - € < P(<P,8, A) + (l/\A(a)\)\og[(t + l)\A(a)\ + 1].

By taking |A(a)| large then letting A T oo, this yields

(5.5) s(ft) + Kfp) < P(<P)-

We show now that equality holds in (5.5) for some ft. Let <«) = (2",...,2")
and let ¡i be a limit of the sequence /*,,,<„>. Choose now a partition of <=# consisting
of sets with diameter < ô*, and with boundaries of ft-measure 0. Given € > 0,
there exists u such that s(jt) + e/2 >(l/|A««»|)S0i,c^A«"») and since
/iç^Afc)) -» fi(/l(A:)) when v -* oo, one can choose K > m such that if v > V,
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STATISTICAL MECHANICS ON A COMPACT SET 247

iO») + £ > (l/lAKt^DSOv^,^«"»)
> (l/lAi^DSOv«,^^»)
>(i/|A«t/»|)  2  iw>(W)ioglw>(W)

xen<»>

where we have used the subadditivity of A -» S(p,c/fK), and then expansiveness.
Using the definition of ft^ we obtain

i(/i) + c > -, ,. ...   2   /V»>(M)      2    <{>(mx) - logZ(tp,<t»>)
\A((v))\ xe%   VN LmeA«»» J

= -/V<„>(<p) + (l/|A««v»|)log Z(<p,<t-»

and the desired result follows by letting /i^ -> /i. We have thus proved (5.1).
Let Jy = {p G I: s(p) + p(<p) = P(<p)}; Jv is the set where the affine upper

semicontinuous function p -* s(p) + p(<p) reaches its maximum; hence Jv is
convex and compact. If p G Jv, we have

P(<p + $) > s(p) + p(<p + *) - s(p) + p(<p) + Jlty)

= F(tp) + u(ft\

hence u G ^,. Therefore ^, C ^,. If Jv were different from ^, one could find
\p G <2(Q) such that

(5.6) sup p(\f) > sup /¿(ft).

Let p„ G J^fa and p G ^, we have

/#) = «MÍft7») < n[P(<P + ft7») - ^(<P)]

< n[P(v + ft/«) - *0O - pn(<p)]

= »k(<P + ft7«) - M»(«P)] = /*„(ft>-

If /t* is a limit point of the sequence (p„), then p* G Jv (by upper semicontinuity
of s), and therefore /i(ft) < w*^) for all p G L^in contradiction with (5.6). We
have thus shown that Jç = Ir

We want now to prove (5.2). We already know by (5.5) that s(p) < P(<p)
- p(<p) and it remains to show that by proper choice of <p the right-hand side
becomes as close as desired to s(p). Let C = {(p,t) G ¿?(ß)* XR: p G I and
0 < t < s(p)}. Since i is affine upper semicontinuous, C is convex and compact.
Given p* G I and u > s(p*) there exist (because C is convex and compact)
œ G C(Ü) and c G R such that

-p*(<p) + c = u,       -p(fp) + c > s(p),   for aU « G /;
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hence -ft(<p) + u + fi*(<p) > s(fi) and we have, if ft G L,,

0 < P(<p) -s(p.*)- ft'(<p)

= s(ft) + ft(<p) - s(fi*) - ft*(<p)

< u - s(fl*).

The right-hand side is arbitrarily small and (5.2) follows.
5.2. Remark. If ß is a basic set for an Axiom A diffeomorphism it is known [3]

that 0 G D, i.e., the maximum of s(ft) is reached for just one ft G /. Further
results on D have been obtained for Anosov diffeomorphisms using methods of
statistical mechanics [18].

6. The sets of invariant states. In this section we study the set / of all Z'-
invariant probability measures and its relations with the L,.

6.1. Proposition. For each <p G ¿?(ß), L, »•* o Chaquet simplex, and a face (see [4])
of the simplex I.

It is well known that the set / of invariant probability measures is a simplex.(6)
If ft G /,,, let m^ be the unique probability measure on /, carried by the extremal
points of /, and with resultant ft. Writing tp(p) = p(<p), we have (see [4])

m^s + q>) = sQi) + m(<p) = ^(<p);

hence the support of m^ is contained in {p E I: s(p) + p(<p) = P(q>)} = L,. This
shows that /,, is a simplex and a face of /.

6.2. Proposition. Suppose that 23 is dense in ¿?(ß) and is a separable Banach space
with respect to a norm |||||| > ||-||. Iftp E 23, then L, is the closed convex hull of the
set of n such that

ft = lim fy„),       lim |||<p(n) - <p|||= 0,       <p(n) E D D 23,

where D is defined in Theorem 3.2(a). TA/s applies in particular with 23 = ¿?(ß).

We have P(<p(n) + xp) > P(<p(n)) + ^n)(xp) for all u\ hence P(q> + xp) > P(tp)
+ fi(^) so that ft G Iy if ft is of the above form.

Suppose now that 79 were not in the closed convex hull of those ft. There would
then exist xp E 23 such that

(6.1) sup p(xf) > sup flty).
'61, p

Let <p(n) = m + xp/n + Xj, G D n 23; then, by convexity of P, if p G £,,

O/n + Xn)< r^n)Wn + Xn)-

(6) See for instance Jacobs [10, p. 162].
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Using Theorem 3.2(e) we may take |||xJ|| < V"2! we have thus

Kft) - \/n < p^W) + l/n,
and if ft* is a limit point of (p^„)), Kft» ̂  »"(ft^ m contradiction with (6.1).

6.3. Proposition. The set of measures ponQ such that

(6.2) p(<p) < P(<p)   for all <p G €(Q)

is I.

If p G I we have p(tp) < P(q>) - s(p) < P(q>) because s > 0. Let now (6.2)
hold for some jtt G £?(fi)*. By (2.8) we have

tf(<ï>) - M(T«<P) = t~lp(ttp - trm<p) < r'P(f<p - iTmm) = /"'PÍO).

Letting  t -» oo  gives  fi(<p) - p(rmy) < 0.  Replacing <p by  -<p yields p(<p)
= p(rm<p). Therefore p is Z' invariant. Using now (2.7) and (2.8) we find

±ft(m) =  Hm lft('<P) < ,!jm ±P(tq>)

< lim ±[P(0) + M] - ||«p||
l-«±oo |j|

so that ||u|| < 1. Furthermore (2.8) shows that, for all t, tp(\) = w(r) < F(0) + t,
so that ju(l) = 1. Since \\p\\ = 1 and w(l) = 1, p is a probability measure.

6.4. Proposition.^) The set

^p = u°f ÜT^i   2   8™: x e n")I |A(a)| „EA(a) J

is dense in I.

A vague neighbourhood of ft G / is given by [v G I: \\v — p\\t < £ for
i = \, ...,n) where ||p - pW,. = \v(<p,) - fi(<p,)| and <p,, ..., <p„ G ¿?(fi), £ > 0.
We assume without loss of generality that ||<p,|| < 1 for i = 1, ..., n.

Given £ > 0, we choose 8 > 0 such that d(x,y) < 8 implies |<p,(x) - (p,(y)|
< £ for i = I, ..., n.

Letp(8) be given by 1.2, A > p(8)/e and a = (A,.. .,N),b = (N + p(8),...,
N + p(8)). By the density of measures with finite support we can choose ca > 0,
x. G fi such that

2 ca = 1, 2 CgS^ - ft <£,

(7) Sigmund [15] has proved this result by a somewhat different method for v — 1.
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for /' = I,.... n, and m G A(b). We have thus

2 ca8mx.~ ft < c   for m E A(b);

hence

(6.3)
|A(£>)| m<=Mb)   a

<€.

By 1.3, we can choose ya E Ub such that |<p,(mjca) - <p¡(mya)\ < e for m
■ A(a), and we have \<p¡(mxa) - <Pj(mya)\ < 2 for m G A(í»)\A(a); hence

(6.4)
m?M„)¥ \A(b)\Smy' meA(*)   a    |A(6)|

jAM + 2W|-lA(a)| y.^C|A(è)| |A(6)|        ^e + Ai+£)     L.

We can now find integers P, Ma > 0 such that 2a M» = B' and

(6.5)
M„

|A(6)|F'm6%)
2      8my. -      2      2

meA(¿>)   a |A(i)|' <£.

Let c = ((N + p(8))P, ...,(N + p(8))P). By application of (1.3), there exists
y E Tlc such that when m varies over A(c), my takes Ma times a value close to
mya for each a and each /« G A(a). Close means </(/ñy, mya) < 5. Then

(6.6)
|A(c)| al« **     |A(6)|7>' ? K Jfa Smy'

<   |A(g)| + 2lA(fe)|-|A(a)|-   ]A(6)|     ¿       |A(*)|        ^e + Ai+€)     ¿.

Finally, (6.3), (6.4), (6.5), (6.6) give

1
|A(C)UI(A     ** < 4e + 4(1 + e)' - 4,

proving the proposition.
6.5. Proposition.(8)   (a) The set of ergodic measures (extremal points of I) is

residual in I.
(b) The set of measures with zero entropy is residual in I.

Since J\Kp is dense (Proposition 6.4) and consists of ergodic measures with zero
entropy, it suffices to show that the set of ergodic measures and the set of
measures with zero entropy are Gs (i.e. countable intersections of open sets). For
ergodic measures this is well known (see [4]); for measures with zero entropy, it
follows from the fact that the entropy is upper semicontinuous.

(8) See Sigmund [15] where other residual sets are also discussed.
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Added in proof. A proof of the variational principle (0, 1) has been obtained
without the expansiveness and specification assumptions by P. Walters (preprint).
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