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Abstract. Within this paper we are proposing and testing a new strategy for 
detection and measurement of similarity between sequences of proteins. Our 
approach has its roots in computational linguistics and the related techniques 
for quantifying and comparing content in strings of characters. The pairwise 
comparison of proteins relies on the content regularities expected to uniquely 
characterize each sequence. These regularities are captured by n-gram based 
modelling techniques and exploited by cross-entropy related measures. In this 
new attempt to incorporate theoretical ideas from computational linguistics 
into the field of bioinformatics, we experimented using two implementations 
having always as ultimate goal the development of practical, computationally 
efficient algorithms for expressing protein similarity. The experimental 
analysis reported herein provides evidence for the usefulness of the proposed 
approach and motivates the iurther development of linguistics-related tools as 
a means of analysing biological sequences. 

1 Introduction 

The practice of comparing gene or protein sequences with each other, in the hope of 
elucidating similarity conveying functional and evolutionary significance, is a 
subject of primary research interest in bioinformatics. The application of this type of 
analysis to complete genomes greatly expands its utility and implications. The 
rewards range from the purely technical, such as the identification of contaminated 
sequence phases, to the most fundamental ones, such as finding how many different 
domains define the tree of life. Proteins are large, complex molecules composed of 
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amino acids and their comparison and clustering according to similarity, require 
dedicated algorithms. 

The most frequently used methods for measuring protein similarities are based on 
tedious algorithmic procedures for sequence alignment. Smith-Waterman algorithm 
[1] remains the standard reference method for pairwise sequence similarity due to the 
accuracy of the obtained results. Other heuristic algorithms, like BLAST', FASTA^ 
or CLUSTAL^ provide higher computational efficiency at the expense of accuracy. 
Algorithms characterized by the computation of profiles for whole protein families 
are based on hidden Markov models [2], [3]. All the above mentioned methods are 
built over sequence alignment but a variety of new alternative methods has already 
become available for expressing similarity between biological sequences for use in 
different applications. In Sjolander's work [4] are used Dirichlet mixtures while the 
authors of [5] apply discriminative methods using the approach of support vector 
machines (SVMs). Latent semantic analysis (LSA) is another method used in the 
work of Ganapathiraju [6] and the universal similarity metric (USM) for structural 
similarity between pairs of proteins is proposed by Krasnogor and Pelta [7]. 

Despite the maturity of the developed methodologies working towards this 
direction, the derivation of protein similarity measures is still an active research area. 
The interest is actually renewed, due to the continuous growth in size of the widely 
available proteomic databases that call for alternative cost-efficient algorithmic 
procedures. They should reliably quantify protein similarity without resorting to any 
kind of alignment. Apart from efficiency, a second specification of equal importance 
for the establishment of similarity measures is the avoidance of parameters that need 
to be set by the user (a characteristic inherent in the majority of the above mentioned 
methodologies). It is often the case with the classical similarity approaches that the 
user faces a lot of difficulties in the choice of a suitable search algorithm, scoring 
matrix or function as well as set of optional parameters whose optimum values 
correspond to the most reliable similarity. 

A new approach for measuring the similarity between two protein sequences is 
introduced in this paper. It is inspired by the successful use of the entropy concept 
for information retrieval in the field of statistical language modeling (Manning and 
Schiitze [8], Jurafsky and Martin [9]). Although the n-gram concept has been used in 
earlier works, e.g. [10], [11], the presented work is following a first attempt to adopt 
this dual step for comparing biological sequences [12]. Therefore, some experiments 
were necessary in order to discover the most effective way in which these ideas 
could be applied in the specific domain. For a complete validation of the suggested 
similarity measure, we built an annotated database by selecting proteins from Astral 
SCOP genetic domain sequences (http://astral.berkeley.edu). Using standard 
procedures, well-known in the field of exploratory data analysis and information 
retrieval, we evaluated the performance of our measure and contrasted with the 
performance of a relevant similarity score obtained by applying the popular 
CLUSTAL W method to the same database. CLUSTAL W method performs 
multiple sequence alignment and generates pairwise similarity scores using the 
identification of conserved sequence regions. We show that our method provides an 
effective way for capturing the common characteristics of the compared sequences. 

http://www.ncbi.nlm.nih.gov/BLAST/ 
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while avoiding the annoying task of choosing parameters, additional functions or 
evaluation methods. The high performance of the new method and the ready-to-plug-
in character, taken together with its computational efficiency, make our approach a 
promising alternative to the well-known, sophisticated protein similarity 
measurements. 

2 Methods 

2.1 Theoretical background 

There are various kinds of language models that can be used to capture different 
aspects of regularities in natural language [13]. Markov chains are generally 
considered among the more fundamental concepts for building language models. In 
this approach, the dependency of the conditional probability of observing a word w^. 
at a position A: in a given text is assumed to depend only upon its immediate n 
predecessor words wi,.„ ... Wj^.j. The resulting stochastic models, usually referred as 
n-gratns, constitute an heuristic approach for building language grammars and their 
linguistic justification has often been questioned in the past. However, in practice 
they have turned out to be extremely powerful theoretical tools. Nowadays «-gram 
language modeling stands out as superior to any formal linguistic approach [13] and 
has gained high popularity due to its simplicity. 

Close related with the design of models for textual data are the algorithmic 
procedures used to validate them. Apart from the justification of a single model, they 
can facilitate the selection of the specific one (among competing alternatives) most 
faithflilly representing the available data. Entropy is a key concept for this kind of 
procedures. In general, its estimation is considered to provide a quantification of the 
information in a text and has strong connections to probabilistic language modeling 
[14]. As described in [8] and [15], the entropy of a random variable Xthat ranges 
over a domain N, and has a probability density function, P(X) is defined as: 

H{X) = -Y,P{X)\ogP{X). (1) 

Recently, in Van Uytsel and Compemolle's work [16], the general idea of entropy 
has been adopted in the specific case that a written sequence W= {wi,W2,...,wi;.i w ,̂ 
Wfc+i,...} is treated as a language model L based composition, having the following 
estimating formula: 

H,{x)=-^YCount ( < ) log,p,(w,.,„|w;-') (2) 
TV ff, 

where the variable Xhas the form of an «-gram X = w" <^ {wi ,Wi+i ...,Wj+„.i} a n d 

Count{w" ) is the number of occurrences of w" . The summation runs over all the 

possible «-length combinations of consecutive w,- (i.e. 
W*={{w/,W2...,w„},{-H'2,Wj,....,w„+;},....}) and JV is the total number of n-grams in 
the investigated sequence. The second term, p\w.^ wf"') in (2), is the conditional 

probability that relates the «-th element of an «-gram with the preceding n-\ 
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elements. Following the principles of maximum likelihood estimation (MLE), it can 
be estimated by using the corresponding relative frequencies: 

The cross-entropy between the actual probability distribution P(X) (over a random 
variable X) and the probability distribution Q(X) estimated from a model is defined 
as: 

HiX,Q)=-Y^P{x)\ogQ{x). (4) 

Two important remarks should be mentioned here. First, the cross entropy of a 
stochastic process, measured by using a model, is an upper bound on the entropy of 
the process (i.e. H(X)<H(X,Q)) [8], [15]). Second, between two given models, the 
more accurate is the one with the lower cross-entropy [9]. 

The above entropic estimation together with the general form of (1) and (2), 
suggesting a direct way to pass from entropy to cross-entropy formulation, are the 
basis for building our protein similarity measure, described in the sequel. 

2.2 The n-gram Based Protein Similarity Measure 

Protein sequences from all different organisms can be treated as texts written in a 
universal language in which the alphabet consists of 20 distinct symbols, the amino-
acids. The mapping of a protein sequence to its structure, functional dynamics and 
biological role then becomes analog to the mapping of words to their semantic 
meaning in natural languages. Recently, it was suggested that this analogy can be 
exploited by applying statistical language modeling and text classification 
techniques for the advancement of biological sequences understanding (topic on 
Biological Language Conference, 2003). Scientists within this hybrid research area 
believe that the identification of Grammar/Syntax rules could reveal entities/relations 
of high importance for biological and medical sciences. 

In the presented approach, we adopted a Markov-chain grammar to build for our 
protein dataset 2-gram, 5-gram and 4-gram models. To clarify things we chose a 
hypothetical protein sequence WASQVSENR. In the 2-gram modeling the available 
tokens/words were {WA AS SQ QV VS SE EN NR}, while in the 5-gram 
representation they were {WAS ASQ SQV QVS VSE SEN ENR}. Based on the 
frequencies of these tokens/words (estimated by counting) and by forming the 
appropriate ratios of frequencies, the entropy of an n-gram model can be readily 
estimated using (2). This measure is indicative about how well a specific protein 
sequence is modeled by the corresponding «-gram model. While this measure could 
be applied to two distinct proteins (and help us to decide about which protein is 
better represented by the given model), the outcomes cannot be used for a direct 
comparison of them. Thus, the common information content between two proteins X 
and Y is expressed via the formula: 

E{X,Y) = -Y.Pxi<)^^^PyWA<') (5). 
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The first term P^ \w" j in (5) corresponds to the reference protein sequence X(i.e. it 

results from counting the words of that specific protein). The second term 
corresponds to the sequence 7 based on which the model has to be estimated (i.e. it 

results from counting the tokens of that protein). Variable W," ranges over all the 

words (that are represented by «-grams) of the reference protein sequence. 

2.3 Database Searches with the New Similarity Measure 

Having introduced the new similarity measure, we proceed here with the description 
of its use for performing searches within protein databases. The essential point of our 
approach is that the unknown query-protein (e.g. a newly discovered protein) as well 
as each protein in a given database (containing annotated proteins with known 
functionality, structure etc.) are represented via n-gram encoding and the above 
introduced similarity is utilized to compare their representations. 

We considered two different ways in which the n-gram based similarity is engaged in 
efficient database searches. The most direct implementation is called hereafter as 
direct method. A second algorithm, the alternating method, was devised in order to 
cope with the fact that the proteins to be compared could be of very different length. 
It is easy to observe the need of having two methods if sequences of very different 
length are compared. The procedure of experimenting with both methods and 
contrasting their performances gave the opportunity to check the sensitivity of the 
proposed measure regarding the length of the sequences. 

Direct method. Let Sq be the sequence of a query-protein and {S}={Si, 82, ... 
SN} the given protein database. The first step is the computation of 'perfect' score 
(PS) or 'reference' score for the query-protein. This is done by computing E(Sq,Sq) 
using the query-protein both as reference and model sequence (we call here "model" 
the sequence compared with the query) in equation (5). In the second step, each 
protein Sj, i=l...N, from the database serves as the model sequence in the 
computation of a similarity score E(Sq,Si), with the query-protein serving as 
reference sequence. In this way, N similarities are computed E(Sq,Si), i=l,..,N. 
Finally, these similarities are compared against the perfect score PS by computing 
the absolute differences D(Sq,Si)=|E(Sq,Si)-PS|. The 'discrepancies' in term of 
information content between the query-protein and the database-proteins are 
expressed. By ranking these N measurements, we can easily identify the most similar 
proteins to the query-protein as those which have been assigned the lowest distance 

D(Sq,Si). 

Alternating method: The only difference with respect to the direct method is that 
when comparing the query-protein with those from the database, the role of reference 
and model protein can be interchanged based on the shortest (the shortest sequence 
plays the role of reference sequence in (5) ). The other steps, perfect-score 
estimation, ranking and selection, follow as previously. 
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3 Experiments 

3.1 Proteins database 

The strategy proposed for measuring protein similarity was presented and vaHdated 
using a set of 1460 proteins extracted from Astral SCOP 1.67 sequence resource 
database. From the available/original corpus of data, only those families containing 
at least 10 protein sequences were included in our new database (this restriction will 
be appreciated later, since it was dictated by the Precision measure adopted for 
evaluation). In this way, 31 different families unequally populated were finally 
included. We mention that the annotation of our database follows the original 
annotation, relaying on the biological meaning of similarity concept (and therefore 
can be considered as providing the 'ground-truth' for the protein classification and 
the attempted similarity measurements). As a consequence, we expected that all the 
proteins belonging to the same family would appear as a tight cluster of textual 
patterns and having a proper similarity measure we could differentiate the existent 
families. 

Our database (of 1460 proteins) was organized in 3 different sets, since the 
experimental results obtained with the new methods had to be compared with the 
results obtained with CLUSTALW method that could accept as input, protein sets 
with up to 500 sequences. The complete protein database (organized in 3 data sets) is 
available up on request and/or it will be publicly available at the Biopattem website 
of our laboratory (see acknowledgment section). 

3.2 Experimental Results 

In order to illustrate the two methods of the proposed strategy, first we followed 
some classical steps of Exploratory Data Analysis. The matrix containing all 
possible dissimilarity measures D(Si,Sj), i,j=I,2,...N for the sets 1-3 is depicted in 
Figures 1-3 respectively. The images are presenting in grey scale the two considered 
methods corresponding to three different n-gram models. In the adopted visualization 
scheme all the shown matrices (after proper normalization) share a common scale in 
which the 1/white corresponds to the maximum distance in each matrix. It is worth 
mentioning here that the 'ideal' spatial outlay is a white matrix with some black, 
square segments around the diagonal line. From these three figures, it is clearly 
evident that the 4-gram based modeling in by both versions of our algorithm has a 
very good performance when searching within the given database. 

Second, in order to provide quantitative measures of performance for the new 
method, we adopted an index of search accuracy, which is derived from Precision 
measure [17]. This index is the ratio computed by dividing the correctly classified 
number of protein sequences (identified by the algorithm as the 10 most similar 
ones) with 10 representing the minimal number of sequences within a family. More 
specifically, each protein in turn was treated as query and we measured the accuracy 
of the first 10 sequences identified within the set as the most similar to the query-
protein. In other words, by taking into consideration the class/family label of each 
protein, we counted the proteins sharing the same label as the query (i.e. a number 
from 1 to 10). 
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Fig. 1. Visualization of the matrices containing Fig. 2. Visualization of the matrices containing 
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497 proteins of Setl, for 2,3,4-gram models. 497 proteins of Set2, for 2,3,4-gram models. 
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Fig. 1. Visualization of the matrices containing all 
the possible pairwise dissimilarities for the 466 
proteins of Set3, for 2,3,4-gram models. 

We repeated the procedure for all the proteins in the individual sets and finally were 
averaged the estimated parts in order to provide a total Precision-scove for each set 
separately. To help the reader to appreciate the performance of our algorithms, we 
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repeated the same experimental procedure using the similarity scores obtained by 
applying the CLUSTAL W method to the 3 different protein sets. The available 
CLUSTAL W tool requires a set of input parameters, and we decided to use the 
default values: Protein Gap Open Penalty = 10.0, Protein Gap Extension Penalty = 
0.2, Protein matrix = Gonnet, provided at the European Molecular Biology 
Laboratory and European Bioinformatics Institute (EMBL-EBI) web site 
(http://www.ebi.ac.uk/). In Table 1 are included the precision scores provided by 
CLUSTAL W and both of our approaches for different n-gram models. It is worth 
mentioning that our algorithmic strategy almost reaches (in the case of 4-gram 
modeling for the third set) the high performance of CLUSTAL W method. For the 
sake of completeness, we repeated the Precision measurements with our method for 
the overall set of 1460 proteins. The computed values were not significant different 
from the values corresponding to the three different sets, providing some evidence 
about the robustness of our method, indicating that its performance scales well with 
the size of the database. 

Table 1. The precision scores obtained from similarity results given by CLUSTAW tool 
are in column 'CLUST.W, followed by those obtained using our similarity methods for 
2,3,4-gram models for the three data sets. 

Set 

1 
2 
3 

Clust.W 

0.872 
0.921 
0.932 

Direct Method 
2-gram 
0.439 
0.446 
0.534 

3-gram 
0.662 
0.650 
0.865 

4-gram 
0.830 
0.874 
0.931 

Altemating Method 
2-gram 
0.471 
0.439 
0.574 

3-gram 
0.646 
0.605 
0.828 

4-gram 
0.823 
0.860 
0.919 

Conclusions 

The method we experimented and presented in this paper constitutes a step forward 
in investigating the engagement of language modelling for characterizing, handling 
and understanding biological data in the format of sequences. Specifically, we 
studied the efficiency and effectiveness for searching in protein database of the new 
measurement method. The experimental results indicate the reliability of our 
algorithmic strategy for expressing similarity between proteins. Given the conceptual 
simplicity of the introduced approach, it appears as an appealing alternative to 
previous well-established techniques. 

From the experimens, the direct method seems to perform slightly better. If the 
second method would perform better, we should expect to have significant length 
differences between sequences classified as similar and belonging to the same 
family. In the exceptional case when all the compared sequences would have the 
same length, the direct method is equivalent with the alternating method and 
performs very well. 

Regarding the order of the employed «-gram model, after testing with order of 
2,3,4,5 we noticed, as can be seen in Table 1 and Fig.1-3 that the performance of the 
method increases with the order of the model up to 4. After the order of 5 due to the 
lack of data, the corresponding maximum likelihood estimates become unreasonable 
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uniform and very low. This sets an upper limit for our model order in the specific 
database (perhaps slightly higher order model could work in different protein 
databases). 

If we pay more attention to the visual representation of our results (the emerging 
spots along the main diagonal in the 2D-displays correspond to well-formed groups 
of proteins, especially in the case of 4-gram modelling), we can consider that the 
structure revealed by using the new similarity measures bears a biological meaning. 
More explicitly, we assume that each defined group is indicative for the existence of 
a family/superfamily of proteins. Despite the fact that this aspect requires a deeper 
exploration, which is beyond the scope of this paper, it provides a hint that the new 
measures can be exploited within a proper clustering framework for mining extra 
information from given biological databases. 

The comparison of our similarity scores with those provided by the CLUSTAL 
W method showed that in terms or performance in retrieval our method approaches 
the CLUSTAL W one. Considering the algorithmic simplicity and computational 
efficiency of the new approach, we are justified to suggest it as first choice when 
search in large databases are required. In terms of time complexity, in absence of a 
detailed analysis, we are motivated to consider this method as efficient especially 
when search procedure is running over large sequence databases with long strings of 
sequences. This motivates us to pursue further on how to achieve even higher 
performance. At this point, we have to remark that this is only a statistical in nature 
technique and it could be improved by incorporating biological knowledge such as 
working with functional groups of amino acids. 
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