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BACKGROUND: Prenatal exposures to endocrine-disrupting chemicals (EDCs) during critical developmental windows have been implicated in the etiol-
ogies of a wide array of adverse perinatal and pediatric outcomes. Epidemiological studies have concentrated on the health effects of individual chem-
icals, despite the understanding that EDCs act together via common mechanisms, that pregnant women are exposed to multiple EDCs simultaneously,
and that substantial toxicological evidence of adverse developmental effects has been documented. There is a move toward multipollutant models in
environmental epidemiology; however, there is no current consensus on appropriate statistical methods.
OBJECTIVES: We aimed to review the statistical methods used in these studies, to identify additional applicable methods, and to determine the
strengths and weaknesses of each method for addressing the salient statistical and epidemiological challenges.
METHODS: We searched Embase, MEDLINE, and Web of Science for epidemiological studies of endocrine-sensitive outcomes in the children of
mothers exposed to EDC mixtures during pregnancy and identified alternative statistical methods from the wider literature.

DISCUSSION: We identified 74 studies and analyzed the methods used to estimate mixture health effects, identify important mixture components,
account for nonmonotonicity in exposure–response relationships, assess interactions, and identify windows of exposure susceptibility. We identified
both frequentist and Bayesian methods that are robust to multicollinearity, performing shrinkage, variable selection, dimension reduction, statistical
learning, or smoothing, including methods that were not used by the studies included in our review.

CONCLUSIONS: Compelling motivation exists for analyzing EDCs as mixtures, yet many studies make simplifying assumptions about EDC additivity,
relative potency, and linearity, or overlook the potential for bias due to asymmetries in chemical persistence. We discuss the potential impacts of these
choices and suggest alternative methods to improve analyses of prenatal exposure to EDC mixtures. https://doi.org/10.1289/EHP2207

Introduction
A growing body of evidence suggests that prenatal exposures to
environmental chemicals during critical windows of development
may have lasting effects throughout the life course (Gillman 2005;
Soto et al. 2008; Stroustrup and Swan 2013; Woodruff et al. 2009).
Prenatal exposures to endocrine-disrupting chemicals (EDCs) are of
particular concern because they can interfere with the synthesis,
secretion, binding, transport, and metabolism of endogenous hor-
mones that are involved in regulating developmental processes
(Diamanti-Kandarakis et al. 2009; Meeker 2012). Exposure to
EDCs during gestation can also induce epigenetic changes that have
transgenerational effects, which have been observed in the children
of women prenatally exposed to the miscarriage-prevention drug
diethylstilbestrol (Diamanti-Kandarakis et al. 2009; Grandjean et al.
2015;Meeker 2012). Of concern is that the exposure levels required
for endocrine disruption during gestation can be infinitesimally
small (as low as picomolar serumconcentrations) (Vandenberg et al.
2012); and, unexpectedly, lower dosesmay havemore potent effects
than higher doses (Diamanti-Kandarakis et al. 2009).

The developing fetus is uniquely sensitive to chemicals that
mimic hormones because the protective mechanisms existing in
adulthood are not completely functional in utero (Newbold et al.

2009; Romano et al. 2014). Hence, prenatal exposures to EDCs
are thought to be implicated in the etiologies of several adverse
perinatal and childhood outcomes, such as decreased fetal growth
and length of gestation, reproductive tract defects, altered puber-
tal development, neurodevelopmental dysfunctions, obesity, and
diabetes (Silver and Meeker 2015; Skakkebaek et al. 2011). This
matter is of critical public health importance because the preva-
lence of many of these endocrine-related disorders and diseases
has been increasing over time, a trend that cannot be explained
solely by genetic factors (Darbre 2015; Skakkebaek et al. 2011).

A broad range of environmental chemicals are likely to be
EDCs; many are high-production-volume chemicals: organochlor-
ine pesticides, industrial chemicals and their byproducts, flame
retardants, surfactants, plastics and plasticizers, and some metals
(Diamanti-Kandarakis et al. 2009; Meeker 2012). Consequently,
exposure to EDCs is widespread, multisource, and multiroute
(Meeker 2012), and biomonitoring studies indicate that the pat-
tern of exposure in pregnant women and neonates is chronic,
low-dose, and involves multiple chemicals simultaneously rather
than individual agents (Mitro et al. 2015; Stroustrup and Swan
2013; Woodruff et al. 2011). However, epidemiological studies
of EDCs have concentrated on the health effects of individual
chemicals, an approach that may not be suitable to the study of
chemicals that behave like hormones (Gaudriault et al. 2017;
Kortenkamp 2007).

Multiple EDCs can act via a common mechanism to produce an
outcome (e.g., binding to a particular type of hormone receptor),
which suggests that individual chemicals can act together at lower
concentrations to achieve the same outcome than the concentration
that would be required for each chemical on its own (Darbre 2015).
A corollary of this postulation is that different mixtures of EDCs are
also able to produce a common outcome via a common mechanism
(Darbre 2015). This has been confirmed in experimental studies,
in vitro, which have shown that combinations of xenoestrogens
are able to produce significant effects even when each individual
chemical is present at a dose below its no-observed-effects level
(NOEL; Rajapakse et al. 2002; Silva et al. 2002). Additionally,
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there is substantial toxicological evidence of adverse effects
in vivo on both prenatal and postnatal development due to mix-
tures of EDCs, even with individual chemicals at levels below
concentrations that cause observable effects (e.g., below the
NOEL; Al-Gubory 2014; Kortenkamp 2008). Such a mixture
effect was also recently observed in an epidemiological study of
breast cancer using a novel biomarker of combined xenoestrogen
exposure; a strong positive relationship was observed for the
mixture though individual xenoestrogens showed no associations
(Pastor-Barriuso et al. 2016), casting doubt on the null findings of
meta-analyses of breast cancer risk and individual xenoestrogens
such as p,p’-DDE (Ingber et al. 2013; Kortenkamp 2006, 2008).
These findings suggest that epidemiological studies of individual
chemicals with null findings may have substantially underesti-
mated the risks of exposure to EDCs (Kortenkamp 2007).

Numerous authors have expressed a need for epidemiological
studies to move beyond analyzing the health effects of individual
chemicals toward the study of chemical mixtures (e.g., Braun et al.
2016; Carlin et al. 2013; Kortenkamp 2007). The study of chemical
mixtures is one of the ongoing research priorities of the U.S.
National Institute of Environmental Health Sciences (NIEHS)
(Carlin et al. 2013) and is recognized by the U.S. National
Academy of Sciences, which recommends that risk assessments
consider the possibility of cumulative effects frommultiple chemi-
cal exposures (Mitro et al. 2015; Woodruff et al. 2011). However,
progress has been thwarted by the complexities of such studies:
They place a high demand on the quantity and quality of data and
require advanced statistical methods, the development of which is
an active area of research (Billionnet et al. 2012; Braun et al. 2016;
Sun et al. 2013; Taylor et al. 2016). The statistical challenges are
considerable: High correlation between exposures can lead to
inflated standard errors and instability in effect estimates; differing
degrees of measurement error among exposures can bias effect
estimates; and there may be insufficient power to estimate small
effects in the presence of measurement error, multicollinearity,
small sample size, interactions, and nonlinearity (Billionnet et al.
2012; Sun et al. 2013).

The study of chemical mixtures addresses some of the short-
comings of single-chemical epidemiology. Effect estimates may
be biased in the presence of copollutant confounding (Braun et al.
2016), and the study of correlated exposures in separate models
can lead to inflated false-positive discoveries. One exposure can
also modify the effects of another [e.g., bisphenol A (BPA) can
increase the expression of estrogen receptors and make cells more
vulnerable to other EDCs; Brieño-Enríquez et al. 2012; Hayes et al.
2016], making it difficult to infer combined effects from knowl-
edge of individual effects (Braun et al. 2016; Kortenkamp 2007).
Moreover, choice of chemicals has typically been based on those
of known concern or measurable with existing methods, meaning
that studies may suffer from the streetlight effect (Braun et al.
2016). These issues have important regulatory implications if
health effects have been incorrectly attributed to one exposure
rather than to a correlated harmful exposure (Braun et al. 2016;
Lenters et al. 2015a). Studies of chemical mixtures provide effects
that more closely correspond to observed exposure patterns; they
may enable better targeted interventions by identifying which
exposures out of a set are the most detrimental to health; and they
can reveal how exposures interact, whether their effects are addi-
tive, antagonistic, or synergistic (Braun et al. 2016; Sun et al.
2013).

There is no current consensus on the appropriate statistical
methodology for use in epidemiological studies of chemical mix-
tures (Braun et al. 2016). The existing methodological reviews
have concentrated on multipollutant methods in air pollution epi-
demiology and the analysis of exposome-health associations

(Agier et al. 2016; Billionnet et al. 2012; Davalos et al. 2016; Patel
2017; Stafoggia et al. 2017; Sun et al. 2013), with the latter focus-
ing on an exploratory and hypothesis-generating search for impor-
tant exposures in higher dimensional datasets rather than etiologic
research questions. Moreover, the analysis of EDCs requires meth-
ods that can account for nonmonotonicity in exposure–response
relationships (i.e., changes in the sign of the slope are possible;
Vandenberg et al. 2012). Statistical methods for multiple corre-
lated exposures are also required for omics data; however, the
focus there is on methods suitable for ill-conditioned problems
where the number of parameters may exceed the sample size
(Chadeau-Hyam et al. 2013).

A wide array of statistical methods were presented and com-
pared in a 2015 workshop hosted by the NIEHS, where partici-
pants stressed the importance of choosing a method based on the
specific research question and the need for improving existing
methods with subject-specific knowledge (NIEHS 2015; Taylor
et al. 2016). Subsequently, Braun et al. (2016) explicated three
research questions that can be addressed by mixtures analyses,
including the estimation of mixture health effects, and the identi-
fication of important mixture components and their interactions.
Recent simulation studies have compared subsets of the available
methods for identifying important exposures and interactions
(Agier et al. 2016; Barrera-Gómez et al. 2017; Lenters et al.
2018; Sun et al. 2013). No single method has emerged as consis-
tently superior, and choice of method may be context-dependent
(NIEHS 2015; Sun et al. 2013).

We conducted a review to identify the statistical methods used
in studies of prenatal coexposures to EDCs and identified addi-
tional applicable methods. We compared methods within the three
research questions explicated by Braun et al. (2016), as well as in
their ability to account for nonmonotonicity in exposure–response
relationships and to assess windows of exposure susceptibility in a
multipollutant context. We aimed to arrive at an improved under-
standing of the methods used for studying EDC mixtures, along
with an analysis of issues affecting method choice that may help to
informmethodological decisions in future studies of prenatal expo-
sure to EDCmixtures.

Methods
We searched Embase,MEDLINE, andWeb of Science for observa-
tional studies of prenatal exposure to EDC mixtures and pregnancy
or childhood outcomes published between 1997 and September/
October 2016 (see Tables S1 and S2 in the Supplemental Material
for Embase/MEDLINE andWeb of Science search queries, respec-
tively). Search terms specified both known and suspected EDCs and
included generic terms such as “endocrine disrupt*,” “xenobiotic,”
and “pesticide.”We also included a combination of general and spe-
cific search terms related to the prenatal and perinatal period and
endocrine-sensitive outcomes. Both outcome and exposure search
terms were chosen from reviews of EDCs, pregnancy outcomes,
and child health (Meeker 2012; Silver andMeeker 2015; Slama and
Cordier 2010). Search terms specifying the study ofmultiple chemi-
cals included “multipollutant,” “co-pollutant,” “co-exposure,” and
terms such as “combin*,” “mixture,” or “multip*,” in proximity to
terms such as “exposure,” “chemical,” “pollutant,” “toxicant,” or
“effects.” Only English-language primary studies of human health
were eligible. Web of Science results were additionally limited to
public, environmental, and occupational health.

We screened abstracts for studies that measured prenatal (mater-
nal) exposure tomore than one individual EDC and assessed associ-
ations with outcomes in offspring. Studies that assessed early
postnatal exposure through breastmilk, as a proxy for prenatal expo-
sure, were also examined.We then assessed full-text articles to iden-
tify studies in which exposures were analyzed in combination rather
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than separately. We excluded studies that measured only exposure
to classes of chemicals (e.g., through job-exposure matrices, ques-
tionnaires, or biomarkers of cumulative exposure) or considered
only maternal outcomes. We supplemented database searches with
studies identified through manual searching. Our review was con-
ducted using a systematic approach consistent with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement (Moher et al. 2009).

For each eligible study, we recorded the statistical methods used
and the goals of the analysis: only control for copollutant confound-
ing (where one exposure was the focus), estimation of mixture
health effects (i.e., joint or cumulative health effects from multiple
chemical exposures), identification of important mixture compo-
nents, assessment of nonmonotonicity in exposure–response rela-
tionships, assessment of statistical interactions (i.e., effect measure
modification by coexposures), and identification of windows of ex-
posure susceptibility. Although nonmonotonic exposure–response
relationships are of interest in EDC studies (Vandenberg et al.
2012), we discuss statistical methods for nonlinearity that are able to
address both nonlinear monotonic and nonmonotonic relationships.
We recorded the overall study design reported by the authors of

each study, which may not be specific to the mixture analyses con-
ducted. We categorized eligible studies by dimensionality (one ag-
gregate-, two-, or three ormore exposure variables).

In addition to the review of studies that met our eligibility
requirements, we provide a narrative review of methods that
are available for mixtures analyses, including methods that
were not used in the studies we reviewed. For each method, we
recorded the outcome variable types that can be analyzed (con-
tinuous, dichotomous, categorical, count, survival, repeated
measures) and recorded whether the method can address the
analytical goals and challenges of mixtures analyses, including
multicollinearity.

Results

Study Selection Process
We identified 942 unique records through database and manual
searches, of which 112 full-text studies were assessed for eligibil-
ity, and 38 studies were excluded for the reasons outlined in
Figure 1. The 74 studies that met our eligibility criteria are listed

669 records identified through

Embase and MEDLINE

339 records identified through

Web of Science

Additional 8 records identified

through other sources

942 records remaining

after removing duplicates

942 records screened

830 records excluded
(not epidemiological studies
assessing maternal/prenatal

exposure to multiple EDCs and
and outcomes in children)

112 full−text articles assessed

for eligibility

   38 full−text articles excluded,
   with reasons:

   − Exposures not analyzed in
      aggregate or in
      multipollutant models (12)

   − Considered only classes or
      groups of exposure (10)

   − Analyzed only biomarker for
      total exposure (5)

   − Not prenatal exposure (3)

   − Maternal outcome only (2)

   − Did not analyze >1 EDC (2)

   − Biomonitoring study (1)

   − Results not presented (1)

   − EDCs not primary purpose
      of analysis (1)

   − Adult outcome (1)

74 articles included

Figure 1. PRISMA flow diagram of the study selection process.
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in Table 1, and a detailed summary of each study is available in
Supplemental Material, Table S3. These tables are divided into
three sections according to dimensionality: studies of one aggre-
gate-, two-, or three or more exposure variables are listed in sec-
tions A, B, and C, respectively.

Study Designs
The majority of studies were prospective birth cohort studies (58
studies, 78%), including two studies of pooled cohorts (Buckley
et al. 2016a; Casas et al. 2015), and case–control studies (13 stud-
ies, 18%), including one case–cohort study (Chevrier et al. 2011)
and one analysis of pooled data from two case–control studies

(Rull et al. 2006) (Tables 1 and S3). There were also two retro-
spective cohort studies (Limousi et al. 2014; Migeot et al. 2013)
and one cross-sectional study (Huel et al. 2004).

Outcomes
Perinatal outcomes included fetal growth (e.g., birth weight,
length, and head circumference) and gestational age (22 studies,
30%), and birth defects, such as neural tube defects, cryptorchid-
ism, and hypospadias (7 studies, 9%) (Table S3). Other perinatal
outcomes included anogenital distance (Barrett et al. 2016), neo-
natal neurobehavior (Suzuki et al. 2010), enzyme activity (Huel
et al. 2004), neonatal thyroid stimulating hormone concentrations

Table 1. Studies of prenatal coexposures to EDCs, categorized by dimensionality: one aggregate-, two-, three or more exposure variables presented in sections
A, B, and C, respectively. A detailed summary of each study is available in Supplemental Material, Table S3. Number of studies is shown in parentheses.

Studies Study designa Goals in mixtures analysesb Statistical methodsb

SECTION A. Studies that analyzed only one aggregate exposure variable at a time
24 studies (Barrett et al. 2016; Buscail et
al. 2015; Chevrier et al. 2012; Damgaard
et al. 2006; Gascon et al. 2015b; Harley
et al. 2011; Jusko et al. 2010; Konishi et
al. 2009; Koskenniemi et al. 2015; Miller
et al. 2004; Naksen et al. 2015;
Neugebauer et al. 2015; Ochiai et al.
2014; Park et al. 2009; Philippat et al.
2012; Polanska et al. 2014; Rosa et al.
2011; Sonneborn et al. 2008; Sturza et al.
2016; Tang-Péronard et al. 2015; Tran et
al. 2016; Wickerham et al. 2012; Wolff et
al. 2008; Yolton et al. 2013)

Prospective birth cohort (20)
Case–control (4)

Estimation of mixture health effects (24)
Assessment of nonmonotonicity (6)c

Identification of windows of exposure
susceptibility (6)

Generalized linear models and their
extensions (23)
Factor analysis (1)d

Analysis of variance (1)d

SECTION B. Studies that analyzed two individual or aggregate exposure variables at a time
19 studies (Casas et al. 2015; Gray et al.
2005; Huel et al. 2004; Huen et al. 2014;
Kim et al. 2013; Kippler et al. 2012;
LaRocca et al. 2016; Lignell et al. 2013;
Limousi et al. 2014; Migeot et al. 2013;
Roen et al. 2015; Stroustrup et al. 2016;
Suzuki et al. 2010; Symanski et al. 2016;
Vejrup et al. 2016; Whyatt et al. 2004;
Windham et al. 2006; Wojtyniak et al.
2010; Yorifuji et al. 2011)

Prospective birth cohort (14)
Retrospective cohort (2)
Case–control (2)
Cross-sectional (1)

Identification of important mixture com-
ponents (10)e

Assessment of interactions between expo-
sures (9)
Estimation of mixture health effects (7)
Assessment of nonmonotonicity (6)c

Identification of windows of exposure
susceptibility (4)
Only control for copollutant confounding,
where one exposure is the focus (3)f

Generalized linear models and their
extensions (19)

SECTION C. Studies that analyzed three or more individual or aggregate exposure variables at a time
31 studies (Agay-Shay et al. 2015; Berg
et al. 2016; Braun et al. 2014; Buckley et
al. 2016a, 2016b; Casas et al. 2016;
Chevrier et al. 2011; Claus Henn et al.
2016; Erkin-Cakmak et al. 2015;
Fernández et al. 2007; Forns et al. 2016;
Gascon et al. 2015a; Govarts et al. 2016;
Heilmann et al. 2006; Jacobson et al.
2015; Kobrosly et al. 2014; Krysiak-
Baltyn et al. 2012; Lenters et al. 2015a;
Liew et al. 2015; Maresca et al. 2016;
Marques et al. 2014; Rodrigues et al.
2016; Rull et al. 2006; Stewart et al.
2008; Swartz et al. 2015; Talbott et al.
2015; Tatsuta et al. 2014; Vafeiadi et al.
2014; Vafeiadi et al. 2015; Valvi et al.
2012; Xu et al. 2015)

Prospective birth cohort (24)
Case–control (7)

Identification of important mixture com-
ponents (26)e

Estimation of mixture health effects (23)
Assessment of nonmonotonicity (17)c

Identification of windows of exposure
susceptibility (8)
Assessment of interactions between expo-
sures (4)
Only control for copollutant confounding,
where one exposure is the focus (3)g

Generalized linear models and their
extensions (22)
Principal components analysis/
regression (5)
Bayesian hierarchical regression (5)
Elastic net regression (2)h

Partial least squares regression (2)i

Bayesian model averaging (1)h

Hierarchical clustering (1)i

Machine learning classifiers (1)i

Semiparametric regression (1)j

Structural equation modeling (1)j

Novel algorithm (1)k

aThe reported study design may not be specific to the mixture analyses conducted but refers to the overall study design.
bThe number of studies shown may exceed the totals in each section where studies had multiple goals or used multiple methods.
cAlthough nonmonotonic exposure-response relationships are of interest in EDC studies (Vandenberg et al. 2012), studies using statistical methods for nonlinearity that are able to
address both nonlinear monotonic and nonmonotonic relationships were included in the tally for this goal.
dFactor analysis used by Ochiai et al. (2014); analysis of variance used by Tran et al. (2016).
eStudies that focused on the health effects of only one exposure while controlling for copollutant confounding were included in the tally for this goal if results were reported for multi-
ple exposures.
fGray et al. (2005); Roen et al. (2015); Vejrup et al. (2016).
gClaus Henn et al. (2016); Erkin-Cakmak et al. (2015); Kobrosly et al. (2014).
hElastic net regression used by Forns et al. (2016) and Lenters et al. (2015a); Bayesian model averaging used by Forns et al. (2016).
iBerg et al. (2016) used partial least squares regression and hierarchical clustering; Krysiak-Baltyn et al. (2012) used partial least squares, support vector machine, and neural network
classifiers.
jSemiparametric regression used by Claus Henn et al. (2016); structural equation model used by Heilmann et al. (2006).
kNovel algorithm for identifying important mixture components, based on ranking p-values and averaging Z-scores, used by Govarts et al. (2016).

Environmental Health Perspectives 026001-4 127(2) February 2019



(Berg et al. 2016), and placental miRNA expression (LaRocca
et al. 2016).

Neurodevelopmental outcomes were the most common pediat-
ric outcomes (22 studies, 30%), includingmeasures of intelligence,
cognitive and psychomotor development, behavior, autism, and
attention deficit hyperactivity disorder (Table S3). Eight studies
(11%) assessed pediatric measures of body mass (e.g., body mass
index, waist circumference) and cardiometabolic markers (e.g.,
leptin; Tang-Péronard et al. 2015; Vafeiadi et al. 2015). Four stud-
ies (5%) examined respiratory and atopic outcomes in infancy and
childhood, including asthma and eczema (Gascon et al. 2015a;
Miller et al. 2004; Ochiai et al. 2014; Rosa et al. 2011). Other pedi-
atric outcomes were postvaccination antibody response (Heilmann
et al. 2006; Jusko et al. 2010), auditory outcomes (Buscail et al.
2015; Sturza et al. 2016), and leukemia (Symanski et al. 2016).
DNA methylation at birth and in childhood was considered in one
study (Huen et al. 2014).

Most studies considered outcomes that were continuous (44
studies), dichotomous (19), or both (9) (Table S3). Few studies
considered polytomous (Rull et al. 2006; Stroustrup et al. 2016)
and count (Gascon et al. 2015b; Miller et al. 2004; Roen et al.
2015) outcomes. Nine studies analyzed an outcome measured at
multiple time points in a longitudinal analysis (Braun et al. 2014;
Buckley et al. 2016a, 2016b; Casas et al. 2016; Erkin-Cakmak
et al. 2015; Gascon et al. 2015a; Huen et al. 2014; Kippler et al.
2012; Maresca et al. 2016) (Table S3).

Individual and Aggregate Exposures
Exposures were primarily measured using biomarkers (63 studies,
85%) and were analyzed individually or in aggregate to reduce
dimensionality (Table S3). Exposures were primarily aggregated
by raw or weighted sums, such as the toxic equivalence quotient
(TEQ) or molar sum. Exposures were only summed if they shared
similar physicochemical properties. Common aggregate variables
were sums of polychlorinated biphenyl (PCB) congeners (in total
or separated into dioxin-like and nondioxin-like congeners) (e.g.,
Jusko et al. 2010; Stewart et al. 2008; Vafeiadi et al. 2014), sums of
phthalate metabolites (grouped into di(2-ethylhexyl) phthalate
(DEHP) metabolites, low- and high-molecular-weight phthalate
metabolites) (e.g., Chevrier et al. 2012; LaRocca et al. 2016;Wolff
et al. 2008), TEQ of polychlorinated dibenzodioxins and dibenzo-
furans (PCDD/Fs) (e.g., Konishi et al. 2009; Koskenniemi et al.
2015; Neugebauer et al. 2015), and sums of polybrominated di-
phenyl ether (PBDE) congeners (e.g.,Harley et al. 2011;Huen et al.
2014; Lignell et al. 2013). The health effects of sums of parabens
(Chevrier et al. 2012; LaRocca et al. 2016; Philippat et al. 2012),
polycyclic aromatic hydrocarbons (PAHs) (e.g., Miller et al. 2004;
Polanska et al. 2014; Rosa et al. 2011), and dialkylphosphate
(DAP) metabolites (e.g., Naksen et al. 2015; Yolton et al. 2013)
were also analyzed. Exposures were also aggregated as counts of
individual chemicals (e.g., above detection limits), particularly in
studies of pesticides (e.g., Sturza et al. 2016; Wickerham et al.
2012).

Estimation of EDC-Mixture Health Effects
Of the 54 studies (73%) estimating mixture health effects, 51 stud-
ies estimated the effects of one ormultiple aggregate exposure vari-
ables concurrently (24 studies in Section A, 7 studies in Section B,
and 20 studies in Section C, Table S3). For example, summed con-
centrations of PCBs and summed PBDEs in breast milk were ana-
lyzed in a model of birth weight (Lignell et al. 2013). The majority
of these studies used generalized linear models (GLMs) and their
extensions, including conditional logistic regression for a nested
case–control study (Chevrier et al. 2012). Studies performing

longitudinal analyses used population-averaged models estimated
by generalized estimating equations (e.g., Gascon et al. 2015a) and
linear or logistic mixed effects regression models (e.g., Buckley
et al. 2016a; Huen et al. 2014).

Studies that examined a large number of exposures used
dimension reduction methods to assess mixture health effects
(Section C, Tables 1 and S3). The most common were principal
components analysis (PCA) (Agay-Shay et al. 2015; Forns et al.
2016; Govarts et al. 2016; Maresca et al. 2016; Talbott et al. 2015)
and partial least squares regression (PLSR) (Berg et al. 2016;
Krysiak-Baltyn et al. 2012). Methods used to partition exposures
into groups included hierarchical clustering (Berg et al. 2016) and
factor analysis (Ochiai et al. 2014). The health effects of prede-
fined exposure groups were estimated using a structural equation
model (SEM) (Heilmann et al. 2006).

Identification of Important Mixture Components
Almost half of the studies (36 studies, 49%) aimed to identify im-
portant individual exposures or subsets of exposures within a
mixture (Tables 1 and S3). Within this group, GLMs were used
by all ten of the studies that considered only two exposure varia-
bles at a time (Section B), and by 16 studies that analyzed more
than two exposure variables at a time (Section C).

Studies analyzing problems of greater dimensionality used
variable selection strategies (Section C, Tables 1 and S3). Elastic
net regression (ENR), a frequentist shrinkage method, was used
by Forns et al. (2016) and Lenters et al. (2015a). Both studies
capitalized on the variable selection feature of ENR and then
used the corresponding unpenalized regression methods to obtain
unbiased effect estimates for the selected variables. Forns et al.
(2016) compared their ENR estimates with those estimated by
Bayesian model averaging (BMA), a method that accounts for
uncertainty in model selection. In another approach, Govarts et al.
(2016) presented a novel algorithm for identifying important
subsets of exposures, based on ranking p-values and averaging
z-scores from single pollutant models for all possible combina-
tions of 16 exposures.

Shrinkage estimators in a semi-Bayesian hierarchical regres-
sion (semi-BHR) setting were used by Braun et al. (2014) and
Rull et al. (2006), in which coefficients were shrunk toward the
mean of their exchangeability group, representing chemicals with
similar physicochemical properties (e.g., phthalate metabolites
grouped by parent compounds). Bayesian hierarchical regression
(BHR) models were also estimated by Buckley et al. (2016a,
2016b), relating multimetabolite phthalate exposures to measures
of body mass. BHR with stochastic search variable selection
(BHR-SSVS) was used to identify important air toxicants associ-
ated with spina bifida (Swartz et al. 2015).

Nonmonotonicity in Exposure–Response Relationships
Twenty-nine studies reported assessing whether exposure–
response relationships were nonlinear (39%; Tables 1 and S3). Of
these, 19 studies used splines and generalized additive models
(GAMs) to assess nonlinearity. Other studies analyzed exposure
quantiles or categories instead of continuous variables (15 stud-
ies; e.g., Buckley et al. 2016b; Erkin-Cakmak et al. 2015; Wolff
et al. 2008) or used locally weighted scatterplot smoothers
(LOWESS) (Harley et al. 2011; Kippler et al. 2012). A further
nine studies used categorical exposure variables in their analyses
without reporting that they were assessing nonlinearity. Some
studies additionally performed hypothesis tests of trends across
exposure categories (seven studies; e.g., Casas et al. 2015; Tang-
Péronard et al. 2015).
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Fourteen studies used a method that may address nonlinearity
in a mixture (Table S3). Of these, 11 studies analyzed exposure
quantiles or categories, rather than continuous variables, in a mul-
tipollutant model (e.g., Agay-Shay et al. 2015; Claus Henn et al.
2016; Valvi et al. 2012). Four studies modeled nonlinear additive
relationships among exposures in a mixture using polynomials
(Rodrigues et al. 2016) or splines (Buckley et al. 2016a; Claus
Henn et al. 2016; Kippler et al. 2012). For example, Kippler et al.
(2012) used a piecewise linear spline with one knot to model an
inverse-V-shaped relationship between cadmium exposure and
fetal size, controlling for arsenic exposure.

Interactions between Chemical Exposures
Interactions between chemical exposures were assessed in 13
studies (18%; Tables 1 and S3). These were predominantly
studies of two or three exposure variables only, using GLMs
with product terms between pairs of exposures to assess two-
way interactions. Three studies considered interactions between
pairs of aggregate exposure variables or between an aggregate
exposure and individual chemicals; e.g., Huen et al. (2014)
examined interactions between summed PBDE congeners and
dichlorodiphenyl-trichloroethylene/dichloroethane (DDT/E) com-
pounds in relation to DNA methylation.

Windows of Exposure Susceptibility
Eighteen studies (24%) analyzed exposure at multiple times to
investigate etiological windows of exposure susceptibility (Tables 1
and S3). Most studies analyzed exposure windows in separate mod-
els (10 studies), predominantly using GLMs. For example, Jusko
et al. (2010) estimated the health effects of PCBsmeasured inmater-
nal serum at delivery, cord serum, and 6-month infant serum, on
postvaccination antibody response, in separate linear regression
models.

Eight studies analyzed exposure measured at multiple
prenatal/postnatal times in the same model. Six of these studies
used GLMs. For example, Roen et al. (2015) estimated the effects
of prenatal and postnatal BPA exposure on child behavior, con-
trolling for prenatal mono-n-butyl phthalate metabolite (MnBP)
exposure. To address the possibility of multicollinearity when
analyzing multiple exposures at multiple time points, Maresca
et al. (2016) used PCA to obtain prenatal and postnatal phthalate
concentration component scores that were then regressed on the
outcome. In another approach, Heilmann et al. (2006) used a
SEM with latent variables for both prenatal and postnatal expo-
sure to assess cumulative health effects of PCBs on postvaccina-
tion antibody response, allowing prenatal exposure to be a
determinant of postnatal exposure.

Discussion
We reviewed studies of prenatal exposure to EDC mixtures to
determine the analytical strategies and statistical methods that
have been employed and concurrently identified several novel
and applicable statistical methods. We now compare the abilities
of each method for addressing the salient epidemiological and
statistical challenges. A detailed summary of each method is pre-
sented in Table 2, along with software suggestions.

Identification of Important Mixture Components
Correlation between chemicals with common sources, exposure
pathways, or metabolic processes, can induce multicollinearity
when analyzed simultaneously (Carrico et al. 2015; Vrijheid
et al. 2016). This is arguably the paramount statistical challenge
facing the study of chemical mixtures. In GLMs, multicollinearity

can cause standard errors to become inflated, leading to unstable
coefficient estimates that are sensitive to minor changes in model
specification. Consequently, it may be difficult to assess the rela-
tive importance of individual exposures, and therefore to separate
potential etiological agents from copollutant confounders and
redundant variables (Woodruff et al. 2009). The problem is poten-
tiated with the addition of interaction and nonlinear terms in the
model (Schisterman et al. 2017), and at an extreme, maximum like-
lihood techniques may fail to converge to a solution (MacLehose
et al. 2007).

Frequentist shrinkage methods, such as ridge regression, least
absolute shrinkage and selection operator (LASSO) regression,
and ENR, present an appealing solution (Table 2) (only ENR was
used in the reviewed studies, by Forns et al. 2016; Lenters et al.
2015a). By imposing a penalty on the size of the coefficients,
they ensure convergence and confer a degree of immunity to mul-
ticollinearity (Hastie et al. 2009). These methods shrink the coef-
ficients of explanatory variables toward zero, with the degree of
shrinkage determined by the strength of the association. LASSO
and ENR also perform variable selection, whereby the coeffi-
cients of the least predictive variables are shrunk to exactly zero
(Hastie et al. 2009), yielding a sparse model with greater inter-
pretability and more-precise coefficient estimates. However, these
estimators are biased and pose challenges for statistical infer-
ence because valid standard error estimates (and therefore con-
fidence intervals) may be difficult to obtain and may depend on
the choice of tuning parameters (i.e., parameters that are adjusted
to find an optimal model) (Kyung et al. 2010; Pfeiffer et al. 2017).
Confidence intervals may also lack proper coverage if the uncer-
tainty introduced by variable selection is ignored in post-model-
selection inference (Pfeiffer et al. 2017). Moreover, data-driven
tuning parameter selection via k-fold cross-validation may lead
to highly variable model selection results (Roberts and Nowak
2014); this instability may be especially apparent in small sample-
size studies with weak signals and correlated exposures (Kirk et al.
2013; Lim and Yu 2016). Methods such as the percentile-LASSO
(Roberts and Nowak 2014), estimation stability cross-validation
(Lim and Yu 2016), and others (e.g., Frommlet et al. 2012; Kirk
et al. 2013; Waldron et al. 2011), may address model selection
instability.

ENR may be preferred to LASSO in mixtures analyses.
Whereas LASSO may choose only one exposure among a set of
highly correlated exposures and drop the others (Hastie et al.
2009), ENR possesses a grouping property, ensuring that highly
correlated variables are retained or dropped together by being
assigned coefficients of similar magnitude (Zou and Hastie
2005). However, not all correlated exposures selected by this
property may be associated with the outcome, and those expo-
sures dropped by either method may be causal agents, so it can-
not be assumed that nonselected exposures are safe. In a recent
simulation study, ENR was found to have slightly higher sensitiv-
ity but slightly higher false discovery proportion than LASSO,
with comparable accuracy (mean-squared error) (Lenters et al.
2017).

Weighted quantile sum regression (WQSR) (not used in the
reviewed studies) was developed as an alternative to LASSO and
ENR for cross-sectional analyses and was reported to have
greater accuracy (lower mean-squared error), comparable sensi-
tivity, and improved specificity for variable selection among cor-
related exposures in simulation studies (Carrico et al. 2015)
(Table 2). In WQSR, exposures are combined into an empirically
weighted index, which provides both estimates of mixture health
effects and indicators of exposure importance (i.e., weights);
however, because the weights are nonzero, a threshold choice is
required for variable selection (Carrico et al. 2015).
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Performing Bayesian shrinkage may offer a number of advan-
tages beyond robustness to multicollinearity. Bayesian methods
offer flexibility of specification, can incorporate external informa-
tion, can handle missing data, are robust to overfitting in small
sample sizes, and offer probability-based uncertainty intervals
(Hernández et al. 2015). BHR methods treat exposure coefficients
as random variables from a prior distribution (Table 2). They
deal with multicollinearity by shrinking coefficients toward the
prior mean, with the amount of shrinkage depending on the mag-
nitude of the prior variance (MacLehose et al. 2007). The prior
variance can be treated as known (semi-Bayes model; used by
Braun et al. 2014; Buckley et al. 2016a, 2016b; Rull et al. 2006),
requiring the researcher to set the parameter to a plausible value.
However, unlike tuning parameters in frequentist shrinkage meth-
ods that are set by cross-validation, this tuning parameter has an
intuitive interpretation as the variance of the exposure coefficients
(Greenland 1994). If there is uncertainty about the magnitude of
the parameter, it can be allowed to vary, with the advantage of
making estimates more robust to misspecification of the prior
(Greenland 1994; MacLehose et al. 2007).

Coefficients can also be shrunk toward group-specific means
using BHR; e.g., groups based on physicochemical similarity, as
in the reviewed studies by Braun et al. (2014) and Rull et al.
(2006). These groups may be overlapping and can be implied
from a set of covariates rather than directly specified (MacLehose
et al. 2007; Thomas et al. 2007). Alternatively, if groups cannot
be chosen a priori, a Dirichlet process prior can be used to per-
form data-driven clustering (MacLehose et al. 2007).

Methods that perform variable selection in addition to shrink-
age can realize a further gain in precision by allowing exposures
that do not affect the outcome to be excluded, a feature that is espe-
cially important in small samples (MacLehose et al. 2007). Unlike
frequentist shrinkage methods that perform variable selection (i.e.,
LASSO and ENR), mixture priors in the “spike and slab” form
(such as BHR-SSVS, used by Swartz et al. 2015) can also provide
a measure of uncertainty in variable selection (Herring 2010).
These methods also have the ability to account for truncation of
exposures due to detection limits (Herring 2010).

Like frequentist shrinkage estimators, BHR estimates are bi-
ased toward their prior mean. However, this bias may be more than
compensated for by the reduction in variance (Greenland 1994).
Because maximum likelihood estimates are only asymptotically
unbiased, hierarchical estimates are likely to have a small-sample
advantage in terms of accuracy whenmodeling multiple correlated
exposures (Greenland 1994). Moreover, simulation studies of
chemical mixtures have observed accuracy and precision advan-
tages of BHR methods over their frequentist method counterparts
(e.g., Roli andMonari 2015).

Despite the availability of methods that are robust to multicolli-
nearity, no statistical method is able to differentiate between very
highly correlated exposures in the absence of further information.
Preprocessing steps may be required, such as choosing an individ-
ual chemical to represent a group of very highly correlated chemi-
cals or dimension reduction using PCA (Coull et al. 2015). For
example, Braun et al. (2014) analyzed only the chemical with the
highestmedian concentration in pairs of chemicals with correlation
coefficients greater than 0.95 in absolute value. However, esti-
mated associations may lack specificity if the chosen chemical is
not a suitable surrogate for the others (e.g., a common proxy choice
for PCBs is nonplanar PCB-153, but it is not representative of co-
planar PCBs) (Engel and Wolff 2013). Moreover, inclusion of
exposures unrelated to the outcome but correlated with exposures
that are associated with the outcome may enhance, diminish, or
reverse associations between the outcome and the important expo-
sures due to the reversal paradox (Tu et al. 2008).

One method that allows prior information on the exposure cor-
relation structure to be incorporated is Bayesian kernel machine
regression (BKMR) (Table 2). BKMR is a novel approach for mix-
tures analyses (not used in the reviewed studies), offering both
component-wise and hierarchical (grouped) variable selection
(BKMR-HVS) (Bobb et al. 2015; Coull et al. 2015). BKMR-HVS
concurrently estimates the importance (i.e., posterior inclusion
probability) of groups of highly correlated exposures as well as
individual chemicals within the group, enabling selection of an ex-
posure in a group of highly correlated exposures (Bobb et al. 2015;
Coull et al. 2015). Because BKMR estimates the joint exposure–
response function, it can also provide an estimate of an overall mix-
ture effect, representing the risk associated with all exposures at a
particular quantile vs. themedian (Bobb et al. 2015).

Estimation of EDC-Mixture Effects
A robust body of evidence demonstrates mixture effects due to low-
dose EDCs acting together via common mechanisms (Kortenkamp
et al. 2007; Ribeiro et al. 2017). EDCs that act in combination may
have only weak signals when analyzed individually, and these sig-
nals may not be detected in studies lacking sufficient power. Here
we examine methods that may be used to estimate the health effects
of EDC mixtures directly when the estimation of individual effects
is not possible.

A common approach for estimatingEDC-mixture effects involves
the use of aggregating variables, such as raw or weighted sums, or
counts of exposures above detection limits (e.g., Koskenniemi et al.
2015; LaRocca et al. 2016; Table S3). These approaches are appeal-
ing because of their ease of implementation; however, they discard in-
formation and make strong assumptions that effects are additive
(implying independence and no interaction) and that exposure–
response relationships are linear. Raw sums and counts assume com-
ponent chemicals are equipotent; these aggregate variables will be
driven by the highest concentration pollutants, which may not neces-
sarily be the most detrimental to health (Axelrad et al. 2009; Braun
et al. 2016). Evenwhen component chemicals have been transformed
to a common scale, heterogeneous concentration ranges and detection
limits among mixture components imply that these chemicals are
measured with differing precision, which may induce noise in the ag-
gregate variable (Engel and Wolff 2013). Relative potencies of indi-
vidual chemicals within a mixture may be addressed by a weighted
sum; however, the quality of the resulting aggregate variable depends
on the availability of accurate outcome-specific potency measures as
those derived in different biological contexts may be inappropriate
(Gennings et al. 2010; Zoeller et al. 2014). Findings based on aggre-
gate variables will be sensitive to these assumptions, as well as the
particular choice of mixture components and approach chosen for
aggregating exposures.

The analysis of multiple aggregate exposure variables in one
model makes further assumptions regarding independence and
additivity of groups of exposures. Exposure groups based on physi-
cochemical similarity, a common grouping method, may not share
similar biological mechanisms. In an extreme case, Suzuki et al.
(2010) and Tatsuta et al. (2014) summed 209 PCB congeners that
were above detection limits. However, individual congeners may
have varying effects and opposing actions (e.g., some are estro-
genic, and others are antiestrogenic; Cooke et al. 2001), and these
classifications may be specific to the tissues and diseases under
investigation (Gennings et al. 2010). To separate EDCs into dis-
tinct groups based on modes of action may not be possible as the
mode may be dose-dependent for individual EDCs; for example,
low doses of some xenoestrogens may act by binding to estrogen
receptors, whereas, at high doses, these same chemicals may bind
to the receptors of other hormones (e.g., androgen or thyroid hor-
mone receptors), through receptor cross-talk (Myers et al. 2009).
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Here, methods that allow estimation of health effects for overlap-
ping groups of exposures, as well as careful consideration of group
composition, may be more appropriate. For example, Varshavsky
et al. (2016) recently presented a novel potency-weighted metric
for cumulative exposure to antiandrogenic phthalates based on
common adverse outcomes.

For predefined groups of exposures, health effects may be esti-
mated using WQSR and grouped LASSO (Hastie et al. 2009).
WQSR addresses some of the limitations of aggregate exposure
variables discussed above; WQSR uses empirically determined
weights that take into account the exposure correlation structure
and, by focusing inference in the direction of increased risk, pro-
duces an index that is readily interpretable (Carrico et al. 2015).
SEM may also be used to assess health effects of predefined expo-
sure groups (Table 2, used by Heilmann et al. 2006). In this
approach, chemicals sharing similar characteristics are assumed to
reflect a latent true exposure, which are then used to estimate
effects for one ormore outcomes (Heilmann et al. 2006). This pool-
ing of information from several exposures results in a more power-
ful analysis than using linear regressionmethods (Budtz-Jørgensen
et al. 2002; Heilmann et al. 2006); however, the gain in power may
come at a considerable cost. SEMs are susceptible to misspecifica-
tion because they impose multiple strong assumptions (regarding
the existence and direction of causal relationships specified in a
path diagram, as well as their distributional and functional forms)
that may be difficult to verify in practice and may lead to severe
biases if incorrect (VanderWeele 2012). SEMs are therefore con-
sidered confirmatory methods, suitable in settings where sufficient
knowledge exists for the specification of a path diagram and sensi-
ble parametric assumptions (Sánchez et al. 2005).

Dimension reduction methods present an alternative to the
use of aggregating variables and are particularly useful when the
number of exposures is large in comparison with the sample size.
PCA reduces multidimensional exposure data to several orthogo-
nal (uncorrelated) components that can be used in a regression
model in place of the original exposure variables (Table 2) (e.g.,
Agay-Shay et al. 2015; Maresca et al. 2016), providing a measure
of health effects for components that summarize the variability in
the exposure data. Although the component compositions may be
statistically informative, they may not necessarily possess biolog-
ically relevant interpretations or provide a good explanation of
the outcome (Bair et al. 2006). Better explanatory power (but not
necessarily interpretability) may be obtained using supervised
PCA, which captures information in both the exposures and out-
come by preselecting exposures most correlated with the outcome
prior to constructing components (Bair et al. 2006). However,
because this preselection is based on univariate exposure–outcome
relationships, there may be some redundancy in the set of selected
exposures because highly correlated exposures are likely to be
chosen together (Hastie et al. 2009). This redundancy may be
ameliorated through the use of preconditioned LASSO (i.e.,
applying the LASSO as a postprocessor using a predicted out-
come from supervised PCA), a two-stage procedure that pro-
duces a sparse model (Hastie et al. 2009; Paul et al. 2007). An
alternative supervised dimension reduction method is partial
least squares regression (PLSR; Table 2) (e.g., Berg et al.
2016), which constructs latent variables by forming linear com-
binations of exposures that maximize the covariance between
the exposures and outcome (Hastie et al. 2009). However,
although both unsupervised and supervised dimension reduction
methods address the problem of multicollinearity, they do so at
the cost of interpretability. The interpretability of the latent var-
iables can be improved through the use of sparse PLSR, which
performs simultaneous dimension reduction and variable selec-
tion (Chun and Keles� 2010).

The use of biomarkers of cumulative EDC exposure, such as the
total effective xenoestrogen burden (TEXB; Fernández et al. 2004)
and total effective xenobiotic burden of antiandrogens (TEXB-AA;
Arrebola et al. 2015), present a nonstatistical alternative for estimat-
ing mixture effects. For example, Fernández et al. (2007) analyzed
both TEXB and 16 organochlorine pesticides in relation to the risk
of cryptorchidism and hypospadias in male neonates. TEXB pro-
vides dual fractions composed primarily of organohalogenated lipo-
philic xenoestrogens (alpha fraction) and endogenous hormones
with more polar xenoestrogens (beta fraction) (Fernández et al.
2004; Pastor-Barriuso et al. 2016). The beta fraction has been used
to control for potential confounding by endogenous hormones (e.g.,
Vilahur et al. 2014); however, this adjustment is thought to induce a
selection bias (Pastor-Barriuso et al. 2016).

Accounting for Nonmonotonicity in EDC
Exposure–Response Relationships
Motivation for assessing nonmonotonicity. The breadth of evi-
dence for nonmonotonic EDC dose–response relationships observed
across cell culture and animal experimental studies as well as the
epidemiological literature has led some authors to recommend that
nonmonotonicity should be assumed by default for chemicals that
behave like hormones (Myers et al. 2009; Vandenberg et al. 2012).
Despite this recommendation, fewer than half of the reviewed
studies reported assessing nonlinearity (Tables 1 and S3). The
assumption of linearity may be made to simplify statistical analy-
ses, with the view that nonmonotonic relationships are unlikely to
be observed over the comparatively narrow exposure ranges com-
mon in epidemiological studies (the principle of low-dose linear-
ity; Thomas 2009), or the possibility that sampling biases in
observational studies may create the impression of nonmonotonic-
ity when dose–response is truly linear (Engel and Wolff 2013).
Data sparsity in regions of nonlinearity may also make these rela-
tionships difficult to detect; a large overall sample size and suffi-
ciently large sample size in regions of nonlinearity are required to
detect nonlinearity (May and Bigelow 2006). Small sample sizes
may yield wide confidence intervals across the exposure–response
curve and uncertainty in functional form. Nevertheless, assuming
linearity when exposure–response relationships are nonmonotonic
can lead to misleading conclusions; for example, a horizontal fitted
line when there is a U-shaped relationship (May and Bigelow
2006). Such model misspecification may be more severe in an
analysis of multiple correlated exposures, where bias due to omit-
ting important variables (e.g., quadratic terms) may be exacerbated
by multicollinearity (Ganzach 1997; Schisterman et al. 2017).
Moreover, although a narrow exposure range is common in obser-
vational studies of one chemical, the cumulative exposure range of
a mixture of similarly acting chemicals is likely to be wider, which
increases the chances of observing a nonmonotonic association.

Methods for addressing nonmonotonicity.We identified sev-
eral statistical approaches for both diagnosing and modeling non-
monotonicity. A common approach in the reviewed studies
involved modeling categorical exposure variables in place of
their continuous counterparts (e.g., using quantiles; Berg et al.
2016). Although the simplicity of this approach may be appeal-
ing, it has several limitations, including loss of information that
may preclude the identification of more complex functional forms
with few categories, sensitivity to the arbitrary choice of categori-
zation (Greenland 1995), and bias away from the null if observa-
tions near category cutpoints are misclassified (Eisen et al. 2004).
Moreover, the large number of additional parameters requiring
estimation can lead to a loss of power, which may make this
approach unfeasible in mixtures studies with many exposures and
comparatively small sample size.
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An alternate approach that avoids these pitfalls is the inclusion
of polynomial exposure terms (e.g., quadratic or cubic) directly in
a parametric model (e.g., Rodrigues et al. 2016). These terms ena-
ble assessment of U-shaped, inverted U-shaped, or more complex
multiphasic exposure–response relationships. They are straightfor-
ward to implement and particularly useful when the functional
form conforms to a known parametric type. An improvement in fit
and more flexibility in functional form may be obtained by using
fractional polynomials to automatically identify the optimal power
transformations according to goodness-of-fit criteria (May and
Bigelow 2006). However, including polynomial terms for multiple
correlated exposures may exacerbate multicollinearity issues and
reduce the interpretability of parameter estimates. Moreover, these
approaches apply a global fit; i.e., they assume the same functional
form at all levels of exposure, which may lead to poor fit in some
exposure regions (Keele 2007).

In the absence of hypotheses regarding functional form, GAMs
may be used to fit flexible nonparametric exposure–response func-
tions based on splines (Table 2) (e.g., Heilmann et al. 2006). For
diagnosing nonlinearity, GAMs are powerful tools that impose few
assumptions on the data. One of the primary strengths of GAMs is
that they are directly comparable with nested parametric GLM fits
using likelihood-based statistics (Keele 2007). Semiparametric
regression extends GAMs by allowing additional linear additive
terms with the usual parametric specifications (e.g., linear con-
founder terms) (Keele 2007). This method was used by Claus
Henn et al. (2016), who analyzed the effect of arsenic on fetal
growth while controlling for smoothed lead and manganese terms
and linear confounders. Bootstrapping may be used to compare the
fits of parametric and semiparametric models (Keele 2007).

One drawback of nonlinear approaches is the lack of a single
reportable summary statistic. However, plots of the mean nonlin-
ear association with confidence intervals can provide a more in-
formative summary of the strength of a statistical relationship
than single statistics (Keele 2007).Nonetheless, a number of authors
usedGAMs only as exploratory tools for the diagnosis of nonlinear-
ity (e.g., Agay-Shay et al. 2015 analyzed exposure tertiles after
detecting nonlinearity through GAMs) and to inform a parametric
functional form (e.g., Rodrigues et al. 2016).

GAMsmay suffer fromconcurvity, the nonlinear analog to colli-
nearity, yielding unstable estimates or misleading functional forms
(Gu et al. 2010). Although shrinkage methods can improve numeri-
cal stability and predictive accuracy in the presence of collinearity,
they do not address concurvity (Gu et al. 2010). Instead, the method
of partial GAMs, which adjusts for concurvity through a variable
selection procedure that sequentially eliminates functional depend-
encies between covariates, may be useful (Gu et al. 2010). This
method yields a more parsimonious model that is easier to interpret
and a graphical representation of concurvity between covariates (Gu
et al. 2010).

BKMR is an alternative nonparametric approach, not used in the
reviewed studies, which addresses the multifaceted goals of mix-
tures analyses (Table 2). BKMR offers flexible estimation of a mul-
tivariate exposure–response surface, allowing for nonlinearity and
interactions while simultaneously performing componentwise or
hierarchical variable selection, with the latter providing selection
among a group of highly correlated exposures (Bobb et al. 2015;
Coull et al. 2015). Other methods that can simultaneously and auto-
matically select variables and functional forms include shrinkage
approaches in GAMs (Marra and Wood 2011) and Bayesian
approaches based on spike and slab priors (Scheipl et al. 2013).

For higher-dimensional problems, statistical learning methods
may be more appropriate than GAMs and BKMR. MARS is a
nonparametric method that proceeds in a manner similar to step-
wise regression, building a model from piecewise linear basis

functions and their products (Hastie et al. 2009; Morlini 2006)
(Table 2). It is able to automatically select variables and identify
interactions in large datasets, as well as modeling nonlinearity.
However, it is not able to control for confounding as confounder
terms are also subject to selection, and in the presence of high
correlation between exposures, it may select exposures somewhat
arbitrarily (Morlini 2006).

Interactions between EDCs
The assessment of interactions compounds the methodological
complexity of mixtures analyses. Fitting a GLMwith product terms
between pairs of exposures quickly becomes intractable as the num-
ber of exposures increases; for k exposures, the assessment of all

two-way interactions introduces
k
2

� �
interaction terms, which

may overwhelmmodest sample sizes and exacerbatemulticollinear-
ity. Even in cases where the parameter count-to-sample size ratio is
small, correlated measurement error among biomarkers may dimin-
ish the power available to detect interactions (Pollack et al. 2013).
The paucity of studies in this review examining interactions perhaps
reflects these difficulties (Tables 1 and S3). Nevertheless, synergis-
tic effects between EDCs are biologically plausible (Claus Henn
et al. 2014; Diamanti-Kandarakis et al. 2009; Kortenkamp 2007;
Rosa et al. 2011; Silins and Högberg 2011) and have been reported
in studies of metal mixtures and child health (Claus Henn et al.
2014). Antagonistic and synergistic EDC-mixture effects have also
been observed in human cell lines (Ribeiro et al. 2017) and toxico-
logical studies (e.g., Christiansen et al. 2009); however, whereas
interaction is defined as a departure from additivity, the definition of
additivity can vary widely between (and among) toxicologists and
epidemiologists (Howard andWebster 2013).

Assessment of interactions among EDCs needs to take into
account the possibility of nonmonotonicity in exposure–response
relationships. When both nonmonotonicity and interaction exist,
the consequences of misspecifying either of these characteristics
may be severe. In a linear regression model, given two correlated
exposures that interact and have U- or inverted U-shaped rela-
tionships with the outcome, assuming linearity may indicate that
the relationship is synergistic when it is truly antagonistic, or vice
versa (Ganzach 1997). Moreover, failure to assess interaction
may result in exposure–response relationships that appear flat or
convex when they are truly concave, or vice versa (Ganzach
1997). To our knowledge, these issues have been insufficiently
explored in analyses of environmental chemical mixtures.

We identified several methods for identifying and modeling
interaction between chemical exposures (Table 2), none of which
were used in the reviewed studies. To address the risk of multicolli-
nearity when including main effects and pairwise product terms of
correlated exposures, LASSO and grouped LASSO regression have
been extended to fit sparse hierarchical interaction models, perform-
ing variable selection while honoring the hierarchy principle for
interactions (that for nonzero interaction coefficients, one or both
main effects should also be included in the model) (Bien et al. 2013;
Lim and Hastie 2015). Sparse hierarchical interaction models can
also be built using BHR-SSVS by introducing dependence into the
usual independentBernoulli prior for variable importance (Bien et al.
2013; Chipman 1996).Where nonlinearity is expected, pairwise and
possibly higher-order interactions can bemodeled usingmultivariate
smoothers in GAMs, such as tensor products or thin plate splines
(Ruppert et al. 2003). Nonlinear multivariate interactions can also be
identified using BKMR, by plotting cross-sections of the estimated
joint nonparametric exposure–response function (Bobb et al. 2015).

Tree-based statistical learningmethods present an alternative for
datasets with a large number of exposures. These methods do not
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assume additivity or linearity in exposure–response relationships
and are able to automatically identify and account for nonlinearity
and pairwise or higher-order interaction effects (Lampa et al. 2014).
Classification and regression trees (CART) is a nonparametric
method that partitions data into a decision tree, and multiple trees
can be combined to improve predictive performance using ensemble
methods, such as stochastic gradient boosting (SGB) and random
forests (RF) (Table 2). SGB combines trees by fitting a weighted
additive model of trees based on random subsets of the data,
whereas RF averages trees based on bootstrapped data and uses a
random sample of exposures for determining splits in individual
trees (Hastie et al. 2009). Although bothmethods provide ameasure
of variable importance, SGBmay be preferred for identifying inter-
actions in studies of chemical mixtures because it provides a mea-
sure of interaction strength (Lampa et al. 2014). Although the
inability of these methods to impose a monotonicity constraint may
be advantageous for modeling EDC exposure–response relation-
ships, it is problematic when linearity needs to be enforced in the
handling of confounders (Sun et al. 2013). This issue was addressed
by Gass et al. (2014), who developed a CART algorithm that con-
trols for confounding. A further drawback is that spurious interac-
tions may be identified in the presence of nonlinearity and high
correlation between exposures (Lampa et al. 2014). One solution
may be to encourage repeated splits on the same variable in the
CART algorithm (Friedman and Popescu 2008; Lampa et al. 2014);
another optionmay be to use principal component scores in place of
subsets of very highly correlated exposures (Lampa et al. 2014).
Consequently, these methods need to be considered exploratory
unless the results can be validated (e.g., using external data or split-
sample validation; Lampa et al. 2014).

Some of the drawbacks of tree-based statistical learning meth-
ods are addressed by Bayesian additive regression trees (BART),
a Bayesian ensemble method that fits a sum of trees model
(Chipman et al. 2010) (Table 2). Although SGB and RF provide
point estimates of variable importance, these scores reflect pre-
dictive performance, not direction or magnitude of exposure–
response associations (Bobb et al. 2015), and there is no measure
of uncertainty. BART shares the benefits of ensemble methods
along with the benefits of a fully specified Bayesian model; i.e.,
full posterior inference capabilities, providing exposure-effect
estimates and probability-based uncertainty intervals, and the
ability to incorporate prior knowledge (Chipman et al. 2010;
Hernández et al. 2015). Moreover, BART can be extended to
include linear confounder terms and random effects (Chipman
et al. 2010).

Simulation studies comparing the performance of methods for
assessing interactions in analyses of environmental chemical mix-
tures are lacking. In a recent exposome simulation study, boosted
regression trees had lower sensitivity but lower false discovery
proportion than hierarchical grouped LASSO (Barrera-Gómez
et al. 2017). In a simulation study of 4–20 exposures, LASSO,
BMA, and supervised PCA all had high interaction detection rates,
with BMA and LASSO possessing the lowest false positive rates
(Sun et al. 2013). Using CART as a preprocessor to restrict the
analysis to a subset of exposures improved interaction detection
rates and false positive rates (Sun et al. 2013). The deletion/substi-
tution/addition algorithm, not reviewed here, had poor perform-
ance in identifying interactions (Sun et al. 2013). Further
simulation studies are warranted to characterize the performance
of the availablemethods in identifying interactions between EDCs.

Exposure Measurement Error and Timing of
Exposure Measurement
Careful timing of exposuremeasurement is crucial in studies of pre-
natal exposure to chemicalmixtures, requiring consideration of both

the etiologically relevant window of exposure and the persistence of
chemical species within themixture. EDCs exhibit a broad gamut of
biological half-lives; at one extreme, the metabolism and excretion
of some phenols and phthalates occur within hours, whereas the
half-lives of lipophilic persistent organic pollutants are in the order
of years. The levels of nonpersistent chemicals in pregnant women
have been shown to exhibit high intraindividual variability (Braun
et al. 2012), reflecting patterns in the use of personal care products
(Braun et al. 2012), plastics (Braun et al. 2013), seasonality (e.g., in
pesticide use;Whyatt et al. 2004), and changes in xenobioticmetab-
olism associated with pregnancy (Braun et al. 2012; Jusko et al.
2014). This variability suggests the need for repeated measure-
ments, as spot measurements may not adequately capture long-term
exposure levels or average exposure levels across a targetedwindow
of susceptibility (Braun et al. 2012).

For persistent chemicals, the intraindividual variability is likely
to be overshadowed by interindividual variability (Gennings et al.
2013; Longnecker et al. 1999), suggesting that timing of exposure
assessment is more flexible for these chemicals (Romano et al.
2014). However, even within classes of persistent chemicals, the
magnitude of intraindividual variability is likely to be chemical-
specific (e.g., the nondioxin-like di-ortho PCB congeners have sub-
stantially longer half-lives than the dioxin-like mono-ortho PCBs;
Heilmann et al. 2006). Increasing the complexity, further sources of
measurement error include differential placental transfer rates of
chemicals (e.g., for PBDE congeners, there is a lower rate of placen-
tal transfer with increasing degree of bromination; Frederiksen et al.
2010), differential rates of metabolism and bioaccumulation within
the fetus across chemicals (e.g., fetal methylmercury levels are
greater than maternal levels, whereas the converse is true for
PBDEs; Frederiksen et al. 2010; Stern and Smith 2003), and the
lower precision in measurement of exposures with concentration
ranges near detection limits than higher-concentration-range com-
pounds (Engel andWolff 2013). These asymmetries between EDCs
suggest that exposure may be misclassified to differing degrees for
individual chemicals within a mixture, especially if exposure is
measured at only a single point in pregnancy.

Although acknowledging the degree of exposure misclassifi-
cation is universally important in epidemiological studies, it is of
particular importance in studies of chemical mixtures. Exposure
measurement error in a single-pollutant model is expected to bias
exposure–response associations toward the null, when the error is
nondifferential with respect to the outcome (Zeka and Schwartz
2004). However, when exposures with differing degrees of (non-
differential) measurement error are analyzed in a multipollutant
model, the measurement error in one variable is able to contribute
bias to the coefficients of other variables (Zeka and Schwartz
2004). Importantly, both bias toward the null and away from the
null are possible, with the overall direction and magnitude of
the bias dependent on the extent of correlation between the
exposures, and the variances and correlation of the measure-
ment errors (Zeger et al. 2000). Regardless of the true strength
of an association, an exposure with lower measurement error
may appear more strongly associated with an outcome than an
exposure with higher measurement error may appear (Vedal
and Kaufman 2011; Woodruff et al. 2009). If identifying causal
agents within a mixture is the goal of the analysis, this issue
may lead to misleading conclusions, unless the precision of ex-
posure measurement is considered or explicitly incorporated
into statistical models (Woodruff et al. 2009).

Not only is the use of single measurements anticipated to bias
effect estimates, it also reduces the power to detect exposure–
response associations (Jusko et al. 2012; Perrier et al. 2016). In
the Generation R study, Jusko et al. (2012) demonstrated that the
required sample size for detecting linear associations was almost
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halved when using the mean across three BPA measurements vs.
one measurement. A more powerful analysis can be realized not
only from increasing the number of individuals but also from
increasing the number of measurements per individual of short
half-life chemicals (Jusko et al. 2012; Perrier et al. 2016), though
this gain in power is attenuated with increasing intraindividual
correlation. To reduce costs of repeated exposure measurements,
pooling multiple biospecimens per individual before assaying
chemicals may decrease bias and increase power, in comparison
with the use of a single spot measurement (Perrier et al. 2016).

The majority of studies we reviewed analyzed nonpersistent
chemicals on the basis of a single measurement (Table S3). The
few studies that took repeated measurements to reduce measure-
ment error used the average of two spot measurements across preg-
nancy (e.g., Casas et al. 2016; Gascon et al. 2015b). Although this
approach is useful for summarizing longitudinal exposure data
whenmeasurements are unstable over time, a more powerful analy-
sismay be obtained by taking into account the longitudinal nature of
the exposure data, using methods such as a two-stage mixed effects
model, generalized additive mixed model, and functional clustering
model (Chen et al. 2015). These methods avoid loss of information
about exposure temporal variation and may enable other time-
varying covariates to be incorporated (Chen et al. 2015).

Only two reviewed studies took exposure measurement error
into account in their statistical methodology (Claus Henn et al.
2016; Heilmann et al. 2006) (Table S3). For incorporating mea-
surement error into statistical models, numerous applicable meth-
ods exist that form part of an extensive statistical literature
dealing with this issue (e.g., Carroll et al. 2006; Gustafson et al.
2003; Thomas 2009). An exhaustive review is outside the scope
of this article, but we present SEM and BHR as examples. SEM
(used by Heilmann et al. 2006) enables the simultaneous model-
ing of a system of multiple outcomes and exposures that are
measured with error (Table 2) (Grandjean et al. 2004; Sánchez
et al. 2005). SEM can correct for classical measurement error
when multiple exposure measurements are available (e.g., expo-
sure measured across multiple biological matrices or multiple
metabolites), under certain distributional and independence
assumptions (e.g., independent and normally distributed mea-
surement errors). This method was demonstrated by Budtz-
Jørgensen et al. (2002), in which a latent methylmercury expo-
sure variable was assumed to be measured with error by two
methylmercury biomarkers in umbilical cord blood and mater-
nal hair. This approach is purported to correct for bias due to
both laboratory imprecision and biological variation (Grandjean
et al. 2004); however, as discussed above, SEMs have been
criticized for their susceptibility to misspecification and reli-
ance on strong causal and parametric assumptions that may lead
to severe biases (VanderWeele 2012). BHR provides a flexible
framework for correcting for bias due to measurement error, by
treating exposures as latent variables and specifying additional
submodels for the measurement error and prior (Gustafson et al.
2003; Muff et al. 2015; Richardson et al. 2002). Correcting
measurement error bias requires prior knowledge of the mea-
surement error mechanism (e.g., classical or Berkson) and the
measurement error variance from repeated measures, external
studies, or expert knowledge (Gustafson et al. 2003; Muff et al.
2015). Where prior information is lacking, sensitivity analysis
may allow examination of the extent to which inferences are
affected by measurement error correction.

Identifying Windows of Exposure Susceptibility in
Mixtures Analyses
The challenges in identifying vulnerable gestational windows in
mixtures analyses are considerable. Teasing out the independent

effects of multiple correlated exposures at multiple times, which
may have nonlinear relationships with the outcome, may be an in-
tractable problem when the number of exposures is large relative
to the sample size. Consequently, most of the reviewed studies
that compared windows of exposure susceptibility analyzed time
points separately in parallel cross-sectional models (e.g., Erkin-
Cakmak et al. 2015; Gascon et al. 2015a) (Table S3). Although
this approach is straightforward, it does not allow for formal tests
of differences in effect estimates across windows and may result
in bias if exposure is not uniform throughout the window
(Sánchez et al. 2011). Missing data may further hamper compari-
sons, if effect estimates at separate time points are based on dif-
ferent subsets of the data (Chen et al. 2015; Sánchez et al. 2011).

Several of the reviewed studies analyzed multiple exposures at
multiple times in one regression model (e.g., Jacobson et al. 2015;
Roen et al. 2015) (Table S3). Although this approach may enable
the estimation of independent effects, estimates may be based on a
reduced sample if a complete-case analysis is conducted due to
missing exposure data at varying time points across individuals
(Chen et al. 2015; Sánchez et al. 2011). The interpretation of some
effect estimates may be temporally invalid (Chen et al. 2015); e.g.,
the effect of prenatal exposure controlling for postnatal exposure.
Additionally, prenatal effect estimates may be subject to overad-
justment bias if postnatal exposure is on the causal pathway
between prenatal exposure and the outcome (Schisterman et al.
2009), which may be the case for persistent chemicals. Estimates
may also be affected by multicollinearity, although dimension
reduction methods may be used to address this (e.g., Maresca et al.
2016). Allowing prenatal exposure to be a determinant of latent
postnatal exposure in a SEM analysis, as performed by Heilmann
et al. (2006), is appealing; however, marginal structural models
(not reviewed here) may be better equipped to address time-
varying exposures and confounders while making fewer assump-
tions than SEMs (VanderWeele 2012).

Several additional methods have been suggested in the single-
exposure setting (Sánchez et al. 2011). Multiple informant mod-
els (MIM) may be used to jointly estimate separate regression
models for each window, allowing for formal testing of differen-
ces in effect estimates across windows (Sánchez et al. 2011).
Baek et al. (2014) extended MIM for hierarchical data with mul-
tiple correlated predictors, examining the school food environ-
ment and childhood obesity, an approach that may be applicable
to the study of several correlated chemical exposures over time.
Alternatively mixed models may be used with random intercepts
and slopes if exposure is measured in a sufficient number of occa-
sions to enable the estimation of exposure trajectories (Sánchez
et al. 2011). However, we are not aware of any studies that have
implemented these methods in the multipollutant setting, and
they may be limited to models of only a few exposures.

Two novel methods have recently been proposed for mixtures
analyses with numerous repeated exposure measurements. Lagged
WQSR can be used for modeling high-resolution exposure trajec-
tories where there is heterogeneity in the timing of exposure mea-
surement across individuals (e.g., from baby tooth biomarkers)
(Bello et al. 2017). Based on a mixed modeling framework, lagged
WQSR quantifies the magnitude and significance of the mixture
effect over time, enabling the identification of critical windows of
exposure susceptibility as well as the drivers of the association at
each time point (Bello et al. 2017). The method is also attractive
because of its robustness to missing values in exposure measures
over time; however, one caveat is that the direction of expected
effects of individual exposures on the outcome are required to be
homogenous (Bello et al. 2017). Tree-based distributed lag models
do not require homogeneity in the direction of expected effects but
can only quantify the combined explanatory power of exposures
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within a time window, not the direction of the mixture effect, and
are more suited to settings with uniformly timed exposure mea-
surement across individuals and datasets with no missing exposure
values (Bello et al. 2017). Neither method is able to quantify indi-
vidual exposure-effect estimates or interactions between mixture
components over time, whichwould require estimation of the com-
plex multidimensional exposure–response surface (Bello et al.
2017).

Synthesis and Recommendations
We have examined a variety of frequentist and Bayesian methods
performing dimension reduction, shrinkage, variable selection, sta-
tistical learning, or smoothing, which may be preferred to the use of
more established methods when modeling EDC mixtures. We con-
centrated onmethods that may be able to achieve the manifold goals
of mixtures analyses; however, few methods are able to achieve
multiple goals simultaneously. Twomethods developed specifically
for mixtures analyses in environmental epidemiology deserve spe-
cial mention: Both WQSR (Carrico et al. 2015) and BKMR (Bobb
et al. 2015) provide ameasure ofmixture health effects while identi-
fying drivers of the association, with the latter also accounting for
nonlinearity and interaction in multivariate exposure–response rela-
tionships. For multifaceted research questions assessing the health
effects of numerous correlated exposures, we suggest exploring
staged statistical methods (e.g., preconditioned LASSO or using
CART as a preprocessor; Sun et al. 2013), and leveraging the flexi-
bility offered by Bayesian methods such as BHM, BKMR, or
BART. However, method selection should be made with cogni-
zance of the dimensionality of the problem, the sample size, the abil-
ity to adjust for confounding, and the relative importance of each
goal to the research question, so prescriptive recommendations are
not possible.

Hypothesis tests should be conducted with awareness of mul-
tiple testing issues; methods for addressing multiple testing have
been discussed in depth elsewhere (Braun et al. 2016; Chadeau-
Hyam et al. 2013; Patel 2017). Multiple testing issues are inad-
equately addressed by many variable selection methods, so tools
for valid selective inference may need to be explored (e.g., Berk
et al. 2013; Lockhart et al. 2014; Meinshausen and Bühlmann
2010; Tibshirani et al. 2016). Moreover, the use of data-driven
model optimization approaches, such as k-fold cross-validation
for the selection of tuning parameters in penalized regression,
may lead to model selection instability and concerns regarding
the reproducibility of results (Lim and Yu 2016; Roberts and
Nowak 2014). Cross-validation selects a solution that optimizes
predictive performance but not necessarily performance metrics
for variable selection and parameter estimation (Lim and Yu
2016). We recommend considering methods that address estima-
tion stability (e.g., Lim and Yu 2016; Roberts and Nowak 2014);
focusing on both estimation stability and predictive performance
may improve false positive rates (Kirk et al. 2013; Lim and Yu
2016). Bayesian variable selection may also be highly sensitive
to prior specification (Coull et al. 2015) and involve uncertainty
in the choice of variable selection thresholds (Bleich et al. 2014);
therefore, careful specification of priors and hyperparameters is
needed.

One of our key conclusions is that the selection of chemicals to
analyze as amixture should bemadewith care. Toomany chemicals
in one model may increase the risk of multicollinearity, and no sta-
tistical method is able to separate the signals of very highly corre-
lated exposures without further information. Conversely, too few
chemicals in one model risks bias from omitted copollutant con-
founders, with the possibility of detecting an association that is due
to a correlated copollutant (Braun et al. 2016). Collinearity can exac-
erbate bias due tomodel misspecification, so careful elucidation of a

causal framework prior to data analysis is essential (Schisterman
et al. 2017). These considerations are important in the study of
EDCs, where data on important confounders, such as endogenous
hormone levels (Kortenkamp 2007), dietary exposures [e.g.,
omega-3 fatty acids (Engel and Wolff 2013), phytoestrogens,
mycoestrogens], and the microbiome [which is involved in xenobi-
oticmetabolism (Dietert and Silbergeld 2015)], may be unavailable.
Moreover, bias due to the joint effect of multiple unmeasured (even
weak) confounders can be substantial, especially if they are mutu-
ally correlated but independent of the included confounders
(Groenwold et al. 2016), which may be the case when one class of
EDCs is the focus of an analysis and other important classes of
EDCs are excluded. For the reasons outlined, opportunistic selection
of variables with the assumption that small data sets will necessarily
reveal true patterns in exposure–health associations should be dis-
couraged, in favor of careful consideration of biological mecha-
nisms, modes of action, phenomenological similarity, and the
potential for interaction, when combining EDCs (Kortenkamp
2007).

We stress the importance of considering exposure measure-
ment error in studies of chemical mixtures. Failure to do so may
bias effect estimates toward or away from the null, to an unpre-
dictable extent (Zeka and Schwartz 2004). Exposure measure-
ment error can be reduced for nonpersistent chemicals by taking
multiple exposure measurements during a hypothesized window
of susceptibility; these measurements can be pooled and assayed
once per individual to reduce costs (Perrier et al. 2016).
Nevertheless, mixture components are likely to be measured with
differing degrees of measurement error, so we encourage selec-
tion of a statistical method that explicitly accounts for measure-
ment error or exploring the impact of measurement error on
effect estimates through sensitivity analysis, rather than rational-
izing the sequelae of disregarding this important issue (Thomas
et al. 2007; Woodruff et al. 2009).

Limitations
Our findings should be considered in the context of the following
limitations. Our results are limited to studies that stated that they
were analyzing multiple exposures in the abstract. Although this
approach may not have identified all of the existing EDC-
mixtures studies, we are likely to have captured the majority of
studies that used nonconventional statistical methods, as these
studies are more likely to have expressed their methodological
novelty in the abstract. In addition, we performed a targeted
review of the statistical literature that did not include all possible
statistical methods for studying the health effects of prenatal
EDC mixtures.

Conclusions
Biomonitoring studies suggest that pregnant women are exposed
to multiple EDCs simultaneously. This finding, coupled with tox-
icological evidence of adverse developmental effects following
prenatal exposure to mixtures of EDCs and the possibility of
underestimating effects if exposures are studied one at a time,
provides compelling motivation for the analysis of EDC expo-
sures in combination rather than separately. Understanding the
health risks of exposure to EDC mixtures requires taking into
account the potential for copollutant confounding and interaction
between exposures, prudent selection of mixture components, as
well as acknowledging that analyses based on simplifying
assumptions of the nature of EDC exposure–response relation-
ships may have unintended consequences. To this end, we exam-
ined the impact of methodological choices and assumptions
regarding additivity, linearity, and exposure measurement timing
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on the appropriateness of causal inference in the study of prenatal
exposure to EDC mixtures. We concurrently identified multiple
applicable statistical methods and compared their strengths and
weaknesses for modeling these exposures. Although several
reviews have discussed multipollutant statistical methods in air
pollution epidemiology and for the analysis of exposome–health
associations (Billionnet et al. 2012; Davalos et al. 2016; Patel
2017; Stafoggia et al. 2017), none to our knowledge have placed
them in the context of the specific statistical and epidemiological
challenges facing the study of prenatal exposure to EDCs.
Nevertheless, our recommendations may also apply to studies of
postnatal exposures or exposures to environmental chemicals not
acting through the endocrine system.

Epidemiological studies are uniquely placed to provide insight
into the potential human health risks of complex EDC mixtures
that are more representative of real-world exposure patterns than
the analysis of single chemicals. Understanding the role of prenatal
exposure to EDC mixtures on development may help to solidify
evidence for the suspected developmental etiologies of many
endocrine-sensitive outcomes in childhood and adulthood, the
increasing incidence of which remains unexplained (Diamanti-
Kandarakis et al. 2009). We hope that this resource will aid
researchers in selecting the appropriate analytical strategies and
statistical methodology in this vital research area.
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