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1 Introduction 
 
 
Land use and land cover change (LUCC) has important impacts on the functioning of socio-
economic and environmental systems with important tradeoffs for sustainability, food security, 
biodiversity and the vulnerability of people and ecosystems to global change impacts. Land cover 
change refers to the complete replacement of one cover type by another, e.g. deforestation. Land 
use change includes the modification of land cover types, e.g. intensification of agricultural 
management or other changes in the farming system. Land use and land cover changes are the 
result of the interplay between socio-economic, institutional and environmental factors. Key to 
understanding LUCC is to recognize the role of individual decision makers bringing about 
change, through their choices, on land resources and technologies. A unifying hypothesis that 
links the ecological and social realms, and an important reason for pursuing integrated modelling 
of LUCC, is that humans respond to cues both from the physical environment and from their 
sociocultural and economic contexts. Therefore, much LUCC research is devoted to the analysis 
of relations between land use and the socio-economic and biophysical variables that act as the 
‘driving forces’ of land use change (Turner II et al. 1993; Turner II et al. 1995; Lambin et al. 
2001). Driving forces are generally subdivided into two groups: proximate causes and underlying 
causes. Proximate causes are the activities and actions that directly affect land use, e.g. wood 
extraction or road building. Underlying causes are the ‘fundamental forces’ that underpin the 
proximate causes, including demographic, economic, technological, institutional and cultural 
factors (Geist and Lambin 2002). In most cases, a wide range of factors is used to represent the 
underlying causes; examples include soil suitability, population density, rainfall and accessibility. 
They can also be differentiated into ‘driving’ forces that are expected to change over time, such as 
population density and market conditions, and ‘conditioning’ factors that are relatively stable over 
time but may be spatially differentiated, such as agroclimate and cultural context. This allows 
differentiation into spatial and temporal expectations of change. At different scales of analysis 
different driving forces have a dominant influence on the land use system: at the local level this 
can be the local policy or the presence of small ecologically valuable areas; at the regional level 
distance to the market, port or airport might be the main determinant of land use change 
(Verburg et al. 2003). 
Where driving and conditioning factors exhibit a high degree of spatial variation, such as in the 
cases of soil conditions and market access, this spatial variation gives rise to spatially distinct land 
use patterns related to the variations in social, economic and environmental context. Given the 
importance of spatial variation, LUCC research frequently uses techniques that analyse the 
relationship between land use and its supposed driving and conditioning factors based on 
spatially differentiated data. Empirical techniques are used to verify hypotheses of driving factors 
and quantify relations between driving factors, the decision maker and land use. The actual use of 
empirical techniques differs: often the prime interest of social scientists is explanation of 
observed land use changes, while ecologists focus on prediction. Whereas the use of spatial 
analysis for explanation enhances our understanding of the processes underlying LUCC (Nelson 
2002), temporal prediction helps to explore the past and future importance of driving factors and 
model future land use dynamics (Briassoulis 2000). By predicting the spatial and temporal 
distribution of changes we can target areas for intervention, and develop appropriate, location-
specific, intervention strategies. Therefore, spatially explicit analysis is increasingly used to predict 
landscape change and is often evaluated both in terms of conventional inference on variable 
coefficients and goodness of fit, and with respect to ability to predict actual landscape change 
(Pontius et al. 2004; Nelson and Geoghegan 2002).  
 
It should be noted that the same spatial methods are generally equally relevant for farming system 
and technology choices that are not necessarily closely related to land use, such as changes in 
choices of livestock breed or crop variety. The spatial and temporal changes in driving and 
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conditioning factors that lead to LUCC also lead to changes in determinants of technology 
choice. For that reason, these analytical methods should be considered as important for a wide 
variety of analyses of farming systems change. 
 
 
Scope of this report 
 
A wide range of methods for spatial analysis exists and LUCC researchers often face similar 
problems (Rindfuss et al. 2004). Also, the use of statistical methods in the field of LUCC requires 
specific strategies, as well as a framework for understanding the role of the decision maker. In 
statistical textbooks the different techniques are often described in detail, without, however, a 
specific focus on land use change issues. This report intends to provide an overview of empirical 
methods that are frequently used for the analysis of spatial patterns of LUCC based on a survey 
of recent literature. Because these methods are relevant for wider analysis of system change 
beyond LUCC, some examples of analysis of livestock systems are included. The descriptions are 
not detailed, with the emphasis being instead on explaining the concepts in simple terms, with the 
aid of illustrations of these methods in land use research. The references refer to detailed 
descriptions, applications or textbooks. The methods discussed in this report aim at uses of 
different types of spatially differentiated data at different scales, including both household- and 
pixel-level analysis. Furthermore, a number of issues important to spatial analysis of land use and 
farming system change are discussed, including data representation, spatial autocorrelation and 
validation issues. This information should facilitate the application of these methods in LUCC 
and other studies and provide an overview of the possibilities and limitations of empirical 
methods to unravel the complexity of spatial variation in land use and farming system change.  
 
 
History of spatial analysis of LUCC 
 
Scholars have offered different explanations for variations in land use. In the early 19th century, 
von Thünen (1966) analysed the location of agricultural land as a function of distance to market 
centres and transport cost. According to him, agricultural intensity decreases with increasing 
distance from market centres. This explanation is a foundation upon which theories and 
explanations of land use are built, though it overlooks several other biophysical, socio-economic 
and institutional factors influencing land use (Rasul et al. 2004). The basic von Thünen model is 
illustrated in Figure 1.1. In a featureless plain, surrounding a central market, it is supposed that 
two crops are grown – wheat and vegetables. All locations have identical production 
characteristics, but transport costs to the central market, with exogenously determined prices, 
differ per crop. The price of vegetables in the central market (a) is higher than the price of wheat 
(b), but vegetables are more expensive to transport. Hence, the farm vegetable price falls more 
quickly than the farm wheat price as distance from the market increases. Beyond point (c), the 
farm price of wheat is higher than the price of vegetables. The result is a series of concentric rings 
of land use around the central market, indicated in the bottom part of the graph. In the shaded 
area, vegetables are grown; in the next ring, wheat. Beyond (d), neither crop is profitable and land 
is left in its natural state. Central to this model is the assumed rational economic behaviour of the 
farmer decision maker.  
Even though the productive characteristics of the farms are assumed to be identical, the effect of 
transport cost on farmer incentives and choices causes a decline of land rents with distance from 
the central market. The basic model of von Thünen represents a featureless plain. Later the 
model has been adapted to take into account differences in land productivity, prices, transport 
costs and multiple markets, which makes the analysis more complex but the basic insights of the 
importance of location and transport cost in determining farmer incentives and so land use 
remain (Alonso 1964; Nelson 2002). The von Thünen model provides a simplified representation 
of the location decisions that have led to the diverse patterns of land use that cover the earth’s 
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surface. The complexity of processes determining the current land use patterns and the locations 
of future changes in land use cannot be fully understood from a such a simple theoretical model, 
although it established the basic spatial economic framework for understanding land use and 
farming system change (Figure 1.1). Different studies have elaborated on the model of von 
Thünen to include a wider range of conditions (Alonso 1964; Walker 2004; Walker and Solecki 
2004). Other disciplines have also contributed to a theoretical analysis of the processes leading to 
land use patterns, such as the ‘new’ economic theory of Krugman (Fujita et al. 1999; Krugman 
1999). Although these theories do contribute to the explanation of LUCC, there is no single all-
embracing theory to explain the variety in land use patterns. Therefore empirical methods are 
frequently used to explore land use change data to find evidence for the proximate causes of land 
use change and its location (Turner II et al. 1990).  
Different empirical approaches have been suggested to explain the spatial patterns of LUCC, 
some strictly following the (economic) theoretical framework while others allow a broader 
exploration of the correlative structure between land use patterns and the spatial patterns of land 
use. A well-cited example of an empirical analysis based on the von Thünen model is the study of 
Chomitz and Gray (1996) for land use in Belize.  
 

 
Figure 1.1. The von Thünen model of farm price, land use and land rent (Nelson 2002) 

 
 
Contents of this report 
 
This report provides an overview of the statistical and empirical techniques used in the spatial 
analysis of LUCC. The analysis of land cover patterns and changes is discussed, as well as changes 
in land use and farming systems. Several livestock system examples are included as representative 
of farming system change that may not be manifested in LUCC, but to which the same analytical 
methods can be applied. Chapter 2 provides an overview of data types that are used for the 
analysis of spatial patterns and problems related to the collection and processing of these data. 
Chapter 3 describes and discusses different methods that can be used for the analysis of spatial 
patterns. The main focus is on techniques for data reduction, structure detection and regression 
analysis, but Bayesian statistics, multilevel statistics and neural networks are also discussed. All 
methods are illustrated with examples from peer-reviewed articles of LUCC studies that adopted 
the techniques. Chapter 4 discusses several topics that are frequently encountered in spatial 
modelling studies, such as multicollinearity and spatial autocorrelation. The final chapter gives a 
short overview of the challenges of spatial analysis of land use patterns. 
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2 Data sets for spatial analysis of land use and cover 
change 

 
 
2.1 Introduction 
 

This chapter provides a short overview of the different types of data that are used in spatial 
analysis of LUCC. Essential to the discussion of spatial data is the definition of spatial scale. Scale 
is the spatial, temporal, quantitative or analytical dimension used to measure and study any 
phenomenon (Gibson et al. 2000). Definitions of other key terms related to scale are listed in 
Table 2.1. Issues related to scale are of fundamental importance for LUCC studies (Veldkamp et 
al. 2001; Verburg and Chen 2000; Walsh et al. 2001; McConnell and Moran 2001). Choices 
concerning scale, extent and resolution critically affect the type of patterns that will be observed, 
because patterns that appear at one level of resolution or extent may be lost at lower or higher 
levels. In addition to the explanations derived for phenomena at any one level, scale is central to 
attempts to generalize from one level or scale to another, i.e. upscaling or downscaling (Gibson et 
al. 2000). 
As a result of the many interacting processes land use systems rarely or never produce a single 
scale that can be regarded as correct or optimal for measurement and prediction. Although for a 
specific data set an optimal scale of analysis might exist where predictability is highest, 
unfortunately this is not consistent through analysis. Therefore, it might be better not to use a 
priori scales of observation, but rather extract the observational scales from a careful analysis of 
the data. 
 
Table 2.1. Definitions of key terms related to the concept of scales following Gibson et al. (2000) 
Term Definition 

Scale The spatial, temporal, quantitative or analytical dimensions used to measure and study any 
phenomenon. 

Extent The size of the spatial, temporal, quantitative or analytical dimensions of a scale. 
Resolution (grain) The precision used in measurement. 
Hierarchy A conceptually or causally linked system of grouping objects or processes along an analytical 

scale. 
Levels The units of analysis that are located at the same position on a scale. Many conceptual scales 

contain levels that are ordered hierarchically, but not all levels are linked to one another in a 
hierarchical system. 

Absolute scale  The distance, time or quantity measured on an objectively calibrated measurement device. 
Relative scale A transformation of an absolute scale to one that describes the functional relationship of 

one object or process to another (e.g. the relative distance between two locations based on 
the time required by an organism to move between them). 

 
Hierarchies 
A fundamental difference exists between functional levels, e.g. household or plot, and spatial 
units, e.g. polygons or pixels (Table 2.2). Functional levels cannot always directly be linked to 
spatial units of analysis. Both have a different hierarchy: for example, a household has an 
influence at the plot, field and farm level and sometimes even at the watershed level. Scale is 
therefore a continuum, because it moves between discrete yet often unknown or not recognized 
levels of organization. 
 
The most obvious conclusion from a quick scan through quantitative LUCC studies is that most 
studies opt for one level of analysis exclusively (Verburg, Schot et al. 2004). Often, this choice is 
based on arbitrary, subjective reasons or the disciplinary background of the researcher (Gibson et 
al. 2000; Watson 1978). Researchers in the social sciences have a long tradition of studying 
individual behaviour at the human-environment interface, making the individual the level of 



16 

analysis. Others even analyse the different interacting processes that lead to decision making by 
individuals, e.g. those involved with social psychology (Wester-Herber 2004). 
Rooted in the natural sciences rather than the social, geographers and ecologists have focused on 
land cover and land use at the macro scale, spatially explicated through remote sensing and 
geographic information systems (GIS), and using properties of social organization and the 
environment at the meso and macro scales in order to identify factors connected to observed 
land use patterns. Doing this they focus on the system dynamics rather than on the behaviour of 
the individual components that make up the system. In the social sciences analysis at the meso 
and macro levels are sparser; examples are macroeconomic studies, and a number of 
macrosociological analyses. 
 
Table 2.2. Hierarchies of observations 
Functional/organizational level Vector-based observations Pixel-based observations  

Individual Plot 1 m 
Household Field 10 m 
Population Farm 20 m 
Community Watershed 100 m 
Ecosystem District 1 km 
Landscape Province 5 km 
Region Country 10 km 

 
Spatial and temporal representation of LUCC data 
The most familiar data source for LUCC research is maps, often derived from remote sensing 
information. However, other sources of data are also frequently used. While the concepts of 
extent and resolution directly apply to map data those are not terms most social scientists use 
frequently. But, all data implicitly have a resolution and an extent. The resolution is the smallest 
unit of analysis (individual, household, community) and the extent is the aerial dimension for 
which it is relevant (village, region, country). Sociologists often use data collected at the level of 
individual households, either aggregated to administrative regions as part of a census, or collected 
by specific questionnaires. Questionnaires are especially useful to obtain management-related 
data, e.g. crop rotations or years under fallow and household-specific conditions that might 
influence decision making. Questionnaires can also give insight into the driving factors of land 
use change. Issues related to questionnaires are gender, time coverage and sample size. 
Depending on the cultural circumstances the outcome of a questionnaire might be different when 
filled in by a woman instead of a man, who is normally the head of a household. One might 
therefore consider administering separately the household head and his (or her) spouse to acquire 
information (Pan et al. 2004). 
Although it may be difficult to adequately represent land cover types on a map, farming systems 
that include livestock are even more difficult to map (Thornton et al. 2003). Livestock cannot 
directly be identified from remote sensing data, while at the same time livestock are able to move 
around in the landscape. At small scale some livestock systems such as zero grazing can be 
allocated relatively easily (point data), but other livestock systems, such as free-ranging cattle, are 
much more complex, since they cannot be assigned to a specific area. At a global scale Kruska et 
al. (2003) developed a livestock production system map according to the classification put 
forward by Seré and Steinfeld (1996). The method was based on agroclimatology (growing period 
length), land cover and human population density. The classification is based on two main 
classes: solely livestock systems and mixed livestock systems. Farming systems that are completely 
based on livestock are subdivided into grassland-based systems, landless monogastric systems 
(e.g. poultry enterprises in Asia) and landless ruminant systems (e.g. zero grazing in Kenya). The 
mixed farming systems are subdivided into rain-fed mixed farming systems and irrigated mixed 
farming systems. This classification was further elaborated by combining it with the agroclimatic 
breakdown. In mapping the classification use was made of data showing the spread of human 
population, land cover, length of growing period, distribution of irrigated areas, the Nighttime 
Lights of the World database and agricultural census data. 
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Verburg and Van Keulen (1999) used subnational data from agricultural surveys in combination 
with a simulation model to study the changes in the spread of livestock in China. At more 
detailed spatial scale Burnsilver et al. (2003) studied the actual movement of livestock throughout 
the season using Global Positioning System (GPS) tracking to obtain data for spatial analysis of 
the relation between environmental conditions and livestock. Another source of livestock and 
wildlife data is aerial surveys, as used in a study by De Leeuw et al. (2001). 
 
From the perspective of survey research designs, many of the interesting research questions have 
to do with change over time, which in turn pushes us to have temporal depth in the variables of 
interest. If land cover data are coming from one of the frequently used sensors, such as Landsat 
TM, it is possible to achieve images from different years or time periods. On the social survey 
side, however, there are many sampling issues involved in obtaining temporal depth. Most 
household surveys are carried out only once; to detect changes in land use and driving factors, a 
survey with a longer timespan should be applied. One issue is whether to use a cross-sectional or 
longitudinal design. Cross-sectional designs are easier to administer because it is not necessary to 
follow over time sample households, which might move away from the study area or change in 
size, composition or character. Moreover, in a longitudinal design, repeated visits to the same 
household may affect the quality of household responses and, depending on the circumstances, 
the effect could be positive or negative. On the other hand, cross-sectional designs suffer from 
lack of comparability between sampled households at two time points, especially if the sample 
size is not large enough. Walsh et al. (2003) describe a good example of such a longitudinal 
survey. For a study area in north-east Ecuador a household survey was carried out in 1999, which 
covered precisely the same geographical sites as a prior 1990 study. According to a two-stage 
sampling design a sample of 878 households was interviewed. 
 
 
2.2 Geographic representation of data 
 
2.2.1 Point data 
 
Point objects have a position in space but have no length, which makes them zero-dimensional 
objects that specify a geometric location. One coordinate pair of XY values specifies such a 
location. Points are used to locate geographical phenomena at that location on a map or to 
represent map features too small to be shown as lines or areas at the scale of the map. In LUCC-
related studies most point data are based on household surveys. In many older studies no 
geographic coordinates of these households were noted, which makes it difficult to link these 
data with geographic features presented in remote sensing or maps. Nowadays, it is common 
practice for social scientists to georeference the locations of households with a GPS. Through a 
basic handheld receiver one can determine the X- and Y-coordinates with a precision of a few 
metres without the use of maps or any other equipment. The coordinates can be used to locate 
the household on a map or combine the data with other georeferenced information.  

An example of a study using point data is provided by Staal, Baltenweck et al. (2002) who 
demonstrate that GIS-derived measures of spatially differentiated factors can be incorporated 
into a standard household adoption model, which is based on (georeferenced) household-level 
data, and can potentially differentiate the multiple impacts of location on choices of agricultural 
technology. The method is applied to smallholder dairy farming in Kenya. The approach 
integrates spatially referenced household data (point data) with information derived from digital 
surfaces and infrastructure maps (field data). The unit of observation is a household, rather than a 
spatial grid cell or administrative unit. 
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2.2.2 Polygon data 
 
Within a vector-based geographic representation polygons are continuous two-dimensional 
objects, which may be homogeneous or divided internally into areas with different characteristics. 
Each polygon is encoded in the database as a sequence of locations that define the boundaries of 
each closed area in a specified coordinate system. The attributes of each polygon, such as land 
cover or soil type, are stored in the database as well. Besides normal polygon data such as soil and 
land use maps two other types of polygon data are commonly used in LUCC analysis: aggregated 
household data and census data. 
 
Aggregated household data 
This type of polygon data is created by the aggregation of household data to the village level. The 
approach will be illustrated with an example of Mertens et al. (2000) in the tropical forest zone of 
East Province, Cameroon. They performed statistical analyses that combine remotely sensed land 
cover change data and household information at the scale of villages. The household and remote 
sensing data were therefore aggregated to a common spatial representation at the village level. 
Village territories were represented by polygons. Two distances were considered in the definition 
of the boundaries that define the polygon representing the village territories: (i) the spatial extent 
of each village into the forest area, and (ii) the spatial extent of each village along the road 
network between each pair of villages. Since the villages are close to each other in the study area, 
the boundary between two adjacent villages along a road was set at a distance from each village 
such that the ratio of the distance from the village to that boundary and the population of that 
village was equal for the two villages. In other words, the spatial extent of the agricultural area of 
a village along a road was proportional to the population of the village. The boundary of the 
agricultural area of each village from the road into the forest area was defined at a 4-km distance 
from each village centroid. This distance is assumed to represent the maximum distance travelled 
from the village to the agricultural plots, based on a field survey. Different procedures were 
considered for the aggregation of the household data to village level, depending on the type of 
variable (i.e. continuous, categorical and binary) and the desired information (Table 2.3). The sum 
and the mean functions were applied for continuous variables. The mode, median and frequency 
of occurrence functions were applied for categorical variables. 
 
Table 2.3. Example of methods for spatial aggregation of household survey variables to the village level 
(based on Mertens et al. 2000) 
Types of variables Values ranges Method of aggregation 

Continuous (type A) 
(e.g. head of household age, fallow period) 

0 to n Mean 

Continuous (type B)  
(e.g. number of created plots, area of coffee cultivated, production of cocoa, 
number of workers) 

0 to n Sum (divided by the 
sampling coefficient) 

Categorical (type A)  
Categories (e.g. level of education, matrimonial status, main activity, origin of 
migrants, crop preferences) 
 

1 to n Mode 

Categorical (type B) 
Binary variables (e.g. creation of plots, abandonment of plots, increased 
number of plots, native villager/migrant) 
 

Binary Mode and frequency of 
occurrence 

Categorical (type C)  
State of a variable compared to the previous period (e.g. number of workers, 
area cultivated for plantain, production of food crops) 

Higher, equal 
 or lower  

Median and frequency of 
occurrence 
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Census data 
Census data are mostly presented at the level of administrative units, which can be represented by 
a polygon. This can be the province, district, county, village or census block level, depending on 
the country, administrative organization and the type of data. Census blocks consist of polygons 
defined by relatively fixed features on the land (e.g. roads, rivers, railroad tracks, lake shores) and 
other features such as municipality boundaries, property lines and short, imaginary extensions of 
streets and roads. While having the disadvantage of being polygons of widely varying size and 
shape, they often represent the highest spatial resolution of any data published from a regular 
census (Radeloff et al. 2000). Population censuses attempt to enumerate all individuals within a 
census unit, and typically they are household based, which means that households are 
enumerated, and then information is collected on all individuals living in each household. There 
are three problems with censuses from the perspective of linking households to the land for 
which they are major decision makers. First, censuses are conducted infrequently, with once a 
decade being the most common periodicity. Second, in virtually all countries, household-level 
census data are considered confidential and not released to LUCC researchers. Rather, the data 
are aggregated to a high enough level (minimally census blocks) to protect confidentiality and 
then released, negating the possibility of examining individual households. Third, with the 
exception of some agricultural censuses, the typical census does not have links to the land the 
household owns or uses (Rindfuss, Walsh et al. 2003). Furthermore, the administrative units at 
which census data are presented often do not correspond to biogeophysical units (e.g. soil 
mapping units) or the units used to represent land use. Census data can be used for direct analysis 
as polygons, but might also be transformed to a common grid format for raster-based modelling. 
 
A typical example of the use of census data is provided by Wood and Skole (1998), who describe 
a large-scale study on deforestation of the Brazilian Amazon region in which satellite-based 
estimates of deforestation were combined with census estimates of demographic and economic 
structure. A data set was constructed by merging, in a GIS, the satellite- and census-based 
variables for each of the municipios that comprise the Amazon region in Brazil. Indicators of 
demographic and economic structure were derived from two population and agricultural 
censuses. The satellite data were aggregated for each municipio polygon to correspond with the 
census data. Based on this data set linear regression models were constructed to determine the 
relation between deforestation and a set of demographic and economic indicators.  
 
Another example is from Cardille and Foley (2003), who used a hybrid method combining 
remote sensing and census data. They used agricultural census data from Peru and Brazil to create 
municipio-level maps of three major categories of agricultural land use activity: cropland, natural 
pasture and planted pasture. For the cropland category basic census variables were available, such 
as the planted area of annual and perennial crops, temporarily fallow area associated with 
cropland and land harvested but not yet replanted. The notion of a systematic relationship 
between satellite-derived land cover categories and important ground-censused agricultural land 
use activities suggests a statistical blending that could distribute agricultural land use activity into 
those areas probably being used for cropland and pasture. A regression tree was generated that 
statistically linked the census data and land cover map. Unlike a simple renaming, e.g. the wooded 
grassland category to be planted pasture, the regression tree-based technique determined the 
statistical relationship of agricultural density and the fraction of each category within reporting 
polygon-based census units.  
 
 
2.2.3 Raster data 
 
Raster data are an abstraction of the real world whereby spatial data are represented by a matrix 
of cells or pixels, with spatial position implicit in the ordering of the pixels. With a raster data 
model, spatial data are not continuous but divided into discrete units. This makes raster data 
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particularly suitable for certain types of spatial analysis and modelling. Many models use raster 
data for the simulation of LUCC because grid cells are all equally sized, well-defined units, which 
makes modelling easy. Furthermore, most remote sensing-derived data, e.g. satellite images, are 
based on pixels, which provide the basis for raster data. Also other data types, e.g. digital 
elevation models, are nearly always in raster format. Vector data can be easily converted to raster 
data. Finally, for LUCC analysis there is no common spatial unit at which land use information 
and data on the socio-economic and biophysical conditions can be jointly presented, since all 
features have their own specific units of spatial representation (e.g. soil mapping units or 
administrative units) that do not overlap. The raster format is a common format by which all data 
can be represented. 
 
Two different representations of land use and land cover by raster data can be distinguished 
(Verburg et al. 2002). In general, for study areas with a large extent the spatial resolution of 
analysis is coarse. This is a consequence of the impossibility of acquiring data for land use and all 
driving factors at finer spatial resolutions for large areas of land and the computational 
constraints of very large data sets. A coarse spatial resolution requires a different data 
representation than the common representation for data with a fine spatial resolution. In fine 
resolution, grid-based approaches, land use is defined by the most dominant land use type within 
the pixel. However, such a data representation would lead to large biases in the land use 
distribution at coarse scales as some class proportions will diminish and other will increase with 
scale, depending on the spatial and probability distributions of the cover types (Moody and 
Woodcock 1994). In applications at the national or continental level land use is represented by 
designating the relative cover of each land use type in each pixel, e.g. a pixel can contain 30% 
cultivated land, 40% grassland and 30% forest. This data representation is directly related to the 
information contained in census and other sources of aggregated data: for each administrative 
unit, census data denote the number of hectares devoted to different land use types. 
Furthermore, this data representation is not sensitive to aggregation errors. When studying areas 
with a relatively small spatial extent, land use data are often based on land use maps or remote 
sensing images that denote land use types respectively by homogeneous polygons or classified 
pixels. When converted to a raster format this results in only one dominant land use type, 
occupying one unit of analysis. The validity of this data representation depends on the patchiness 
of the landscape and the pixel size chosen. Most subnational land use studies use this 
representation of land use with pixel sizes varying between a few metres up to about 1x1 km 
(Verburg et al. 2002).  
 
The two different data representations are shown in Figure 2.1. The CLUE approach (Verburg et 
al. 1999) is an example of a LUCC method that uses subpixel information on land use in its 
countrywide and continental applications. Other examples of LUCC studies that use mixed pixels 
are the land use scanner (Hilferink and Rietveld 1999) and the ATEAM land use model 
(Rounsevell et al. 2005). Most LUCC analysis is, however, based on the representation of land use 
by its dominant land use. Both data representations can theoretically also be applied on polygon 
data. 
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Figure 2.1. Example of different data representations of the same landscape (Verburg et al. 2002) 

 
 
Remote sensing data 
Among the most frequently used raster-based data in land cover analysis are remote sensing data. 
Therefore they deserve some extra attention. Remotely sensed data include information gathered 
digitally by aerial photography and satellites. Solar radiation is reflected from the surface of the 
earth, e.g. from soil, water, vegetation and buildings, to sensors that measure the intensity of 
different frequencies. Each type of surface reflects or absorbs different frequencies. Hence by a 
careful choice of sensor type it is possible to make inferences about what is on the surface of the 
earth. The most commonly used satellites and sensors, with their characteristics, are listed in 
Table 2.4. 
 
Table 2.4. Selected satellites and their characteristics (Nelson and Geoghegan 2002) 
Satellite/sensor Repeat rate Area of image Pixel dimension Frequencies 
Landsat/MSS 16–18 days 150x150 km 80 m Green, red, infrared 
Landsat/TM 16–18 days 150x150 km 30/15 m Blue, green, red, near infrared, 

mid infrared, thermal 
AVHRR 0.5 day 800x800 km 1.1 km Green, red infrared, lower 

frequencies 
IKONOS 1–3 days Variable 1–4 m Green, red, infrared 
Quickbird 1–3 days 16x16 km 0.6 m Blue, green, red, near infrared 
SPOT 3–6 days 60x60 km 10–20 m Green, red, near infrared 

 
All remote sensing techniques primarily deliver images of land cover and not of land use. Land 
use is characterized by the arrangements, activities and inputs people undertake in a certain land 
cover type to produce, change or maintain it, while land cover is the observed (bio)physical cover 
on the earth’s surface (FAO 1997). Land use defined in this way establishes a direct link between 
land cover and the actions of people in their environment. Land use typically causes distinctive 
patterns of land cover. To some degree inferences about land use can be made from these 
patterns of land cover, but for a full land use classification ground information is essential. 
Each land cover type has different spectral characteristics, absorbing some frequencies of light 
and reflecting others. With an understanding of the reflectance characteristics and some ground 
observations it is possible to use remotely sensed data to make inferences about the type of land 
cover (and with some additional uncertainty land use). There are two common ways in which this 
is done for agriculture and related natural resource questions: vegetative indices and land cover 
clustering and classification techniques (Nelson and Geoghegan 2002). 
The normalized difference vegetation index (NDVI) uses multispectral scanner (or equivalent) 
bands 2 (0.58–0.68 µm) and 4 (0.725–1.1 µm) to measure the absorption and reflectance of solar 
radiation. In most cases, NDVI is correlated with photosynthesis. Because photosynthesis occurs 
in the green parts of plant material the NDVI is normally used to estimate green vegetation. 
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Clustering techniques operate by assuming that pixels with similar spectral characteristics have 
the same land cover. Two general approaches are used: unsupervised and supervised 
classification. With unsupervised classification only spectral information is used in the analysis 
(no field observations are used). One or more algorithms are used to find locations with similar 
spectral (and sometimes other) characteristics. A more widely used set of algorithms involves 
distance measures. The general approach is to start with an initial sample, choose clusters so 
within-cluster distance is minimized and across-cluster distance is maximized, then assume a 
normal distribution and use a maximum likelihood estimator to assign remaining pixels to 
clusters. Supervised classification involves the use of ground-control points, called ground-truth, 
where the true land cover is identified. These locations are then used to guide the classification 
process, say by identifying all locations whose combinations of characteristics are within a certain 
spectral distance from those of the ground-truth points (Nelson and Geoghegan 2002). 
 
 
 
2.3 Linking different data representations 
 
The previous sections described and discussed three types of data representation. The choice of 
which data representation to use is based on three key questions. What is the objective of the 
study, what is the level of explanation and what type of source data is available? Table 2.5 gives a 
summary of some possible answers to these questions for the three data representations. Besides 
choosing a certain data representation, one might also be interested in a combination of different 
data types, which leads to the question of how to link those data representations. This often 
coincides with the issue of how to link people (social data) and pixels (spatial data) (Rindfuss et al. 
2004). In this section some issues involved with the linking of different data types will be 
discussed. 
 
Table 2.5. Examples of objectives, levels of explanation and source data for the choice of data 
representation 
 Point data Polygon data Grid data 

Objective Household influence on 
LUCC 
Adoption of technologies by 
households 

Understanding causes of LUCC Spatial modelling 
Analysis of LUCC patterns 
 

Level of 
explanation 

Household 
Plot 

Village  
Regional 
Country 

Regional 
Country 

Source data Household survey 
GPS coordinates 

Village data 
Census data 
Aggregated household data 

Remote sensing data 
Maps with different units 

 
A key to linking household and GIS data is to correctly define the spatial observation unit with 
respect to decision making. In other words: do we link human activities to land or do we link land 
to people? (Geoghegan et al. 2001). Administrative units or grid cells are not individual agents, 
but aggregates of them. Inferences as to outcomes in such units require simplifying assumptions 
about homogeneity of the decision makers and the dynamics comprising that aggregate. Proper 
inference of micro-level spatial behaviour is therefore more appropriately based on survey 
samples of individual agents, under the general principle of matching the spatial scale of the 
decision process and the scale at which measurement is carried out (Anselin 2002). This 
consideration should be taken into account by linking spatial measures to the perceived real 
decision makers, thus matching the spatial and behavioural units. 
 
The linkage of socio-economic household-level data and remote sensing data at the household 
level in general captures best the actual level of decision making, except in rare cases where policy 
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decisions at an administrative unit level are a more important determinant. Linked household-
level data also allow a representation of the heterogeneity between households operating in a 
spatial unit. However, linking remote sensing and socio-economic data at the household level 
comes at a certain cost as, depending on the detail of analysis required, it generally requires 
georeferencing every plot of the interviewed households. This operation is labour intensive, 
because one should travel with the household to every plot to collect GPS coordinates or a 
detailed map should be available on which the household can identify its parcels (Lambin 2003). 
In this respect also the organization of the dwelling units is of importance. In general dwelling 
units within villages are organized in a cluster surrounded by agricultural land, where the typical 
household uses several parcels of land (Figure 2.2 B). But also other non-clustered patterns are 
found, as in the Amazon (Figure 2.2 A). Cadastral information could be useful but only reflects 
ownership and not the actual land use. Furthermore, cadastral information is not available in 
many regions. Often administrative boundaries of villages (arranged in nuclear patterns or 
otherwise) are lacking or do not effectively describe the ‘functional’ use of land at the household 
level and the geographic distribution of households across the landscape (Rindfuss, Prasartkul et 
al. 2003). Overmars and Verburg (2005) provide an alternative to the labour-intensive methods of 
actively linking household to parcels by georeferencing all individual plots. They did not link 
households to their plots physically, but obtained plot and field characteristics during a household 
survey as part of a hierarchically structured questionnaire in which household data as well as plot 
and field data are registered. The problem with this approach is that it is rather subjective and the 
field data are subject to the perception of the farmer. 
 
 

 
Figure 2.2. Illustration of households in non-clustered villages (A) and clustered villages (B) (Rindfuss, 
Prasartkul et al. 2003) 

 
In a number of environments, the spatial representation of parcels may be hampered because the 
size of plots associated with a single household may be below the spatial resolution of remote 
sensing systems. In such situations, digital or analogue aircraft data might be considered, whereby 
the user can set the required minimum mapping unit for inter- and intra-plot mapping. Recent 
remote sensing systems having higher spatial resolutions are also online to render detailed (to 
approximately 1x1 metre spatial resolutions) land cover information. However, these high spatial 
resolution sensors have high data volumes and costs associated with them. These high data 
volumes might, in turn, create data management and budget issues for the researcher, as well as 
design considerations about how best to use the high spatial resolution data. One can use a 
continuous data set for broad area mapping or for only a subset or sampled region, using models 
to extend the effects to broader areas. Not only plots and pixels, but all digital spatial data involve 
mismatches with the reality, especially aggregated data. For example, the landscape unit river 
terrace, identified at a 100 metre resolution map, has to be aggregated to the more general term 
river valley when used at a 1 km resolution.  
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3 Empirical analysis techniques 
 
 
This chapter discusses several multivariate techniques that are frequently used in LUCC and 
farming systems change research, including livestock systems and other examples of technology 
adoption. A number of methods discussed have not yet been frequently applied in LUCC 
research but are included because of the potential value for LUCC applications. We do not intend 
to cover all potentially interesting methods. A much larger selection of statistical techniques could 
be identified that have a potential value, but are outside the scope of this report. The first section 
describes four methods for exploratory spatial data analysis in terms of data reduction and 
structure detection, namely principal component analysis, factor analysis, canonical correlation 
analysis and cluster analysis. In section 3.2 different regression analysis methods are discussed: 
linear regression, (nested) logistic regression, multinomial regression, ordered logit, Tobit analysis 
and simultaneous regression. The last three sections respectively describe Bayesian statistics, for 
studies where prior knowledge of observations is available; multilevel statistics, for studies that 
involve different hierarchical levels; and artificial neural networks, useful for cases where a 
training procedure for pattern prediction or classification is applicable. Figure 3.1 shows an 
ordering for the different empirical analysis techniques for analysis of spatial patterns of LUCC. 
This diagram is not intended as a ‘simple’ decision tree for selecting the appropriate method for a 
specific case. The diversity in data structures, research questions and case study-specific 
conditions make a careful analysis of the requirements of the method necessary for each specific 
case study. Furthermore, different methods can be used at the same time or sequentially within 
one analysis to better explore the data structure. 

Figure 3.1. Classification of empirical analysis techniques for LUCC based on objective and data structure 
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3.1 Techniques for exploratory data analysis 
 
The main uses of exploratory data analysis techniques are related to data reduction and structure 
detection. These methods aim (i) to reduce the number of variables; (ii) to describe the underlying 
structure between variables in the data; and (iii) to classify variables into groups. Factor analysis 
and principal component analysis (PCA) are applied as data reduction or structure detection 
methods and cluster analysis for classification. This is useful in LUCC analysis because land use 
change is often assumed to be influenced by a large set of driving and conditioning factors. PCA 
and factor analysis are suited to exploration of the structure of interrelationships between these 
different driving factors. Furthermore, the methods can also be used to characterize farming or 
land use systems based on a number of indicators.  
 
 
3.1.1 Factor analysis 
 
Factor analysis attempts to identify underlying variables, or factors, that explain the pattern of 
correlations within a set of observed variables. Factor analysis is often used in data reduction to 
identify a small number of factors that explain most of the variance observed in a much larger 
number of manifest variables. Factor analysis can also be used to generate hypotheses regarding 
mechanisms or to screen variables for subsequent analysis (e.g. to identify collinearity prior to 
performing a linear regression analysis). 
 
Factor analysis is concerned with the internal relationships of a set of variables and is aimed at 
constructing a set of factors (hypothetical unobserved variables) from a set of observable 
variables. The factor analysis model specifies that variables are determined by common factors 
(the factors estimated by the model) and unique factors (which do not overlap between observed 
variables). The computed estimates are based on the assumption that all unique factors are 
uncorrelated with each other and with the common factors (SPSS 2000).  
The factors are common when they contribute to the variance for at least two observed variables 
or unique when their contribution is only towards one variable. A correlation matrix for a set of 
observations (R-factor analysis) is prepared or, less frequently, for individuals for a set of 
variables (Q-factor analysis). Then the initial factors are extracted, which can be based on defined 
factors (principal component analysis) or on inferred factors (common factor analysis). As the 
exact configuration of the factor structure is not unique, one factor solution can be transformed 
into another one or rotated to a terminal solution. This can achieve simpler and more meaningful 
factor patterns, instead of the highly complex extracted factors that are related to many of the 
variables rather than to just a few (Comrey and Lee 1992). 
 
Prior to factor analysis the collected information on the various variables can be processed. The 
variables in factor analysis should be quantitative at the interval or ratio level. Categorical data, 
e.g. ethnicity or soil type, are not suitable for factor analysis. The data should have a bivariate 
normal distribution for each pair of variables, and observations should be independent. Those 
variables that do not show variability can be discarded. First, any variable that makes little 
contribution, in terms of its variability, to the measure of distance being used to form clusters can 
be discarded. This is normally evaluated through the coefficient of variation. It is established on 
an a priori basis that the variables with a coefficient of variation of less than 50% are normally 
not considered (Köbrich et al. 2003). Second, some variables may not be relevant to the 
typification required for the purposes of a particular study and can therefore be discarded, even 
though the typology obtained initially is consistent with observations. Thus one has to assess if 
the information imparted by a variable is consistent with the research objectives. Third, highly 
correlated variables can be eliminated, as an uncritical use of such variables. 
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The usual interpretation of the factors is that they ‘explain’ the correlations that have been 
discovered among the original variables and that these factors are real factors in nature. 
Unfortunately, factor analysis encourages subjective overinterpretation of the data (James and 
McCulloch 1990). 
 
Example 
Veldkamp and Fresco (1997) used factor analysis in a LUCC study, in which Costa Rican land use 
and land cover were investigated at six different scales. Spatial distributions of potential 
biophysical and LUCC drivers were statistically related to the distribution of pastures, arable 
lands, permanent crops, and natural and secondary vegetation. The factor analysis demonstrated 
that factor contributions and compositions change with scale, confirming spatial scale 
dependence in the structure of the spatial data. The total variance in the data set could be 
described by four significant factors for all scales, describing between 68% and 81% of the total 
variance (Table 3.1). 
 
Table 3.1. Example of a factor analysis (Veldkamp and Fresco 1997) 
Spatial resolution (km) 7.5x7.5 15x15 22.5x22.5 30x30 37.5x37.5 45x45 
Explained variance 
Factor 1: 28.2 27.9 30.5 31.6 37.3 36.1 
Factor 2: 22.5 19.7 23.5 24.7 20.8 18.6 
Factor 3: 11.6 10.7 12.0 11.6 13.7 14.7 
Factor 4: 11.2 9.9 9.8 9.5 9.2 10.3 
Total: 73.5 68.2 75.8 77.4 81.0 79.8 
Factor composition *       
Factor 1: PER PER PER PER PER PER 
 RUR RUR RUR RUR ARA RUR 
 URB ALF URB ALF RUR ALF 
 ALF  ALF  ALF  
Factor 2: ARA ARA SOIL REL ARA SOIL 
 -NAT SEC PAS SOIL -NAT ARA 
 SEC  -NAT -ALT SEC -NAT 
     URB SEC 
Factor 3: SOIL REL ARA ARA -REL REL 
 PAS ALT -NAT SEC ALT -ALT 
 -NAT  SEC    
Factor 4: REL PAS REL PAS SOIL PAS 
 -ALT NAT -ALT NAT PAS -NAT 
    URB -NAT URB 
* The factor analysis was made for the following data: altitude (ALT), relief (REL), soil drainage (SOIL), rural 
population (RUR), urban population (URB), agrarian labour force (ALF), permanent crops (PER), pasture (PAS), 
arable land (ARA), natural vegetation (NAT) and secondary vegetation/fallow (SEC). 

 
 
3.1.2 Principal component analysis 
 
Principal component analysis (PCA) reduces the dimensions of a single group of data by 
producing a smaller number of abstract variables. The combination of two correlated variables 
into one factor illustrates the basic idea of PCA. With multiple variables the computations 
become more involved, but the basic principle of expressing two or more variables by a single 
factor remains the same. Basically, the extraction of principal components amounts to a variance 
maximizing (varimax) rotation of the original variable space. For example, in a scatterplot we can 
think of the regression line as the original X axis, rotated so that it approximates the regression 
line. This type of rotation is called variance maximizing because the criterion for (goal of) the 
rotation is to maximize the variance (variability) of the ‘new’ variable (factor), while minimizing 
the variance around the new variable. When there are more than two variables, we can think of 
them as defining a ‘space’, just as two variables defined a plane. Thus, when we have three 
variables, we could plot a three-dimensional scatterplot, and again we could fit a plane through 
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the data. With more than three variables it becomes impossible to illustrate the points in a 
scatterplot; however, the logic of rotating the axes so as to maximize the variance of the new 
factor remains the same.  
 
In PCA, after the first factor has been extracted, we continue and define another factor that 
maximizes the remaining variability, and so on. In this manner, consecutive factors are extracted. 
Because each consecutive factor is defined to maximize the variability that is not captured by the 
preceding factor, consecutive factors are independent of each other. Put another way, consecutive 
factors are uncorrelated or orthogonal to each other (StatSoft 2003). 
 
PCA is very useful to detect the structure of data that describe the driving factors of LUCC. 
However, PCA has also been used in the processing of LUCC data, i.e. it is a frequently used 
technique in the classification of remote sensing images. Principal component analysis of a set of 
p images generally aims to summarize – and hopefully improve the interpretation of – the 
available information by a few new images that are orthogonal linear combinations of the original 
images. The first principal component ‘explains’ the largest part of the total variance included in 
all p images, the second component the second largest part, etc. The larger the correlation 
between the p images, the fewer components are required to explain a large part of the total 
variance of the original images. For this reason, PCA is a common method to improve the 
interpretation and classification of multispectral or multitemporal satellite images (Richards 1986). 
 
Factor analysis versus principal component analysis 
Basic computational similarities lead to confusion when distinguishing between PCA and factor 
analysis. The defining characteristic that distinguishes between the two factor analytic models is 
that in PCA it is assumed that all variability in a variable should be used in the analysis, while in 
factor analysis only the variability in a variable that it has in common with the other variables is 
used. Another difference between PCA and factor analysis is how the communalities are 
computed, that is the fraction of each variable’s variance that is explained by the total of the 
extracted factors. Communality represents the extent of overlap between the extracted factors 
and the variable and it equals the sum of squares of the variable’s loadings across factors (Comrey 
and Lee 1992). As PCA is based on statistical variance, the first chosen factor accounts for most 
of the variance in the data. The second is chosen in the same way but it has to be orthogonal to 
the first. The last factor explains all the residual variance (Kim 1970). Common factor analysis is a 
covariance or correlation-oriented method based on the assumption that each variable is 
influenced by a set of shared or common factors that determine the correlation between 
variables. The implied expectation is that the number of common factors will account for all the 
observed relations and that such factors will be less than the number of variables (Lawley and 
Maxwell 1971). In common factor analyses the correlation matrix is transformed before 
undertaking factor analysis (Kim 1970). In most cases, these two methods yield very similar 
results. However, PCA is often preferred as a method for data reduction, while factor analysis is 
often preferred when the goal of the analysis is to detect structure. 
 
Determining how many factors should be retained is a problem, as with real data the actual 
number that merit retention is often considerably smaller than the number of variables. One test 
searches for a point where there is a break in the Eigenvalues, that is, the variation in the original 
group of variables, which is accounted for by a particular factor. As factors are extracted from 
large to small, their Eigenvalues are also decreasing. When they are plotted, a straight line can be 
drawn through the latter smaller values. The earlier, larger values will fall above the straight line. 
It is proposed that the number of factors to be retained is at the point where the last small factor 
is above the line, giving an indication of how many factors there are (Comrey and Lee 1992). 
Another test defines a threshold level for the residual correlation, beyond which it would be 
unnecessary to continue extracting, as any new factor would have very small loadings. A common 
rule is to extract all the factors with Eigenvalues of 1.0 or more (Kaiser’s rule). Whatever rule is 
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used, it must be kept in mind that it is better to err on the side of extracting too many factors 
rather than too few, as the idea is to extract enough factors to be relatively certain that no more 
factors of any importance were discarded (Comrey and Lee 1992).  
 
Examples 
Köbrich et al. (2003) used PCA as a data reduction technique in a procedure for the typification 
of farming systems, to be used for the reconstruction of representative farm models. The farming 
system typification was applied for a region in the coastal mountains of Chile. A data set of 67 
farmers with 25 different farming system variables (e.g. actual land use, income, available labour, 
livestock numbers) was collected. The data set was first analysed on missing data, variation, 
relevance and presence of correlation. The result of this analysis was that 14 variables were 
discarded and only 11 variables were kept for analysis. The high level of correlation between the 
variables means that a lot of information is redundant, which confirms the view that typification 
surveys should contain relatively few questions but many observations (Escobar and Berdegué 
1990). The 11 variables were used in the principal component analysis, which resulted in seven 
factors that explained 85% of the total observed variation.  
Another example is a study by Hary et al. (1996), who used PCA to identify a structure behind 
the occurrence of rangeland degradation in Kenya. Duchateau et al. (1997) used PCA analysis in 
an effective way to reduce the number of independent variables prior to regression analysis. In a 
study for Zimbabwe they tried to relate incidence of a livestock disease to a set of environmental 
variables. Many of the environmental variables are correlated, causing multicollinearity in the 
regression analysis. PCA analysis and varimax rotation of the principal components were first 
used to select a reduced number of variables to be taken into account in the regression analysis. 
 
 
3.1.3 Canonical correlation analysis 
 
Canonical correlation is a multivariate technique that has the same computational basis as factor 
analysis, but in its concept and objectives it is closely related to multiple regression. Multiple 
regression is concerned with the relationship between a single dependent variable Y and a set of 
predictor variables X1, X2, …, Xm. An extension of this concern is the relationship(s) between a 
set of Y variables and a second set of X variables measured on the same objects. These 
relationships may be investigated by finding linear combinations of the X and Y variables that 
give the highest correlation between the two sets. Such correlations are called canonical 
correlations and the linear combinations are called canonical variables. In effect, the set of X 
variables is converted into a single new variable and the set of Y variables into another single new 
variable. Then the correlation between these new variables is determined (Davis 1986).  
 
The correlation coefficients can be interpreted as the square root of the Eigenvalues. Because the 
correlations pertain to the canonical variates, they are called canonical correlations. Like the 
Eigenvalues, the correlations between successively extracted canonical variates are smaller and 
smaller. Therefore, as an overall index of the canonical correlation between two sets of variables, 
it is customary to report the largest correlation, that is, the one for the first root. However, the 
other canonical variates can also be correlated in a meaningful and interpretable manner (StatSoft 
2003).  
 
This statistical method is particularly appropriate when the dependent variables themselves are 
correlated with each other. In such cases, canonical correlation analysis can uncover complex 
relationships that reflect the structure between predictor and dependent variables. In a study of 
Hoshino (1996), on land use in Japan, the predictor set was the natural and socio-economic 
conditions and the dependent set the percentages of the four major land use categories (Figure 
3.2). Close relationships among different kinds of land use are normally expected, so in this case 
the application of canonical correlation analysis was very appropriate. 



30 

 
 
 
 
 
 
 
 
 
Figure 3.2. Framework of analysis for land use distribution (after Hoshino 1996) 

 
Canonical correlation analysis versus factor analysis 
Canonical correlation and factor analysis both create latent variables (variates) based on a linear 
combination of measured variables, but factor analysis is not usually focused on the correlation of 
these variates. In fact, normally the factors are uncorrelated in factor analysis. Factor analysis is a 
non-dependent procedure, whereas canonical correlation can be conceptualized in terms of an 
independent and a dependent set of variables. Variates are rarely rotated in canonical correlation, 
whereas rotation of factors is the norm in factor analysis.  
 
Examples 
Walsh et al. (2001) used canonical correlation analysis to examine the relationships between a 
group of population and environment variables as a consequence of variation in the scale of 
observation. The analysis was made for a case study in Thailand. To examine possible scale 
dependence, canonical coefficients were derived to relate biophysical variables to environmental 
axes and social variables to population axes. The results indicated that the relationship between 
the population and environmental variables, as a group, were scale dependent (Table 3.2). This 
meant that the numerical relationships as well as the geometric pattern of the relationships 
visualized through plots of the linkages between variables and defined axes of social and 
biophysical variables vary with scale.  
Another example of a study that has used canonical correlation analysis is an analysis of the 
relationship between land cover change trajectories and environmental variables in Hesse, 
Germany (Hietel et al. 2004).  
 
Table 3.2. Standardized canonical coefficients for environmental variables at two scales (Walsh et al. 
2001) 
Scale Variable * Axis 1 Axis 2 Axis 3 

30 m NDVI 0.220 0.824 0.132 
 Elevation 0.945 -0.592 -0.059 
 Slope 0.035 0.378 0.768 
 Soil wetness 0.090 -0.373 1.062 
1050 m NDVI 0.734 -0.544 -0.384 
 Elevation 0.092 1.276 -0.940 
 Slope 0.484 -0.260 1.544 
 Soil wetness 0.045 0.484 0.252 
* The associated variables with the different environmental axes are indicated in italics. 

 
 
3.1.4 Cluster analysis 
 
Cluster analysis is used to classify observations by computing the similarity between any pair of 
observations though a distance coefficient (Sokal 1977). For LUCC research, cluster analysis is 
useful to group similar land use types or farming systems when a reduction of classes for further 
analysis is aimed at. Two main types of cluster analysis exist: K-means cluster analysis and 
hierarchical cluster analysis.  

Land use distribution 

Socio-economic 

conditions 

Natural conditions 

Structure of land use 

Canonical 

correlation analysis
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K-means cluster analysis 
This procedure attempts to identify relatively homogeneous groups of cases based on selected 
characteristics, using an algorithm that can handle large numbers of cases. However, the 
algorithm requires specifying the number of clusters. Variables should be quantitative at the 
interval or ratio level. For binary variables the hierarchical cluster analysis procedure should be 
used. Distances are computed using simple Euclidean distance. Scaling of variables is an 
important consideration; if your variables are measured on different scales (for example, one 
variable is expressed in dollars and another is expressed in metres) the results may be misleading. 
In such cases, consider standardizing the variables before performing the K-means cluster 
analysis. The procedure assumes that the appropriate number of clusters has been selected and 
that all relevant variables are included. Cluster analysis produces clusters whether or not natural 
groupings exist. 
 
Hierarchical cluster analysis 
This procedure attempts to identify relatively homogeneous groups of cases (or variables) based 
on selected characteristics, using an algorithm that starts with each case (or variable) in a separate 
cluster and combines clusters until only one is left. It is possible to analyse raw variables or 
choose from a variety of standard transformations. The variables can be quantitative, binary, or 
count data. The analysis should include all relevant variables. Omission of influential variables can 
result in a misleading solution. Because hierarchical cluster analysis is an exploratory method, 
results should be treated as tentative until they are confirmed with an independent sample. 
Dendrograms can be used to assess the cohesiveness of the clusters formed and can provide 
information about the appropriate number of clusters to keep (Figure 3.3). 
  
K-means versus hierarchical cluster analysis 
The main advantage of the K-means cluster analysis procedure is that it is much faster than the 
hierarchical cluster analysis procedure. On the other hand, the hierarchical procedure allows 
much more flexibility in your cluster analysis: it is possible to use any of a number of distance or 
similarity measures, including options for binary and count data, and there is no need to specify 
the number of clusters a priori. 
 
Examples 
Köbrich et al. (2003) used hierarchical cluster analysis for the typification of farming systems, to 
be used for the reconstruction of representative farm models. The farming system typification 
was applied for a region in the coastal mountains of Chile. A data set of 67 farmers with 25 
different farming system variables was collected and reduced with PCA. A hierarchical cluster 
analysis was applied on the seven retained factors. A dendrogram (Figure 3.3) was constructed to 
show the sequence by which the observations and clusters were merged. Line C was defined as 
the cutting line, which resulted in five clusters (farms 1–27, farms 28–50, farms 51–57, farms 58–
61 and farms 62–63). Table 3.3 contains the typification of the resulting farming systems, which 
are the selected clusters of farms. 
 
Table 3.3. Comparison of selected clusters of farms (Köbrich et al. 2003) 
Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Farmer on farm One year One year One year One year Half a year 
Additional labour One woman Marginal Two men Two women, 

two men 
Marginal 

Farm size Small Small Medium Large Small 
Herd Small Small Small Large Large 
Arable/available 57% 86% 67% 20% - 
Crop/arable 31% 17% 28% 30% - 
Sharecropping Takes in Takes in Takes in - Gives out 
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The K-means clustering technique has been used in a study of land cover changes and wildlife 
decline in the Serengeti-Mara ecosystem in Kenya (Thompson et al. 2002). With K-means 
clustering households were clustered according to land use strategies. The following variables 
were used: (i) revenues from shares in tourist facilities and wildlife associations; (ii) acreage under 
maize cultivation; (iii) acreage under wheat cultivation; and (iv) wage labour. Then the 
determinants of the land use production choices were assessed, based on variables representing 
socio-economic status, landscape attributes and accessibility factors. The 278 households were 
clustered into four land use strategies (Table 3.4). Other examples of land use studies using 
cluster analysis are Hietel et al. (2004) and Rasul et al. (2004). 
 

 
Figure 3.3. Dendrogram showing the full history of cluster construction and six possible cutting lines 
(Köbrich et al. 2003) 
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Table 3.4. Final clusters of land use strategies (Thompson et al. 2002) 
Land use strategy Maize Wheat Tourism Wage 

Livestock herding with some subsistence 
cultivation (N = 54) 

Some No No Some 

Livestock herding with income from wildlife 
tourism (N = 136) 

No No Yes Some 

Livestock herding with mechanized agriculture 
(N = 29) 

Yes Yes No Few 

Livestock herding with income from tourism 
and subsistence cultivation (N = 59) 

Yes No Yes Some 

 
 
3.2 Regression analysis 
 
Regression analysis is used to investigate the association of a dependent variable with one or 
more independent variables. In linear regression a straight line is used to represent the association 
of the explanatory variables with the dependent variable. More complex methods of regression 
exist, intended for different types of dependent variables and data structures. Table 3.5 gives an 
overview of a selection of different regression methods based on the characteristics of the 
dependent variable. This section will discuss these methods in more detail as well as a number of 
methods to measure the goodness of fit for regression analysis. 
 
Table 3.5. Summary of regression methods 
Regression method Dependent variable type or data 

structure 

Linear regression Continuous  
Logistic regression Discrete bivariate 
Multinomial regression Discrete multivariate 
Ordered logit/probit Discrete ordered 
Tobit analysis Censored continuous  
Simultaneous regression Interdependent/simultaneous relations 
Multilevel models Hierarchically organized data sets 

 
 

3.2.1 Linear regression 
 
Linear regression is a method that estimates the coefficients of a linear equation, involving one or 
more independent variables, that best predict the value of the dependent variable. Linear 
regression is a frequently used technique; however, in LUCC modelling, this regression is less 
popular because linear regression can only be applied for continuous dependent variables. Instead 
logistic or multinomial regression is used, because land use is normally expressed as a discrete 
variable. An exception is NDVI data, which range between -1 and 1 and belong therefore to 
continuous data. Linear regression can also be used to derive input data, e.g. trends of population 
growth out of census data, or for validation. 
 
In linear regression analysis, it is possible to test whether two variables (or transformed variables 
to allow for non-linearity) are linearly related and to calculate the strength of the linear 
relationship if the relationship between the variables can be described by an equation of the form 
Y = α + βX. Y is the variable being predicted (the dependent, criterion, outcome or endogenous 
variable), X is a variable whose values are being used to predict Y (the independent, exogenous or 
predictor variable), and α and β are population parameters to be estimated. The parameter α, 
called the intercept, represents the value of Y when X = 0. The parameter β represents the 
change in Y associated with a one-unit increase in X or the slope of the line that provides the 
best linear estimate of Y from X. In multiple regression, there are several predictor variables. If k 
denotes the number of independent variables, the equation becomes Y = α + β1X1 + β2X2 + … + 
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βkXk and β1, β2, ..., βk are called partial slope coefficients, reflecting the fact that any one of the k 
predictor variables X1, X2, …, Xk provides only a partial explanation or prediction for the value 
of Y (Menard 2001). 
 
Estimates of the intercepts α and the regression coefficients β are obtained mathematically using 
the method of ordinary least squares (OLS) estimation. For bivariate regression, the residuals can 
be visually or geometrically represented by the vertical distance between each point in a bivariate 
scatterplot and the regression line. For multiple regression, visual representation is much more 
difficult because it requires several dimensions. 
 
Regression assumptions 
To use the OLS method to estimate and make inferences about the coefficients in linear 
regression analysis, a number of assumptions must be satisfied (Menard 2001), including: 
1. Measurement: all independent variables are interval, ratio or dichotomous, and the dependent 

variable is continuous, unbounded and measured on an interval or ratio scale. All variables are 
measured without error. 

2. Specification: (i) all relevant predictors of the dependent variable are included in the analysis; 
(ii) no irrelevant predictors of the dependent variable are included in the analysis; and (iii) the 
form of the relationship (allowing for transformations of dependent or independent variables) 
is linear. 

3. Expected value of error: the expected value of error is 0. 
4. Homoscedasticity: the variance of the error term is the same or constant for all values of the 

independent variables. 
5. Normality of errors: the errors are normally distributed for each set of values of the 

independent variables. 
6. No autocorrelation: there is no correlation among the error terms produced by different 

values of the independent variables (see the section on spatial autocorrelation for more 
details). 

7. No correlation between the error terms and the independent variables: the error terms are 
uncorrelated with the independent variables. 

8. Absence of perfect multicollinearity: for multiple regression, none of the independent 
variables is a perfect linear combination of the other independent variables (see 
multicollinearity section). 

 
Goodness of fit (R2) 
In linear regression analysis, evaluation of the overall model is based on two sums of squares. If 
we were concerned with minimizing the sum of the squared errors of prediction and if we knew 
only the values of the dependent variable (but not the cases to which those values belonged), we 
could minimize the sum of the squared errors of prediction by using the mean of Y as the 
predicted value of Y for all cases. The sum of squared errors based on this prediction would be 

2)( YY j −∑ , the total sum of squares (SST). If the independent variables are useful in predicting 

Y, then jY
)

, the value of Y predicted by the regression equation (the conditional mean of Y), will 

be a better predictor than Y  of the values of Y, and the sum of squared errors 2)( YY j

)
−∑  will be 

smaller than the sum of squared errors 2)( YY j −∑ . 2)( YY j

)
−∑  is called the error sum of squares 

(SSE) and is the quantity OLS selects parameters (β1, β2, ..., βk) to minimize. A third sum of 
squares, the regression sum of squares (SSR), is simply the difference between SST and SSE: SSR 
= SST – SSE (Menard 2001). 
 
The coefficient of determination (R2), or ‘explained variance’, is an indicator of substantive 
significance; that is, whether the relationship is strong enough for us to be concerned about it. It 
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measures the proportion (or, multiplied by 100, the percentage) by which use of the regression 

equation reduces the error of prediction relative to predicting the mean, Y . R2 ranges from 0 (the 
independent variables are no help at all) to 1 (the independent variables allow us to predict the 
individual values Yj perfectly). R2 is calculated as: 
 

R2 = SSR / SST = (SST – SSE) / SST = 1 – (SSE / SST)   (3.2.1) 
 
Examples 
Weiss et al. (2001) used linear regression in a study with the objective of assessing the condition 
of rangelands in Saudi Arabia and evaluating the effects of grazing. The coefficient of variation 
(COV) of the monthly normalized difference vegetation index (NDVI) was used as a measure of 
vegetative biomass change. A higher NDVI COV for a given pixel represented a greater change 
in vegetation biomass for that area. The trend in COV values was assessed with linear regression 
over a 12-year period. The COV regression line for each pixel reflects the overall long-term trend 
in the data. A t-test of the value of the slope was performed to test whether the data used to 
compute the regression line were statistically significant at a certain confidence level.  
Other examples of linear regression are Chen (2002), who used linear regression to test the 
correlations between census dwelling data and residential densities; López et al. (2001), who used 
linear regression between urban growth and population growth for the prediction of urban 
expansion in Morelia, Mexico; and de Wolff et al. (2000), who tested the role of accessibility in 
milk price formation in Kenya as a determinant of livestock adoption in farming systems. 
Linear regression for the analysis of multiple land use types is only used when the land use data 
are represented as continuous values instead of dichotomous. Such a representation is used in the 
case of a coarse spatial resolution at which the data land use situation cannot adequately be 
presented by dichotomous data; see e.g. Verburg and Chen (2000) and Wood and Skole (1998). 
 
 
3.2.2 Logistic regression 
 
Logistic regression is useful for situations where the dependent variable has a binary output, e.g. 
the presence or absence of a characteristic or outcome. The method is useful to predict the 
probability that a case will be classified into one as opposed to the other of the two categories of 
the dependent variable. Several transformations are made to adequately deal with the binary 
structure of the dependent variable. The odds that Y = 1, written odds(Y=1), is the ratio of the 
probability that Y = 1 to the probability that Y ≠ 1. The odds that Y = 1 is equal to P(Y=1) / [1 
– P(Y=1)]. Unlike P(Y=1), the odds has no fixed maximum value, but like the probability, it has a 
minimum value of 0 (Menard 2001). 
 
One further transformation of the odds produces a variable that varies, in principle, from 
negative infinity to positive infinity. The natural logarithm of the odds, ln{P(Y=1) / [1 – 
P(Y=1)]}, is called the logit of Y. The logit of Y, written logit(Y), becomes negative and 
increasingly large in absolute value as the odds decrease from 1 towards 0, and becomes 
increasingly large in the positive direction as the odds increase from 1 to infinity. If the natural 
logarithm of the odds that Y = 1 is used as the dependent variable, there is no longer the 
problem that the estimated probability may exceed the maximum or minimum possible values for 
the probability. The equation for the relationship between the dependent variable and the 
independent variables becomes: 
 

 logit(Y) = kk XXX βββα ++++ ...2211      (3.2.2) 

 
The logit(Y) can be converted back to the odds by exponentiation. Then the odds can be 
converted back to the probability that (Y=1). This produces the equation: 
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It is important to understand that the probability, the odds, and the logit are three different ways 
to express exactly the same thing. Of the three measures, the probability is probably the most 
easily understood. Mathematically, however, the logit form of the probability best helps us to 
analyse dichotomous dependent variables (Menard 2001). 
 
Categorical variables 
Categorical independent variables, e.g. soil type or ethnicity, should be dummy or indicator 
coded. A dummy means that a column (map) indicating presence (1) or absence (0) of that 
variable has to be created for each value of the independent variable. In the case of a soil map 
describing five different soil types a map for each soil type should be made, indicating presence 
or absence of that independent variable. Most statistical programs have options to specify details 
of how the logistic regression procedure will handle categorical variables. A frequently used 
option in LUCC modelling is the ‘simple’ option, which means that each category of the 
predictor variable (except the reference category) is compared to the reference category. This is a 
good method to include the categorical variables such as soil suitability, which is often divided 
into classes such as very good, good, moderate, bad and unsuitable. 
 
Standardized beta 
Independent variables are often measured in different units or on different scales. When we want 
to compare the strength of the relationship between the dependent variable and different 
independent variables in linear regression we use standardized regression coefficients. For the 
same reasons, we may want to consider using standardized coefficients in logistic regression 
analysis. The use of standardized coefficients is especially appropriate for theory testing and when 
the focus is on comparing the effects of different variables for the same sample. 
 
A standardized coefficient is a coefficient that has been calculated for variables measured in 
standard deviation units. A standardized coefficient indicates how many standard deviations of 
change in a dependent variable are associated with a 1 standard deviation increase in the 
independent variable. In logistic regression analysis, the calculation of standardized coefficients is 
more complicated than in linear regression because it is not the value of Y, but the probability 
that Y is 1 that is predicted by the logistic regression equation. The actual dependent variable in 
logistic regression in not Y, but logit(Y), whose observed values of logit(0) = -∞ and logit(+∞) = 
+∞ do not permit the calculation of means or standard deviations. Although we cannot calculate 
the standard deviation directly for the observed values of logit(Y), we can calculate the standard 
deviation directly for the observed values of logit(Y) and the explained variance, R2. Dividing 
both the numerator and the divisor by N (N – 1 for a sample), we get R2 = SSR/SST = 

(SSR/N)/(SST/N) = YY ss 22 /) . The variance of logit(Y) can be calculated based on the standard 
deviation of the predicted values of logit(Y) and the explained variance. The standardized logistic 
regression coefficients can be estimated, because the standard deviation is the square root of the 
variance (Menard 2001). 
 

)(log

2

)(log
/))()((//))((*

YitXYXYitXYXYX sRsbRssbb )) ==    (3.2.4) 

 
where b*YX is the standardized logistic regression coefficient, bYX is the unstandardized logistic 

regression coefficient, sX is the standard deviation of the independent variable X, )(log
2

Yits )  is the 



37 

variance of logit(Y
)
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)(log Yit

s )  is the standard deviation of logit(Y
)

), and R2 is the coefficient of 

determination. 
 
To calculate standardized logistic regression coefficients with existing statistical software (e.g. 
SPSS), a guideline is provided by Menard (2001). 
 
The interpretation of the standardized logistic regression coefficient is straightforward and closely 
parallels the interpretation of standardized coefficient in linear regression: a 1 standard deviation 
increase in X produces a b* standard deviation change in logit(Y) (Menard 2001). 
 
Goodness of fit (Classification tables/pseudo R2/ROC) 
In linear regression analysis, we need to know (i) whether knowing the values of all of the 
independent variables put together allows us to predict the dependent variable any better than if 
we had no information on any of the independent variables and, if so, (ii) how well the 
independent variables as a group explain the dependent variable. For logistic regression, we also 
may be interested in the frequency of correct as opposed to incorrect predictions of the exact 
value of the dependent variable, in addition to how well the model minimizes errors of 
prediction. In linear regression, when the dependent variable is assumed to be measured on an 
interval or ratio scale, it would be neither alarming nor unusual to find that none of the predicted 
values of the dependent variable exactly matched the observed value of the dependent variable. 
In logistic regression, with a finite number (usually only two) of possible values of the dependent 
variable, we may sometimes be more concerned with whether the predictions are correct or 
incorrect than with how close the predicted values (the predicted conditional means, which are 
equal to the predicted conditional probabilities) are to the observed (0 or 1) values of the 
dependent variable (Menard 2001). Therefore, different methods and measures to evaluate the 
performance of logistic regression models are used and discussed below (Boyce et al. 2002). 
 
Classification table 
Most statistical programs give a classification table as one of the outputs of a logistic regression. 
This classification table gives a comparison of observed and predicted values of cases. Table 3.6 is 
an example of the classification table of a logistic model for deforestation, in which + indicates 
remaining forest and – indicates deforestation. In this case the model predicted quite well the 
forested areas (90.7%), but the deforested areas were not predicted very well (54.3%). For the 
classification table normally a cut-off value of 0.5 is used, which means that probabilities < 0.5 
are classified as 0 (–), and probabilities > 0.5 are classified as 1 (+). Since prevalence has a 
decisive influence on the maximum probability achieved by a model, the cut-off value might need 
to be adapted based on the prevalence of the dependent variable. Peppler-Lisbach (2003) 
provides an example of correcting the cut-off value of the predicted probabilities based on the 
prevalence of the land use types in the study area. 
 
Table 3.6. Example of a classification table 

 + – Percentage correct 
+ 13600 1400 90.7 
– 3700 4400 54.3 
  Overall: 77.9 

 
Pseudo R2 
In non-linear regression models an R2-type summary measure that expresses the degree to which 
the model and data agree cannot be determined directly. The rationale of R2-type measures is to 
express the degree of variation in the data that is explained or unexplained by a particular model. 
That has led to the pseudo-R2 measure suggested for non-linear models. 
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pseudo R2 = 
mSST

SSR
−1        (3.2.5) 

 

Where SSTm = ∑ =
−
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2)( is the total sum of squares corrected for the mean and 
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2)ˆ( is the residual (error) sum of squares. Even in the absence of an intercept 

in the model, SSTm is the correct denominator since it is the sample mean y  that would be used 

to predict y if the response were unrelated to the covariates in the model. The ratio SSR/SSTm 
can be interpreted as the proportion of variation unexplained by the model (Schabenberger and 
Pierce 2002). 
 
ROC 
The ROC (relative operating characteristic or receiver operating characteristic) measure is useful 
to evaluate the performance of models. It is normally used as a measure for the goodness of fit of 
a logistic regression model similar to the R2 statistic in OLS regression, although it can be applied 
to any model that predicts a homogeneous category in each grid cell. The ROC works only for 
two land use and land cover types; with more land use and cover types an ROC can be 
determined for each type. This can be accomplished by reclassifying the maps into the category 
of interest versus all others, thus each category can have its own ROC. In an ROC curve the rate 
of true positives (sensitivity) is plotted on the vertical axis versus the rate of false positives 
(specificity) on the horizontal axis for each situation. An ROC curve summarizes the 
performance of a two-class classifier across the range of possible thresholds. Thus, this measure 
is ‘threshold independent’ and therefore not sensitive to the prevalence of the dependent variable. 
The ROC value is the area under the curve (AUC) that connects the plotted points. With 
Equation 3.2.6 the area under the curve is computed, where xi is the rate of false positives for 
scenario i, yi the rate of true positives for scenario i, and n the number of points (Pontius and 
Schneider 2001; Manel et al. 2001). 
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An ideal model outcome hugs the left side and top side of the graph, and the area under the 
curve is 1. A random classifier should achieve approximately 0.5. Figure 3.4 shows an example of 
an ROC curve, in this case forest is the state variable and the predicted probability for forest of a 
logistic regression is the test variable.  
The ROC curve is recommended for comparing model outcomes, as it does not merely 
summarize performance at a single arbitrarily selected decision threshold, but across all possible 
decision thresholds. The ROC curve can also be used to select an optimum decision threshold 
(StatSoft 2003). No general rules are available for judgement of the ROC values. However, any 
AUC above 0.50 is statistically better than random (Pontius and Schneider 2001), while a value 
higher than 0.7 is normally considered acceptable for LUCC modelling; Hosmer and Lemeshow 
(2000) consider AUC beyond 0.8 as excellent and > 0.9 as outstanding.  
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Figure 3.4. Example of an ROC curve of a logistic regression 

 
Other measures for the goodness of fit of the spatial model are based on the likelihood function. 
These include the value of the maximized log likelihood, the Akaike information criterion (AIC) 
and the Schwartz criterion (SC). The model with the highest log likelihood, or with the lowest 
AIC or SC, has the best goodness of fit (Anselin 1992). An example of the comparison of land 
use change models based on AIC is presented by Aspinall (2004). By rescaling the AIC scores for 
a series of models against the model with the minimum AIC score the models can be ranked. 
Rescaled differences between models are transformed and converted to Akaike weights. The 
Akaike weight for a given model can be interpreted as the probability that the model is the best 
model, given the data and the set of models (Aspinall 2004). 
 

 
Examples 
Logistic regression is a frequently used methodology in LUCC research. Serneels and Lambin 
(2001) used logistic regression to identify how much understanding of the driving forces of land 
use changes can be gained through a spatial statistical analysis for the Mara ecosystem in Kenya. 
All explanatory variables suggested by the conceptual model for the study area were introduced in 
the statistical mode and, based on the full model information, they analysed which variables 
contribute significantly to the explanation of land use changes. Schneider and Pontius (2001) used 
logistic regression for modelling deforestation in the Ipswich watershed of Massachusetts. 
Geoghegan et al. (2001) used logistic regression to model tropical deforestation and land use 
intensification in the southern Yucatán peninsular region, in combination with household survey 
data on agricultural practices. Staal, Baltenweck et al. (2002) used a logit model to explain the 
adoption of technology in crop-livestock farming systems in Kenya. 
 Instead of applying logistic regression directly on the whole data set one can also apply a nested 
strategy, especially for land use types of which one is distinctly different from the others, e.g. 
urban areas versus maize, rice grassland and fallow, which can all be incorporated in agricultural 
land. Gobin et al. (2002) used this nested strategy for logistic modelling to derive agricultural land 
use determinants for a case study area in south-east Nigeria. First, a binary logistic model was 
used to predict local agricultural land use under private ownership on the basis of landform and 
spatial accessibility variables. Afterwards, an ordinal logistic model simulated probabilities of the 
four different levels of communal agricultural land use (Figure 3.5). This approach was chosen 
because the land use system for privately managed agricultural land is distinctly different from the 
communal land use system. 
Another example of the use of logistic regression is provided in Box 1. 
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 Figure 3.5. Partially nested strategy to predict the probabilities of local 
agricultural land use (Gobin et al. 2002) 

 

 
3.2.3 Multinomial regression 
 
Multinomial logit models are used for the case of a dependent variable with more than two 
categories (Jobson 1992). This type of regression is similar to logistic regression, but it is more 

Box 1. Logistic regression to analyse patterns of land use change 
 
Verburg, Ritsema van Eck, de Nijs, Dijst and Schot (2004) used logistic regression to analyse the 
factors determining land use patterns in the Netherlands. The method was based on an extensive 
database, including land use, biophysical, socio-economic, neighbourhood and policy 
characteristics. All data were aggregated to 500×500 metre grids covering the Netherlands. 
Historic and recent land use changes were studied. The long-term effects of land use changes 
were studied by analysing current land use patterns. Many factors that are commonly used to 
explain land use change patterns are endogenous at a long timescale, e.g. measures indicating 
current accessibility. Therefore the assumption was made that long-term land use change was 
mainly determined by biophysical factors. A binomial logit model was compiled for each land use 
type: 
 

Logit P = α + β1Xsoil + β2Xaltitude + β3Xdist-hist-town 
 
Table 3.7 gives the exp(β) values (odds ratio) for the logit models describing the land use pattern 
for the main land use types in 1989. Values lower than 1 mean that the probability will decrease 
upon an increase in the value of the independent variable, while values higher than 1 indicate an 
increase in probability. A very clear association exists between the pH and the location of forest, 
which is mainly found on poor sandy soils. The last row gives the ROC values, which indicate the 
goodness of fit. Model fit for forest is good, while the independent variables for residential and 
industrial areas only explain a small fraction of the spatial variability. The logit models indicated 
which factors were important determinants of land use patterns in the Netherlands. 
 
Table 3.7. Logistic regression estimates (exp(β) values) for land use patterns 

 Forest Arable land Grassland Residential 
area 

Industrial 
area 

Constant 0.14 0.10 0.62 0.70 0.06 
Altitude 1.03 * 0.98 * 1.01 
Organic matter topsoil 0.99 1.02 0.996 * * 
Organic matter subsoil 1.04 0.98 * * * 
Calcium content topsoil 1.10 1.29 0.72 * * 
Loam content subsoil 0.93 1.02 1.01 1.01 * 
Clay content topsoil * 0.97 1.01 0.95 * 
pH topsoil 0.64 * 1.17 * * 
pH subsoil 2.04 0.9 0.86 0.77 * 
Distance to historic town  1.00004  0.9999 0.99998 
Distance to open water    * 0.99 
ROC 0.82 0.73 0.73 0.67 0.65 
* Not significant, all other exp(β) values are significant at 0.05 level 
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general because the dependent variable is not restricted to two categories. Each category is 
compared to a reference category, e.g. all types of forest conversion are compared to the stable 
forest category. The dependent variable should be categorical. Independent variables can be 
factors or covariates. In general, factors should be categorical variables and covariates should be 
continuous variables. It is assumed that the odds ratio of any two categories is independent of all 
other response categories. 
 
Multinomial logit models estimate the direction and intensity of the explanatory variables on the 
categorical dependent variable by predicting a probability outcome associated with each category 
of the dependent variable. The probability that Y = h can be stated as: 
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m denotes the land cover classes used for analysis, β a vector of estimation parameters and xl are 
the exogenous variables for all Y and at all locations l. This equation holds, if the error terms are 
independently and identically distributed as log Weibull (McFadden 1973). Normalizing on all 
probabilities yields a log-odds ratio (Greene 2000): 
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The dependent variable is expressed as the log of the odds of one alternative relative to a base 
alternative. If model assumptions hold, the maximum likelihood estimators are asymptotically 
normally distributed, with a mean of zero and a variance of one for large samples. Significance of 
estimators is tested with z-statistics. 
 
An alternative is the nested logit model, which assumes that the choices can be grouped into 
categories. Within a category, the independence of irrelevant alternatives condition holds, 
whereas across categories, it need not. The categories can be grouped into different choice sets, 
producing a tree structure. The conditional probability (Pml|J) of a land use m in choice set J is: 
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where xl is a vector of location-specific attributes that are common to all land use choices. βf is a 
vector of estimated parameters that are specific to a given land use choice. HJ is the set of land 
uses in choice set J (Nelson et al. 2004). This type of regression is useful for land use decisions 
that show some hierarchy or grouping. 
 
Examples 
Müller and Zeller (2002) used a multinomial logit model to estimate the influence of hypothesized 
determinants on land use and the probabilities a certain pixel has for one of five land classes. This 
analysis was conducted for the periods 1975–1992 or 1992–2000 for two districts of Dak Lak 
Province in the Central Highlands of Vietnam. Mertens et al. (2002) used multinomial regression 
to improve the understanding of deforestation processes by crossing spatial analyses and 
livestock economics studies and to characterize the role and impact of various natural and 
anthropogenic factors in the location and development of the main types of farmers, and their 
policy implications. Multinomial logit models were run in order to characterize the role and 
importance of the independent variables in explaining the forest conversion for specific types of 
activities or processes of colonization. Also Nelson et al. (2004) used multinomial logit regression 
for the econometrical estimation of a spatially explicit economic model of a proposed road 
improvement activity in Panama’s Darién Province and the simulation of location-specific effects 
on land use. 
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The results of a study by Speybroeck et al. (2004) indicate some of the shortcomings of 
multinomial regression techniques in a study of farming system choice in the Republic of the 
Congo. Fitting a full model containing all possible interactions becomes an impossible task with 
20 explanatory variables. Therefore, they propose to use a classification tree method to generate 
information on the structure of the data set before the multinomial regression. The advantages of 
this approach for the analysis of livestock and agricultural production systems are discussed. 
Box 2 provides an example of using multinomial regression in the analysis of deforestation 
 

 
 
3.2.4 Ordered logit 
 
Ordered logit is not yet, as far as is known to us, used in LUCC-related studies. However, 
potentially it can be an interesting method for LUCC studies when the dependent variable is 
discrete, with a certain ordering among the categories. For example, ordered logit could be used 
to analyse the degree of crop cultivation intensity (low, medium, high) when it is not possible to 
capture this by a continuous variable or proxy. Especially when data are based on stakeholder 
perceptions, this may be a suitable approach. The ordered logit model is explained below for a 

Box 2. Multinomial regression to model deforestation 
 
Chomitz and Gray (1996) developed a spatially explicit land use model to explore the tradeoff 
between rural roads and deforestation. The model was applied for southern Belize, an area that 
experienced rapid expansion of agriculture. The model was estimated using data on a sample of 
land points, with information on slope, distance to road and soil quality. Three land use types were 
distinguished: natural vegetation, subsistence agriculture and commercial agriculture. Therefore a 
multinomial logit model was used, which can handle multiple dependent variables. The 
multinomial logit model estimates the coefficients, provided that the coefficients of one land use 
type, in this case natural vegetation, are normalized to zero. A bootstrapping procedure was used 
to estimate the standard error of the coefficients taking spatial autocorrelation into account. 
 
Table 3.8 gives the results of the multinomial logit estimations. Natural vegetation is used as the 
comparison class. Both forms of agriculture become less attractive as distance to market 
increases, though commercial agriculture is much more sensitive to distance. The soil 
characteristics strongly affect the probability of agricultural use, e.g. nitrogen is relatively more 
important for subsistence agriculture, due to lack of mineral fertilizers. The flood hazard dummy, 
which is an indicator of riverside location, is strongly related with the probability of subsistence 
agriculture. The results suggested that road construction in areas with agriculturally poor soils and 
low population densities were lose-lose situations, causing deforestation and providing low 
economic returns. 
 
Table 3.8. Descriptive statistics and multinomial logit estimates of land use 

Variable Descriptive statistics 
 Mean St. dev. 

Commercial 
agriculture 

Subsistence 
agriculture 

Distance to market (km) 3.19 4.72 -2.25 -0.60 
Nitrogen (%) 0.136 0.050 5.16 16.9 
Slope (degrees) 16.3 15.7 -0.017 0.035 
Available phosphorus (ppm) 5.26 7.14 0.043 0.042 
pH 5.32 0.96 1.50 2.32 
Wetness 1.71 2.19 -0.46 1.05 
Flood hazard (dummy) 0.40 0.49 0.090 0.92 
Rainfall (m) 2.30 0.62 -0.32 0.27 
Forest reservation (dummy) 0.46 0.50 -3.21 -1.90 
National land (dummy) 0.20 0.40 -0.72 0.72 

Constant   -5.05 -14.0 
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study of Sonneveld (2003). He evaluated and formalized the use of expert judgements to conduct 
a nationwide water erosion hazard assessment in Ethiopia. The expert opinions were reproduced 
with an ordered logit model that predicted the presence or absence of erosion. 
 
The study applied an ordered logit model that uses a continuous but unobserved variable y (for 
example, soil loss in tonnes per ha per year) in a regression with a set of independent variables x 
(site characteristics and land use). The range of this y is subdivided into adjacent intervals 
representing classes (e.g. 1 = no erosion; 2 = moderate; 3 = severe; etc.) that represent an 
observed discrete variable z. In the logit model, additive error terms are used, so that the 
underlying process is given by: 
 

yi = β΄xi + εi         (3.2.10) 
 
where β is the vector of parameters to be estimated; εi is the disturbance, assumed to be 
independent across observations; yi can take any value and the subscript i refers to the 
observation number. The relation between zi, given in ordered classes (1, 2, ..., n), and yi is that 
adjacent intervals of yi correspond with qualitative information zi. This relation is given by:  
 
 zi = 1 if yi < μ1  
 zi = 2 if μ1 ≤ yi < μ2        (3.2.11) 

 … 
zi = n if μn-1 ≤ yi 

 
whereby the ordering requires that thresholds (µ1,..,µn-1) satisfy µ1 < µ2 < .. < µn-1. The maximum 
likelihood method is used to estimate parameters β and thresholds (µ1, ..., µn-1), thereby 
maximizing the probability of correct classifications.  
 
The probability (P) that zi = 1 is calculated by: 

)'()'()()1( 1111 iiii xFxPyPzP βμβμεμ −=−<=<== ,   (3.2.12) 

the probability that zi = 2 by: 

P(zi = 2) )'()( 2121 μεβμμμ <+≤=<≤= iii xPyP  

  )'()'( 12 iiii xPxP βμεβμε −<−−<=     (3.2.13) 
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and the probability that zi= n by: 

)'()'()()( 111 −−− −=−≥=≥== niininii xFxPyPnzP μββμεμ   (3.2.14) 

 
To meet the requirements of a probability model (monotonic-increasing cumulative distribution 
and results lie between 0 and 1), the disturbances εi are assumed to possess a logistic distribution, 
leading to a cumulative logistic transformation function 
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which maps the admissible area of y, i.e. (-∞, ∞), to [0,1], with a first derivative that is always 
positive. Thus, the likelihood function for the ordered logit model that consists of Equation 
3.2.13 and 3.2.14 for n=N is given by: 
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           (3.2.16) 
The function L is minimized with respect to the parameters β and μ1, μ2, …, μn (Sonneveld 2002). 
Another example of an ordered logit is given in Box 3. 
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Box 3. Ordered logit to identify determinants of poverty 
 
The method of ordered logit will be illustrated with a study on poverty analysis, since no LUCC-
related studies have used ordered logit yet. Geda et al. (2001) used an ordered logit model to 
examine possible determinants of poverty status in Kenya. An ordered logit model was 
appropriate for the estimation of relevant probabilities because the categories have a natural 
order. The ordering of the population subsamples was based on total and food poverty lines as 
cut-off points in a cumulative distribution of expenditure. Three categories of poverty were 
distinguished: non-poor, poor and extremely poor.  
 
The data were based on a welfare-monitoring survey for the whole country covering almost 
10,000 households. Explanatory variables that were used comprised property-related data (land 
and livestock holding), household characteristics (employment, age, gender, educational level) 
and others (time to obtain water and energy and location). An income-based and a consumption-
based model were used for the probability prediction. These models were fitted for the whole 
national sample, but also for two subsamples to differentiate between the rural and urban areas. 
 
Table 3.9. Ordered logit estimates for the consumption-based model and the national sample 

Variable* β coefficient Z value 

Employment in agriculture 0.315 3.33 
Primary education -0.430 -5.54 
Secondary education -1.149 -11.22 
University -2.642 -4.81 
Household size 0.199 14.82 
Total land holding -0.011 -2.55 
Age 0.041 3.25 

Cut-off point 1 (µ1) 2.379 0.425 
Cut-off point 2 (µ2) 3.140 0.422 
* Variables significant at 1% level 

 
Table 3.9 presents the estimated coefficients for the consumption-based model. The coefficients 
show that the level of education and size of the household are the most important factors 
associated with poverty. The cutting lines determine the probabilities for each poverty class. This 
leads to the following probabilities for the ordered logit model of Table 3.9: 
 

Non-poor  P(β΄xi+εi < µ1)   = 0.52 
Poor   P(µ1 < β΄xi+εi < µ2) = 0.15 
Extremely poor  P(µ2 < β΄xi+εi)  = 0.33 

 
The predicted probabilities for both models and the different samples are presented in Table 3.10. 
This shows that poverty is mainly concentrated in the rural areas of Kenya. This example can also 
be applied in a LUCC context; instead of the three poverty levels, one can use land use intensity 
or forest degradation classes. 
 
Table 3.10. Predicted probabilities of being non-poor, poor or extremely poor 

Sample Income-based model Consumption-based model 
 Non-poor Poor Extremely 

poor 
Non-poor Poor Extremely 

poor 

National 0.42 0.13 0.45 0.52 0.15 0.33 
Rural 0.39 0.11 0.50 0.49 0.15 0.33 
Urban 0.58 0.19 0.23 0.72 0.17 0.13 
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Box 4. Tobit analysis for farming system classification 
 
Baltenweck et al. (2004) used Tobit analysis for the classification of farming systems in the 
Kenyan Highlands. The analysis was based on data from a household survey of 2810 agricultural 
households. Five dependent variables were hypothesized to represent the type of farming 
systems: percentage of land under coffee, under tea, under fodder, percentage of land fertilized 
and number of dairy cattle in tropical livestock units (TLU). Tobit analysis was appropriate 
because the variables were censored with an upper limit of 100 per cent and a lower limit of 0 per 
cent. 
 
The following steps were taken for the Tobit analysis: 
1. Each variable was first regressed on the same set of explanatory biophysical variables. From 

this first step, predicted levels for each of the dependent variables were computed. 
2. The five dependent variables were regressed on the predicted values of the four other 

dependent variables plus the set of independent variables, which were household 
characteristics (sex, years of farming experience and education of the household head, 
dependency ratio), farm characteristics (land size, number of adults, ratio female over total 
adults), external factors (population density, altitude, annual precipitation) and market access 
(distance to Nairobi by three road types). Bootstrapping was used to control for a possible 
heteroscedasticity of the errors terms. 

3. Linear predictions were made for the spatial predictions, based on only the significant GIS- 
derived variables at 5%. The other variables that could not be mapped were included in the 
constant (using mean values). 

4. The results for each variable were mapped and afterwards combined to obtain a classification 
of the farming systems, e.g. dairy-based farming system (high percentage of land under 
fodder and high dairy TLU).  

 
In Table 3.11 some results of the analysis are presented. Since the coefficients are not 
standardized they cannot be compared directly; however, the table gives an indication of which 
variables are important. For example and as expected, the results show that the decision on 
growing coffee is negatively correlated with the percentage of land under tea (farmers choose 
between growing either tea or coffee). On the other hand, dairy and coffee are usually 
complementary activities as reflected in the positive sign of the dairy TLU variable. 
Using this approach, it was possible to capture not only the binary decision (e.g. having coffee or 
not) but also the extent (e.g. land allocated to coffee). It was also possible to take into account the 
fact that the decisions are taken simultaneously. 
 
Table 3.11. Coefficients* of the Tobit analysis for variables representing farming system types 

Independent variables Percentage 
coffee 

Percentage 
tea 

Percentage 
fodder 

Percentage 
fertilized 

Dairy TLU 

Percentage coffee    7.52 -7.96 
Percentage tea -1.40  -0.330 -2.36 4.24 
Percentage fodder  13.4    
Percentage fertilized -5.03 -3.90 -0.895   
Dairy TLU 0.962 -2.21 0.308 -1.83  
Population density -0.000114 -0.000097 0.000077   
Altitude -0.00176 0.00688 -0.000539 0.00945  
Annual precipitation 0.00296  0.000845 0.00305  
Distance Nairobi type 1 -0.00193  -0.000526  -0.00988 
Distance Nairobi type 2  0.00365 -0.00220  -0.0231 
Distance Nairobi type 3  0.0159  -0.00486  

Constant 1.40 -11.3 0.28 -20.1 2.37 
* Significant at 5% 
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3.2.5 Tobit analysis 
 
Although logit models (binary variable as dependent variable) are widely used, Tobit models 
should be preferred when the dependent variable is censored so as to avoid loss of information 
(Lynne et al. 1988; Holloway et al. 2004). A censored variable is a variable for which values in a 
certain range are all transformed to (or reported as) a single value (see Box 4 for an example). 
The regression model that is based on a censored distribution is referred to as the Tobit model 
(Tobin 1958). The general formulation is usually given in terms of an index function, also called 
the latent variable (Greene 2000): 
 
 yi

* = β’xi + εi 
 yi = 0 if yi

*≤ 0,         (3.2.17) 
yi = yi

* if yi
* > 0. 

 
The dependent variable yi equals 0 if the latent variable yi* is below a certain threshold, usually 0. 
If the values of the latent variable are positive, the dependent variable is equal to the latent 
variable. 
 
Examples 
Baidu-Forson (1999) used Tobit analysis to identify factors that motivate both the level and 
intensity of adoption of specific soil and water conservation technologies for a case study in 
Niger. Non-adoption occurs, even in areas of diffusion of improved technologies. Therefore, 
there are some households with zero adoption of the improved technology at the limit. The 
application of Tobit analysis is preferred in such cases because it uses both data at the limit (non-
adopters – zero values) as well as those above the limit (adopters – positive values) in the 
estimations (McDonald and Moffit 1980). A direct application of Tobit estimation sufficiently 
provides the needed information on adoption probability and intensity of use of technologies. It 
can be shown that the total change in elasticity of adoption can be disaggregated into (i) a change 
in probability of the expected level of use of the technology for farmers who already are adopters; 
and (ii) change in the elasticity of the probability of being an adopter.  
 
Chomitz and Thomas (2003) used a Tobit model to explain spatial variation in land use for the 
Brazilian Amazon. Census tract-level data were used to relate forest conversion and pasture 
productivity to precipitation, soil quality, infrastructure and market access, proximity to past 
conversion and protection status. The use of the Tobit model was appropriate because censoring 
at zero captures the intuition that there will be no conversion in unprofitable areas and the reality 
that many census tracts lack any agricultural land and censoring at 1 was necessary because 
clearance of forest cannot exceed 100 per cent. 
 
 
3.2.6 Simultaneous regression 
 
Simultaneous regression is used to model (interdependent) processes, which occur simultaneously 
in the real world, e.g. the simultaneous determination of demand and supply or the simultaneous 
determination of land use and transportation characteristics in a metropolitan region. 
Simultaneous regression is normally only used for linear regression, although in theory it can be 
applied also to other regression types. An example is given below, in which deforestation is 
determined by the population (Yp), the economic potential (Ye) and another driving factor, e.g. 
altitude (Y3). However, population and economic potential are also partly determined by the 
extent of deforestation. In this case simultaneous regression should be used. 
 
Deforestation:   Yd = β0 + β1Yp + β2Ye + β3X3 
Population:  Yp = α0 + α1Yd + α2X2 
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Economic potential:  Ye = γ0 + γ1Yd + γ2X2 
 
The structural form of a linear simultaneous regression is: 
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There are M equations and M endogenous variables, denoted y1, ... , yM. There are K exogenous 
variables, x1, …, xK, that may include predetermined values of y1, … , yM as well. The first element 
of xt will usually be the constant, 1. Finally, εt1, … , εtM are the structural disturbances. The 
subscript t will be used to index observations, t = 1, … , T. In matrix terms the system may be 
written as: 
 

1'1'' −− Γ+Γ−= ttt Bxy ε         (3.2.19) 
'''

ttt Bxy ε=+Γ  

 
Each column of the parameter matrices is the vector of coefficients in a particular equation, 
whereas each row applies to a specific variable (Greene 2000). 
 
Potentially, simultaneous regression is a very useful technique to model land use change more 
realistically. However, as far as is known to us, no LUCC-related studies have yet used this 
statistical technique. 
 
 
3.2.7 Multilevel statistics 
 
Many kinds of data, including observational data collected in the human and biological sciences, 
have a hierarchical or clustered structure. LUCC-related data, for example soil and population 
data, also normally have this structure. Hierarchy is referred to as consisting of units grouped at 
different levels. These levels are either spatial, e.g. village territories and districts, or thematic, e.g. 
the field, household and village levels. The existence of such data hierarchies is neither accidental 
nor ignorable (Goldstein 1995). To analyse these hierarchical data, multilevel statistics are 
preferred to the more conventional OLS approach, because with nested data regression 
coefficients may exhibit dependency, which means that the data may provide less information 
than if they were distributed at random, as is assumed in OLS. Misleading regression results are 
therefore likely because systematic associations reduce the effective sample size and lead to 
understated standard error estimates (Snijders and Bosker 1999).  
 
The outline of a multilevel model is shown in the following ordinary simple regression (Goldstein 
1995): 
 

iii exbby ++= 10         (3.2.20) 

 
Suppose the data have a two-level hierarchical structure. The above equation is expressed with 
Equation 3.2.21 in the style of multilevel modelling: 
 

ijijijijijij xbxebexbby 110000110 }{ ++=++=       (3.2.21) 
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Here, i and j mean subscripts of different levels. x0ij is a dummy variable whose value is all 1. 
Mean value of the random term e0ij is 0. If either intercept (b0) or slope (b1) has a level-2 random 
term, it becomes a multilevel model: 
 

 ijjijijjijijjjij xubxeubexububy 1110000011100 }{}{}{}{ ++++=++++=   (3.2.22) 

 
Mean values of the level-2 random terms (u0j and u1j in this case) are 0. The level-2 random term 
for intercept (u0j) means how far the intercept for level-2 unit j is apart from the entire intercept 
b0. Large variance of u0j means that the intercept differs widely by level-2 units. The right-hand 
side of Equation 3.2.22 can be divided into fixed part and random part: 
 

}{}{ 1100001100 ijjijjijijijijij xuxuxexbxby ++++=     (3.2.23) 

 
Multilevel models are estimated using an iterative algorithm based on maximum likelihood and 
generalized least squares. Starting values for regression coefficients are calculated based on 
preliminary information about the variance-covariance matrix. The matrix is then re-estimated 
using the starting values for the coefficients. The coefficient estimates are then improved using 
the new variance-covariance matrix, etc. This process continues until a suitable convergence is 
attained (Hox 1995). In this way results for both the fixed and random parts of the model are 
estimated more efficiently compared to OLS (Osgood and Smith 1995). There are two principal 
estimation algorithms, full maximum likelihood and restricted maximum likelihood (Snijders and 
Bosker 1999). In general restricted maximum likelihood provides more realistic estimates because 
it corrects for degrees of freedom lost in estimating error variance. More detailed information 
about multilevel statistics can be found in the textbook by Goldstein (1995). 
 
Examples:  
Multilevel statistics are most frequently applied to the analysis of educational issues: student-level 
data are nested within class-level data within school-level data. There are, however, some sparse 
examples of applications in LUCC. Polsky and Easterling (2001) analysed climate sensitivities at 
multiple spatial scales, at county and district levels. A multilevel model was used with agricultural 
land value per acre as the dependent variable. The model was a random coefficient framework 
modified to account for the issues of scale. In this case counties were nested within districts. This 
means that estimates for the average agricultural land value for a county of average climate, 
and/or the various climate sensitivities (the slopes), depend in part on characteristics of the 
district in which the county is located. The multilevel model was used to specify which level-1 
units (counties) are nested within which level-2 units (districts). The common approach to 
multilevel modelling was followed by fitting a series of models, testing at each step the tenability 
of the hypothesized scale-based variation. The model estimated a non-linear, hill-shaped 
relationship between July maximum temperatures and agricultural land values, with initial 
increases beneficial in all counties but more beneficial in districts of high interannual temperature 
variability. Farmers in districts with high variability have adapted to be more resilient to variability 
than farmers in areas of comparatively stable climate. 
Other examples of LUCC-related applications of multilevel statistics are reported by Hoshino 
(2001), Pan and Bilsborrow (2005) and Overmars and Verburg (in press). 
 
 
 
3.3 Bayesian statistics 
 
Bayesian statistics are not widely used in LUCC modelling research; however, we will briefly 
discuss the principles of Bayesian statistics and illustrate their use with an example of de Almeida 
et al. (2003), who applied it in modelling urban change with a cellular automata model. 
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Bayesian analysis is an approach to statistical analysis that is based on Bayes Law, which states 
that the posterior probability of a parameter p is proportional to the prior probability of 
parameter p multiplied by the likelihood of p derived from the data collected. This methodology 
represents an alternative to the traditional (or frequentist probability) approach: whereas the latter 
attempts to establish confidence intervals around parameters, and/or falsify a priori null 
hypotheses, the Bayesian approach attempts to keep track of how a priori expectations about 
some phenomenon of interest can be refined, and how observed data can be integrated with such 
a priori beliefs, to arrive at updated posterior expectations about the phenomenon.  
 
A good metaphor (and actual application) for the Bayesian approach is that of a physician who 
applies consecutive examinations to a patient so as to refine the certainty of a particular diagnosis: 
The results of each individual examination or test should be combined with the a priori 
knowledge about the patient, and expectation that the respective diagnosis is correct. The goal is 
to arrive at a final diagnosis, which the physician believes to be correct with a known degree of 
certainty. 
 
De Almeida et al. (2003) used Bayesian statistics to develop a structure for simulating urban 
change based on estimating land use transitions with a cellular automata model. The analysis is 
introduced simply, referring to a generic probability of land use change ∆N which is influenced 

Box 5. Multilevel statistics to model farmland distribution 
 
Hoshino (2001) used a multilevel model to analyse the factors that influence land use distribution, 
in particular farmland, in Japan. First, a single-level model (ordinary regression) was applied; 
however, the results were not satisfactory when the model was applied to a wider region. The 
reasons were the problem of scale effect and the variability of the indicators per region; as a 
consequence the estimated effects were too small or too large. Therefore a second analysis with 
a multilevel model was applied with the same set of indicators. A hierarchical structure of 
municipalities (level-1 units) nested within prefectures (level-2 units) was assumed. 
 
The dependent variable was the percentage of farmland area in each municipality, as derived 
from a land use survey of 1989. The indicators (independent variables) were divided in six groups: 
topographic conditions, size of farm, land use intensity, income dependency on farming, off-farm 
labour and indicators of urbanization (infiltration of non-farm households into rural areas). Principal 
component analysis was used for some of these indicators to avoid multicollinearity.  
 
The two-level model was run based on the most effective indicator of each group from the single-
level analysis. A level-2 random term (uj) was set when either the variance of the random term at 
level 2 or the ratio of the variance to the standard error was small enough. This resulted in four 
indicators (flat lowland topography, farm size, paddy field percentage and the constant), as shown 
in Table 3.12. All variables were standardized beforehand, which made it possible to compare the 
coefficients. The flat lowland factor is mostly determining the percentage of farmland. The 
variance of the level-1 random coefficient (eij) was significant, and the goodness of fit was much 
better than the single-level models. 
 
Table 3.12. Results of two-level farmland model (standard error is indicated between brackets) 

Indicators β-coefficient Variance of uj Variance of eij 

Flat lowland topography 0.825 (0.032) 0.040 (0.009)  
Plateau area 0.192 (0.010) -  
Logarithm of average farm size 0.231 (0.052) 0.130 (0.025)  
Paddy field / total farmland 0.173 (0.064) 0.309 (0.076)  
% part-time farm household -0.232 (0.016) -  
Number of family members 0.194 (0.014) -  
Non-farm household ratio -0.098 (0.013) -  

Constant 0* 0.250 (0.061) 0.154 (0.004) 
* The parameter for constant was set at zero because all variables were already standardized. 
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by a factor X, without taking into account specific land use, location and temporal notation. A 
prior probability of land use change from k to l for any cell i is assumed, which is called P(∆N), 
but what needs to be estimated is the posterior probability of such change, which is influenced by 
the factor X in question (posterior P(∆N|X)). The standard form for updating a prior probability 
to a posterior, based on Bayes Rule (Whittle 1970), is: 
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Equation 3.3.1 gives the probability when a change in land use takes place, that is when change is 

present or 1=Δ kl

iN . But in the case where there is no land use change, when change is absent or 

0=Δ kl

iN , the probability must be written as: 
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This formulation enables the use of factors which are in binary form (presence or absence). This 
is particularly suited to physical infrastructure with socio-economic implications, such as the 
presence or absence of transport routes, utilities, social housing and so on in different cells. The 
probability of something happening divided by the probability of it not happening (the odds O) 
can be obtained by dividing Equation 3.3.2 into Equation 3.3.1: 
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The ratio )(/)( NXPNXP ΔΔ  is a likelihood that updates the odds of event ∆N taking place in 

the presence of the factor X, with the ratio being related to support for the event taking place. 
This equation is best represented in logit form as the ‘positive weight of evidence’ by taking the 
logarithms of Equation 3.3.3 to give: 
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where W+ is the positive weight of evidence associated with X. An exactly symmetric analysis can 

be derived for the log odds associated with the absence of a factor X . We are now in a position 
to generalize this to many different factors Xe. The probability equations that we use will depend 
strongly on the extent to which the multiple factors {Xe, e = 1, 2, …, E} are independent of one 
another. This must be tested prior to using these equations, and if there is strong spatial 
dependence or association between the factors then more complicated forms must be used, with 
this kind of analysis being less suitable. In fact, independence from irrelevant alternatives is 
necessary in logit analysis for if the factors are associated with one another, then the probability 
estimates are biased. Assuming independence, we can write the conditional or posterior 

probability as ),...,,( 21 EXXXNP Δ . The generalized forms for positive and negative weights of 

evidence respectively can now be stated as: 
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Another example of the use of Bayesian statistics is a deforestation study for Madagascar by 
Agarwal et al. (2005). 
 

 
3.4 Artificial neural networks 
 
Artificial neural networks are powerful tools that use a machine learning approach to quantify and 
model complex behaviour and patterns. They are used for pattern recognition, prediction and 
classification in a variety of disciplines, such as economics, medicine, landscape classification and 
remote sensing. It is not a statistical technique, but in its functioning it is related to regression 
models. The use of neural networks has increased substantially over the last several years because 
of the advances in computing performance. A number of applications in land use-related research 
have been published recently (Pijanowski et al. 2002; Li and Yeh 2002; Pijanowski et al. 2005). 
 
Artificial neural networks were developed to model the brain’s interconnected system of neurons 
so that computers could be made to imitate the brain’s ability to sort patterns and learn from trial 
and error, thus observing relationships in data. The basics of artificial neural networks are based 
on Rosenblatt (1958), who created the ‘perceptron’. It consists of a single node (Figure 3.6 A), 
which receives weighted inputs and thresholds the results according to a defined rule. This type 
of simple neural machine is capable of classifying linearly separable data and performing linear 
functions. The multilayer perceptron neural net consists of three layers: input (I), hidden (H) and 
output (O) (Figure 3.6 B), and thus can identify relationships that are non-linear in nature.  
 
Artificial neural network algorithms calculate weights for input values, input layer nodes, hidden 
layer nodes and output layer nodes by introducing the input in a feed-forward manner, which 

Box 6. Bayesian statistics to estimate ‘neighbourhood effect’ in 
technology adoption 
 
Holloway et al. (2002) explained and applied Bayesian statistics to estimate the ‘neighbourhood 
effect’ in high-yielding variety (HYV) adoption of rice among Bangladeshi rice producers. The use 
of Bayesian statistics was appropriate because there was a priori evidence that village-level 
synergy existed in technology adoption in Bangladesh. An external reviewing team found that 
‘copy farmers’ (secondary adopters) abounded in the areas where the project was based. This 
lead to the observation that spatial reach via secondary adoption had a radius of 2 to 3 km. So the 
attitude towards adoption of HYV by farmers depends not only on their own internal 
characteristics, but also on the influence of other farmers in the village. The effect of farmers in 
surrounding villages was assumed to be negligible.  
 
Adoption of new HYV depends upon a set of price variables, a set of fixed factors (e.g. farm 
assets, land holding), a set of socio-economic characteristics (e.g. education, income) and 
neighbourhood influences. The first three sets of characteristics are standard in adoption models 
and were collected during an intensive farm survey among 407 households. The neighbourhood 
influences are modelled through the combination of a spatial weight matrix and the spatial 
correlation parameter ρ. The underlying model is a spatially autoregressive probit model, used as 
the framework of choice for modelling new technology adoption. 
 
Education, farm size and rented land were the only significant variables in the analysis. Years of 
education had a negative effect on the adoption of HYV, which seems counterintuitive; however, 
other studies showed that education provides more off-farm opportunities, which compete with 
cultivation activities. The posterior means estimate of the neighbourhood correlation coefficient ρ 
was 0.54, which indicates a strong positive neighbourhood effect for technology adoption in 
Bangladesh. 
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propagates through the hidden layer and the output layer. The signals propagate from node to 
node and are modified by weights associated with each connection. The receiving node sums the 
weighted inputs from all of the nodes connected to it from the previous layer. The output of this 
node is then computed as the function of its input, called the ‘activation function’. The data move 
forward from node to node with multiple weighted summations occurring before reaching the 
output layer. 
 

 
Figure 3.6. A simple perceptron (A) and a multilayer perceptron (B) illustrating input layers (I), hidden 
nodes (H) and output layers (O) 

 
 
The determination of weights is critical to successful applications of neural networks. Weights are 
determined by using a training algorithm, the most popular of which is the back propagation 
algorithm. This algorithm randomly selects the initial weights, and then compares the calculated 
output for a given observation with the expected output for that observation. The difference 
between the expected and calculated output values across all observations is summarized using 
the mean squared error. After all observations are presented to the network, the weights are 
modified according to a generalized delta rule (Rumelhart et al. 1986), so that total error is 
distributed among the various nodes in the network. This process feeding forward signals and 
back-propagating the errors is repeated iteratively (in some cases, many thousands of times) until 
the error stabilizes at a low level. 
 
In order to develop a network with adequate predictive capacity, it is necessary to train and test 
the neural network with different input data (Skapura 1996). Training involves presenting input 
values and adjusting the weights applied at each node according to the learning algorithm (e.g. 
back-propagation). Testing presents a separate data set to the trained network independently to 
calculate the error rate. The benefit of neural networks is their flexibility and non-linearity. 
However, a drawback is that neural networks function as a black box, which means that neural 
networks do not provide insight into the relations between variables. In the case of land use the 
relations between land use and its supposed drivers remains invisible. 
  
Besides prediction applications, artificial neural networks are also widely used for classification of 
remote sensing images (Figure 3.7). It is generally agreed that artificial neural networks produce 
classifications with higher accuracies from fewer training samples. Kavzoglu and Mather (2003) 
constructed a number of guidelines for the effective design and use of artificial neural networks in 
the classification of remotely sensed image data. 
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Figure 3.7. A simple four-layer fully connected free-forward neural network as used for image 
classification (Kavzoglu and Mather 2003) 

 
Examples 
Pijanowski et al. (2002) used artificial neural networks to determine the location of land use 
change using landscape-scale variables, given a certain amount of change determined by regional- 
and global-scale variables, for Michigan’s Grand Traverse Bay watershed. Artificial neural 
networks were applied to the prediction of land use change in four phases: (i) design of the 
network and of inputs from historical data; (ii) network training using a subset of inputs; (iii) 
testing of the neural network using the full data set of the inputs; and (iv) using the information 
from the neural network to forecast changes. The artificial neural network was a feed-forward 
network with one input layer, one hidden layer and one output layer. The simple back-
propagation algorithm was used as the learning process. The neural network was designed to 
have a flexible number of inputs depending on the number of predictor variables presented to it, 
an equal number of hidden units as input units and a single output. The neural network was 
incorporated in the Land Transformation Model, which explored how geographical factors (e.g. 
roads, highways, rivers, coastline, recreational facilities and agricultural density) can influence 
urbanization patterns. 
 
Li and Yeh (2002) simulated the evolution of multiple land uses based on the integration of 
neural networks and cellular automata. Conventional cellular automata models have problems in 
defining simulation parameter values, transition rules and model structures. The integration of 
neural networks and cellular automata should be much better for the simulation of complex land 
use systems because neural networks are very good at coping with wrong and poor data and 
capturing non-linear complex features in modelling processes. A three-layer neural network with 
multiple output neurons was designed to calculate conversion probabilities for competing 
multiple land uses. The model was applied for a fast-growing urban area in southern China. 
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4 Special issues relevant to the spatial analysis of land 
use and farming systems 

 
 
4.1 Multicollinearity 
 
Dependencies between the explanatory variables are an important issue to account for in all 
multivariate methods. Data should be checked on multicollinearity before any regression analysis. 
Collinearity arises when independent variables are correlated with one another. Perfect 
collinearity means that an independent variable is a perfect linear combination of the other 
independent variables. If each independent variable in turn is treated as the dependent variable in 
a model with all of the other independent variables as predictors, perfect collinearity would result 
in R2 = 1 for each of the independent variables. When perfect collinearity exists, it is impossible 
to obtain a unique estimate of the regression coefficients; any of an infinite number of possible 
combinations of linear or logistic regression coefficients will work equally well. Perfect 
collinearity is rare, except as an oversight: the inclusion of three variables, one of which is the 
sum of the other two, would be one example (Menard 2001). 
Less than perfect collinearity is fairly common. Many variables that are frequently used in land 
use analysis, such as distance to roads and markets, tend to be highly correlated, making it 
difficult to distinguish their separate effects. Any correlation among the independent variables is 
indicative of collinearity. As collinearity increases among the independent variables, linear and 
logistic regression coefficients will be unbiased and as efficient as they can be (given the 
relationships among the independent variables), but the standard errors for linear or logistic 
regression coefficients will tend to be large. More efficient unbiased estimates may not be 
possible, but the level of efficiency of the estimates may be poor. Low levels of collinearity are 
not generally problematic, but high levels of collinearity may pose problems, and very high levels 
of collinearity almost certainly result in coefficients that are not statistically significant, even 
though they may be quite large. Collinearity also tends to produce linear and logistic regression 
coefficients that appear to be unreasonably high: as a rough guideline, standardized logistic or 
linear regression coefficients greater than 1 or unstandardized logistic regression coefficients 
greater than 2 should be examined to determine whether collinearity is present (Menard 2001).  
 
Collinearity is easy to detect, but there are only few acceptable remedies for it (Dohoo et al. 
1997). Deleting a variable involved in collinearity runs the risk of omitted variable bias. Methods 
to prevent multicollinearity include factor analysis, a priori correlation analysis and stepwise 
regression. Applying factor analysis before running a regression will combine collinear variables, 
if present, into a single factor. Instead of factor analysis one can also apply an even simpler form 
of correlation test by looking at the coefficient of determination (R2) between all pairs of variables 
(Mertens et al. 2002). A weak association between explanatory variables implies a relatively low 
degree of collinearity, whereas one or more variables should be excluded when a strong 
association is found. Menard (2001) suggests that correlations > 0.8 between independent 
variables should be regarded as a high level of collinearity. 
Stepwise regression is another method to reduce collinearity between the independent variables in 
a regression. The use of stepwise regression is, however, restricted to exploratory analysis, when 
we are more concerned with theory development than theory testing. Such research may occur in 
the early stages of the study of a phenomenon, when neither theory nor knowledge about 
correlates of the phenomenon is well developed. Stepwise regression refers to the use of 
decisions made by computer algorithms, rather that choices made directly by the research, to 
select a set of predictors for inclusion in or removal from a linear or logistic regression model. 
Stepwise procedures may be useful for purely predictive research and exploratory research. In 
purely predictive research, there is no concern with causality, only with identifying a model, 
including a set of predictors, that provides accurate predictions of some phenomenon. In 
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exploratory research, there may be a concern with theory construction and development to 
predict and explain a phenomenon, when the phenomenon is new or so little studied that existing 
‘theory’ amounts to little more than empirically unsupported hunches about explanations for the 
phenomenon (Menard 2001). 
Two methods exist for stepwise regression: backward elimination and forward inclusion. Usually, 
the backward elimination and forward inclusion methods will produce the same results, but when 
the results differ, backward elimination may uncover relationships missed by forward inclusion, 
due to the suppressor effect (Agresti and Finlay 1997). This means that in some cases a variable 
may appear to have a statistically significant effect only when another variable is controlled or 
held constant. With backward elimination, because both variables will already be in the model, 
there is less risk of failing to find a relationship when one exists. 
 
Many authors have provided critical comments on the stepwise procedure. The procedure of 
screening variables by stepwise procedures may improve prediction, but it may also eliminate 
variables that are in fact important; stepwise procedures are not intended to rank variables by 
their importance (James and McCulloch 1990). Others have argued that stepwise regressions 
cannot necessarily find the best fitting model either. The best that can be hoped for, when a 
stepwise multiple regression is used, is the selection of a subset of the variables that does an 
adequate job of prediction. Users of stepwise regression should take the limitations of the 
method into account and refrain from conclusions based on the variable selection by these 
methods. 
 
 
4.2 Spatial autocorrelation 
 
The problem of using conventional statistical methods, like linear and logistic regression, in 
spatial land use analysis is that these methods assume the observations to be statistically 
independent and identically distributed (Cliff and Ord 1981). However, spatial land use data have 
the tendency to be dependent, a phenomenon known as spatial autocorrelation. Spatial 
autocorrelation may be defined as the property of random variables to take values over distance 
that are more similar or less similar than expected for randomly associated pairs of observations, 
due to geographic proximity (Legendre and Legendre 1998). 
 
Spatial dependency could be seen as a methodological disadvantage because conventional 
statistics may lead to the wrong conclusions. On the other hand, the spatial relations actually 
provide information on spatial pattern, structure and processes. So, spatial dependency contains 
useful information but to deal with it statistically the appropriate methods have to be used. The 
effects of spatial dependence on conventional statistical methods are various, for example biased 
estimation of error variance, t-test significance levels and overestimation of R2 (Anselin and 
Griffith 1988). All the usual statistical tests have the same behaviour: in the presence of positive 
autocorrelation, computed test statistics are too often declared significant under the null 
hypothesis. Negative autocorrelation may produce the opposite effect (Legendre and Legendre 
1998). This is caused by the fact that an observation carries less information than an independent 
observation, since it is partly predictable from its neighbours and a new sample point does not 
bring with it one full degree of freedom (Cliff and Ord 1981; Legendre and Legendre 1998). 
Figure 4.1 illustrates the different types of spatial autocorrelation. 
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Figure 4.1. Types of spatial autocorrelation. Visualization of positive spatial autocorrelation (left), no 
spatial autocorrelation (middle), and negative spatial autocorrelation (right) in an imaginary 13x13 grid. 
The different tones of grey indicate different values of a variable (Overmars et al. 2003). 

 
Detection of spatial autocorrelation 
Spatial structures, like spatial dependency, can be described through structure functions. The 
most commonly used structure functions are correlograms, variograms and periodograms. These 
graphs show the spatial dependency per distance class (spatial lag). In correlograms 
autocorrelation values are plotted against distance classes. This can be computed for both 
univariate (Moran’s I or Geary’s c) and multivariate data (Mantel correlogram). Correlograms are 
one of the most frequently used structure functions in spatial autocorrelation. Correlograms are 
preferable over, for example, semi-variograms for two reasons. First, the significance of the 
correlation coefficient can be tested; and second, correlograms are standardized, so different 
cases can be compared (Meisel and Turner 1998). 
 
The value of Moran’s I generally varies between 1 and –1, although values lower than –1 or 
higher than +1 may occasionally be obtained. Positive autocorrelation in the data translates into 
positive values of I; negative autocorrelation produces negative values. No autocorrelation results 
in a value close to zero (Legendre and Legendre 1998). The following formula is used to calculate 
Moran’s I: 
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in which yh and yi are the values of the observed variable at sites h and i. The values of whi are the 
weights. The weights wij are written in a (nxn) weight matrix W. W is the sum of the weights whi 
for a given distance class. The weight matrix depicts the relation between an element and its 
surrounding elements. Weight can be based, for example, on contiguity relations or on distance. 
In a weight matrix based on contiguity, a 1 in the matrix represents pairs of elements with a 
certain contiguity relation and a 0 represents pairs without contiguity relation. Two examples of 
weight matrices for a regular grid are rook contiguity and queen contiguity. The first takes only 
full neighbours into account and the latter all eight surrounding cells. The complete matrices 
contain the contiguity relations of all pairs of points. Besides this contiguity principle it is also 
imaginable to make weight matrices based on geographic distances between the centroids of the 
elements. The relations between the cells are then calculated comparing the distances between the 
centroids. 
 
Accounting for spatial autocorrelation in regression models 
Spatial autocorrelation can be analysed on unmodified data or on the residuals of a regression 
analysis. If autocorrelation is detected on the regression residuals, this can imply that the 
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regression model should have an autoregressive structure, or that non-linear relationships 
between the dependent and the independent variables (trend) are present, or that one or more 
important regressor variables are missing (Long 1998). The most general formulation of a spatial 
autoregressive model is Equation 4.2.2 (Anselin 1988; LeSage 1999).  
 

y = ρW1y + Xβ + u   

u = λW2u + ε         (4.2.2) 

ε ~ N(0, σ2In)  
 
In this equation y contains an nx1 vector of cross-sectional dependent variables, X represents and 
nxk matrix of explanatory variables, and W1 and W2 are known nxn spatial weight matrices. The 

parameter ρ is a coefficient on the spatially lagged dependent variable and λ is a coefficient on 

the spatially correlated errors (LeSage 1999). β is a kx1 vector with linear regression coefficients, 

as in a standard linear regression model. The error term (ε) is an nx1 vector of independent 

identical normally distributed variables with zero mean and variance σ2. 
 
Specific models can be derived from the general model by imposing restrictions. Setting X = 0 
and W2 = 0 produces a first-order spatial autoregressive model, explaining variation in y as a 
linear combination of contiguous or neighbouring units with no other explanatory variables. 
Setting W2 = 0 produces a mixed regressive-spatial autoregressive model. This model has 
additional explanatory variables in the matrix X to explain variation in y over the spatial sample of 
observations. This model is also called the simultaneous model (Anselin 1988) or simultaneous 
spatial autoregression (Kaluzny et al. 1997). W1 = 0 results in a regression model with spatial 
autocorrelation in the disturbances. Anselin (2002) describes this model as a standard regression 
model with spatially filtered variables. A model known as the spatial Durban model contains a 
spatial lag in both the dependent variable (matrix W) and the independent variables (matrix X). 
 
In case of a row-standardized W1, the spatial part of the mixed regressive-autoregressive model 
functions as an extra variable equal to the (weighted) mean of observations from contiguous cells. 
If spatial dependence between the observations in the data set y is assumed, some part of the total 
variation in y across the spatial sample is explained by each observation’s dependence on its 

neighbours. The parameter ρ would reflect that in the typical sense of regression (LeSage 1999). 
For further reading about different ways to incorporate spatial effects in regression models see 
Anselin (2002). 
 
Besides the above-discussed autoregressive model, two other methods exist to account for spatial 
autocorrelation. One is the inclusion of spatially lagged variables and the other is structured 
sampling. The spatial lag method explicitly includes the spatial context in the model. Each lag 
variable is the average of the values of the original variable in the eight cells surrounding the 
location. Nelson and Geoghegan (2002) used spatial lag variables, which included the latitude and 
longitude values, and average vegetative and soil quality indices in the surrounding locations. 
 
Instead of explicitly correcting for spatial autocorrelation some authors use structured sampling 
methods to reduce the influence of spatial autocorrelation on the estimated model. Structured 
sampling can be based on three different techniques: the semi-variogram, the Besag approach and 
the jack-knife or bootstrap method. Structured sampling on the basis of a semi-variogram means 
that the range of a semi-variogram determines the sampling distance. The range is an indication 
for the area where variables are still spatially dependent. A sampling distance larger than the range 
supposes the variables to be spatially independent. The second method is a regular sampling 
procedure suggested by Besag (1974). The Besag approach includes only observations separated 
by sufficient distance in space that the autoregressive effect is absent. With a coding scheme a 
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sample from the full data set is selected, so no two sites in the sample are neighbours, e.g. 
neighbouring cells in the sample are 5 pixels apart in the full data set.  
The last structured sampling technique is the jack-knife or bootstrap method. This is a technique 
to reduce bias and to obtain standard errors of the estimated autocorrelation coefficients. The 
jack-knife method is performed by fitting the regression model with n observations but one, 
leaving out successively one observation at a time. This procedure leads to the calculation of the 
empirical influence values e for each observation. These values can be plotted as a function of the 
observation number to detect possible outlying observations. Similar to this technique is the 
bootstrap, proposed by Efron (1982). It is a very general computing-intensive method to produce 
an approximation to the unknown distribution of a statistic. The bootstrap is a technique for 
estimating the standard error of a statistic using repeated samples from the original data set. This 
is done by sampling (with replacement) to get many samples of the same size as the original data 
set. The non-linear equation is estimated for each of these samples. The standard error of each 
parameter estimate is then calculated as the standard deviation of the bootstrapped estimates. 
Parameter values from the original data are used as starting values for each bootstrap sample. 
 
Examples 
Overmars et al. (2003) used correlograms of Moran’s I to describe spatial autocorrelation for a 
data set of Ecuador. Positive spatial autocorrelation was detected in both dependent and 
independent variables (Figure 4.2). Also, the residuals of the original regression model showed 
positive autocorrelation. To overcome the positive autocorrelation a mixed regressive-spatial 
autoregressive model was used, which incorporated both regression and spatial autocorrelation. 
The models yielded residuals without spatial autocorrelation and had a better goodness of fit. 
Most autoregressive models are based on linear regression. No examples of autoregressive 
models are known in LUCC science. An example of an autologistic model in ecology is presented 
by Augustin et al. (1996). 
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Figure 4.2. Correlogram with Moran’s I comparing different land use types (Overmars et al. 2003) 

 
In an example of addressing spatial autocorrelation in survey-based data, de Wolff et al. (2000), in 
a study on milk price formation in Kenya using both household survey and GIS-derived data, 
controlled for spatial autocorrelation by introducing the interactions between farmers as 
suggested by Anselin et al. (1993). In this case, the distances between each farmer and a common 
point (urban centres) are introduced in the regression analyses as an indirect measure of potential 
spatial relationships between farmers. Existence of autocorrelation is tested both with and 
without the distance variables. The authors show that residuals do exhibit spatial autocorrelation 
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when only household survey variables are introduced in the analysis but do not when the distance 
measures are included in the analysis.  
 
Other examples of studies in which spatial dependence in land use patterns is explicitly addressed 
during the statistical analysis are the studies by Brown et al. (2002), who used geostatistical tools 
to quantify spatial dependence in land use patterns; Verburg, Ritsema van Eck, de Nijs, Visser 
and de Jong (2004), who developed a measure to explore spatial autocorrelation within a single 
land use category and between land use categories; and Polsky (2004), who used autoregressive 
models to model land use for the US Great Plains. 
 
 
4.3 Validation techniques 
 
Validation is the evaluation of the predicted modelling results. Validation is not the same as 
measuring the goodness of fit. Goodness of fit, as described for the different regression analysis 
methods, is based on the same data used for fitting the model, while validation is based on 
independent data. When a regression model is used to predict values of the dependent variable 
for other data, e.g. another subset or a different time-step or region, the performance of the 
model for extrapolation can be validated. The paragraphs below describe several validation 
techniques that are used in LUCC modelling. 
 
 
4.3.1 Multiple resolution validation 
 
No generally agreed-upon method for the quantitative evaluation of the goodness of fit for 
spatial models has evolved yet. The often-used visual comparison of modelled land use patterns 
with actual land use patterns is a rather subjective manner of validation. One objective manner is 
a multiple resolution procedure for the model goodness of fit developed by Costanza (1989). It is 
based on the measuring of similarity of the patterns, and the idea that measurement at one 
resolution is not sufficient to describe complex patterns. The method yields indices that 
summarize the way the fit changes as the resolution of measurement changes. An expanding 
‘window’ is used to gradually degrade the resolution of the comparison.  
 
With this method the near misses, besides the direct hits, receive some weight and tell whether 
the pattern matches. The fit for each sampling window is estimated as 1 minus the proportion of 
cells that would have to be changed to make the sampling windows each have the same number 
of cells in each category, regardless of their spatial arrangement:  
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Fw is the fit for sampling window size w, w the dimension of one side of the (square) sampling 
window, aki the number of cells of category i in scene k in the sampling window, p the number of 
different categories (i.e. land use types) in the sampling windows, s the sampling window of 
dimension w by w which slides through the scene one cell at a time and tw the total number of 
sampling windows in the scene for window size w.  
 
To determine an overall degree of fit between two maps the information in the plot of window 
sizes versus fit (Figure 4.3) must be summarized. A weighted average of the fits at different 
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window sizes is a possible way of summarizing the overall fit that allows more weight to be given 
to smaller window sizes while not totally ignoring the large window sizes. For this purpose the 
following formula can be used: 
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Ft is a weighted average of the fits over all window sizes, Fw the fit for sampling windows of linear 
dimension w, k a constant, and w the dimension of one side of the (square) sampling window. 
The value of k determines how much weight is to be given to small versus large sampling 
windows. A default value for k = 0.1. 
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Figure 4.3. Example plots of window sizes versus fit for two models 

 
The calculated fit of the model is only a relative value that can be used to compare the results of 
different models. To get an impression of the absolute performance of the model the fit should 
also be compared with a certain standard or ‘null model’. 
 
 
4.3.2 Kappa characteristic 
 
The Kappa statistic is a measure of accuracy that ranges between 0 (completely inaccurate) and 1 
(completely accurate) and measures the observed agreement between the classification and the 
reference data and the agreement that might be attained solely by chance matching (Munroe et al. 
2002). The Kappa statistic (Pontius 2002) is: 
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where Po is the observed proportion correct, Pc is the expected proportion correct due to chance 
and Pp is the proportion correct with perfect classification. In addition to the standard Kappa 
index of agreement, Pontius (2000, 2002) defines three variations: Kappa for no information 
(Kno), Kappa for location (Kloc), and Kappa for quantity (Kquan). Kno is an overall index of 
agreement, Kloc is an index that measures the agreement in terms of location only and Kquan 
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measures the agreement in terms of quantity. According to Pontius (2000) a Kappa value higher 
than 0.5 can be considered as satisfactory for land use change modelling. Landis and Koch (1977) 
characterize agreement as follows: values > 0.75 are very good to excellent, values between 0.4 
and 0.75 are fair to good and values of 0.4 or less indicate poor agreement.  
 
 
4.3.3 ROC 
 
Besides its use as a measure for goodness of fit, as described in Chapter 3.2.2, the ROC can also 
be used to assess the predictive power of a regression model. The ROC procedure offers a way of 
identifying an optimum probability threshold by simply reading the point on the curve at which 
the sum of sensitivity and specificity is maximized. One can assess whether increasing or reducing 
probability thresholds for accepting presence, as optimized from the ROC curve, has any effects 
on the predicted frequency of occurrence during real model applications. Logistic models can be 
calibrated for predicting presence of a certain land use using part of the data and applying them 
to the other part of the data. One can use geographic samples, or random samples of the 
complete data set. This procedure is recommended for testing any presence-absence model on 
fully independent data (Manel et al. 1999). 
 
In ecological studies frequent use has been made of the ROC in applications aiming at prediction. 
For example, Manel et al. (2001) used this method to predict the occurrence of aquatic 
invertebrates in 180 Himalayan streams. The model was calibrated for the five westernmost 
regions and applied to the geographically distinct eastern regions. In LUCC studies Pontius and 
Batchu (2003) have used the ROC to assess the predictive power of a land use model. They 
describe a methodology to quantify the certainty in predicting the location of change for a given 
quantity of change. The methodology converts a map of relative propensity for disturbance to a 
map of probability of future disturbance, based on a quantifiable validation of a map’s predictive 
ability. They applied the methodology for the Western Ghats in India. The probability of forest 
disturbance was determined for the period 1920–1990 and extrapolated to the future by 
validation with the ROC and an independent prediction of the quantity of post-1990 disturbance. 
 
 
4.3.4 Other validation techniques 
 
Besides the above-mentioned validation techniques some other less frequently used methods for 
validation of spatial patterns exist. Herold et al. (2003) describe a validation based on spatial 
metrics that summarize landscape patterns. Spatial metrics can be defined as quantitative and 
aggregate measurements derived from digital analysis of thematic-categorical maps showing 
spatial heterogeneity at a specific scale and resolution. Six different spatial metrics were used to 
validate the modelled urban extent: class area (sum of all urban patches); number of patches, 
largest patch index (area of the largest patch divided by the total area covered by urban); 
Euclidian mean nearest neighbour distance (the distance mean value over all urban patches to the 
nearest neighbouring urban patch); area-weighted mean patch fractal dimension (area-weighted 
mean value of the fractal dimension values of all urban patches); and contagion (measures the 
overall probability that a cell of a patch type is adjacent to cells of the same type). This last index 
is an overall measure of the landscape heterogeneity and provides a subtle characterization of the 
spatial arrangement of vacant/undeveloped and urban land (Herold et al. 2003). 
 
Another technique for validation of maps is the fuzzy set statistic. The main purpose of the fuzzy 
set approach is to take into account that there are grades of similarity between pairs of cells in 
two maps. Fuzziness means a level of uncertainty and vagueness of a map. The approach 
therefore is fundamentally different from its counterpart, the cell-by-cell map comparison, which 
considers pairs of cells to be either equal or unequal. The fuzzy set approach expresses similarity 
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of each cell in a value between 0 (distinct) and 1 (identical). In order to distinguish minor 
differences from major differences, the fuzzy set approach takes two types of fuzziness into 
account: fuzziness of categories and fuzziness of location. Fuzziness of category means that some 
categories in the map are more similar to each other than others. Fuzziness of location means 
that the spatial specification found in a categorical map is not always as precise as it appears. The 
two fuzziness parameters can be combined into one overall similarity measure, the Kappa statistic 
(KFuzzy): 
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        (4.3.4) 

 
where Po is the observed percentage of agreement (i.e. average similarity) and Pe is the expected 
similarity (Hagen 2003). The fuzzy set approach and some other map comparison methods are 
incorporated in the software package Map Comparison Kit (Visser 2004). This program with 
documentation can be downloaded at http://www.mnp.nl/  (search for Map Comparison Kit) 
 
4.4 Scale dependency 
 
Scale refers to the spatial or temporal dimension used to measure and study a phenomenon. All 
scales have extent and resolution: extent refers to the size of a dimension, e.g. the size of the 
study area or the duration of time under consideration, whereas resolution refers to the precision 
used in measurement, i.e. grain size (Turner et al. 1989). The grain of an observation is the finest 
distinction made between isolated datum values. It determines the smallest entities that can be 
seen in the study. In contrast to the grain, the extent determines the largest entities that can be 
detected in the data. The scale of the study is an interaction of grain and extent. If the extent is 
large, the sampling protocol will be expensive unless the grain is relatively coarse (Allen and 
Hoekstra 1991).  
 
Each analysis of spatial pattern incorporates scale explicitly or implicitly into the process of 
identifying research objects: the very act of identifying a particular pattern means that scale, 
extent and resolution have been used. These choices over scale, extent and resolution critically 
affect the type of pattern that will be observed: patterns that appear at one level of resolution may 
be lost at lower or higher levels; patterns that occur over one extent of a dimension may 
disappear if the extent is increased or decreased (Allen and Hoekstra 1991). Figure 4.4 illustrates 
the effect of grain size for the analysis of a classic von Thünen land use pattern. When this type 
of land use pattern is studied at a detailed resolution (resolution 1) urban land use and 
horticulture are negatively correlated. However, when analysed at a coarser resolution (resolution 
2) urban land use and horticulture fall within the same unit of observation and therefore are 
positively correlated. Thus, observations and theories derived at one scale may not apply at 
another. Figure 4.4 also illustrates that the scales of organization of natural and human systems 
are different from the scales of observation, which often are determined by the measurement 
technique (Turner II et al. 1995). 
 
Different studies have shown that the grain and extent of analysis influence the identified 
statistical relationships between land use and its predictors (Veldkamp and Fresco 1997; Walsh et 
al. 2001; Verburg and Chen 2000). Possible explanations for the influence of the grain of analysis 
are: 

• Reduction of spatial variability: coarse grain sizes obscure variability whereas fine grain sizes 
obscure general trends. Shifts in grain size may produce more than averages or constants; 
they may make homogeneity out of heterogeneity and vice versa (Kolasa and Rollo 1991). 
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• Emergent properties: changes in grain size are frequently associated with new or emergent 
properties. In complex, constitutive hierarchies, characteristics of larger units are not simple 
combinations of attributes of smaller units.  

• Some factors can have influence over a considerable distance. At coarse grains these factors 
fall within the same unit of analysis and therefore cause a change in correlation structure 
(Figure 4.4). 

• Stronger overlap among variables: aggregation reduces intraclass variance and the size of the 
sample population, smoothing distributions and reducing the number of outlier values 
identified within each class. This can create strong overlap among variables, greatly reducing 
the potential value of such variables for distinguishing classes. 

 

 
Figure 4.4. Land use pattern according to the von Thünen theory and schematic representation of grain 
size at two different resolutions (Verburg and Chen 2000) 

 
The influence of the extent of analysis can be explained by the decreasing importance of local 
situations with an increasing extent of analysis. A smaller extent allows the introduction of 
specific variables that are important for the area under analysis. Therefore, a smaller extent offers 
better insight into the specific situation of the region whereas a larger extent allows for 
identification of general patterns (Verburg and Chen 2000).  
 
Another scaling issue concerns thematic aggregation, e.g. the aggregation of individual crops and 
land use systems into land use types. Cultivated land includes a diversity of crops and cropping 
intensities. All these individual crops and land use systems have their own spatial distribution and 
explanatory factors. At the same time, the distribution of cultivated land has properties that 
cannot be derived from the distribution of all the different crops separately.  
 
Methods 
Basically three methods exist to explore scale dependencies in empirical relations based on land 
use patterns. First, scale dependence can be captured by increasing artificially the resolution of 
the model and comparing the results. This method is described in several studies, e.g. Veldkamp 
and Fresco (1996), Verburg and Chen (2000) and Walsh et al. (2001). A second method is to 
include regional or spatially lagged parameters in the model, e.g. distance to the main city or 
distance to market. The third method is to use multilevel statistics, as described in Chapter 3.9. 
 
Example 
Walsh et al. (2001) assessed the statistical relationships between plant biomass levels and selected 
social, biophysical and geographical variables at nine different cell resolutions, ranging from 30 to 
1050 metres. The basic intent was to examine the scale dependence of population and 
environment relationships in a study area in north-east Thailand. This region has experienced 
pronounced land use changes associated with deforestation and agricultural extensification and 
intensification to support lowland rice and upland cash crops. The variation in plant biomass was 
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assessed through a satellite-based measure, the normalized difference vegetation index (NDVI). 
For each variable and at successively coarser resolutions, cell values were calculated by 
hierarchical aggregation of the original 30-metre grid. The beta values of each variable were 
assessed and the R2 values of each multiple regression model were tracked over the nine spatial 
resolutions. The results indicated that population factors were more important at finer scales and 
biophysical factors at coarser scales for explaining variation in plant biomass levels. 
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5 Challenges for empirical analysis in LUCC: Beyond 
regression? 

 
 
LUCC researchers face the challenge of developing adequate explanations for the occurrence, 
timing and nature of major environmental phenomena. The previous chapters have provided an 
overview of statistical and empirical techniques for the analysis of spatial patterns of LUCC. The 
application of these techniques in various case studies has resulted in a better understanding of 
the driving factors of LUCC. However, the use of these techniques has a number of drawbacks 
and limitations. Therefore, statistical methods by themselves are not sufficient to fully understand 
and predict land use change. This final chapter will shortly discuss the challenges faced by LUCC 
researchers, which include the lack of a full-fledged theory, the issue of causality versus empirical 
evidence, the use of different perspectives, scaling issues and the use of case studies. 
 
Lack of full-fledged theory 
A theory of land use change should conceptualize the relationships between the driving and 
conditioning forces and land use change, relationships among the driving forces, and human 
behaviour and organization underlying these relationships. Different disciplinary theories can 
help to analyse aspects of land use change in specific situations. The synthesis of these theories is 
essential, but paradigms and theories applied by the different disciplines are often difficult to 
integrate and their specific research results do not easily combine into an integrated 
understanding of LUCC (Overmars and Verburg 2005). So far researchers have not yet 
succeeded in integrating all disciplines and complex elements of the land use system into an all-
compassing theory of land use change. Conclusions drawn from disciplinary LUCC studies can 
vary substantially between disciplines, which implies that the complexity of the land use system as 
a whole is not completely understood (Lambin et al. 2001).  
 
Statistical techniques as presented in this report can help to explore data sets, identify associations 
between LUCC and its drivers and contribute to theory building and testing. However, the 
absence of an all-compassing theory is no reason to limit ourselves to inductive approaches. 
Theories from multiple disciplines, such as economics (e.g. optimal resource allocation), 
geography, ecology (e.g. complex systems theory) and anthropology (e.g. human behaviour), can 
contribute to the explanation of LUCC. Furthermore, there are also a number of theories 
available that focus on (specific) land use conversions, e.g. neo-Malthusian theory speaking about 
poverty traps, neo-Boserupian theory about the positive effects of population on land use 
sustainability, the induced intensification thesis (Turner II and Ali 1996), neo-Thünen theory 
about moving frontiers and urban markets (Walker and Solecki 2004) and the theories of Fujita 
and Krugman about urban development (Krugman 1999; Fujita et al. 1999). Most current 
theories cannot adequately explain the complexity of land use change. Assumed agent behaviours 
in the formal bid-rent paradigm are limited, as well focused as they are on the maximization of 
rents, profits and utility. This may be reasonable for explaining land use under the implicit 
institutional environment of the bid-rent paradigm, where rents accrue to landowners whose 
property rights are never disputed, and the economy is free from catastrophic shocks. Of course, 
many situations are vastly different from the utopia of von Thünen. Individuals may seek to 
minimize risks or take them, as the case may be (Rabin 1998). Poorly defined property rights are 
not conducive to the competitive bidding process that leads to the equilibrium rent profile, so 
essential to both urban and agricultural models. 
Empirical methods can be used to test theories in specific case studies. Such a theory-based 
approach is important to explore for several reasons. It structures the model around the critical 
human-environment relationships identified within the theory, and focuses attention on the data 
required to explore those relationships. Furthermore, this approach may improve the theoretical 
foundations of the macro relations on which LUCC models are based, e.g. logit functions or 
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cellular automata have to be further specified to improve the explaining and predicting capacity 
of those models. The relations currently used are often difficult to connect to human behaviour 
at lower levels of analysis, which makes many policy measures difficult to implement in models, 
since these will affect individual behaviour and not the aggregated effect that is normally 
modelled. 
The most effective way to reap the benefits of more deductive work does not seem to be to 
rigidly ‘go deductive’ and stay there. Such a ‘process-led approach’ may blind the analyst to 
alternative processes at work. Rather, the message should be that researchers will profit most 
from developing a consciousness of the whole spectrum between the inductive and deductive 
extremes, and an awareness of the advantages of deductive approaches versus the currently 
dominant inductive research routines, and then seeking the most fertile sequences and 
interactions between inductive and deductive work. Ultimately, this will contribute to theory 
development in the field of land use change.  
 
Causality versus empirical evidence 
A major drawback of the empirical quantification of relations between land use and its supposed 
drivers is the induced uncertainty with respect to the causality of the supposed relations: 
judgements about the results based on their interpretability can be dangerously close to circular 
reasoning. The greatest danger of all is of leaping directly from the exploratory stage, or even 
from statistical tests based on descriptive models, to conclusions about causes (James and 
McCulloch 1990). This asks for validation of the causality of empirically derived relations. 
Statistical approaches do not allow for describing causal relationships. Besides, most causal 
explanations are valid at the scale of study, mostly the individual agent of LUCC, and therefore 
subject to upscaling problems. A combination of methods, including multiscale analysis and 
multi-agent models, can be used to integrate the empirical and individual behaviour approaches. 
An example of such a combined approach is a study of Overmars in the Philippines (Overmars 
and Verburg 2005; Overmars et al. 2005). They applied an approach that explores the results of 
statistical models based on geographic data in combination with a household-level analysis of 
decision making in order to incorporate the theories about human decision making in spatially 
explicit models.  
 
Different perspectives and scales 
Different perspectives and scales of analysis are needed to obtain a full understanding of the 
process of LUCC. The three generic approaches to study land use change, which are the 
empirical, the narrative and the modelling approaches, are representative of the different 
perspectives (Lambin et al. 2003). Integration of the results of these approaches should lead to a 
better understanding of LUCC. Techniques for the empirical approach have been extensively 
discussed in this report. Further implementation and sophistication of these techniques at 
multiple scales should lead to a better understanding of LUCC. The narrative and modelling 
approach will now be discussed in some more detail.  
 
The narrative perspective seeks depth of understanding through historical detail and 
interpretation. It tells the LUCC story, providing an empirical and interpretative baseline by 
which to assess the validity and accuracy of the other visions. It is especially beneficial in 
identifying stochastic and random events that significantly affect LUCC but might be missed in 
approaches employing less expansive time horizons or temporal sampling procedures (Briassoulis 
2000). The narrative approach is mostly valid at the level of individual agents of LUCC, while 
most of the interesting features of LUCC occur at more aggregate levels of analysis. Coleman 
(1990) developed a framework that describes the interaction between micro and macro level for 
social systems, which can be applied to land use change research as well. Land use change 
assessments are often made using remote sensing and GIS at the regional (macro) level, while at 
the same time trying to explain these macro-level developments by specifying a micro-level 
mechanism. Figure 5.1, based on the work of Coleman (1990), depicts the relations between the 
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macro and micro levels. Macro-level analyses (pathway A) of land use are normally based on 
empirical techniques, e.g. the analysis of spatial patterns of land use derived from remote sensing. 
Pathway B explains the underlying processes that lead to the different land use patterns, e.g. the 
individual decisions in response to land use policies. Together, these individual decisions lead to 
the changes in land use pattern. Following this trajectory one can explain why differences in 
macro conditions lead to different land use patterns. A better understanding of individual 
behaviour regarding land use change and its spatial impact makes it possible to better address 
stakeholders, which leads to much more efficient policy support and interventions. 
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Figure 5.1. Representation of the linkage between micro-level and macro-level research in land use change 
 
For the modelling approach many types of models are available focusing on different processes, 
e.g. deforestation or agricultural intensification, and based on a wide range of simulation 
techniques, e.g. regression models, expert models and cellular automata models (Irwin and 
Geoghegan 2001; Briassoulis 2000; Verburg, Schot et al. 2004). A relatively new type of model is 
multi-agent systems. Multi-agent models simulate decision making by individual agents of land 
use change, explicitly addressing interactions among individuals. The explicit attention to 
interactions between agents makes it possible for this type of model to simulate emergent 
properties of systems. These are properties at the macro scale that are not predictable from 
observing the micro units in isolation. If the decision rules of the agents are set such that they 
sufficiently look like human decision making they can simulate behaviour at the meso level of 
social organization, i.e. the behaviour of heterogeneous groups of actors. Multi-agent-based 
models of LUCC are particularly well suited to representing complex spatial interactions under 
heterogeneous conditions and modelling decentralized, autonomous decision making (Parker et 
al. 2003; Bousquet and LePage 2004). Multi-agent systems are able to formalize decision-forming 
behaviour of individual stakeholders, based on a theoretical argumentation. Most multi-agent 
models focus on either hypothetical or simplified situations to explore interactions between 
agents and between agents and the environment, rather than simulating landscape change at the 
regional level. 
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Case studies 
Globally valid explanations of what factors drive land use change remain largely incomplete 
(NRC 1999). Various hypotheses have produced rich arguments, but empirical evidence on the 
causes of land use change, e.g. deforestation, continues to be largely based on cross-national 
statistical analyses (Rudel and Roper 1997). Common understanding of the causes of LUCC is 
dominated by simplifications that, in turn, underlie many environment development policies. 
Case study evidence supports the conclusion that the simple answers found in population growth, 
poverty and infrastructure rarely provide an adequate understanding of LUCC. Rather, individual 
and social responses follow from changing economic conditions, mediated by institutional 
factors. Opportunities and constraints for new land uses are created by markets and policies, 
increasingly influenced by global factors (Lambin et al. 2001).  
 
Geist and Lambin (2002, 2004) and McConnell and Keys (2005) aimed to generate a general 
understanding of the proximate causes and underlying driving forces of, respectively, tropical 
deforestation, desertification and agricultural intensification from local-scale case studies, while 
preserving the descriptive richness of these studies. Proximate causes are human activities or 
immediate actions at the local level, such as agricultural expansion, that originate from intended 
land use and directly impact forest cover. The findings suggest that no universal link between 
cause and effect exists; instead LUCC is determined by different combinations of various 
proximate causes and underlying driving forces in varying geographical and historical contexts. 
The challenge for comparative land use analysis is to develop generalizations about land cover 
consequences not only for individual operations but for their application in sequences, including 
the role of natural cycles and landscape patterns (Turner II et al. 1995). It is a challenge to 
comprise such sets of region-specific drivers with empirical techniques and to analyse 
comparative case studies to reveal the general patterns in LUCC.  
 
Final remark 
This section has provided some alternatives to the statistical methods described in this report. 
Most of these alternatives address issues that cannot adequately be addressed by statistical 
methods. By no means should this give the impression that statistical methods are not very useful 
in land use change analysis. Statistical methods have been used as a powerful and flexible tool in 
many studies. The alternative methods each have their specific strengths, typical applications and 
limitations. For the analysis of land use and land cover change there is no single, perfect method 
or approach. The selected method should fit the research questions, available data and resources. 
For a full understanding of the land use change processes at work a combination of methods and 
approaches might provide most insight, applied to a cohesive theoretical framework. 
Comparisons and contradictory results should be used to signal weaknesses and demand a re-
evaluation of the data and methods of analysis, and perhaps the underlying theory. Therefore, it is 
essential to make best use of the diversity of approaches to understand the complex dynamics 
underlying the changes in our environment. Statistical methods, as described in this report, can 
make an important contribution to this type of analysis. 
 



71 

6 References 
 

Agarwal D.K., Silander J.J.A., Gelfand A.E., Dewar R.E. and Mickelson J.J.G. 2005. Tropical 
deforestation in Madagascar: Analysis using hierarchical, spatially explicit, Bayesian 
regression models. Ecological Modelling 185(1):105–131. 

Agresti A. and Finlay B. 1997. Statistical methods for the social sciences. 3rd edition. Prentice Hall, 
Upper Saddle River, New Jersey, USA. 

Allen T.F.H. and Hoekstra T.W. 1991. Role of heterogeneity in scaling of ecological systems 
under analysis. In: Kolasa J. and Pickett S.T.A. (eds), Ecological heterogeneity. Springer-
Verlag, New York, USA.  

Alonso W. 1964. Location and land use. Harvard University Press, Cambridge, USA. 
Anselin L. 1988. Spatial econometrics: Methods and models. Kluwer Academic Publishers, Dordrecht, 

the Netherlands. 
Anselin L. 1992. SpaceStat tutorial. West Virginia University, Morgantown, USA. 
Anselin L. 2002. Under the hood: Issues in the specification and interpretation of spatial 

regression models. Agricultural Economics 27:247–267. 
Anselin L., Dodson R. F. and Hudak S. 1993. Linking GIS and spatial data analysis in practice. 

Geographic Systems 1:3–23. 
Anselin L. and Griffith A.D. 1988. Do spatial effects really matter in regression analysis? Papers 

Regional Science Association 65:11–34. 
Aspinall R. 2004. Modelling land use change with generalized linear models: A multi-model 

analysis of change between 1860 and 2000 in Gallatin Valley, Montana. Journal of 
Environmental Management 72(1–2):91–104. 

Augustin N.H., Mugglestone M.A. and Buckland S.T. 1996. An autologistic model for the spatial 
distribution of wildlife. Journal of Applied Ecology 33(2):339–347. 

Baidu-Forson J. 1999. Factors influencing adoption of land-enhancing technology in the Sahel: 
Lessons from a case study in Niger. Agricultural Economics 20:231–239. 

Baltenweck I., van de Steeg J. and Staal S.J. 2004. Farming systems characterisation in the Kenyan 
Highlands: Use of alternative methodologies. Working document. ILRI, Nairobi, Kenya. 

Besag J. 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal 
Statistical Society Series B 36:192–236. 

Bousquet F. and LePage C. 2004. Multi-agent simulations and ecosystem management: A review. 
Ecological Modelling 176:313–334. 

Boyce M.S., Vernier P.R., Nielsen S.E. and Schmiegelow F.K.A. 2002. Evaluating resource 
selection functions. Ecological Modelling 157(2–3):281–300. 

Briassoulis H. 2000. Analysis of land use change: Theoretical and modeling approaches. In: 
Loveridge S. (ed), The web book of regional science. West Virginia University, Morgantown, 
USA. 

Brown D.G., Goovaerts P., Burnicki A. and Li M.Y. 2002. Stochastic simulation of land-cover 
change using geostatistics and generalized additive models. Photogrammetric Engineering and 
Remote Sensing 68(10):1051–1061. 

Burnsilver S.B., Boone R.B. and Galvin K.A. 2003. Linking pastoralists to a heterogeneous 
landscape: The case of four Maasai group ranches in Kajiado District, Kenya. In: Fox J., 
Rindfuss R.R., Walsh S.J. and Mishra V. (eds), People and the environment: Approaches for 
linking household and community surveys to remote sensing and GIS. Kluwer Academic Publishers, 
Dordrecht, the Netherlands. 

Cardille J.A. and Foley J.A. 2003. Agricultural land-use change in Brazilian Amazônia between 
1980 and 1995: Evidence from integrated satellite and census data. Remote Sensing of 
Environment 87:551–562. 

Chen K. 2002. An approach to linking remotely sensed data and areal census data. International 
Journal of Remote Sensing 23(1):37–48. 



72 

Chomitz K.M. and Gray D.A. 1996. Roads, land use and deforestation: A spatial model applied 
to Belize. World Bank Economic Review 103:487–512. 

Chomitz K.M. and Thomas T.S. 2003. Determinants of land use in Amazônia: A fine-scale spatial 
analysis. American Journal of Agricultural Economics 85(4):1016–1028. 

Cliff A.D. and Ord J.K. 1981. Spatial processes: Models and applications. Pion, London, UK. 
Coleman J.S. 1990. Foundations of social theory. The Belknap Press of Harvard University Press, 

Cambridge, USA. 
Comrey A.L. and Lee H.B. 1992. A first course in factor analysis. Lawrence Erlbaum Associates 

Publishers, Hillsdale, USA. 
Costanza R. 1989. Model goodness of fit: A multiple resolution procedure. Ecological Modelling 

47:199–215. 
Davis J.C. 1986. Statistics and data analysis in geology. 2nd edition. John Wiley and Sons, New York, 

USA. 
de Almeida C.M., Batty M., Vieira Monteiro A.M., Câmara G., Soares-Filho B.S., Coutinho 

Cerqueira G. and Lopes Pennachin C. 2003. Stochastic cellular automata modeling of 
urban land use dynamics: Empirical development and estimation. Computers, Environment 
and Urban Systems 27:481–509. 

de Leeuw J., Waweru M.N., Okello O.O., Maloba M., Nguru P., Said M.Y., Aligula H.M., 
Heitkonig I.M.A. and Reid R.S. 2001. Distribution and diversity of wildlife in northern 
Kenya in relation to livestock and permanent water points. Biological Conservation 
100(3):297–306. 

de Wolff T., Staal S., Kruska R., Ouma E., Thornton P. and Thorpe W. 2000. Improving GIS derived 
measures of farm market access: An application to milk markets in the East African highlands. Paper 
presented at the Fifth Seminar on GIS and Developing Countries (GISDECO 2000), 
‘GIS Tools for Rural Development’, 2–3 November 2000, IRRI, Los Banos, Philippines. 

Dohoo I.R., Ducrot C., Fourichon C., Donald A. and Hurnik D. 1997. An overview of 
techniques for dealing with large numbers of independent variables in epidemiologic 
studies. Preventive Veterinary Medicine 29(3):221–239. 

Duchateau L., Kruska R.L. and Perry B.D. 1997. Reducing a spatial database to its effective 
dimensionality for logistic-regression analysis of incidence of livestock disease. Preventive 
Veterinary Medicine 32(3–4):207–218. 

Efron B. 1982. The jackknife, the bootstrap and other resampling plans. CBMS-NSF Regional 
Conference Series in Applied Mathematics Monograph 38. SIAM, Philadelphia, USA. 

Escobar G. and Berdegué J. 1990. Tipificación de sistemas de producción agrícola. Red Internacional de 
Metodologías de Investigación en Sistemas de Producción, Santiago, Chile. 

FAO (Food and Agriculture Organization of the United Nations). 1997. Africover land cover 
classification. FAO, Rome, Italy. 

Fujita M., Krugman P. and Mori T. 1999. On the evolution of hierarchical urban systems. 
European Economic Review 43:209–251. 

Geda A., de Jong N., Mwabu G. and Kimenyi M.S. 2001. Determinants of poverty in Kenya: A 
household level analysis. Working paper. Institute of Social Science, The Hague, the 
Netherlands. 

Geist H.J. and Lambin E.F. 2002. Proximate causes and underlying driving forces of tropical 
deforestation. BioScience 52(2):143–150. 

Geist H.J. and Lambin E.F. 2004. Dynamic causal patterns of desertification. Bioscience 54(9):817–
829. 

Geoghegan J., Cortina Villar S., Klepeis P., Macario Mendoza P., Ogneva-Himmelberger Y., 
Chowdhury R.R., Turner II B.L. and Vance C. 2001. Modeling tropical deforestation in 
the southern Yucatán peninsular region: Comparing survey and satellite data. Agriculture, 
Ecosystems and Environment 85:25–46. 

Gibson C.C., Ostrom E. and Anh T.K. 2000. The concept of scale and the human dimensions of 
global change: A survey. Ecological Economics 32:217–239. 



73 

Gobin A., Camping P. and Feyen J. 2002. Logistic modelling to derive agricultural land use 
determinants: A case study from southeastern Nigeria. Agriculture, Ecosystems and 
Environment 89:213–228. 

Goldstein H. 1995. Multi-level statistical methods. Halsted Press, New York, USA. 
Greene W.H. 2000. Econometric analysis. 4th edition. Prentice Hall International Inc, Upper Saddle 

River, USA. 
Hagen A.E. 2003. Fuzzy set approach to assessing similarity of categorical maps. International 

Journal of Geographic Information Systems 173:235–249. 
Hary I., Schwartz H.J., Pielert V.H.C. and Mosler C. 1996. Land degradation in African pastoral 

systems and the destocking controversy. Ecological Modelling 86(2–3):227–233. 
Herold M., Goldstein N.C. and Clarke K.C. 2003. The spatiotemporal form of urban growth: 

Measurement, analysis and modeling. Remote Sensing of Environment 86:286–302. 
Hietel E., Waldhardt R. and Otte A. 2004. Analysing land-cover changes in relation to 

environmental variables in Hesse, Germany. Landscape Ecology 19:473–489. 
Hilferink M. and Rietveld P. 1999. Land use scanner: An integrated GIS based model for long 

term projections of land use in urban and rural areas. Journal of Geographical Systems 1:155–
177. 

Holloway G., Nicholson C., Delgado C., Staal S. and Ehui S. 2004. A revised Tobit procedure for 
mitigating bias in the presence of non-zero censoring with an application to milk-market 
participation in the Ethiopian highlands. Agricultural Economics 31(1):97–106. 

Holloway G., Shankar B. and Rahman S. 2002. Bayesian spatial probit estimation: A primer and 
an application to HYV rice adoption. Agricultural Economics 27:383–402. 

Hoshino S. 1996. Statistical analysis of land use change and driving forces in the Kansai District, 
Japan. Working paper WP-96-120. IIASA, Laxenburg, Austria. 

Hoshino S. 2001. Multilevel modeling on farmland distribution in Japan. Land Use Policy 18:75–
90. 

Hosmer D.W. and Lemeshow S. 2000. Applied logistic regression. Wiley and Sons, New York, USA. 
Hox J. 1995. Applied multi-level analysis. TT-Publikaties, Amsterdam, the Netherlands. 
Irwin E. and Geoghegan J. 2001. Theory, data, methods: Developing spatially-explicit economic 

models of land use change. Agriculture, Ecosystems and Environment 85(1–3):7–24. 
James F.C. and McCulloch C.E. 1990. Multivariate analysis in ecology and systematics: Panacea 

or Pandora’s box? Annual Reviews of Ecology and Systematics 21:129–166. 
Jobson J.D. 1992. Applied multivariate data analysis. Springer, New York, USA. 
Kaluzny S.P., Vega S.C., Cardoso T.P. and Shelly A.A. 1997. S-Plus spatial stats: User’s manual for 

Windows and Unix. Springer, New York, USA. 
Kavzoglu T. and Mather P.M. 2003. The use of backpropagating artificial neural networks in land 

cover classification. International Journal of Remote Sensing 24(23):4907–4938. 
Kim J. 1970. Factor analysis. In: Nie N.H., Hull C.H., Jenkins J.G., Steinberger K. and Bent D.H. 

(eds), Statistical package for the social sciences. McGraw Hill, New York, USA. 
Köbrich C., Rehman T. and Khan M. 2003. Typification of farming systems for constructing 

representative farm models: Two illustrations of the application of multi-variate analyses 
in Chile and Pakistan. Agricultural Systems 76:141–157. 

Kolasa J. and Rollo C.D. 1991. Introduction: The heterogeneity of heterogeneity: A glossary. In: 
Kolasa J. and Pickett S.T.A. (eds), Ecological heterogeneity. Ecological studies 86. Springer-
Verlag, New York, USA.  

Krugman P. 1999. The role of geography in development. International Regional Science Review 
22(2):142–161. 

Kruska R.L, Reid R.S., Thornton P.K., Henninger N. and Kristjanson P.M. 2003. Mapping 
livestock-oriented agricultural production systems for the developing world. Agricultural 
Systems 77:39–63. 

Lambin E.F. 2003. Linking socio-economic and remote sensing data at the community or at the 
household level: Two case studies from Africa. In: Fox J., Rindfuss R.R., Walsh S.J. and 



74 

Mishra V. (eds), People and the environment: Approaches for linking household and community surveys 
to remote sensing and GIS. Kluwer Academic Publishers, Norwell, USA. 

Lambin E.F., Geist H.J. and Lepers E. 2003. Dynamics of land-use and land-cover change in 
tropical regions. Annual Review of Environmental Resources 28:205–241. 

Lambin E.F., Turner II B.L., Geist H.J., Agbola S.B., Angelsen A., Bruce J.W., Coomes O.T., 
Dirzo R., Fischer G., Folke C., George P.S., Homewood K., Imbernon J., Leemans R., Li 
X., Moran E.F., Mortimore M., Ramakrishnan P.S., Richards J.F., Skånes H., Steffen W., 
Stone G.D., Svedin U., Veldkamp A., Vogel C. and Xu J. 2001. The causes of land-use 
and land-cover change: Moving beyond myths. Global Environmental Change 11:261–269. 

Landis J.R. and Koch G.G. 1977. The measurement of observer agreement for categorical data. 
Biometrics 33:159–174. 

Lawley D.N. and Maxwell A.E. 1971. The scope of factor analysis. In: Factor analysis as a statistical 
method. Butterworths, London, UK. 

Legendre P. and Legendre L. 1998. Numerical ecology: Developments in environmental modelling 20. 
Elsevier, Amsterdam, the Netherlands. 

LeSage J.P. 1999. The theory and practice of spatial econometrics. University of Toledo, Toledo, USA. 
Li X. and Yeh A.G-O. 2002. Neural-network-based cellular automata for simulating multiple land 

use changes using GIS. International Journal of Geographic Information Systems 16(4):323–343. 
Long D.S. 1998. Spatial autoregression modeling of site-specific wheat yield. Geoderma 85:181–

197. 
López E., Bocco G., Mendoza M. and Duhau E. 2001. Predicting land-cover and land-use change 

in the urban fringe: A case in Morelia city, Mexico. Landscape and Urban Planning 55:271–
285. 

Lynne G.D., Shonkwiler J.S. and Rola L.R. 1988. Attitudes and farmer conservation behaviour. 
American Journal of Agricultural Economics 70:12–19. 

Manel S., Dias J.M. and Ormerod S.J. 1999. Comparing discriminant analysis, neural networks 
and logistic regression for predicting species’ distributions: A case study with a Himalayan 
river bird. Ecological Modelling 120:337–347. 

Manel S., Williams H.C. and Ormerod S.J. 2001. Evaluating presence-absence models in ecology: 
The need to account for prevalence. Journal of Applied Ecology 38:921–931. 

McConnell W.J. and Keys E. 2005. Meta-analysis of agricultural change. In: Moran E.F. and 
Ostrom E. (eds), Seeing the forest and the trees: Human-environment interactions in forest ecosystems. 
In press. 

McConnell W.J. and Moran E.F. 2001. Meeting in the middle: The challenges of meso-level integration. 
International workshop, October 17–20, 2000, Ispra, Italy. LUCC Report Series No. 5. 
Indiana University, Bloomington, USA. 

McDonald J.F. and Moffit R.A. 1980. The uses of Tobit analysis. Review of Economic and Statistics 
62:318–321. 

McFadden D. 1973. Conditional logit analysis of qualitative choice behaviour. In: Zarembka P. 
(ed), Frontiers in Econometrics. Academic Press, New York, USA. 

Meisel J.E. and Turner M.G. 1998. Scale detection in real and artificial landscapes using 
semivariance analysis. Landscape Ecology 13:347–62. 

Menard S. 2001. Applied logistic regression analysis. Sage University Papers, series on quantitative 
applications in the social sciences, 07-106. Sage, Thousand Oaks, USA. 

Mertens B., Poccard-Chapuis R., Piketty M.G., Lacquies A.E. and Venturieri A. 2002. Crossing 
spatial analyses and livestock economics to understand deforestation processes in the 
Brazilian Amazon: The case of São Félix do Xingú in South Pará. Agricultural Economics 
27(3):269–294. 

Mertens B., Sunderlin W.D., Ndoye O. and Lambin E.F. 2000. Impact of macroeconomic change 
on deforestation in south Cameroon: Integration of household survey and remotely 
sensed data. World Development 28(6):983–999. 



75 

Moody A. and Woodcock C.E. 1994. Scale dependent errors in the estimation of land cover 
proportions: Implications for global land cover data sets. Photogrammetric Engineering and 
Remote Sensing 60:585–594. 

Müller D. and Zeller M. 2002. Land use dynamics in the central highlands of Vietnam: A spatial 
model combining village survey data with satellite imagery interpretation. Agricultural 
Economics 27(3):333–354. 

Munroe D.K., Southworth J. and Tucker C.M. 2002. The dynamics of land-cover change in 
western Honduras: Exploring spatial and temporal complexity. Agricultural Economics 
27:355–369. 

Nelson G.C. 2002. Introduction to the special issue on spatial analysis for agricultural economists. 
Agricultural Economics 27:197–200. 

Nelson G.C. and Geoghegan J. 2002. Deforestation and land use change: Sparse data 
environments. Agricultural Economics 27:201–216. 

Nelson G.C., Harris V., Stone S. and De Pinto A. 2004. Land use and road improvements: A 
spatial econometric analysis. International Regional Science Review 27:297–325. 

NRC (National Research Council), Board on Sustainable Development, Policy Division, 
Committee on Global Change Research. 1999. Global environmental change: Research pathways 
for the next decade. National Academy Press, Washington, D.C., USA. 

Osgood D.W. and Smith G.L. 1995. Applying hierarchical linear modeling to extended 
longitudinal evaluations: The Boys Town follow-up study. Evaluation Reviews 19(1):3–38. 

Overmars K.P., de Groot W.T. and Huigen M.G.A. 2005. Comparing inductive and deductive 
modeling of land use decisions: Principles, a model and an illustration from the 
Philippines. Submitted for publication. 

Overmars K.P., de Koning G.H.J. and Veldkamp A. 2003. Spatial autocorrelation in multi-scale 
land use models. Ecological Modelling 164:257–270. 

Overmars K.P. and Verburg P.H. 2005. Analysis of land use drivers at the watershed and 
household level: Linking two paradigms at the Philippine forest fringe. International Journal 
of Geographic Information Systems 19(2):125–152. 

Overmars K.P. and Verburg P.H. In press. Multi-level modelling of land use from field to village 
level. Agricultural Systems, forthcoming. 

Pan W.K.Y. and Bilsborrow R.E. 2005. The use of a multi-level statistical model to analyze 
factors influencing land use: A study of the Ecuadorian Amazon. Global and Planetary 
Change, in press. 

Pan W.K.Y., Walsh S.J., Bilsborrow R.E., Frizelle B.G., Erlien C.M. and Baquero F. 2004. Farm-
level models of spatial patterns of land use and land cover dynamics in the Ecuadorian 
Amazon. Agriculture, Ecosystems and Environment 101:117–134. 

Parker D.C., Manson S.M., Janssen M.A., Hoffmann M.J. and Deadman P. 2003. Multi-agent 
system models for the simulation of land-use and land-cover change: A review. Annals of 
the Association of American Geographers 93(2):314–337. 

Peppler-Lisbach C. 2003. Predictive modelling of historical and recent land-use patterns. 
Phytocoenologia 33(4):565–590. 

Pijanowski B.C., Brown D.G., Shellito B.A. and Manik G.A. 2002. Using neural networks and 
GIS to forecast land use changes: A land transformation model. Computers, Environment and 
Urban Systems 26:553–575. 

Pijanowski B.C., Pithadia S., Shellito B.A. and Alexandridis K. 2005. Calibrating a neural 
network-based urban change model for two metropolitan areas of the upper Midwest of 
the United States. International Journal of Geographical Information Science 19(2):197–216. 

Polsky C. 2004. Putting space and time in Ricardian climate change impact studies: The case of 
agriculture in the US Great Plains. Annals of the Association of American Geographers 
94(3):549–564. 

Polsky C. and Easterling III W.E. 2001. Adaptation to climate variability and change in the US 
Great Plains: A multi-scale analysis of Ricardian climate sensitivities. Agriculture, Ecosystems 
and Environment 85:133–144. 



76 

Pontius Jr. R.G. 2000. Quantification error versus location error in comparison of categorical 
maps. Photogrammetric Engineering and Remote Sensing 66(8):1011–1016. 

Pontius Jr. R.G. 2002. Statistical methods to partition effects of quantity and location during 
comparison of categorical maps at multiple resolutions. Photogrammetric Engineering and 
Remote Sensing 68(10):1041–1049. 

Pontius Jr. R.G. and Batchu K. 2003. Using the relative operating characteristic to quantify 
certainty in prediction of location of land cover change in India. Transactions in GIS 
7(4):467–484. 

Pontius Jr. R.G., Gilmore R., Huffaker D. and Denman K. 2004. Useful techniques of validation 
for spatially explicit land-change models. Ecological Modelling 179(4):445–461. 

Pontius Jr. R.G. and Schneider L.C. 2001. Land-cover change model validation by an ROC 
method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and 
Environment 85:239–248. 

Rabin M. 1998. Psychology and economics. Journal of Economic Literature 36(1):1–46. 
Radeloff V.C., Hagen A.E., Voss P.R., Field D.R. and Mladenoff D.J. 2000. Exploring the spatial 

relationship between census and land-cover data. Society and Natural Resources 13:599–609. 
Rasul G., Thapa G.B. and Zoebisch M.A. 2004. Determinants of land-use changes in the 

Chittagong hill tracts of Bangladesh. Applied Geography 24:217–240. 
Richards J.A. 1986. Remote sensing digital image analysis. Springer-Verlag, New York, USA. 
Rindfuss R.R., Prasartkul P., Walsh S.J., Entwisle B., Sawangdee Y. and Vogler J.B. 2003. 

Household-parcel linkage in Nang Rong, Thailand: Challenges of large samples. In: Fox 
J., Rindfuss R.R., Walsh S.J. and Mishra V. (eds), People and the environment: Approaches for 
linking household and community surveys to remote sensing and GIS. Kluwer Academic Publishers, 
Norwell, USA. 

Rindfuss R.R., Walsh S.J., Mishra V., Fox J. and Dolcemascolo G.P. 2003. Linking household and 
remotely sensed data, methodological and practical problems. In: Fox J., Rindfuss R.R., 
Walsh S.J. and Mishra V. (eds), People and the environment: Approaches for linking household and 
community surveys to remote sensing and GIS. Kluwer Academic Publishers, Norwell, USA. 

Rindfuss R.R., Walsh S.J., Turner II B.L., Fox J. and Mishra V. 2004. Developing a science of 
land change: Challenges and methodological issues. PNAS 101(39):13976–13981. 

Rosenblatt F. 1958. The perceptron: A probabilistic model for information storage and 
organization in the brain. Psychological Review 65:386–408. 

Rounsevell M.D.A., Ewert F., Reginster I., Leemans R. and Carter T.R. 2005. Future scenarios of 
European agricultural land use: II. Projecting changes in cropland and grassland. 
Agriculture, Ecosystems and Environment 107(2-3):101–116. 

Rudel T. and Roper J. 1997. The paths to rain forest destruction: Crossnational patterns of 
tropical deforestation, 1975–1990. World Development 25:53–65. 

Rumelhart D., Hinton G. and Williams R. 1986. Learning internal representations by error 
propagation. In: Rumelhart D.E. and McClelland J.L. (eds), Parallel distributed processing: 
Explorations in the microstructures of cognition. MIT Press, Cambridge, USA. 

Schabenberger O. and Pierce F.J. 2002. Contemporary statistical models for the plant and soil sciences. 
CRC Press, Boca Raton, USA. 

Schneider L.C. and Pontius Jr. R.G. 2001. Modeling land use change in the Ipswich watershed, 
Massachusetts, USA. Agriculture, Ecosystems and Environment 85:83–94. 

Seré C. and Steinfeld H. 1996. World livestock production systems: Current status, issues and trends. FAO 
Animal Production and Health Paper 127. FAO, Rome. 

Serneels S. and Lambin E.F. 2001. Proximate causes of land use change in Narok District, Kenya: 
A spatial statistical model. Agriculture, Ecosystems and Environment 85:65–81. 

Skapura D. 1996. Building neural networks. ACM Press, New York, USA. 
Snijders T.A.B. and Bosker R.J. 1999. Multi-level analysis: An introduction to basic and advanced multi-

level modeling. Sage, New York, USA. 



77 

Sokal R.R. 1977. Clustering and classification: Background and current directions. In: van Ryzin J. 
(ed), Classification and clustering: Proceedings of an advanced seminar conducted by the Mathematics 
Research Centre. University of Wisconsin, Madison, USA. 

Sonneveld B.G.J.S. 2002. Formalizing the use of expert judgements for land degradation 
assessment: A case study for Ethiopia. Working paper WP 02–11. Centre for World Food 
Studies, Amsterdam, the Netherlands. 

Sonneveld B.G.J.S. 2003. Formalizing expert judgements in land degradation assessment: A case 
study for Ethiopia. Land Degradation and Development 14:347–361. 

Speybroeck N., Berkvens D., Mfoukou-Ntsakala A., Aerts M., Hens N., van Huylenbroeck G. 
and Thys E. 2004. Classification trees versus multinomial models in the analysis of urban 
farming systems in Central Africa. Agricultural Systems 80(2):133–149. 

SPSS (Statistical Producers for Social Science). 2000. SPSS software and manual. Marketing Dept, 
SPSS Inc, Chicago, Illinois, USA. 

Staal S.J., Baltenweck I., Waithaka M.M., de Wolff T. and Njoroge L. 2002. Location and uptake: 
Integrated household and GIS analysis of technology adoption and land use, with 
application to smallholder dairy farms in Kenya. Agricultural Economics 27:295–315. 

Staal S. J., Kruska R., Baltenweck I., de Wolff T., Muriuki H., Thornton P. and Thorpe W. 2002. 
Integrated household and GIS analysis of smallholder systems: Market access, prices, and 
technology uptake on Kenyan dairy farms. Working document. ILRI, Nairobi. 

StatSoft. 2003. Electronic statistics textbook. http://www.statsoft.com/textbook/stathome.html. 
Tulsa, USA. 

Thompson D.M., Serneels S. and Lambin E.F. 2002. Land use strategies in the Mara ecosystem: 
A spatial analysis linking socio-economic data with landscape variables. In: Walsh S.J. and 
Crews-Meyer K.A. (eds), Linking people, place and policy: A GIScience approach. Kluwer 
Academic Publishers, Norwell, USA.  

Thornton P.K., Kruska R.L., Henninger N., Kristjanson P.M., Reid R.S. and Robinson T.P. 2003. 
Locating poor livestock keepers at the global level for research and development 
targeting. Land Use Policy 20(4):311–322. 

Tobin J. 1958. Estimation of relationships for limited dependent variables. Econometrics 26:24–36. 
Turner II B.L. and Ali A.M.S. 1996. Induced intensification: Agricultural change in Bangladesh 

with implications for Malthus and Boserup. Proceedings of the National Academy of Sciences 
93:14984–14991. 

Turner II B.L., Kasperson R.E., Meyer W.B., Dow K.M., Golding D., Kasperson J.X., Mitchel 
R.C. and Ratick S.J. 1990. Two types of global environmental change: Definitional and 
spatial-scale issues in their human dimensions. Global Environmental Change 1:14–22. 

Turner II B.L., Ross R.H. and Skole D.L. 1993. Relating land use and global land cover change. IGBP 
Report No. 24; HDP Report No. 5. 

Turner II B.L., Skole D., Sanderson S., Fischer G., Fresco L.O. and Leemans R. 1995. Land-use 
and land-cover change science/research plan. IGBP Report No. 35; HDP Report No. 7. IGBP, 
Stockholm, Sweden. 

Turner M.G., Dale V.H. and Gardner R.H. 1989. Predicting across scales: Theory development 
and testing. Landscape Ecology 3:245–252. 

Veldkamp A. and Fresco L.O. 1996. CLUE-CR: An integrated multi-scale model to simulate land 
use change scenarios in Costa Rica. Ecological Modelling 91:231–248. 

Veldkamp A. and Fresco L.O. 1997. Reconstructing land use drivers and their spatial scale 
dependence for Costa Rica (1973 and 1984). Agricultural Systems 55(1):19–43. 

Veldkamp A., Kok K., De Koning G.H.J., Schoorl J.M., Sonneveld M.P.W. and Verburg P.H. 
2001. Multi-scale system approaches in agronomic research at the landscape level. Soil and 
Tillage Research 58:129–140. 

Verburg P.H. and Chen Y. 2000. Multiscale characterization of land-use patterns in China. 
Ecosystems 3:369–385 

Verburg P.H., de Groot W.T. and Veldkamp A. 2003. Methodology for multi-scale land-use 
change modelling: Concepts and challenges. In: Dolman A.J., Verhagen A. and Rovers 



78 

C.A. (eds), Global environmental change and land use. Kluwer Academic Publishers, Dordrecht, 
the Netherlands. 

Verburg P.H., de Koning G.H.J., Kok K., Veldkamp A. and Bouma J. 1999. A spatial explicit 
allocation procedure for modelling the pattern of land use change based upon actual land 
use. Ecological Modelling 116:45–61. 

Verburg P.H., Ritsema van Eck J.R., de Nijs T.C.M., Dijst M.J. and Schot P. 2004. Determinants 
of land use change patterns in the Netherlands. Environment and Planning B 31:125–150. 

Verburg P.H., Ritsema van Eck J.R., de Nijs T.C.M., Visser H., de Jong K. 2004. A method to 
analyse neighborhood characteristics of land use patterns. Computers, Environment and 
Urban Systems 28(6):667–690. 

Verburg P.H., Schot P., Dijst M. and Veldkamp A. 2004. Land use change modelling: Current 
practice and research priorities. Geojournal 61(4):309–324. 

Verburg P.H., Soepboer W., Limpiada R. and Espaldon V. 2002. Modeling the spatial dynamics 
of regional land use: The CLUE-S model. Environmental Management 30(3):391–405. 

Verburg P.H. and van Keulen H. 1999. Exploring changes in the spatial distribution of livestock 
in China. Agricultural Systems 62:51–67. 

Visser H. 2004. The map comparison kit: Methods, software and applications. Report 550002005/2004. 
RIVM, Bilthoven, the Netherlands. 

von Thünen J.H. 1966. Der isolierte staat in beziehung der landwirtschaft und nationalökonomie. 
In: Hall P. (ed), Von Thünen’s isolated state. Pergamon Press, Oxford, UK. 

Walker R. 2004. Theorizing land-cover and land-use change: The case of tropical deforestation. 
International Regional Science Review 27(3):247–270. 

Walker R. and Solecki W.D. 2004. Theorizing land-cover and land-use change: The case of the 
Florida Everglades and its degradation. Annals of the Association of American Geographers 
94(2):311–238. 

Walsh S.J., Bilsborrow R.E., McGregor S.J., Frizelle B.G., Messina J.P., Pan W.K.T., Crews-
Meyer K.A., Taff G.N. and Baquero F. 2003. Integration of longitudinal surveys, remote 
sensing time series, and spatial analyses. In: Fox J., Rindfuss R.R., Walsh S.J. and Mishra 
V. (eds), People and the environment: Approaches for linking household and community surveys to 
remote sensing and GIS. Kluwer Academic Publishers, Norwell, USA. 

Walsh S.J., Crawford T.W., Welsh W.F. and Crews-Meyer K.A. 2001. A multiscale analysis of 
LULC and NDVI variation in Nang Rong District, northeast Thailand. Agriculture, 
Ecosystems and Environment 85:47–64. 

Watson M.K. 1978. The scale problem in human geography. Geografiska Annaler 60B:36–47. 
Weiss E., Marsh S.E. and Pfirman E.S. 2001. Application of NOAA-AVHRR NDVI time-series 

data to assess changes in Saudi Arabia’s rangelands. International Journal of Remote Sensing 
22(6):1005–1027. 

Wester-Herber, M. 2004. Underlying concerns in land-use conflicts--the role of place-identity in 
risk perception. Environmental Science and Policy 7(2): 109-116. 

Whittle P. 1970. Probability. Penguin Books, Harmondsworth, UK. 
Wood C.H. and Skole D. 1998. Linking satellite, census, and survey data to study deforestation in 

the Brazilian Amazon. In: Liverman D., Moran E.F., Rindfuss R.R. and Stern P.C. (eds), 
People and pixels: Linking remote sensing and social science. National Academy Press, 
Washington, D.C., USA. 

 



79 

Glossary 
 
 
Autocorrelation: Autocorrelation is the correlation (relationship) between members of a time series of 
observations and the same values at a fixed time interval later. 
 
Bayesian statistics: Bayesian analysis is an approach to statistical analysis that is based on Bayes Law, 
which states that the posterior probability of a parameter p is proportional to the prior probability of 
parameter p multiplied by the likelihood of p derived from the data collected. 
 
Bias: Bias refers to how far the average statistic lies from the parameter it is estimating, that is, the error 
that arises when estimating a quantity. Errors from chance will cancel each other out in the long run, those 
from bias will not. 
 
Canonical correlation: Canonical correlation investigates the relationship between two sets of variables 
(it is used as either a hypothesis-testing or exploratory method). 
 
Categorical data: A set of data is said to be categorical if the values or observations belonging to it can be 
sorted according to category. Each value is chosen from a set of non-overlapping categories, e.g. colour or 
land use types. 
 
Censored observations: Observations are referred to as censored when the dependent variable of 
interest represents the time to a terminal event, and the duration of the study is limited in time. 
 
Classification: The ordering or arrangement of objects into groups or sets on the basis of their 
relationships. 
 
Discrete data: A set of data is said to be discrete if the values or observations belonging to it are distinct 
and separate, i.e. they can be counted (1, 2, 3, ...). 
 
Endogenous variable: An endogenous variable is a variable that appears as a dependent variable in at 
least one equation in a structural model. 
 
Exogenous variable: An exogenous variable is a variable that never appears as a dependent variable  in 
any equation in a structural model. 
 
Extent: Extent is the size of the spatial, temporal, quantitative or analytical dimensions of a scale. 
 
Factor analysis: Factor analysis is a technique (i) to reduce the number of variables; and (ii) to detect 
structure in the relationships between variables, that is to classify variables. 
 
Goodness of fit: Goodness of fit is the degree of agreement between an empirically observed distribution 
and a mathematical or theoretical distribution. 
 
Heteroscedasticity: Heteroscedasticity describes a data sample or data-generating process in which  the 
errors are drawn from different distributions for different values of the independent variables. 
 
Hierarchy: A hierarchy is a conceptually or causally linked system of grouping objects or processes along 
an analytical scale. 
 
Homoscedasticity: Homoscedasticity describes a statistical model in which the errors are drawn from the 
same distribution for all values of the independent variables. 
 
Land cover: The observed physical cover, as seen on the ground or through remote sensing, including the 
vegetation (natural or planted) and human constructions (buildings, etc.), that cover the earth’s surface. 
Water, ice, bare land, and salt flats or similar non-vegetated surfaces are included in land cover. 
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Land use: A series of operations and associated inputs on land, carried out by humans, with the intention 
of obtaining products and/or benefits through using land resources. 
 
Least squares: The method of least squares is a criterion for fitting a specified model to observed data. 
For example, it is the most commonly used method of defining a straight line through a set of points on a 
scatterplot. 
 
Level: Level is the unit of analysis that is located at the same position on a scale. 
 
Logistic regression: Logistic regression is a regression model for binary (dichotomous) outcomes, for 
which the data are assumed to follow binomial distributions with probabilities that depend on the 
independent variables. 
 
Multicollinearity: A term used to describe the condition when one or more variables from which the 
respective matrix was computed are linear functions of other variables. 
 
Multinomial regression: Multinomial logit regression models are extensions of the standard logit 
regression models to the case where the dependent variable has more than two categories. 
 
Neural networks: Neural networks are analytic techniques modelled after the (hypothesized) processes of 
learning in the cognitive system and the neurological functions of the brain and capable of predicting new 
observations (on specific variables) from other observations (on the same or other variables) after 
executing a process of so-called learning from existing data.  
 
Principal component analysis: A linear dimensionality reduction technique, which identifies orthogonal 
directions of maximum variance in the original data, and projects the data into a lower-dimensionality 
space formed of a subset of the highest-variance components. 
 
Probability: A probability provides a quantitative description of the likely occurrence of a particular 
event. Probability is conventionally expressed on a scale from 0 to 1; a rare event has a probability close to 
0, a very common event has a probability close to 1. 
 
Regression equation: A regression equation expresses the relationship between two (or more) variables 
algebraically. It indicates the nature of the relationship between variables. In particular, it indicates the 
extent to which you can predict some variables by knowing others,  or the extent to which some are 
associated with others. 
 
Scale: Scale is the spatial, temporal, quantitative or analytical dimensions used to measure and study any 
phenomenon. 
 
Spatial analysis: The study of spatial relationships between geographic features by using the processes of 
modelling, examination and interpreting, for the purpose of evaluating, estimating, predicting and 
understanding these relationships. 
 
Spatial autocorrelation: The property of random variables to take values over distance that are more 
similar or less similar than expected from randomly associated pairs of observations due to geographic 
proximity (spatially dependent). 
 
Stepwise regression: A model-building technique which finds subsets of predictor variables that most 
adequately predict responses on a dependent variable by linear or non-linear regression, given the specified 
criteria for adequacy of model fit. 
 
Validation: Validation is the comparison of a conceptual model to the real system.  
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