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Summary

Length-biased time-to-event data are commonly encountered in applications ranging from
epidemiologic cohort studies or cancer prevention trials to studies of labor economy. A
longstanding statistical problem is how to assess the association of risk factors with survival in the
target population given the observed length-biased data. In this paper, we demonstrate how to
estimate these effects under the semiparametric Cox proportional hazards model. The structure of
the Cox model is changed under length-biased sampling in general. Although the existing partial
likelihood approach for left-truncated data can be used to estimate covariate effects, it may not be
efficient for analyzing length-biased data. We propose two estimating equation approaches for
estimating the covariate coefficients under the Cox model. We use the modern stochastic process
and martingale theory to develop the asymptotic properties of the estimators. We evaluate the
empirical performance and efficiency of the two methods through extensive simulation studies.
We use data from a dementia study to illustrate the proposed methodology, and demonstrate the
computational algorithms for point estimates, which can be directly linked to the existing
functions in S-PLUS or R.
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1. Introduction

In observational studies, such as studies of unemployment duration in the labor economy
(Lancaster, 1979; de Una-Alvarez, Otero-Giraldez, and Alvarez-Liorente, 2003), cancer
screening trials (Zelen and Feinleib, 1969; Zelen, 2004), and HIV prevalent cohort studies
(Lagakos, Barraj, and De Gruttola, 1988), one often encounters right-censored time-to-event
data subject to length-biased sampling. Length-biased sampling is a special case of left
truncation. Following the terminology in the literature, length-biased data are defined for
left-truncated and right-censored data under the stationarity assumption, which assumes that
the initiation times follow a stationary Poisson process. As a result, the probability of
observing a failure time t is proportional to t itself.
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Length-bias is one of the major biases that are difficult to remove by trial design and may
confound the interpretation of disease-specific survival. In a randomized cancer screening
trial, the observed survival benefit for individuals whose disease is detected by screening
versus by symptoms can be confounded with length bias. This is because cancers with a
longer duration of preclinical disease are more likely to be detected by screening
examination, and are thus overrepresented among the screen-detected cases. Moreover,
cancers with a longer preclinical duration (i.e., with slower growing tumors) are often
associated with more favorable prognoses. Another example of length-biased data can be
seen in a study of dementia among elderly people. In the Canadian Study of Health and
Aging (CSHA), a total of 14,026 subjects who were 65 years or older were randomly
selected throughout Canada, and 10,263 agreed to participate in this multicenter
epidemiologic study (Wolfson et al., 2001). Among the participants, 1,132 were identified as
having dementia and were followed until the end of the study. The investigators noted that
patients who had experienced a longer duration of dementia symptoms at the time of
recruitment to the CSHA tended to live longer (Wolfson, et al., 2001). That is, the sampled
cases were subject to length-bias. It is of great interest to investigate how different types of
dementia may impact long-term survival in a regression analysis after adjusting for length-
biased sampling.

In the aforementioned example, the observed time from the diagnosis of the disease to the
subsequent event (death) is subject to length-biased sampling. The outcome of interest is
time from disease diagnosis to death. The data set we considered is a prevalent cohort
consisting of subjects with the disease of interest at the examination time who were then
followed for a subsequent terminal event (e.g., death). The data on each subject in the cohort
include an initiating event (e.g., diagnosis of the disease) and a failure event (disease
recurrence or death) for those subjects who have been accrued. Apparently, the failure times
will be left truncated if the initiating event is not observed or the failure event occurs before
sampling time, and the failure times can be right censored during follow-up. Length-biased
sampling occurs in this setting because the “observed” time intervals from initiation to
failure in the prevalent cohort tend to be longer than those in the target population.

Methodology development has focused on nonparametric estimation of the length-biased
distribution in one-sample problems (Turnbull, 1976; Vardi, 1982, 1985, 1989; Gill, Vardi,
and Wellner, 1988; Lagakos et al., 1988; Wang, 1989; Asgharian, MLan, and Wolfson,
2002; Asgharian and Wolfson, 2005). One complication in analyzing such data is the
potential dependence between the failure time and the right-censoring time, measured from
the initiating event (diagnosis) to the event of interest. The informative censoring induced by
the sampling scheme has been avoided by prohibiting right censoring (Vardi, 1985; Wang,
1996) or by simply ignoring it. A second complication occurs when evaluating the covariate
effects on the time interval measured from the diagnosis of the disease to the event of failure
for the target population. This evaluation proves to be difficult because the model structure
assumed for the target population is often different from the one for the observed length-
biased data. Recently, Shen, Ning, and Qin (2009) proposed some methods for modeling
covariate effects for length-biased data under transformation and accelerated failure time
models. Bergeron, Asgharian, and Wolfson (2008) assessed the bias induced for covariate
estimates under length-biased sampling using a full-likelihood approach with a parametric
model.

Coxs proportional hazards model has been widely used to model the risk factors of a failure
time in classical survival analyses (Cox, 1972). On the other hand, it has been noted in the
literature that conventional regression methods, such as the standard Cox partial likelihood
method, may produce biased estimators if right-censored data is subject to biased sampling.
The partial likelihood approach proposed for left-truncated data can be applied to estimate
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the covariate effects for length-biased data under the Cox model (e.g., Kalbfleisch and
Lawless, 1991; Keiding, 1992; Wang, Brookmeyer, and Jewell, 1993). However, the
efficiency of the estimators may not be ideal because the important information pertaining to
the stationary Poisson process is not utilized. Wang (1996) was the first to use the
semiparametric proportional hazards model to estimate covariate effects when the observed
failure times were length-biased; Wang used a bias-adjusted risk set for the construction of
the pseudo-likelihood. However, a major restriction in her approach was the assumption that
the length-biased data are not subject to right censoring. More recently, Ghosh (2008)
proposed an estimating equation approach that allows right censoring of the length-biased
data under a proportional hazards model. However, Ghosh assumed that the cross-sectional
data did not have any follow-up. Therefore, Ghoshs proposed method may not be general
enough or valid if there are follow-up data subject to right censoring.

Given the popularity and importance of the Cox regression model for analyzing survival
data, the aims of this work are to propose two inference methods to assess the covariate
effects under the semiparametric Cox model for length-biased data subject to right
censoring, and to compare the proposed methods with the conditional approach for left-
truncated data. The proposed methods are based on the generalized estimating equations.
One major advantage of the proposed methods is computational simplicity. The estimation
algorithms can be directly linked to existing S-PLUS, R, or SAS codes for the Cox model by
adding appropriate weights for the linear predictor in the function. The remainder of this
paper is organized as follows. In Section 2 we introduce the basic notation and the
estimating equations and provide inference procedures and theoretical properties for the
proposed estimators. In Section 3 we evaluate the performance of the proposed estimators
and compare them with existing methods through simulation studies. We also illustrate the
methods through application to the demential data example and demonstrate the
computational algorithms for point estimates, which can be directly linked to the existing
functions in S-PLUS or R. We provide concluding remarks in Section 4 and proofs of the
theorems in the Appendix.

2. Estimation Methods

2.1 Data and Model

Assume T ̃ failure, to be the duration from the initiating event (diagnosis or onset of the
disease) to A to be the duration from the initiating event to examination, V to be the duration
from examination to failure, and C to be the duration from examination to censoring. Under
length-biased sampling, one can only observe T among those T ̃ > A. Let T = A + V be a
positive lifetime random variable, where A is the truncation variable (or backward
recurrence time), V is the residual survival time (or forward recurrence time), and X is the
baseline covariate vector. It is reasonable to assume that C and (A, V ) are independent, and
that the censoring distribution is independent of covariate X.

For a random sample of n independent subjects, the observed data consist of {(Ai, Yi, δi, Xi),
i = 1, … , n}, where Yi = min(Ti, Ai + Ci), Ti = Ai + Vi, and δi = I(Vi ⩽ Ci). Let f represent the
unbiased density for T ̃ , and g represent the length-biased density (conditional on T ̃ > A).
Then, for the observed length-biased data T , its density function g is associated with the
unbiased density f, as follows:

Given the covariates, X = x, the density of T can be expressed as
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where g(t|x) and f(t|X) denote the covariate-specific length-biased sampling density and the
population (unbiased) density. Assume that failure times in the target population (unbiased),
T ̃, follow the proportional hazards model

(1)

where λ0(t) is an unspecified baseline hazards function and β0 is a vector-valued unknown
regression coefficient for X.

Likelihood principal—In order to better understand the structure of length-biased data,
we start with the bivariate observation for A and T. Given the covariate X = x, the joint
density of (A, T ) can be decomposed as a product of the marginal distribution of A and the
conditional distribution of T given A. Such a formulation has been utilized in analyzing left-
truncated data (e.g., Andersen et al., 1993, pp 166-167; Wang, 1989):

where SU(t|x) is the survival distribution for the unbiased failure time given x. Given
truncation time A = a, the conditional likelihood of Y is proportional to

(2)

As described in detail by Wang et al. (1993), LC can be further expressed as the product of a
partial likelihood and the residual likelihood:

where

(3)

and the residual likelihood, LR(β,λ0) is referred to as an “ancillary” term by Wang et al.
(1993), which includes the baseline hazard function λ0 and β. Under the Cox model, LP has
an expression similar to that of the partial likelihood function for traditional survival data
(without left truncation) except for the definition of the risk sets R(y) = {j : aj ⩽ y ⩽ yj}.
Intuitively, the ignored information for covariates (i.e., β) contained in the marginal
distribution of A and the residual likelihood may lead to a loss of efficiency.
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2.2 Estimating Equation Approaches

We start with a special case in modeling covariate effects for length-biased data without
right censoring. Let the marginal density function of covariate X be denoted as h(x). Then
the conditional distribution of X given T = t follows:

Thus, under the proportional hazards model, the conditional expectation of x is

The second equation holds because λ0(t) is canceled out. Using the fact that

(4)

we obtain

Therefore, we can construct the following unbiased estimating equation to estimate β :

In fact, the above estimating equation is the same as the score equation derived from the
pseudo-likelihood function by Wang (1996). By generalizing the above derivations to
length-biased data with right censoring, we propose two estimating equation approaches.

Estimating Equation I—When length-biased failure time T is subject to right censoring, a
natural extension of the above estimating equation can be proposed as follows. Recall that
the joint density distributions of (A, V ) and (A, T ) given covariate X = x have the same
formula without censoring (Asgharian and Wolfson, 2005):

With potential censoring, the probability of observing a pair of uncensored data is
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(5)

where SC is the survival distribution for censoring variable C, assuming that the right-
censoring variable C is independent of covariate X. Using a concept similar to (4), we have
the following conditional expectation when there is right censoring:

(6)

In addition, utilizing equation (6), we can replace SU(y|X)/μ(X) the following conditional
expectation:

(7)

Combining (6) and (7) leads to the following estimating equation:

(8)

When SC is unknown, we can replace it with its consistent Kaplan-Meier estimator for
residual censoring time, which leads to an asymptotic unbiased estimating equation we call
EE-I.

Estimating Equation II—An alternative estimating equation approach with a different
weight can be proposed. Given (5), we can express the probability of observing the length-
biased failure time at y by integrating out a:

(9)

where . Based on (9), we have

(10)
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Therefore, we can replace SU (y|X)/μ(X) in equation (7) for the conditional expectation of X
with the corresponding observed data to construct the following unbiased estimating
equation to estimate β :

(11)

By replacing wc(t) with its consistent estimator, we have an asymptotic unbiased estimating
equation, which we call EE-II.

Estimating Equation LT—Clearly the above two estimating equations require the
information of the distribution function for censoring variable C. In contrast, an approach
proposed for delayed-entry/left-truncated data does not require estimating the survival
function for the censoring variable. Conditional on X, one has

Therefore, when censoring variable C is independent of covariate X, wc(.) is canceled out on
the right side of the following equation: Conditional on X, one has

Similar to the constructions of the first two estimating equations, one can construct the
estimating equation

(12)

which is the score equation of the partial likelihood of (3) for left-truncated data under the
Cox model (Kalbfleisch and Lawless, 1991;Andersen et al., 1993;Wang et al., 1993). We
call this equation EE-LT. Unlike EE-I and EE-II, the summations in the fraction terms of
EE-LT can include both failure and censored times as long as the pair (aj, yj) satisfies the
inequality condition. The large sample properties for the above estimating equation have
been explored in the literature (Wang, 1989;Wang et al., 1993).

2.3 Asymptotic Properties

The consistency and weak convergence of β can be established for estimating equations EE-
I and EE-II under the regularity conditions stated in the Appendix. Using the counting
process notation of Andersen et al. (1993), for the ith subject, define risk set Ri(t) = I{Yi ⩾
t}δi and Ni(t) = I{Yi ⩽ t, Ci ⩾ Yi − Ai}. Define
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where k = 1 for EE-I and k = 2 for EE-II, l = 0, 1, 2, and

Also, let

ek(β, t) be the expectation of Ek(β, t) sk
(l)(β, t) be the expectation of Sk

(l)(β, t).

Estimating Equation I for β̂1—By generalizing the theoretical formulation of Wang
(1996) to the setting with right censoring, we can construct

and prove it to be a mean zero stochastic process. Specifically, using equation (6),

Therefore, if SC is a known function, estimating equation (8) can be asymptotically
represented by the following independent and identically-distributed (i.i.d.) summation of
the mean zero process:

(13)

To obtain an estimator for β, we replace SC(t) with its consistent Kaplan-Meier estimator
ŜC(t) for the censoring time in (13). We then have the estimating equation

(14)

where
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In the Appendix and Section 1 of the Supplementary Materials, we show that under the
regularity conditions there exists a unique solution to the equations Ũ1(β) = 0, and

. Moreover, n−1/2Ũ1(β) converges weakly to a mean zero Gaussian process
with a variance-covariance function ∑1. Let β ̂1 be the solution to equation (14). By Taylor
series expansion,

where β* is on the line segment between β ̂1 and β0, and Γ1(β) = −n−1∂Ũ1(β)/∂β.

Given the estimated β ̂1 for β0, a natural estimator for the cumulated baseline hazard function
that is similar to Breslows estimator can be proposed:

The variance-covariance of β1 can be consistently estimated by , where

, and Λ̂C(t) is the Nelson-Aalen
estimator for residual survival time C.

Estimating Equation II for β̂2—Similarly, we can prove that the following stochastic
process has a mean of zero:

Using equation (10)

Therefore, if SC is a known function, estimating equation (11) can be asymptotically
represented by the following i.i.d. summation of the mean zero processes:
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By replacing wc(t) with ŵc(t), we can solve for β using the following estimating equation:

where

In the Appendix and Section 2 of the Supplementary Materials, we prove that n−1/2Ũ2(β0)
converges weakly to a p-vector mean-zero Gaussian process with a covariance matrix ∑2. In
addition, the solution to the equation Ũ2(β0) = 0 is consistent and unique. Using the Taylor
series expansion,

where β* is on the line segment between β ̂2 and β0, Γ2(β) = −n−1∂Ũ2(β)/∂β, and ∑2 is the
covariance matrix of limn→∞Ũ2(β0).

The covariance matrix of β ̂ can be consistently estimated by , where

, and
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Remark—The weight functions W1i and W2i in the two estimating equations play a similar
role in adjusting for the dependent censoring distribution in length-biased data.
Theoretically, both weight functions are valid choices. In the next section, we will
investigate the empirical performance of the estimators solved from EE-I and EE-II under
various scenarios.

3. Numerical Studies

3.1 Simulations

We carried out a series of simulation studies to assess the efficiencies of the two proposed
estimators relative to the estimator from UL(β) and the estimator from the estimating
equation by Ghosh (2008), which is specified as follows, EE-III

(15)

Note that (15) seems to have the same components of EE-I in (8), but the term SC(Yi − Ai) in
(8) is replaced by SC(Yi) and information for the left-truncation time A is not used.

We generated unbiased failure times T ̃i from the proportional hazards model

where β = (α1, α2) = (1, 1) or (2, 2), the binary covariate X1 ~ Bernoulli(1,0.5), the
continuous covariate X2 ~ uniform(−0.5,0.5), and the baseline hazard function is 2t. The
left-truncation time Ai was independently generated from a uniform distribution (0, τ0), and
the pairs (Ai, T ̃i) with Ai < T ̃i were kept. We chose τ0 larger than the upper bound of T ̃i to
ensure the stationarity assumption. When τ0 was large enough, and we let

 approximate to zero if τ0 → ∞,

The censoring variables measured from the examination time were independently generated
from uniform distributions corresponding to various censoring percentages: 20%, 35%, and
50%. The censoring indicator was obtained by δi = I(Ti ⩽ Ci + Ai). For each scenario, we
repeated the simulation 1000 times with cohorts of size n = 200 or n = 400.

The simulation results are summarized in Table 1. When the right-censoring rate varies from
low to moderate (20 to 35%), both EE-I and EE-II have unbiased estimators and reasonable
coverage probabilities. In contrast, the estimators from (15) led to severe bias and poor
coverage probabilities in all the scenarios we investigated. When the censoring percentage is
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small, which is equivalent to the censoring variable C being subject to heavy censoring, the
proposed variance estimators derived from the weak convergence of Ũ2 may slightly
overestimate the true variance of β ̂, which leads to an overestimated coverage probability.
The reason for this is that the weight ŵc(t) may be slightly overestimated under the heavy
censoring of variable C. The overestimation for the variance estimator disappears when the
right-censoring proportion increases. In application, this concern can be eliminated by using
the bootstrap variance estimator of β ̂ if the censoring proportion is very small.

When the right-censoring percentage is high (50%), the estimator of β from EE-I can be
biased due to the instability of weight function W1 in the denominator. This phenomenon
remains when the total sample size increases from 200 to 400. In contrast, the estimators
from EE-II are much more robust to various censoring percentages, its biases are small, and
its coverage probabilities are close to the nominal level, especially when the sample size
increases. The relative ratios for the variance estimators between the estimators from EE-II
and from EE-I show a loss of efficiency between 1 and 44% for EE-I. The largest loss of
efficiency for EE-I relative to EE-II occurs when there is heavy censoring.

As expected, the estimators obtained from EE-LT have larger variances than the estimators
from EE-I and EE-II, especially with small to moderate censoring, because EE-LT ignores
part of the information for β contained in the residual likelihood. The relative ratios for the
variance estimators between the estimators from EE-LT and EE-II show a loss of efficiency
of up to 42%. However, EE-LT has the advantage of not requiring an estimate of the
censoring distribution of C, which leads to a more robust estimation procedure for different
censoring distributions.

As suggested by a referee, we also performed a small simulation study to assess the bias in
the proposed estimators when the stationarity assumption is violated. Because the proposed
estimating equation approaches are derived for length-biased data, biases are expected in the
estimators obtained from EE-I and EE-II when the data do not satisfy the stationarity
assumption (shown in Table 2). For both EE-I and EE-II, the bias and the mean square error
increase with the percent of censoring. In contrast, the less efficient EE-LT approach
proposed for delayed-entry/left-truncated data does not rely on the stationarity assumption;
therefore, it leads to unbiased estimators.

3.2 Example: Dementia Study

The Canadian Study of Health and Aging was a multicenter epidemiologic study that has
been described in the literature (Wolfson et al., 2001; Asgharian et al., 2002). In the first
phase of the study, a total of 14,026 subjects who were 65 years or older were randomly
selected from throughout Canada to receive an invitation to participate in a health survey. A
total of 10,263 Canadians agreed to participate. The participants were screened for dementia
in 1991. From that cohort, 1,132 participants were identified as having dementia. The dates
of disease onset were ascertained from the participants medical records, and their dates of
death or right censoring were collected prospectively during the second phase until the end
of the study in 1996. After excluding participants for whom the date of disease onset or the
classification of dementia subtype was missing, there were 818 participants left. Their
dementias were classified into the following three categories: probable Alzheimer's disease,
n=393; possible Alzheimer's disease, n=252; and vascular dementia, n=173. At the end of
the study, 638 participants had died, and the others were right censored. The purpose of this
study was to assess whether the subtype of dementia at diagnosis had any effect on overall
survival.

We first checked the correlation between the type of dementia and the censoring distribution
C and found no statistically significant association. The stationarity assumption for the
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length-biased data was carefully validated by Asgharian, Wolfson, and Zhang (2006). To
perform a semiparametric regression analysis, we used the category of probable Alzheimer's
disease as the baseline and defined two indicator variables for possible Alzheimer's disease
and vascular dementia under the Cox model. The estimated covariate coefficients for the
three methods that adjust for length-biased sampling and the naive analysis that does not
adjust for length-biased sampling are summarized in Table 3. The estimated standard errors
for the covariate coefficients are obtained from the proposed consistent estimators for EE-I,
EE-II. It is clear from the results that the subtype of dementia yields little difference in long-
term survival under the methods that adjust for length-biased sampling. This finding is
consistent with the nonparametric survival estimators provided by Wolfson et al. (2001).
Note that the overestimated coefficient obtained from the naive Cox model suggests a
marginally significant prolonged survival for the category of possible Alzheimers disease
compared with that for the category of probable Alzheimers disease.

3.3 Computation Algorithms

Estimating covariate effects under the Cox model for right-censored failure time data is easy
for the end user with either S-PLUS (R) or SAS, via the function “coxph.” Our aim in this
section is to illustrate how to use existing software for traditional right-censored data to
analyze length-biased right-censored data under Coxs proportional hazards model.
Specifically, we describe slightly modified commands in S-PLUS (R) for the two proposed
estimating equations, EE-I and EE-II. For length-biased data, we can use the function
“coxph,” but with the “offset” option to add a linear predictor in the Cox model with a
known coefficient of one for the weight. For the estimating equation EE-I or EE-II, we use
the estimated weight for W1i or W2i, respectively, as the input for “offset” in “coxph,”. To
illustrate, using the previously described example, we define vectors XV and XP as indicators
of Vascular dementia and possible Alzheimer's disease, and then apply

where “futime” is the observed failure times, m is the total number of the observed failure
times, “fdata” is the subset of the whole data matrix among subjects with observed failure
times only, and Ŵ1 is a vector consisting of the estimated weight of each failure time for
EE-I. Note that Ŵ1 is estimated by the Kaplan-Meier estimator of censoring variable C on
all Yi − Ai and i = 1, ⋯, m,

Similarly, for EE-II we can use Ŵ2i = {ŵc(Yi)}
−1 to give the input for the “offset” term in

“coxph.”

The Newton-Raphson method is used to solve the partial likelihood equation for estimating
β for conventional right-censored data in both S-PLUS and SAS. For the purpose of
comparison, we also used the Newton-Raphson iterative algorithm to solve β from EE-I and
EE-II. It is not surprising that the numerical solution obtained from the Newton-Raphson
method for EE-I (or EE-II) is the same as the one obtained from the command “coxph” with
the “offset” option using log(Ŵ1) (or log(Ŵ2)), because EE-I (or EE-II) is identical to the
estimating equation of the ordinary Cox model treating Ŵ1 (or Ŵ2) as a fixed “offset” term
and restricting only the failure times. Note that EE-I (8) can also be expressed as
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which is the same as the score equation used in the ordinary Cox model with a linear
predictor log(W1) restricting among the observed failure times. The censoring distribution
for C enters into the estimating equations (EE-I or EE-II) only through the estimated weights
Ŵ1 or Ŵ2.

4. Discussion

The methodology for estimating covariate effects under a proportional hazards model for
classical survival data has been implemented in standard software and is widely used in S-
PLUS, SAS, and other statistical packages. An advantage for our proposed inference
methods for length-biased right-censored data is that we can use the existing functions under
the Cox model in S-PLUS or SAS to carry out the point estimation by providing only an
estimated weight. Specifically, we only need to estimate weight W1i from the Kaplan-Meier
estimator for residual censoring times SC(t) and W2i, which is an integral of SC(t). We can
then use the “offset” option in S-PLUS (R) to incorporate the weights for the regular
“coxph” function. The consistent variance-covariance estimator of β ̂k can be obtained by

 for k = , 2, as proposed in Section 2.3 for the estimating equations. Alternatively,
one may use the bootstrap approach to obtain the corresponding standard errors using the
existing functions “coxph” in S-PLUS (R) or “PROC PHREG” in SAS.

For the two proposed estimating equation approaches, the desired asymptotic properties
were derived under mild regularity conditions. For both types of estimating equations, we
proposed two estimators for the baseline hazards function for Λ0(t), which can lead to the
prediction of covariate-specific survival. However, the establishment of the asymptotic
properties of the Breslows estimators for the cumulative baseline hazards function is not a
focus of this work. When the censoring distribution of C depends on covariate X, we may
use the covariate-dependent weights ŜC(t|Xi), which may follow a semiparametric model, a
parametric model, or a fully nonparametric Kaplan-Meier estimator for discretized
covariates.

Of the three estimating equation approaches we investigated, we found that EE-II may be
the most promising choice in general because it is robust to different censoring distributions
and utilizes all of the available information. The estimators obtained from EE-I are
comparable to those obtained from EE-II when the censoring percentages are small to
moderate, but can be unstable when censoring is heavy. This is because the impact of an
inverse of SC(t) → 0 can be large at the tail, whereas the integral of SC(t) will not go to zero
at the tail. The estimating equation from the left-truncation model has the advantages of not
requiring an estimate for the censoring distribution and working for general left-truncated
data, which include length-biased data as a special case. However, the ignored component
from the full likelihood causes a loss of information in the estimating equation EE-LT,
which can lead to a loss of efficiency of up to 42% compared with that from EE-II in the
scenarios that were investigated. Using the estimating equation by Ghosh (2008) may lead to
a severely biased estimator for general right-censored length-biased data, while the method
was proposed for length-biased data without follow-up data. In this case, the informative
censoring mechanism cannot be accounted adequately. We hope that our results will
facilitate applications of the most commonly used semiparametric regression model, Coxs
proportional hazards model, in analyzing length-biased failure time data.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

The regularity conditions for the large sample properties are:

a. (Ai, Yi, δi, Xi) (i = 1, ⋯ , n) are independent and identically distributed;

b. P(Ci + Ai ⩾ τ) > 0, where τ is a predetermined constant;

c.
 is positive definite

for k = 1 or 2, where β0 and Λ0(t) are the true underlying values of β and the
baseline hazard function;

d.

0 < wc(τ) < ∞ and , where SV(t) = pr(Y
− A > t).

Consistency and uniqueness of β ̂1
Consider a likelihood function

Note that ∂Li(β)/∂β = n−1Ũ1(β) and

By the strong law of large numbers and under the specified regularity conditions, L1(β)
converges almost surely to

for any β, and Γ ̂1(β0) converges almost surely to Γ1, as n goes to infinity, where
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is assumed to be positive definite. Therefore, L1(β) is concave for β, which leads to a unique
solution to Ũ1(β). The consistency of β ̂1 also follows.

Weak Convergence of Ũ1(β)

By decomposing Ũ1(β) approximately by the following two components,

(16)

where

where , ΛC(t) is the hazard function for C, and
π(t) = SC(t)SV(t). The second term in (16) is derived using the fact that the Kaplan-Meier
estimator can be approximated by a sum of martingale integrals,

More details can be found in Section 1 of the Supplementary Materials. Under the regularity
conditions (a)-(d), n−1/2Ũ1(β) converges weakly to a Gaussian process with mean zero and
variance-covariance matrix Σ1, where

Consistency and uniqueness of β2

Consider a likelihood function

The rest of the derivation is then similar to that for β1.
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Weak Convergence of Ũ2(β)

Similar to the asymptotic representation for (8), the estimating equation (11) can be
approximated by the following i.i.d. summation of a mean zero stochastic process, Ũ2(β) can
be approximated by the sum of i.i.d mean zero process,

(17)

where ,

and . The second term in (17) explains the uncertainty induced by
ŵc(t). The last equation holds because all wc(t) and ŵc(t) are canceled out inside E2 and Ê2,
and (ŵc(Yk) − wc(Yk)) can be expressed as an i.i.d. sum of martingales (Pepe & Fleming,
1991),

More details can be found in Section 2 of the Supplementary Materials.
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Table 3

Estimates (standard errors) of regression coefficients for dementia data under Cox model, using “probable
Alzheimers disease” as baseline

Length-bias adjusted analyses Naive Cox model

EE-I EE-II EE-LT

Vascular dementia 0.137 (.101) 0.074 (.101) 0.087 (.103) 0.076 (.103)

Possible Alzheimers disease −0.109 (.093) −0.134 (.091) −0.037 (.093) −0.182 (.093)
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