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SUMMARY

We investigate the survival distribution of the patients who have survived over a certain time 

period. This is called a conditional survival distribution. In this paper, we show that one-sample 

estimation, two-sample comparison and regression analysis of conditional survival distributions 

can be conducted using the regular methods for unconditional survival distributions that are 

provided by the standard statistical software, such as SAS and SPSS. We conduct extensive 

simulations to evaluate the finite sample property of these conditional survival analysis methods. 

We illustrate these methods with real clinical data.
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1 Introduction

Traditionally, survival analysis in clinical researches has been to investigate the distribution 

of patients’ survival times measured from the diagnosis of a disease or the start of a 

treatment (i.e., baseline). This type of analysis provides the survival probability of patients 

expected at the start of treatment that will be useful to predict their prognosis before starting 

the treatment. However, the survival probability evolves over time and usually decrease with 

increased survivorship, so that both patients and clinicians are interested in the change in 

survival probability over the progress of treatment and disease. Residual lifetime of 

individuals when they have survived over a relevant landmark of time can serve towards this 

end. For example, when comparing the efficacy of an intensive treatment with a standard 

treatment, patients receiving the prior may have a higher risk due to treatment-related 

mortality during treatment period, but may have a much lower risk once they survive over 

the treatment period with the disease cured.

While researches on residual lifetime theory have been very active in reliability area (e.g. 

Bryson and Siddiqui, 1969; Hollander and Proschan, 1975; Muth, 1977; Ruiz and Navarro, 
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1994), those in biostatistics field have been sparse. Among some biostatistical examples are 

Jeong and Jung (2008) on two-sample comparison of median residual lifetime, and Jung, 

Jeong and Bandos (2009) extending the two-sample problem to regression analysis. More 

recently, residual lifetime analysis has been very popularly used in clinical trials to analyze 

the change in survival distribution of patients as a progress of disease (e.g. Zamboni et al. 

2010; Zabor et al. 2013; Bischof et al. 2015; Mertens et al. 2015) under the name of 

conditional survival analysis. Let T be the survival variable of a population with survivor 

function S(t) = P (T ≥ t). The t-year conditional survival distribution for patients who have 

survived for t0 years, P (T ≥ t + t0|T ≥ t0), is denoted as S(t|t0) = S(t + t0)/S(t0) for t ≥ 0. In 

the clinical literatures (e.g. Zabor et al. 2013; Mertens et al. 2015), investigators estimate the 

conditional survival distributions by replacing the survivor functions with their Kaplan-

Meier (1958) estimates, but they do not provide a formal statistical testing to compare them 

between patient groups.

This paper can be regarded as a review paper supporting the analysis methods that are 

popularly used in medical field without theoretical justification. In this paper, we present 

analysis methods for conditional survival distributions including confidence interval of 

conditional survivor function for 1-sample problem, the conditional log-rank test for 2-

sample test, and the conditional Cox (1972) proportional hazards model for regression 

analysis. We present simulation results to evaluate the performance of these methods. The 

proposed methods are demonstrated with real clinical data.

2 Analysis of Conditional Survival Distributions

2.1 One-Sample Problem

Suppose the lifetimes from n patients T1, …,Tn are independent and identically distributed 

with survivor function S(t) = P(Ti ≥ t) and cumulative hazard function ⋀(t) = — log S(t). 
From patient i, we observe (Xi,δi), where Xi is the minimum of Ti and censoring time Ci, 

and δi is an event indicator taking 1 if patient i had an event and 0 otherwise. We assume 

that censoring times are independent of the survival times.

For patients who have survived for at least t0(≥ 0) years, the probability that they live 

additional t years, S(t|t0) = P(Ti ≥ t + t0|Ti ≥ t0), is given as

S t t0 = S t + t0 /S t0 for t ≥ 0 (1)

by the definition of conditional probabilities. S(t|t0) is called the conditional survivor 

function for patients who have survived for t0 years.

The conditional cumulative hazard function ⋀(t|t0) = – log S(t|t0) is given as ⋀(t|t0) = ⋀(t + 

t0) – ⋀(t0) from (1). Hence, for t ≥ 0, the conditional hazard function λ(t|t0) = ∂⋀(t|t0)/∂t is 

identical to the unconditional (or marginal) hazard function λ(t + t0) = ∂⋀(t + t0)/∂t. Jeong, 

Jung and Costantino (2008) propose a nonparametric inference method on conditional 

median residual lifetime θ that satisfies S(θ|t0) = 1/2.
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Let S t  denote the Kaplan-Meier estimator of S(t). Then, S(t|t0) is consistently estimated by

S t t0 = S t + t0 /S t0 for t ≥ 0.

From Corollary 3.2.1 of Fleming and Harrington (1991), we have

n
S t + t0 − S t + t0

S t0 − S t0
= − n

S t + t0 ∫
0

t + t0
Y s −1dM s

S t0 ∫
0

t0
Y s −1dM s

+ op 1 (2)

where M t = ∫0

t
dN s − Y s d Λ s  is a 0-mean martingale, and N t = ∑i = 1

n δiI Xi ≤ t

and Y t = ∑i = 1
n I Xi ≥ t  denote the event and the at-risk processes, respectively. Let y(t) 

denote the uniform limit of n−1Y (t) for t ≤ τ, where τ denotes the minimum of the upper 

limits of the supports of censoring and survival distributions. By the martingale central limit 

theorem, n S t + t0 − S t + t0 , S t0 − S t0  converges to N (0, Σ) in distribution, where

Σ =
S t + t0

2∫0

t + t0
y s −1d Λ s S t0 S t + t0 ∫0

t0
y s −1d Λ s

S t0 S t + t0 ∫0

t0
y s −1d Λ s S t0

2∫0

t0
y s −1d Λ s

,

which can be consistently estimated by replacing y(t), S(t) and d⋀(t) with their consistent 

estimators Y(t)/n, S t  and Y(t)−1dN(t), respectively. That is, a consistent estimator of Σ is 

given as

Σ = n
S t + t0

2a t + t0 S t0 S t + t0 a t0

S t0 S t + t0 a t0 S t0
2a t0

,

where na t  is a consistent estimator of ∫0

t
y s −1d Λ s  that is given as

a t = ∫0
t
Y s −1d Λ s = ∑

i = 1

n δiI 0 ≤ Xi ≤ t

∑ j = 1
n I X j ≥ Xi

2

by using the Nelson-Aalen (Nelson, 1969; Aalen, 1978) estimator Λ s = ∫0

t
Y s −1dN s

The partial differentiation of θ1/θ2 with θ1 = S(t + t0) and θ2 = S(t0) is given as
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∇ = 1
S t0

, −
S t + t0

S t0
2

T
.

Hence, by the delta-method, n S t t0 − S t t0  converges to N (0,σ2) in distribution, where

σ2 = ∇T Σ ∇ = S t t0
2∫t0

t + t0
y s −1dΛ s .

A consistent estimator σ2 can be estimated by replacing S(t), y(t) and d⋀(t) with their 

consistent estimators S t , n−1Y(t) and Y(t)−1dN(t), respectively. That is,

σ2 = nS t t0
2 ∑

i = 1

n δiI t0 ≤ Xi ≤ t + t0

∑ j = 1
n I X j ≥ Xi

2 .

A 100(1 — α)% confidence interval for the conditional survival probability S(t|t0) can be 

calculated using this asymptotic result, i.e.

S t + t0 /S t0 ± z1 − α/2σ,

where z1-α denote the 100(1 — α) percentile of the standard normal distribution.

These inferences are available only when there are patients who are at risk at t0 in the data 

set. In fact, these inferences can be much simplified. Suppose that P(Ti ≥ t0)P (C ≥ t0) > 0, 

i.e. the maximum survival time is longer than t0 and some patients are followed for longer 

than t0. Then, for t > 0, we have

P T i ≥ t + t0 Xi ≥ t0 =
P T i ≥ t + t0, Xi ≥ t0

P Xi ≥ t0
. (3)

The right hand side of (3) equals

P Ti ≥ t + t0, Ti ≥ t0, Ci ≥ t0
P Ti ≥ t0, Ci ≥ t0

=
P Ti ≥ t + t0, Ci ≥ t0

P Ti ≥ t0, Ci ≥ t0
=

P Ti ≥ t + t0
P Ti ≥ t0

since Xi = min(Ti,Ci), and Ti and Ci are independent. Hence, we have S(t|t0) = P(Ti ≥ t + t0|

Xi ≥ t0), denoting the survival probability at t + t0 for patients who are at risk at t0. This 

implies that the conditional survival probability S(t|t0) can be estimated by calculating the 

Kaplan-Meier estimator at t + t0 from the patients who are at risk at t0.

Jung et al. Page 4

J Biopharm Stat. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This relationship becomes clearer by the definition of Kaplan-Meier estimator. For 

simplicity of notation, suppose that there are no ties among Xi, …,Xn. Then, by the 

definition of Kaplan-Meier estimator, (2) is expressed as

S t t0 =
∏i: Xi ≤ t + t0

1 − δi/Y Xi

∏i: Xi ≤ t0
1 − δi/Y Xi

= ∏
i: t0 < Xi ≤ t + t0

1 − δi/Y Xi ,

which is the Kaplan-Meier estimator at t + t0 calculated from the data set consisting of 

patients who are at risk at time t0, and its variance is consistently estimated by n−1σ2. Hence, 

one-sample inference of conditional survival distribution using the delta-method will be 

identical to that based on the standard (or, unconditional) survival distribution using Kaplan-

Meier estimator to the subset of data consisting of the patients who are at risk at t0. These 

results hold with tied survival data too.

An alternative confidence interval for S(t|t0) can be obtained using the Fieller’s (1954) 

method. Let ρ = S t0 /S t + t0 . By using the asymptotic result for Kaplan-Meier estimator, 

n ρS t + t0 − S t0  is asymptotically normal with mean 0, and its variance can be 

consistently estimated by n ρ2σ22 − 2ρσ12 + σ11 , where σi j is the (i, j)-component of n−1 Σ. 

Hence, we have

P −z1 − α/2 <
ρS t + t0 − S t0
ρσ11 − 2ρσ12 + σ22

< z1 − α/2 = 1 − α . (4)

We can obtain a 100(1 – α)% confidence interval of S(t|t0) by solving the equation within 

the probability of (4) with respect to p, i.e.

f 1 ± f 1
2 − f 0 f 2

f 2
,

where f 0 = S t + t0
2 − σ11z1 − α/2

2 , f 1 = S t + t0 S t0 − σ12z1 − α/2
2  and 

f 2 = S t0
2 − σ22z1 − α/2

2 . This formula gives an appropriate confidence interval when 

f 1
2 > f 0 f 2

2.2 Two-Sample Log-Rank Test

Suppose that nk patients are randomized to arm k(= 1, 2), and the survival time Tk1, …, Tknk

from the nk patients of arm k are independent and identically distributed with survivor 

function Sk(t) = P(Tki ≥ t) and cumulative hazard function Λk(t) = – log Sk(t). From patient 
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i(= 1,–, nk) in arm k(= 1, 2), we observe (Xki, δki), where Xki is the minimum of Tki and 

censoring time Cki, and δki is an event indicator taking 1 if the patient had an event and 0 

otherwise. We assume that the censoring times are independent of the survival times within 

each arm. Let Nk t = ∑i = 1
nk δkiI Xki ≤ t  and Yk t = ∑i = 1

nk I Xki ≥ t  denote the event and 

the at-risk processes for arm k, respectively. Also, let n = n1 + n2, N(t) = N1(t) + N2(t) and 

Y(t) = Y1 (t) + Y2 (t).

For conditional survivor function Sk(t|t0) = Sk (t + t0)/Sk (t0), we want to derive a log-rank 

test to test H0 : S1(t|t0) = S2(t|t0) for all t ≥ 0 against H1 : S1(t|t0) ≠ S2(t|t0) for some t ≥ 0. 

From the previous section, d⋀(t|t0) = d⋀(t + t0) for t ≥ 0, so that we can consider a log-rank 

test for comparing conditional survival distributions for patients who have survived over t0,

Wt0
= n∫0

∞
H t + t0 d Λ1 t t0 − d Λ2 t t0 = n∫0

∞
H t + t0 d Λ1 t + t0 − d Λ2 t + t0 ,

which is identical to

Wt0
= n∫t0

∞
H t d Λ1 t − d Λ2 t

where H(t) is a predictable function that is uniformly convergent to h(t) over [t0,τ] and τ is 

the minimum of the supports of the censoring and survival distributions. The logrank 

statistic (Peto and Peto, 1972) uses H(t) = n−1Y1(t)Y2(t)/Y(t), the Gehan-Wilcoxon test 

(Gehan, 1965) uses H(t) = n−2Y1(t)Y2(t), and the Prentice-Wilcoxon test (Prentice, 1978) 

uses H t = n−1S− t Y1 t Y2 t /Y t , where S− is the left-continuous version of the Kaplan-

Meier (1958) estimate from the pooled data.

Note that W t0
 has the same expression as the standard rank tests W0 except that the range of 

the integration is restricted to [t0, ∞). Using the same arguments as those used for the 

standard rank tests (e.g. Gill, 1980; Fleming and Harrington, 1991), we can show that 

W t0
/σt0

 is asymptotically standard normal with

σt0
2 = n∫t0

∞ H t 2
Y1 t Y2 t dN t

under H0. Hence, we reject H0 in favor of H1, if W t0
/σt0

> z1 − α/2 with two-sided type I 

error rate α.

For example, for the conditional log-rank test, we have
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Wt0
= 1

n ∫t0

∞ Y1 t Y2 t

Y t d Λ1 t − d Λ2 t

= 1
n ∑

i = 1

n1
δ1i I X1i ≥ t0

∑i′ = 1
n2 I X2i′ ≥ X1i

∑k = 1
2 ∑i′ = 1

nk I Xki′ ≥ X1i

− ∑
i = 1

n2
δ2iI X2i ≥ t0

∑i′ = 1
n1 I X1i′ ≥ X2i

∑k = 1
2 ∑i′ = 1

nk I Xki′ ≥ X2i

and

σt0
2 = 1

n ∫t0

∞ Y1 t Y2 t

Y t 2 dN t

= 1
n ∑

k = 1

2
∑

i = 1

nk
δkiI Xki ≥ t0

∑i′ = 1
n1 I X1i′ ≥ Xki ∑i′ = 1

n2 I X2i′ ≥ Xki

∑k′ = 1
2 ∑i′ = 1

nk′ I Xk′i′ ≥ Xki

2 .

From the expression of W t0
 and σt0

2 , it is obvious that the conditional log-rank test at t0 can 

be carried out by applying the standard log-rank test to the data set consisting of patients 

who are at risk at t0, 𝒟 t0 = Xki, δki : Xki ≥ t0, k = 1, 2, i = , …, nk . The 2-sample 

conditional log-rank test can be easily extended to the log-rank test for K-sample cases with 

K > 2. These results holds for other types of conditional rank tests.

2.3 Regression Method

From patient i = 1,…, n, we observe covariates zi = (z1i, …, zmi)T together with the 

minimum of the survival and censoring times Xi and event indicator δi. We assume that, 

given zi, the survival and censoring times are independent. Suppose that the conditional 

survival distribution for patients who have survived over t0 has a proportional hazards model

λi t t0 = λ0 t t0 exp βTzi (5)

for t ≥ 0, where λi(t|t0) denotes the baseline conditional hazard function. As was shown in 

the previous sections, the conditional hazard function λi(t|t0) is identical to the unconditional 

hazard function λi(t + t0), so that (5) can be expressed as the regular proportional hazards 

model

λi t = λ0 t exp βTzi

for t ≥ t0. Hence, if the (unconditional) survival distribution has a proportional hazards 

model with constant covariate effect over the whole time span, then the conditional survival 

distribution for any t0(> 0) has the same proportional hazards model. However, if the 

covariate effect changes over time, then the regression model for conditional survival 

distribution changes in t0.
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The partial score and information matrix (Cox 1972) are given as

Ut0
β = ∑

i = 1

n ∫t0

∞
Zi −

∑ j = 1
n Z jY j t e

βTZ j

∑ j = 1
n Y j t e

βTZ j
Yi t dNi t

and

At0
β = ∑

i = 1

n ∫t0

∞ ∑ j = 1
n Z j

⊗ 2Y j t e
βTZ j

∑ j = 1
n Y j t e

βTZ j
−

∑ j = 1
n Z jY j t e

βTZ j

∑ j = 1
n Y j t e

βTZ j

⊗ 2

Yi t dNi t

respectively, where z⊗2 = zzT for a column vector z. Using the same asymptotic theory for 

the Cox regression method, we can show that n β − β  is approximately normal with mean 

0 and its variance-covariance matrix can be consistently approximated by nAt0
−1 β .

For a univariate proportional hazards model with a dichotomous covariate, it is easy to show 

that the partial score test under β = 0, Ut0
0 / At0

0 , is identical to the conditional log-rank 

test, W t0
/σt0

, that was discussed in the previous section. From the expression of the partial 

score and information, it is obvious that the conditional Cox regression model (5) can be 

fitted by applying the standard Cox regression method to the data set consisting of the 

patients who are at risk at t0, i.e. D (t0) = {(Xi,δi,zi) : Xi ≥ t0,i = 1, …,n}. Kurta et al. (2014) 

proposed this analysis method without any theoretical justification.

3 Numerical Studies

3.1 Simulations

We want to show that the standard inference methods using the subset of data appropriately 

reflect the conditional survival distribution concept. At first, we conduct simulations on one-

sample problems using a piecewise exponential distribution with survivor function

S t =
exp – λ1 t if 0 ≤ t < 2

exp – λ2 t − 2 λ1 − λ2 if t ≥ 2

This distribution has a hazard function of λ1 for 0 ≤ t ≤ 2 and λ2 for t ≥ 2. By choosing λ1 = 

0.3466 and λ2 = λ1/2, the median survival for the whole patients is 2 years at the baseline, 

while that for those who have survived the first t0 = 2 years is 4 years starting from the 2-

year time point. Survival times are generated from S(t) and censoring times from U(0,a), 

where a is chosen for 30% of censoring rate. With a fixed at this value, we consider 

censoring distribution U(b, a + b) with b chosen for 15% of censoring. We generate 10,000 
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simulation samples of size n = 200. From each sample, we estimate S(t|t0) and its 95% 

confidence interval by the delta-method and Fieller’s method for t0 = 1, 2, 3, and 4, and t = 

1, 2,…, 5 – t0.

Table 1 reports mean bias and the sample standard deviation over the simulation samples 

(SSD) of the estimator, S t t0 , and empirical coverage probabilities of the two confidence 

interval methods. Table 1 also reports the mean of the standard deviation (MSD) of S t t0
estimated by the delta method over the simulation samples. We observe that the estimated 

conditional probabilities have very small bias and the bias tends to increase in censoring 

proportion. As expected, SSD and MSD tend to increase in censoring proportion. They are 

very close for each simulation setting, but MSD is slightly smaller than SSD. This may 

result in slightly anti-conservative empirical coverage probability of the confidence intervals 

by the delta method. As t0 and t increase, the number of subjects at risk decreases and the 

bias tends to be negative. The two confidence interval methods have empirical coverage 

probabilities close to the nominal 95% overall, but Fieller’s method always have slightly 

larger average length and more accurate coverage probability than the delta method. It is 

known that Fieller’s method usually provides better large sample approximation for a ratio 

of parameters than the delta method, e.g. Herson (1975). For each method, the average 

length increases in censoring proportion.

Now, we investigate the finite sample properties of the two-sample log-rank test on 

conditional distributions. Suppose that arm 1 has an exponential distribution with Si (t) = 

exp(–λ1t) for t ≥ 0, and arm 2 has a piecewise exponential distribution with survivor 

function

S2 t =
exp – λ2 t if 0 ≤ t < 2

exp – λ1 t − 2 λ2 − λ1 if t ≥ 2

Note that, if λ1 ≠ λ2, then the two arms have different survival distributions, but with t0 ≥ 2, 

their conditional distributions are identical with Sk(t|t0) = exp(–λ1t) and λk(t|t0) = λk(t + t0) 

= λ1 for t ≥ 0. So, the log-rank test will have some power for t0 < 2, but not for t0 ≥ 2. We set 

λ1 = 0.3466, λ2 = λ1/2, and n1 = n2 = 100, 150 or 200. We consider 15% and 30% 

censoring by uniform censoring variables as in the previous simulations. We generate 10,000 

samples, apply the 2-sample log-rank test with 2-sided α = 0.05 for t0 = 0,1, 2, 3, 4 to each 

sample, and estimate the empirical power as the proportion of samples that the log-rank test 

rejects the null hypothesis that two arms have the same conditional survival distributions. 

Note that the test with t0 = 0 corresponds to the standard log-rank test to compare two 

unconditional distributions.

Table 2 reports the empirical power of the log-rank tests. As expected, the empirical power 

of the conditional log-rank test is close to the nominal level α = 0.05 with t0 ≥ 2, for which 

two conditional distributions are identical. However, with t0 = 0 and 1, it has some power, 

and the power becomes higher with a smaller t0(= 0) since the time interval over which the 

two conditional distributions are different is wider in this case. The empirical power for t0 = 
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0 and 1 also increases in n(= n1 + n2), while that for t0 ≥ 2 is close to the nominal α = 5% 

regardless of the sample size. We observe that the power with t0 < 2 does not much depend 

on the censoring proportion under the simulation setting.

We consider two regression models for simulations on Cox regression analysis of 

conditional survival distributions. In Model 1, given covariate value zi, the hazard function is 

given as

λi t =
λ0 exp βzi if 0 ≤ t < 2

λ0 if t ≥ 2

Since the hazard function for t ≥ 2 does not depend on zi, the conditional Cox regression 

with t0 > 2 will be free of the covariate. The cumulative hazard function is given as

Λi t =
λ0 t exp βzi if 0 ≤ t < 2

2λ0 exp βzi + λ0 t − 2 if t ≥ 2

and the survivor function is given as

Si t = e
−Λi t

=
exp − λ0 t exp βzi if 0 ≤ t < 2

exp − 2λ0 exp βzi − λ0 t − 2 if t ≥ 2

For a U(0,1) random variable Ui, we generate Ti by solving Si(Ti) = Ui. We set β= 0.3 and 

λ0 = 0.3 for Model 1.

In Model 2, we consider a piecewise exponential distribution with a time-dependent 

covariate effect: for patient i with covariate value zi, λi(0) = 0,

λi t = λ0 exp β/ jzi if j − 1 < t ≤ j

for j = 1, 2,.… For this model, the covariate effect β/j decreases in t. The cumulative hazard 

function given zi is,

Λi t = λ0 ∑
j = 1

k
exp β/ jzi − k − t λ0 exp β/kzi if k − 1 < t ≤ k .

Since ⋀i(t) = – log Si(t) and Si(Ti) ~ U(0,1) for Ti with cumulative survivor function Si(t), 
we generate Ti by solving equation ⋀i(Ti) = – log Ui for Ui ~ U(0,1), i.e.

Ti = k −
λ0 ∑ j = 1

k exp β/ jzi + logUi
λ0 exp β/kzi

if λ0 ∑
j = 1

k − 1
exp β/ jzi < − logUi ≤ λ0 ∑

j = 1

k
exp β/ jzi .
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We set λ0 = 0.3 and β = 0.4 for Model 2.

For each of the survival models, we generate 10,000 simulation samples of size n = 500 and 

generate 15% and 30% censoring from uniform distributions U(b, a + b) as in the previous 

simulations. For each subject, covariate zi is generated from the standard normal 

distribution. From each sample, conditioning on (Ti ≥ t0) with t0 = 0, 1, 2, 3, or 4, we fit a 

proportional hazards model with a time-independent regression coefficient, estimate the 

regression coefficient, and test on H0 : β= 0 with 2-sided α = 0.05.

Table 3 report the mean regression estimate and empirical power under the two models. For 

Model 1, with t0 ≥ 2, the mean regression estimate is close to 0 and the empirical power is 

close to the nominal 0.05 level as expected. But, for t0 < 2, the regression estimate is smaller 

than β= 0.3 since the covariate effect is diluted over the time interval t ≥ 2 which has no 

covariate effect. The regression estimate is smaller with t0 = 1 than with t0 = 0 since the 

former case has a narrower time interval with non-zero regression coefficient. With 30% of 

censoring, the regression estimate is larger since the additional censoring over 15% 

censoring occurs over t ≥ 2 (b = 2.2 for Model 1) for which the covariate has no effect. For 

Model 2, we observe that the regression estimate decays in t0. And the decaying trend is 

more prominent with 30% censoring since the additional censoring occurs after b = 2.1 

where the covariate effect is smaller than that over the earlier time interval. The empirical 

power quickly decreases in t0 since both the mean covariate effect and the number of 

observations used in analysis decrease. However, the decrease of power in censoring 

proportion is smaller since the additional censoring occurs over the time interval with 

smaller covariate effect.

3.2 Real Data Analysis

Kim et al. (2016) report analysis results of a retrospective record study on 723 lung adeno‐

carcinoma patients. All the patients underwent complete resection and mediastinal lymph 

node dissection with or without postsurgical adjuvant therapy. From each patient, overall 

survival (OS), time to death of any cause from surgery for tumor resection, and progression-

free survival (PFS), time to tumor progression, were observed as outcomes together with risk 

factors including ECOG performance score (PS), with or without adjuvant chemotherapy 

(adj), tumor-shadow disappearance ratio (TDR) on CT value, and maximum standardized 

uptake value (SUV) on 18F-uoro-2-deoxyglucose (FDG)-PET/CT. SUV is log-transformed 

to lower the effect of outliers. The objectives of the study is to associate OS and PFS with 

the latter four clinical and image predictors using conditional survival analysis. We report 

the analysis results on OS to illustrate the conditional survival analysis methods. At first, 

patients are partitioned into two groups by PS = 0 and PS ≥ 1. Figure 1 displays the 

conditional survivor functions of the two PS groups and conditional log-rank p-value for t0 

= 0,1,…, 6. We observe that the effect of PS decays as time passes from surgery and 

becomes insignificant for patients who have survived for t0 = 4 years or longer. For each t0 

value, we regress the conditional survival at t0 = 0, 1, …, 6 on these four covariates using a 

multivariate proportional hazards model. Figure 2 displays the regression estimate of each 

covariate and its 95% confidence interval against t0. The covariate effect diminishes for 

longer survivors except history of adjuvant therapy which has a strong and consistent 
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negative effect on OS. A high log-SUV tends to be associated with shorter OS, but it is not 

so significant for the t0 values considered. Poor PS is significantly associated with poor OS 

until t0 = 2 years and its effect becomes weak after t0 = 4 years. High TDR is associated with 

longer until about t0 = 4 years, but its effect diminishes among survivors over t0 = 5 years.

4 Conclusions

Conditional survival analysis has been popularly used to investigate the long term effect of 

treatment and baseline characteristics on the prognosis in clinical researches. As a reviewer 

points out, this analysis provides some new insight on the difference and effect of non-

proportional hazards, early and late treatment and baseline patient characteristics. One 

meaningful scenario is that an aggressive surgical treatment may have a high early mortality, 

but leads to much higher survival or even cure after the treatment period, while a 

chemotherapy does not have a severe treatment-related mortality, but leads to a moderate 

treatment effect over a long time span. The conditional survival analysis would be 

particularly useful to compare this kind of early and late survival benefit between treatments.

Without any theoretical justification, investigators have applied the standard survival 

analysis methods, such as log-rank test and Cox regression, to the data removing the patients 

whose censoring or event times are shorter than t0 claiming that this results in the survival 

distributions of the survivors over t0. This paper is to theoretically justify this claim. We 

have reviewed inference methods of one-sample, two-sample and regression analysis for 

conditional survival distributions. For a reliable estimation of S(t|t0), we need enough 

number of patients who are at risk at t0 and enough number of patients followed for at least t 
+ t0 unless all patients have events before this time point. Hence, a conditional survival 

analysis will not be available unless the follow-up period is long enough. Since the 

conditional survival analyses among the patients who survived over t0 are identical to the 

standard survival analyses using the data set consisting of patients who are at risk at time t0. 

Hence, we can conduct any conditional survival analysis using existing statistical softwares, 

such as SAS or SPSS, with the standard survival analysis procedures. These methods are 

based on large sample theory. Through simulations, we find that these methods accurately 

reflect the change in risk function over time and have good finite sample properties.

If the marginal survival distribution satisfies a proportional hazards model (PHM) 

assumption with time-fixed covariate effect, then the regression estimates from conditional 

survival analysis will give similar regression estimates for various t0 values. We may be able 

to develop a goodness of fit test for PHM assumption of a marginal survival distribution 

using this concept. Jung and Wieand (1999) propose a goodness of fit test for PHM using a 

similar approach. By plotting the trend of regression estimates of conditional survival 

analysis over t0, we can also model the time trend of covariates with time-varying effect, 

refer to Therneau and Grambsch (2000).
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Figure 1: 
Conditional survivor functions for t0 = 0,1, 2, 3, 4, 5. The p-values are from the conditional 

log-rank test between PS=0 and PS> 0 groups
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Figure 2: 
Regression estimate of each covariate and its 95% confidence interval against t0
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Table 1.

Bias, SSD, and MSD of S t t0 , and average length and empirical coverage probability of 95% confidence 

intervals by Delta and Fieller methods

Delta Method Fieller Method

t0 t Bias SSD MSD ECP Length ECP Length

Under 15% Censoring

1 1 0.0004 0.0308 0.0299 0.9407 0.1096 0.9411 0.1098

2 0.0005 0.0381 0.0379 0.9471 0.1486 0.9476 0.1489

3 0.0001 0.0396 0.0390 0.9465 0.1528 0.9468 0.1530

4 0.0000 0.0379 0.0371 0.9430 0.1453 0.9434 0.1456

2 1 0.0003 0.0386 0.0384 0.9470 0.1505 0.9477 0.1511

2 −0.0001 0.0440 0.0432 0.9442 0.1694 0.9451 0.1701

3 −0.0001 0.0434 0.0425 0.9433 0.1665 0.9435 0.1672

3 1 −0.0004 0.0487 0.0475 0.9387 0.1860 0.9425 0.1879

2 −0.0004 0.0548 0.0536 0.9404 0.2099 0.9433 0.2120

4 1 −0.0002 0.0607 0.0589 0.9350 0.2307 0.9399 0.2352

Under 30% Censoring

1 1 0.0003 0.0308 0.0299 0.9457 0.1170 0.9460 0.1172

2 0.0006 0.0425 0.0416 0.9458 0.1631 0.9462 0.1634

3 0.0000 0.0438 0.0432 0.9427 0.1696 0.9428 0.1699

4 −0.0001 0.0422 0.0415 0.9398 0.1629 0.9402 0.1632

2 1 0.0004 0.0434 0.0425 0.9438 0.1668 0.9451 0.1875

2 −0.0002 0.0488 0.0482 0.9420 0.1891 0.9433 0.1899

3 −0.0002 0.0486 0.0477 0.9398 0.1872 0.9406 0.1881

3 1 −0.0006 0.0542 0.0531 0.9349 0.2085 0.9388 0.2109

2 −0.0007 0.0620 0.0604 0.9376 0.2369 0.9418 0.2397

4 1 −0.0003 0.0686 0.0666 0.9320 0.2614 0.9374 0.2677
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Table 2.

Empirical power of the conditional log-rank tests between S1(t) and S2(t) for t0 = 0,1, 2, 3, 4

n Censoring t0 = 0 1 2 3 4

200 15% 0.5490 0.1971 0.0522 0.0510 0.0558

30% 0.5608 0.1853 0.0476 0.0549 0.0551

300 15% 0.7202 0.2601 0.0508 0.0480 0.0485

30% 0.7324 0.2597 0.0515 0.0509 0.0516

400 15% 0.8451 0.3345 0.0501 0.0535 0.0546

30% 0.8490 0.3206 0.0504 0.0502 0.0505
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Table 3.

Mean regression estimate and empirical power of the conditional regression method

Model 1 Model 2

Censoring t0 Mean Est Power Mean Est Power

15% 0 0.2022 0.8866 0.2610 0.9817

1 0.1327 0.3706 0.1456 0.3912

2 0.0036 0.0522 0.1076 0.1724

3 0.0035 0.0530 0.0862 0.1043

4 0.0026 0.0565 0.0717 0.0768

30% 0 0.2191 0.8824 0.2787 0.9793

1 0.1470 0.3538 0.1514 0.3409

2 0.0021 0.0545 0.1102 0.1475

3 0.0004 0.0560 0.0869 0.0951

4 −0.0033 0.0553 0.0692 0.0741
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