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Abstract

Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies
aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets
of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for
such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from
complex bacterial communities to identify features that distinguish them. We present a statistical method for comparing
clinical metagenomic samples from two treatment populations on the basis of count data (e.g. as obtained through
sequencing) to detect differentially abundant features. Our method, Metastats, employs the false discovery rate to improve
specificity in high-complexity environments, and separately handles sparsely-sampled features using Fisher’s exact test.
Under a variety of simulations, we show that Metastats performs well compared to previously used methods, and
significantly outperforms other methods for features with sparse counts. We demonstrate the utility of our method on
several datasets including a 16S rRNA survey of obese and lean human gut microbiomes, COG functional profiles of infant
and mature gut microbiomes, and bacterial and viral metabolic subsystem data inferred from random sequencing of 85
metagenomes. The application of our method to the obesity dataset reveals differences between obese and lean subjects
not reported in the original study. For the COG and subsystem datasets, we provide the first statistically rigorous assessment
of the differences between these populations. The methods described in this paper are the first to address clinical
metagenomic datasets comprising samples from multiple subjects. Our methods are robust across datasets of varied
complexity and sampling level. While designed for metagenomic applications, our software can also be applied to digital
gene expression studies (e.g. SAGE). A web server implementation of our methods and freely available source code can be
found at http://metastats.cbcb.umd.edu/.
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Introduction

The increasing availability of high-throughput, inexpensive

sequencing technologies has led to the birth of a new scientific

field, metagenomics, encompassing large-scale analyses of micro-

bial communities. Broad sequencing of bacterial populations

allows us a first glimpse at the many microbes that cannot be

analyzed through traditional means (only ,1% of all bacteria can

be isolated and independently cultured with current methods [1]).

Studies of environmental samples initially focused on targeted

sequencing of individual genes, in particular the 16S subunit of

ribosomal RNA [2–5], though more recent studies take advantage

of high-throughput shotgun sequencing methods to assess not only

the taxonomic composition, but also the functional capacity of a

microbial community [6–8].

Several software tools have been developed in recent years for

comparing different environments on the basis of sequence data.

DOTUR [9], Libshuff [10], #-libshuff [11], SONs [12], MEGAN

[13], UniFrac [14], and TreeClimber [15] all focus on different

aspects of such an analysis. DOTUR clusters sequences into

operational taxonomic units (OTUs) and provides estimates of the

diversity of a microbial population thereby providing a coarse

measure for comparing different communities. SONs extends

DOTUR with a statistic for estimating the similarity between two

environments, specifically, the fraction of OTUs shared between

two communities. Libshuff and #-libshuff provide a hypothesis test

(Cramer von Mises statistics) for deciding whether two commu-

nities are different, and TreeClimber and UniFrac frame this

question in a phylogenetic context. Note that these methods aim to

assess whether, rather than how two communities differ. The

latter question is particularly important as we begin to analyze the

contribution of the microbiome to human health. Metagenomic

analysis in clinical trials will require information at individual

taxonomic levels to guide future experiments and treatments. For

example, we would like to identify bacteria whose presence or

absence contributes to human disease and develop antibiotic or

probiotic treatments. This question was first addressed by

Rodriguez-Brito et al. [16], who use bootstrapping to estimate

the p-value associated with differences between the abundance of

biological subsytems. More recently, the software MEGAN of
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Huson et al. [13] provides a graphical interface that allows users to

compare the taxonomic composition of different environments.

Note that MEGAN is the only one among the programs

mentioned above that can be applied to data other than that

obtained from 16S rRNA surveys.

These tools share one common limitation — they are all

designed for comparing exactly two samples — therefore have

limited applicability in a clinical setting where the goal is to

compare two (or more) treatment populations each comprising

multiple samples. In this paper, we describe a rigorous statistical

approach for detecting differentially abundant features (taxa,

pathways, subsystems, etc.) between clinical metagenomic datasets.

This method is applicable to both high-throughput metagenomic

data and to 16S rRNA surveys. Our approach extends statistical

methods originally developed for microarray analysis. Specifically,

we adapt these methods to discrete count data and correct for

sparse counts. Our research was motivated by the increasing focus

of metagenomic projects on clinical applications (e.g. Human

Microbiome Project [17]).

Note that a similar problem has been addressed in the context of

digital gene expression studies (e.g. SAGE [18]). Lu et al. [19]

employ an overdispersed log-linear model and Robinson and

Smyth [20] use a negative binomial distribution in the analysis of

multiple SAGE libraries. Both approaches can be applied to

metagenomic datasets. We compare our tool to these prior

methodologies through comprehensive simulations, and demon-

strate the performance of our approach by analyzing publicly

available datasets, including 16S surveys of human gut microbiota

and random sequencing-based functional surveys of infant and

mature gut microbiomes and microbial and viral metagenomes.

The methods described in this paper have been implemented as a

web server and are also available as free source-code (in R) from

http://metastats.cbcb.umd.edu.

Materials and Methods

Our approach relies on the following assumptions: (i) we are

given data corresponding to two treatment populations (e.g. sick

and healthy human gut communities, or individuals exposed to

different treatments) each consisting of multiple individuals (or

samples); (ii) for each sample we are provided with count data

representing the relative abundance of specific features within each

sample, e.g. number of 16S rRNA clones assigned to a specific

taxon, or number of shotgun reads mapped to a specific biological

pathway or subsystem (see below how such information can be

generated using currently available software packages). Our goal is

to identify individual features in such datasets that distinguish

between the two populations, i.e. features whose abundance in the

two populations is different. Furthermore, we develop a statistical

measure of confidence in the observed differences.

The input to our method can be represented as a Feature

Abundance Matrix whose rows correspond to specific features, and

whose columns correspond to individual metagenomic samples.

The cell in the ith row and jth column is the total number of

observations of feature i in sample j (Figure 1). Every distinct

observation is represented only once in the matrix, i.e. overlapping

features are not allowed (the rows correspond to a partition of the

set of sequences).

Data normalization
To account for different levels of sampling across multiple

individuals, we convert the raw abundance measure to a fraction

representing the relative contribution of each feature to each of the

individuals. This results in a normalized version of the matrix

described above, where the cell in the ith row and the jth column

(which we shall denote fij) is the proportion of taxon i observed in

individual j. We chose this simple normalization procedure

because it provides a natural representation of the count data as

a relative abundance measure, however other normalization

approaches can be used to ensure observed counts are comparable

across samples, and we are currently evaluating several such

approaches.

Analysis of differential abundance
For each feature i, we compare its abundance across the two

treatment populations by computing a two-sample t statistic.

Specifically, we calculate the mean proportion xit, and variance s2
it

of each treatment t from which nt subjects (columns in the matrix)

were sampled:

Figure 1. Format of the feature abundance matrix. Each row
represents a specific taxon, while each column represents a subject or
replicate. The frequency of the ith feature in the jth subject (c(i,j)) is
recorded in the corresponding cell of the matrix. If there are g subjects
in the first population, they are represented by the first g columns of
the matrix, while the remaining columns represent subjects from the
second population.
doi:10.1371/journal.pcbi.1000352.g001

Author Summary

The emerging field of metagenomics aims to understand
the structure and function of microbial communities solely
through DNA analysis. Current metagenomics studies
comparing communities resemble large-scale clinical trials
with multiple subjects from two general populations (e.g.
sick and healthy). To improve analyses of this type of
experimental data, we developed a statistical methodolo-
gy for detecting differentially abundant features between
microbial communities, that is, features that are enriched
or depleted in one population versus another. We show
our methods are applicable to various metagenomic data
ranging from taxonomic information to functional anno-
tations. We also provide an assessment of taxonomic
differences in gut microbiota between lean and obese
humans, as well as differences between the functional
capacities of mature and infant gut microbiomes, and
those of microbial and viral metagenomes. Our methods
are the first to statistically address differential abundance
in comparative metagenomics studies with multiple
subjects, and we hope will give researchers a more
complete picture of how exactly two environments differ.

Differential Abundance in Clinical Metagenomics
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We then compute the two-sample t statistic:
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Features whose t statistics exceeds a specified threshold can be

inferred to be differentially abundant across the two treatments

(two-sided t-test).

Assessing significance
The threshold for the t statistic is chosen such as to minimize the

number of false positives (features incorrectly determined to be

differentially abundant). Specifically, we try to control the p-

value—the likelihood of observing a given t statistic by chance.

Traditional analyses compute the p-value using the t distribution

with an appropriate number of degrees of freedom. However, an

implicit assumption of this procedure is that the underlying

distribution is normal. We do not make this assumption, but rather

estimate the null distribution of ti non-parametrically using a

permutation method as described in Storey and Tibshirani [21].

This procedure, also known as the nonparametric t-test has been

shown to provide accurate estimates of significance when the

underlying distributions are non-normal [22,23]. Specifically, we

randomly permute the treatment labels of the columns of the

abundance matrix and recalculate the t statistics. Note that the

permutation maintains that there are n1 replicates for treatment 1

and n2 replicates for treatment 2. Repeating this procedure for B

trials, we obtain B sets of t statistics: t1
0b, …, tM

0b, b = 1, …, B,

where M is the number of rows in the matrix. For each row

(feature), the p-value associated with the observed t statistic is

calculated as the fraction of permuted tests with a t statistic greater

than or equal to the observed ti:

pi~
# t0b

i

�� ��§ tij j,b~1, . . . ,B
� �

B
:

This approach is inadequate for small sample sizes in which there

are a limited number of possible permutations of all columns. As a

heuristic, if less than 8 subjects are used in either treatment, we

pool all permuted t statistics together into one null distribution and

estimate p-values as:

pi~
1

BM

XB

b~1

# j : t0b
j

��� ���§ tij j, j~1, . . . ,M
n o

:

Note that the choice of 8 for the cutoff is simply heuristic based

on experiments during the implementation of our method. Our

approach is specifically targeted at datasets comprising multiple

subjects — for small data-sets approaches such as that proposed by

Rodriguez-Brito et. al. [16] might be more appropriate.

Unless explicitly stated, all experiments described below used

1000 permutations. In general, the number of permutations

should be chosen as a function of the significance threshold used in

the experiment. Specifically, a permutation test with B permuta-

tions can only estimate p-values as low as 1/B (in our case 1023).

In datasets containing many features, larger numbers of

permutations are necessary to account for multiple hypothesis

testing issues (further corrections for this case are discussed below).

Precision of the p-value calculations is obviously improved by

increasing the number of permutations used to approximate the

null distribution, at a cost, however, of increased computational

time. For certain distributions, small p-values can be efficiently

estimated using a technique called importance sampling. Specif-

ically, the permutation test is targeted to the tail of the distribution

being estimated, leading to a reduction in the number of

permutations necessary of up to 95% [24,25]. We intend to

implement such an approach in future versions of our software.

Multiple hypothesis testing correction
For complex environments (many features/taxa/subsystems),

the direct application of the t statistic as described can lead to large

numbers of false positives. For example, choosing a p-value

threshold of 0.05 would result in 50 false positives in a dataset

comprising 1000 organisms. An intuitive correction involves

decreasing the p-value cutoff proportional to the number of tests

performed (a Bonferroni correction), thereby reducing the number

of false positives. This approach, however, can be too conservative

when a large number of tests are performed [21].

An alternative approach aims to control the false discovery rate

(FDR), which is defined as the proportion of false positives within

the set of predictions [26], in contrast to the false positive rate

defined as the proportion of false positives within the entire set of

tests. In this context, the significance of a test is measured by a q-

value, an individual measure of the FDR for each test.

We compute the q-values using the following algorithm, based

on Storey and Tibshirani [21]. This method assumes that the p-

values of truly null tests are uniformly distributed, assumption that

holds for the methods used in Metastats. Given an ordered list of

p-values, p(1)#p(2)#…#p(m), (where m is the total number of

features), and a range of values l = 0, 0.01, 0.02, …, 0.90, we

compute

p̂p0 lð Þ~
# pjwl
� �

m 1{lð Þ :

Next, we fit p̂p0 lð Þ with a cubic spline with 3 degrees of freedom,

which we denote f̂f , and let p̂p0~f̂f 1ð Þ. Finally, we estimate the q-

value corresponding to each ordered p-value. First,

q̂q p mð Þ
� �

~min p mð Þ|p̂p0, 1
� �

. Then for i = m-1, m-2, …, 1,

q̂q p ið Þ
� �

~min
p̂p0|m|p ið Þ

i
, q̂q p iz1ð Þ
� �� �

:

Thus, the hypothesis test with p-value p ið Þ has a corresponding q-

value of q̂q p ið Þ
� �

. Note that this method yields conservative

estimates of the true q-values, i.e. q̂q p ið Þ
� �

§q p ið Þ
� �

. Our software

provides users with the option to use either p-value or q-value

thresholds, irrespective of the complexity of the data.

Handling sparse counts
For low frequency features, e.g. low abundance taxa, the

nonparametric t–test described above is not accurate [27]. We

performed several simulations (data not shown) to determine the

limitations of the nonparametric t-test for sparsely-sampled

features. Correspondingly, our software only applies the test if

Differential Abundance in Clinical Metagenomics
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the total number of observations of a feature in either population is

greater than the total number of subjects in the population (i.e. the

average across subjects of the number of observations for a given

feature is greater than one). We compare the differential

abundance of sparsely-sampled (rare) features using Fisher’s exact

test. Fisher’s exact test models the sampling process according to a

hypergeometric distribution (sampling without replacement). The

frequencies of sparse features within the abundance matrix are

pooled to create a 262 contingency table (Figure 2), which acts as

input for a two-tailed test. Using the notation from Figure 2, the

null hypergeometric probability of observing a 262 contingency

table is:

p~

R1

f11

� �
R2

f21

� �

n

C1

� � , where

R1~f11zf12,

R1~f21zf22,

C1~f11zf21,

n~f11zf12zf21zf22:

By calculating this probability for a given table, and all tables

more extreme than that observed, one can calculate the exact

probability of obtaining the original table by chance assuming that

the null hypothesis (i.e. no differential abundance) is true [27].

Note that an alternative approach to handling sparse features is

proposed in microarray literature. The Significance Analysis of

Microarrays (SAM) method [28] addresses low levels of expression

using a modified t statistic. We chose to use Fisher’s exact test due

to the discrete nature of our data, and because prior studies

performed in the context of digital gene expression indicate

Fisher’s test to be effective for detection of differential abundance

[29].

Creating the Feature Abundance Matrix
The input to our method, the Feature Abundance Matrix, can

be easily constructed from both 16S rRNA and random shotgun

data using available software packages. Specifically for 16S

taxonomic analysis, tools such as the RDP Bayesian classifier

[30] and Greengenes SimRank [31] output easily-parseable

information regarding the abundance of each taxonomic unit

present in a sample. As a complementary, unsupervised approach,

16S sequences can be clustered with DOTUR [9] into operational

taxonomic units (OTUs). Abundance data can be easily extracted

from the ‘‘*.list’’ file detailing which sequences are members of the

same OTU. Shotgun data can be functionally or taxonomically

classified using MEGAN [13], CARMA [32], or MG-RAST [33].

MEGAN and CARMA are both capable of outputting lists of

sequences assigned to a taxonomy or functional group. MG-RAST

provides similar information for metabolic subsystems that can be

downloaded as a tab-delimited file.

All data-types described above can be easily converted into a

Feature Abundance Matrix suitable as input to our method. In the

future we also plan to provide converters for data generated by

commonly-used analysis tools.

Data used in this paper
Human gut 16S rRNA sequences were prepared as described in

Eckburg et al. and Ley et al. (2006) and are available in GenBank,

accession numbers: DQ793220-DQ802819, DQ803048,

DQ803139-DQ810181, DQ823640-DQ825343, AY974810-

AY986384. In our experiments we assigned all 16S sequences to

taxa using a naı̈ve Bayesian classifier currently employed by the

Ribosomal Database Project II (RDP) [30]. COG profiles of 13

human gut microbiomes were obtained from the supplementary

material of Kurokawa et al. [34]. We acquired metabolic

functional profiles of 85 metagenomes from the online supple-

mentary materials of Dinsdale et al. (2008) (http://www.theseed.

org/DinsdaleSupplementalMaterial/).

Results

Comparison with other statistical methods
As outlined in the introduction, statistical packages developed

for the analysis of SAGE data are also applicable to metagenomic

datasets. In order to validate our method, we first designed

simulations and compared the results of Metastats to Student’s t-

test (with pooled variances) and two methods used for SAGE data:

a log-linear model (Log-t) by Lu et al. [19], and a negative binomial

(NB) model developed by Robinson and Smyth [20].

We designed a metagenomic simulation study in which ten

subjects are drawn from two groups - the sampling depth of each

subject was determined by random sampling from a uniform

distribution between 200 and 1000 (these depths are reasonable

for metagenomic studies). Given a population mean proportion p

and a dispersion value w, we sample sequences from a beta-

binomial distribution B(a,b), where a = p(1/w21) and b = (12p)(1/

w21). Note that data from this sampling procedure fits the

assumptions for Lu et al. as well as Robinson and Smyth and

therefore we expect them to do well under these conditions. Lu et

al. designed a similar study for SAGE data, however, for each

simulation, a fixed dispersion was used for both populations and

the dispersion estimates were remarkably small (w = 0, 8e-06, 2e-

05, 4.3e-05). Though these values may be reasonable for SAGE

data, we found that they do not accurately model metagenomic

data. Figure 3 displays estimated dispersions within each

population for all features of the metagenomic datasets examined

below. Dispersion estimates range from 1e-07 to 0.17, and rarely

do the two populations share a common dispersion. Thus we

designed our simulation so that w is chosen for each population

randomly from a uniform distribution between 1e-08 and 0.05,

allowing for potential significant differences between population

distributions. For each set of parameters, we simulated 1000

feature counts, 500 of which are generated under p1 = p2, the

remainder are differentially abundant where a*p1 = p2, and

compared the performance of each method using receiver-

operating-characteristic (ROC) curves. Figure 4 displays the

ROC results for a range of values for p and a. For each set of

Figure 2. Detecting differential abundance for sparse features.
A 262 contingency table is used in Fisher’s exact test for differential
abundance between rare features. f11 is the number of observations of
feature i in all individuals from treatment 1. f21 is the number of
observations that are not feature i in all individuals from treatment 1. f12

and f22 are similarly defined for treatment 2.
doi:10.1371/journal.pcbi.1000352.g002
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parameters, Metastats was run using 5000 permutations to

compute p-values. Metastats performs as well as other methods,

and in some cases is preferable. We also found that in most cases

our method was more sensitive than the negative binomial model,

which performed poorly for high abundance features.

Our next simulation sought to examine the accuracy of each

method under extreme sparse sampling. As shown in the datasets

below, it is often the case that a feature may not have any

observations in one population, and so it is essential to employ a

statistical method that can address this frequent characteristic of

metagenomic data. Under the same assumptions as the simulation

above, we tested a = 0 and 0.01, thereby significantly reducing

observations of a feature in one of the populations. The ROC

curves presented in Figure 5 reveal that Metastats outperforms

other statistical methods in the face of extreme sparseness. Holding

the false positive rate (x-axis) constant, Metastats shows increased

sensitivity over all other methods. The poor performance of Log-t

is noteworthy given it is designed for SAGE data that is also

potentially sparse. Further investigation revealed that the Log-t

method results in a highly inflated dispersion value if there are no

observations in one population, thereby reducing the estimated

significance of the test.

Finally, we selected a subset of the Dinsdale et al. [6]

metagenomic subsystem data (described below), and randomly

assigned each subject to one of two populations (20 subjects per

population). All subjects were actually from the same population

(microbial metagenomes), thus the null hypothesis is true for each

feature tested (no feature is differentially abundant). We ran each

methodology on this data, recording computed p-values for each

feature. Repeating this procedure 200 times, we simulated tests of

5200 null features. Table 1 displays the number of false positives

incurred by each methodology given different p-value thresholds.

The results indicate that the negative binomial model results in an

exceptionally high number of false positives relative to the other

methodologies. Student’s t-test and Metastats perform equally well

in estimating the significance of these null features, while Log-t

performs slightly better.

These studies show that Metastats consistently performs as well

as all other applicable methodologies for deeply-sampled features,

and outperforms these methodologies on sparse data. Below we

further evaluate the performance of Metastats on several real

metagenomic datasets.

Taxa associated with human obesity
In a recent study, Ley et al. [35] identified gut microbes

associated with obesity in humans and concluded that obesity has

a microbial element, specifically that Firmicutes and Bacteroidetes

are bacterial divisions differentially abundant between lean and

obese humans. Obese subjects had a significantly higher relative

abundance of Firmicutes and a lower relative abundance of

Bacteriodetes than the lean subjects. Furthermore, obese subjects

were placed on a calorie-restricted diet for one year, after which

the subjects’ gut microbiota more closely resembled that of the

lean individuals.

We obtained the 20,609 16S rRNA genes sequenced in Ley et al.

and assigned them to taxa at different levels of resolution (note that

2,261 of the 16S sequences came from a previous study [36]). We

initially sought to re-establish the primary result from this paper

using our methodology. Table 2 illustrates that our method agreed

with the results of the original study: Firmicutes are significantly

more abundant in obese subjects (P = 0.003) and Bacteroidetes are

significantly more abundant in the lean population (P,0.001).

Furthermore, our method also detected Actinobacteria to be

differentially abundant, a result not reported by the original study.

Approximately 5% of the sample was composed of Actinobacteria

in obese subjects and was significantly less frequent in lean subjects

(P = 0.004). Collinsella and Eggerthella were the most prevalent

Actinobacterial genera observed, both of which were overabun-

dant in obese subjects. These organisms are known to ferment

sugars into various fatty acids [37], further strengthening a possible

connection to obesity. Note that the original study used Students t-

test, leading to a p-value for the observed difference within

Actinobacteria of 0.037, 9 times larger than our calculation. This

Figure 3. Dispersion estimates (w) for three metagenomic
datasets used in this study. These plots compare dispersion values
between (A) obese and lean human gut taxonomic data, (B) infant and
mature human gut COG assignments, and (C) microbial and viral
subsystem annotations. We find a wide range of possible dispersions in
this data and significant differences in dispersions between two
populations.
doi:10.1371/journal.pcbi.1000352.g003
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highlights the sensitivity of our method and explains why this

difference was not originally detected.

To explore whether we could refine the broad conclusions of the

initial study, we re-analyzed the data at more detailed taxonomic

levels. We identified three classes of organisms that were

differentially abundant: Clostridia (P = 0.005), Bacteroidetes

(P,0.001), and Actinobacteria (P = 0.003). These three were the

dominant members of the corresponding phyla (Firmicutes,

Bacteroides, Actinobacteria, respectively) and followed the same

distribution as observed at a coarser level. Metastats also detected

nine differentially abundant genera accounting for more than 25%

of the 16S sequences sampled in both populations (P#0.01).

Syntrophococcus, Ruminococcus, and Collinsella were all enriched in

obese subjects, while Bacteroides on average were eight times more

abundant in lean subjects.

For taxa with several observations in each subject, we found

good concordance between our results (p-value estimates) and

those obtained with most of the other methods (Table 2).

Surprisingly, we found that the negative binomial model of

Robinson and Smyth failed to detect several strongly differentially

abundant features in these datasets (e.g the hypothesis test for

Firmicutes results in a p-value of 0.87). This may be due in part to

difficulties in estimating the parameters of their model for our

datasets and further strengthens the case for the design of methods

specifically tuned to the characteristics of metagenomic data. For

cases where a particular taxon had no observations in one

population (e.g. Terasakiella), the methods proposed for SAGE data

seem to perform poorly.

Differentially abundant COGs between mature and infant
human gut microbiomes

Targeted sequencing of the 16S rRNA can only provide an

overview of the diversity within a microbial community but cannot

provide any information about the functional roles of members of

this community. Random shotgun sequencing of environments

can provide a glimpse at the functional complexity encoded in the

Figure 5. ROC curves comparing statistical methods in a simulation study for extreme sparse sampling. Sequences were selected from
a beta-binomial distribution with variable dispersions and group mean proportions p1 and p2. For each set of parameters, we simulated 1000 trials,
500 of which are generated under the null hypothesis (p1 = p2), and the remainder are differentially abundant where a*p1 = p2. For example, p = 0.2
and a = 2 indicates features comprising 20% of the population that differ two-fold in abundance between two populations of interest. Parameter
values for p1 and a are shown above each plot.
doi:10.1371/journal.pcbi.1000352.g005

Figure 4. ROC curves comparing statistical methods in a simulation study. Sequences were selected from a beta-binomial distribution with
variable dispersions and group mean proportions p1 and p2. For each set of parameters, we simulated 1000 trials, 500 of which are generated under
the null hypothesis (p1 = p2), and the remainder are differentially abundant where a*p1 = p2. For example, p = 0.2 and a = 2 indicates features
comprising 20% of the population that differ two-fold in abundance between two populations of interest. Parameter values for p1 and a are shown
above each plot.
doi:10.1371/journal.pcbi.1000352.g004
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genes of organisms within the environment. One method for

defining the functional capacity of an environment is to map

shotgun sequences to homologous sequences with known function.

This strategy was used by Kurokawa et al. [34] to identify clusters

of orthologous groups (COGs) in the gut microbiomes of 13

individuals, including four unweaned infants. We examined the

COGs determined by this study across all subjects and used

Metastats to discover differentially abundant COGs between

infants and mature (.1 year old) gut microbiomes. This is the first

direct comparison of these two populations as the original study

only compared each population to a reference database to find

enriched gene sets. Due to the high number of features (3868

COGs) tested for this dataset and the limited number of infant

subjects available, our method used the pooling option to compute

p-values (we chose 100 permutations), and subsequently computed

q-values for each feature. Using a threshold of Q#0.05

(controlling the false discovery rate to 5%), we detected 192

COGs that were differentially abundant between these two

populations (see Table 3 for a lisitng of the most abundant COGs

in both mature and infant microbiomes. Full results are presented

as supplementary material in Table S1).

The most abundant enriched COGs in mature subjects included

signal transduction histidine kinase (COG0642), outer membrane

receptor proteins, such as Fe transport (COG1629), and Beta-

galactosidase/beta-glucuronidase (COG3250). These COGs were

also quite abundant in infants, but depleted relative to mature

subjects. Infants maintained enriched COGs related to sugar

transport systems (COG1129) and transcriptional regulation

(COG1475). This over-abundance of sugar transport functions was

also found in the original study, strengthening the hypothesis that the

unweaned infant gut microbiome is specifically designed for the

digestion of simple sugars found in breast milk. Similarly, the

depletion of Fe transport proteins in infants may be associated with

the low concentration of iron in breast milk relative to cow’s milk

[38]. Despite this low concentration, infant absorption of iron from

breast milk is remarkably high, and becomes poorer when infants are

weaned, indicating an alternative mechanism for uptake of this

mineral. The potential for a different mechanism is supported by the

detection of a Ferredoxin-like protein (COG2440) that was 11 times

more abundant in infants than in mature subjects, while Ferredoxin

(COG1145) was significantly enriched in mature subjects.

Table 2. Differentially abundant taxa between lean and obese human gut microflora.

Taxon Obese abundance(%) Lean abundance(%) Metastats p-value Student-t p-value Log-t p-value NB p-value

Phyla

Bacteroidetes 2.90261.067 25.65264.576 0.0002 0.0000 0.0004 0.0000

Firmicutes 89.31862.223 72.83364.812 0.0028 0.0025 0.0030 0.8701

Actinobacteria 4.49061.345 0.44760.179 0.0037 0.0371 0.0004 0.0773

Classes

Bacteroidetes (class) 2.72261.065 25.65264.576 0.0001 0.0000 0.0005 0.0001

Actinobacteria (class) 4.49061.345 0.44760.179 0.0024 0.0371 0.0004 0.1858

Clostridia 84.63362.388 66.90765.799 0.0036 0.0042 0.0052 0.9797

Genera

Syntrophococcus 2.38060.383 0.66660.337 0.0014 0.0077 0.0067 0.4860

Terasakiella 0.00060 0.11560.115 0.0016 0.1986 0.9963 0.0166

Ruminococcus 26.27664.454 10.70762.094 0.0023 0.0207 0.0039 0.6639

Marinilabilia 0.01060.010 0.13860.138 0.0024 0.2353 0.0467 0.0011

Collinsella 3.56561.187 0.15460.154 0.0052 0.0451 0.0046 0.6545

Bacteroides 1.84160.963 14.62364.444 0.0056 0.0023 0.0105 0.0012

Paludibacter 0.00060 0.09360.069 0.0059 0.0896 0.9963 0.0000

Bryantella 0.46160.051 0.15160.102 0.0065 0.0072 0.0304 0.0487

Desulfovibrio 0.03160.031 0.14560.145 0.0073 0.3390 0.2315 0.0156

For the phylum, class, and genus levels (mean percentage6s.e., p-value#0.01) we successfully re-established the major result of Ley et al., and uncovered a new
difference within Actinobacteria. Both Firmicutes and Actinobacteria have significantly higher relative abundances in obese people, while Bacteroidetes make up a
higher proportion of the gut microbiota in the lean population. Results reveal Clostridia as the primary component of the differential abundance observed within
Firmicutes, and Bacteroidetes and Actinobacteria classes explain the differential abundance observed within the corresponding phyla. Using this p-value threshold, we
expect less than one false positive among these results. The last four columns display the computed p-values for different statistical methods, including Metastats and
the overdispersion methods of Lu et al. (Log-t) and Robinson and Smyth (NB). These results reveal NB and Student’s t-test to be overly-conservative.
doi:10.1371/journal.pcbi.1000352.t002

Table 1. Comparison of false positives found by different
methodologies. Using real metagenomic data, we simulated
features with no differential abundance by randomly dividing
subjects from a single population into two subpopulations.

P# Number of False Positives

Metastats Student-t Log-t NB

0.001 7 4 4 109

0.005 25 25 24 121

0.01 51 52 43 133

We found that for a stringent p-value threshold of 0.001, the negative binomial
model (NB) resulted in a false positive rate 20 times higher than the other
methodologies. The Log-t of Lu et al. resulted in the lowest false positive rate
among the methods tested while Student’s test and Metastats performed
equally well.
doi:10.1371/journal.pcbi.1000352.t001
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Differentially abundant metabolic subsystems in
microbial and viral metagenomes

A recent study by Dinsdale et al. profiled 87 different

metagenomic shotgun samples (,15 million sequences) using

the SEED platform (http://www.theseed.org) [6] to see if

biogeochemical conditions correlate with metagenome charac-

teristics. We obtained functional profiles from 45 microbial and

40 viral metagenomes analyzed in this study. Within the 26

Table 3. COGs determined to be differentially abundant between infant and mature human gut microbiomes using a q-value
threshold of 0.05.

COG id Description Mature Infant
Metastat q-
value

Mean
abundance (%) stderr

Mean
abundance (%) stderr

COG0205 6-phosphofructokinase 0.0017 0.0001 0.0006 0.0002 0.0313

COG0358 DNA primase (bacterial type) 0.0024 0.0001 0.0008 0.0001 0.0072

COG0507 ATP-dependent exoDNAse (exonuclease V), alpha subunit - helicase
superfamily I member

0.0016 0.0001 0.0008 0.0001 0.0349

COG0526 Thiol-disulfide isomerase and thioredoxins 0.0028 0.0002 0.0014 0.0002 0.0371

COG0621 2-methylthioadenine synthetase 0.0017 0.0001 0.0008 0.0002 0.0450

COG0642 Signal transduction histidine kinase 0.0132 0.0009 0.0070 0.0004 0.0270

COG0667 Predicted oxidoreductases (related to aryl-alcohol dehydrogenases) 0.0012 0.0001 0.0021 0.0001 0.0282

COG0739 Membrane proteins related to metalloendopeptidases 0.0024 0.0001 0.0006 0.0001 0.0072

COG0745 Response regulators consisting of a CheY-like receiver domain and
a winged-helix DNA-binding domain

0.0076 0.0003 0.0051 0.0004 0.0352

COG0747 ABC-type dipeptide transport system, periplasmic component 0.0011 0.0001 0.0027 0.0003 0.0352

COG1113 Gamma-aminobutyrate permease and related permeases 0.0002 0.0001 0.0018 0.0003 0.0349

COG1129 ABC-type sugar transport system, ATPase component 0.0013 0.0001 0.0028 0.0003 0.0492

COG1145 Ferredoxin 0.0017 0.0001 0.0005 0.0002 0.0217

COG1196 Chromosome segregation ATPases 0.0017 0.0001 0.0007 0.0001 0.0108

COG1249 Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide
dehydrogenase (E3) component, and related enzymes

0.0006 0.0001 0.0011 0.0001 0.0349

COG1263 Phosphotransferase system IIC components, glucose/maltose/N-
acetylglucosamine-specific

0.0012 0.0001 0.0031 0.0003 0.0313

COG1475 Predicted transcriptional regulators 0.0025 0.0002 0.0014 0.0002 0.0435

COG1595 DNA-directed RNA polymerase specialized sigma subunit, sigma24 homolog 0.0053 0.0004 0.0013 0.0003 0.0206

COG1609 Transcriptional regulators 0.0030 0.0002 0.0092 0.0013 0.0424

COG1629 Outer membrane receptor proteins, mostly Fe transport 0.0120 0.0016 0.0013 0.0007 0.0313

COG1762 Phosphotransferase system mannitol/fructose-specific IIA domain (Ntr-type) 0.0004 0.0001 0.0017 0.0002 0.0293

COG1961 Site-specific recombinases, DNA invertase Pin homologs 0.0059 0.0004 0.0018 0.0006 0.0345

COG2204 Response regulator containing CheY-like receiver, AAA-type ATPase, and
DNA-binding domains

0.0019 0.0002 0.0005 0.0002 0.0421

COG2244 Membrane protein involved in the export of O-antigen and teichoic acid 0.0019 0.0001 0.0009 0.0001 0.0229

COG2376 Dihydroxyacetone kinase 0.0002 0 0.0009 0.0001 0.0278

COG2440 Ferredoxin-like protein 0 0 0.0002 0 0.0394

COG2893 Phosphotransferase system, mannose/fructose-specific component IIA 0.0003 0.0001 0.0011 0.0001 0.0352

COG3250 Beta-galactosidase/beta-glucuronidase 0.0056 0.0004 0.0023 0.0006 0.0435

COG3451 Type IV secretory pathway, VirB4 components 0.0033 0.0001 0.0009 0.0003 0.0157

COG3505 Type IV secretory pathway, VirD4 components 0.0029 0.0001 0.0010 0.0003 0.0278

COG3525 N-acetyl-beta-hexosaminidase 0.0016 0.0002 0.0004 0.0001 0.0352

COG3537 Putative alpha-1,2-mannosidase 0.0020 0.0003 0.0002 0.0002 0.0352

COG3711 Transcriptional antiterminator 0.0004 0.0001 0.0020 0.0003 0.0339

COG3712 Fe2+-dicitrate sensor, membrane component 0.0023 0.0003 0 0 0.0280

COG4206 Outer membrane cobalamin receptor protein 0.0021 0.0003 0.0003 0.0001 0.0313

COG4771 Outer membrane receptor for ferrienterochelin and colicins 0.0039 0.0005 0.0006 0.0003 0.0366

Using this threshold we expect less than 10 false positives in this data-set. The table presents the 25 most abundant COGs from the mature and infant microbiomes,
sorted by their abundance level in the mature population. Full results are available as supplementary material.
doi:10.1371/journal.pcbi.1000352.t003
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subsystems (abstract functional roles) analyzed in the Dinsdale et

al. study, we found 13 to be significantly different (P#0.05)

between the microbial and viral samples (Table 4). Subsystems

for RNA and DNA metabolism were significantly more

abundant in viral metagenomes, while nitrogen metabolism,

membrane transport, and carbohydrates were all enriched in

microbial communities. The high levels of RNA and DNA

metabolism in viral metagenomes illustrate their need for a self-

sufficient source of nucleotides. Though the differences described

by the original study did not include estimates of significance,

our results largely agreed with the authors’ qualitative conclu-

sions. However, due to the continuously updated annotations in

the SEED database since the initial publication, we found several

differences between our results and those originally reported. In

particular we found virulence subsystems to be less abundant

overall than previously reported, and could not find any

significant differences in their abundance between the microbial

and viral metagenomes.

Discussion

We have presented a statistical method for handling frequency

data to detect differentially abundant features between two

populations. This method can be applied to the analysis of any

count data generated through molecular methods, including

random shotgun sequencing of environmental samples, targeted

sequencing of specific genes in a metagenomic sample, digital gene

expression surveys (e.g. SAGE [29]), or even whole-genome

shotgun data (e.g. comparing the depth of sequencing coverage

across assembled genes). Comparisons on both simulated and real

dataset indicate that the performance of our software is

comparable to other statistical approaches when applied to well-

sampled datasets, and outperforms these methods on sparse data.

Our method can also be generalized to experiments with more than

two populations by substituting the t-test with a one-way ANOVA

test. Furthermore, if only a single sample from each treatment is

available, a chi-squared test can be used instead of the t-test. [27].

In the coming years metagenomic studies will increasingly be

applied in a clinical setting, requiring new algorithms and software

tools to be developed that can exploit data from hundreds to

thousands of patients. The methods described above represent an

initial step in this direction by providing a robust and rigorous

statistical method for identifying organisms and other features

whose differential abundance correlates with disease. These

methods, associated source code, and a web interface to our tools

are freely available at http://metastats.cbcb.umd.edu.

Supporting Information

Table S1 Comparison of COG composition between mature

and infant microbiomes. The relative abundance of each COG is

presented together with significance values (likelihood that

difference in abundance is due to chance alone)computed using

several statistical procedure: metastats (p and q values), student’s t-

test, log linear model, and negative binomial model.

Found at: doi:10.1371/journal.pcbi.1000352.s001 (0.95 MB XLS)
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