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Abstract

Meta-analysis has become a widely-used tool to combine findings from independent

studies in various research areas. This thesis deals with several important statisti-

cal issues in systematic reviews and meta-analyses, such as assessing heterogeneity in

the presence of outliers, quantifying publication bias, and simultaneously synthesizing

multiple treatments and factors. The first part of this thesis focuses on univariate

meta-analysis. We propose alternative measures to robustly describe between-study

heterogeneity, which are shown to be less affected by outliers compared with traditional

measures. Publication bias is another issue that can seriously affect the validity and

generalizability of meta-analysis conclusions. We present the first work to empirically

evaluate the performance of seven commonly-used publication bias tests based on a

large collection of actual meta-analyses in the Cochrane Library. Our findings may

guide researchers in properly assessing publication bias and interpreting test results for

future systematic reviews. Moreover, instead of just testing for publication bias, we

further consider quantifying it and propose an intuitive publication bias measure, called

the skewness of standardized deviates, which effectively describes the asymmetry of the

collected studies’ results. The measure’s theoretical properties are studied, and we show

that it can also serve as a powerful test statistic.

The second part of this thesis introduces novel ideas in multivariate meta-analysis.

In medical sciences, a disease condition is typically associated with multiple risk and

protective factors. Although many studies report results of multiple factors, nearly

all meta-analyses separately synthesize the association between each factor and the

disease condition of interest. We propose a new concept, multivariate meta-analysis

of multiple factors, to synthesize all available factors simultaneously using a Bayesian

hierarchical model. By borrowing information across factors, the multivariate method

can improve statistical efficiency and reduce biases compared with separate analyses. In

addition to synthesizing multiple factors, network meta-analysis has recently attracted

much attention in evidence-based medicine because it simultaneously combines both

direct and indirect evidence to compare multiple treatments and thus facilitates better

decision making. First, we empirically compare two network meta-analysis models,
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contrast- and arm-based, with respect to their sensitivity to treatment exclusions. The

arm-based method is shown to be more robust to such exclusions, mostly because it

can use single-arm studies while the contrast-based method cannot. Then, focusing on

the currently popular contrast-based method, we theoretically explore the key factors

that make network meta-analysis outperform traditional pairwise meta-analyses. We

prove that evidence cycles in the treatment network play critical roles in network meta-

analysis. Specifically, network meta-analysis produces posterior distributions identical

to separate pairwise meta-analyses for all treatment comparisons when a treatment

network does not contain cycles. This equivalence is illustrated using simulations and

a case study.
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Chapter 1

Introduction

Systematic reviews and meta-analyses have been frequently used to synthesize findings

from multiple independent studies in many areas, including but not limited to evidence-

based medicine and health care [1–5]. On an Internet Web search, the term ‘meta-

analysis’ had 112,071 hits in PubMed dated on September 1, 2016, with 62,279 hits

within last five years. This thesis deals with several important problems in meta-

analysis: assessing heterogeneity (Chapter 2) and publication bias (Chapters 3 and 4),

synthesizing multiple risk/protective factors (Chapter 5), and simultaneously comparing

multiple treatments (Chapters 6 and 7).

The collected studies in a meta-analysis are called homogeneous if they share a

common underlying true effect size; otherwise, they are called heterogeneous. A fixed-

effect model is customarily used for studies deemed to be homogeneous, while a random-

effects model is used for heterogeneous studies [6, 7]. Assessing heterogeneity is thus a

critical issue in meta-analysis because different models may lead to different estimates

of overall effect size and different standard errors. Also, the perception of heterogeneity

or homogeneity helps clinicians make important decisions, such as whether the collected

studies are similar enough to integrate their results and whether a treatment is applicable

to all patients [8].

The classical statistic for testing between-study heterogeneity is Cochran’s χ2 test

[9], also known as the Q test [10]. However, this test suffers from poor power when the

number of collected studies is small, and it may detect clinically unimportant hetero-

geneity when many studies are pooled [11, 12]. More importantly, since the Q statistic

1
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and estimators of between-study variance depend on either the number of collected

studies or the scale of effect sizes, they cannot be used to compare degrees of het-

erogeneity between different meta-analyses. Accordingly, Higgins and Thompson [13]

proposed several measures to better describe heterogeneity. Among these, I2 measures

the proportion of total variation between studies that is due to heterogeneity rather than

within-study sampling error, and it has been popular in the meta-analysis literature.

Higgins and Thompson [3] empirically provided a rough guide to interpretation of I2:

0 ≤ I2 ≤ 0.4 indicates that heterogeneity might not be important; 0.3 ≤ I2 ≤ 0.6 may

represent moderate heterogeneity; 0.5 ≤ I2 ≤ 0.9 may represent substantial heterogene-

ity; and 0.75 ≤ I2 ≤ 1 implies considerable heterogeneity. These ranges overlap because

the importance of heterogeneity depends on several factors and strict thresholds can be

misleading [3].

Ideally, if heterogeneity is present in a meta-analysis, it should permeate the entire

collection of studies instead of being limited to a small number of outlying studies. With

this in mind, we may classify meta-analyses into four groups: (i) all collected studies are

homogeneous; (ii) a few studies are outlying and the rest are homogeneous; (iii) hetero-

geneity permeates the entire collection of studies; and (iv) a few studies are outlying and

heterogeneity permeates the remaining studies. Outlying studies can have great impact

on conventional heterogeneity measures and on the conclusions of a meta-analysis. Sev-

eral methods have been recently developed for detecting outliers and influential data

in meta-analysis [14, 15]. However, no widely accepted guidelines exist for handling

outliers in the statistical literature, including the area of meta-analysis. Hedges and

Olkin [16] specified two extreme positions about dealing with outlying studies: (i) data

are ‘sacred’, and no study should ever be set aside for any reason; or (ii) data should

be tested for outlying studies, and those failing to conform to the hypothesized model

should be removed. Neither seems appropriate. Alternatively, if a small number of stud-

ies is influential, some researchers usually present sensitivity analyses with and without

those studies. However, if the results of sensitivity analysis differ dramatically, clinicians

may reach no consensus about which result to use to make decisions. Because of these

problems caused by outliers, ideal heterogeneity measures are expected to be robust:

they should be minimally affected by outliers and accurately describe heterogeneity.

Chapter 2 will introduce new heterogeneity measures that are less affected by outliers
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than conventional measures.

Like outliers and high heterogeneity between studies, publication bias also seriously

threatens the validity and generalizability of conclusions of systematic reviews—studies

with statistically significant findings are more likely to be published than those re-

porting statistically non-significant findings—thus the overall treatment effect may be

overestimated [17–21]. Therefore, assessing publication bias has been a critical topic in

systematic review and meta-analysis.

A traditional and intuitive method for assessing publication bias is to examine the

asymmetry of a funnel plot, which usually plots effect sizes vs. their corresponding

precisions or standard errors [22,23]. In the presence of publication bias, the funnel plot

is expected to be asymmetric. However, the visual examination is usually subjective.

Based on the funnel plot, Begg’s rank test, Egger’s regression test, and the trim and fill

method have been proposed to statistically test publication bias, and they are widely

applied [24–26]. The trim and fill method is attractive because it not only detects but

also adjusts for publication bias; nevertheless, it makes rather strong assumptions about

the treatment effects of potentially suppressed studies, and the adjusted overall effect

estimate is generally recommended as a form of sensitivity analysis [27]. Begg’s and

Egger’s tests aim at examining the association between the observed treatment effects

and their standard errors; a strong association leads to an asymmetric funnel plot and

implies publication bias. The original Egger’s test regresses the standardized treatment

effect (i.e., effect size divided by its standard error) on the corresponding precision

(i.e., the inverse of standard error). This regression can be shown to be equivalent to

a weighted regression of the treatment effect on its standard error, weighted by the

inverse of its variance [28]. The weighted regression version has become more familiar

among meta-analysts, probably because it directly links the treatment effects to their

precisions without standardizing. Several modifications of Egger’s test also use the

technique of weighted regression—the dependent variable is still the treatment effect,

but the independent variable differs. For example, Tang and Liu [29] suggested an

alternative test motivated by the sample-size-based funnel plot, in which the treatment

effect is presented against the total sample size of each study. Tang’s regression test

basically performs weighted regression of the treatment effect on the inverse of the

square root of study-specific sample size.
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When study outcomes are binary, the commonly-used effect size, log odds ratio, is

mathematically associated with its standard error, even in the absence of publication

bias [30,31]. Although it is infeasible to accurately evaluate this association’s strength,

several authors have concerns that Begg’s and Egger’s methods may have inflated type I

error rates for binary outcomes due to the potential association, and alternative regres-

sion tests have been designed specifically to deal with this issue [31–33]. For example,

Macaskill et al. [32] regressed the log odds ratio on the study-specific total sample

size. Deeks et al. [31] used the ‘effective sample size’ (see its definition in Table 3.1) as

the regression independent variable, and Peters et al. [33] slightly modified Macaskill’s

regression and used the inverse of the total sample size as the independent variable. Ta-

ble 3.1 briefly describes these approaches; more details are provided by Sterne et al. [34].

The various approaches have been widely applied to assess publication bias in sys-

tematic reviews, and some of them have been compared in extensive simulation stud-

ies [33,35,36]. It is generally recognized that Begg’s rank test has lower statistical power

than the others based on their performance in simulations [28, 30, 32]. However, most

meta-analysis articles only perform one or two publication bias tests, and so far the

performance of the various tests has not been systematically and comprehensively eval-

uated using published meta-analysis datasets. In addition, some simulation settings can

be fairly unrealistic; for example, studies may be suppressed because of non-significant

P -values [24], or negative effect sizes [26], or other obscure editorial criteria, and the

exact mechanism of publication bias in a real meta-analysis can never be reproduced by

simulations. Instead of just conducting simulation studies, Chapter 3 evaluates seven

commonly-used publication bias tests using a large collection of actual meta-analyses

published in the Cochrane Library.

Besides the aforementioned funnel-plot-based methods, another class of approaches

to detecting publication bias is based on selection models. These approaches typically

use weighted distribution theory to model the selection (i.e., publication) process and

develop estimation procedures that account for the selection process; see, e.g., [37–40].

Sutton et al. [41] provide a comprehensive review. The selection models are usually

complicated, limiting their applicability. Moreover, they incorporate weight functions

in an effort to correct publication bias, but strong and largely untestable assumptions

are often made [41]. Therefore, the validity of their adjusted results may be doubtful,
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and these methods are usually employed as sensitivity analyses.

In addition to detecting publication bias using selection models and funnel-plot-

based methods, it is also important to quantify publication bias by measures that permit

comparisons between different meta-analyses. A candidate measure is the intercept of

the regression test [25]. However, as a measure of asymmetry of the collected study

results, the regression intercept lacks a clear interpretation; for example, it is difficult to

provide a range guideline to determine mild, moderate, or substantial publication bias

based on the regression intercept. Due to this limitation, meta-analysts usually report

the P -value of Egger’s regression test, but not the magnitude of the intercept. We

will show that the regression intercept basically estimates the average of study-specific

standardized deviates; it does not account for the shape of the deviates’ distribution,

which is skewed in the presence of publication bias. This may limit the statistical power

of Egger’s regression test. Chapter 4 introduces a new measure of publication bias: the

skewness of the standardized deviates. It not only has an intuitive interpretation as the

asymmetry of the collected study results but also can serve as a powerful test statistic.

Beyond univariate meta-analysis, statistical methods for multivariate meta-analysis

are increasingly popular in the era of big data. This thesis will introduce innovative ideas

when synthesizing multiple factors and treatments. As a disease condition is typically

associated with many risk and protective factors in medical sciences, many randomized

controlled trials and observational studies considered multiple factors [42–45]. Reliable

summaries of association between each factor and the disease condition are crucial for the

design of a multi-factor intervention program. The growth of interest in evidence-based

medicine has led to a dramatic increase in attention paid to systematic reviews and meta-

analyses. In prevention studies, it has become increasingly popular to perform meta-

analyses on multiple risk and protective factors to summarize existing evidence; however,

currently, nearly all meta-analyses are performed on each factor separately [46–48].

Different studies usually focus on different subsets of all risk and protective factors,

and may only selectively report some significant factors in peer-reviewed articles; some

factors may be reported by only a few studies. Hence, if we organize the collected data

in a matrix with rows and columns indexing studies and factors respectively, then the

data matrix is expected to contain many missing entries; see the example in Table 5.1.

A conventional meta-analysis separately estimates each factor’s association with the



6

disease condition, so it cannot borrow information from the correlations between factors.

Moreover, results from separate meta-analyses may not be directly comparable because

they may be based on different subpopulations. This limits medical investigators as they

select most important factors for the design of a multi-factor intervention program.

Recently, Serghiou et al. [49] introduced field-wide systematic review and meta-

analysis to report and assess the entire field of putative factors for a disease condition.

Based on this concept, researchers can learn the selective availability and different ad-

justments of factors and the patterns of modeling. Although multiple factors were

collected, the authors pooled the results for each factor separately; this is not efficient

to analyze the multivariate data from a field-wide systematic review. Chapter 5 pro-

poses multivariate meta-analysis of multiple factors to jointly synthesize all risk and

protective factors in the field-wide systematic review. This method is shown to produce

better estimates of association measures between the factors and the disease condition,

compared with separate meta-analyses.

A disease condition can also have multiple treatments in medical sciences. Com-

parative effectiveness research is aimed at informing health care decisions concerning

the benefits and risks of different diagnostic and intervention options. The growing

number of treatment options for a given condition, as well as the rapid escalation in

their cost, has created a greater need for rigorous comparisons of multiple treatments

in clinical practice. To simultaneously compare multiple treatments for a given condi-

tion, network meta-analysis methods, also known as mixed treatment comparisons, have

recently been developed, expanding the scope of conventional pairwise meta-analysis.

Network meta-analysis simultaneously synthesizes both direct comparisons of interven-

tions within randomized controlled trials and indirect comparisons across trials [50–56].

Based on an Internet Web search, the prestigious medical journals BMJ, JAMA, and

Lancet have published more than 100 research articles with the term ‘network meta-

analysis’ in their titles since 2010.

Currently, much effort in network meta-analysis has been devoted to contrast-based

approaches, which focus on investigating relative treatment effects, such as odds ratios

when the outcome is binary. However, population-averaged absolute risks may be pre-

ferred in some situations such as cost-effectiveness analysis [57,58]. In addition, relative

treatment effects are sometimes insufficient for patients to make decisions. For instance,



7

consider a patient’s choice between treatments A and B with the following two sets of

one-year survival rates: (i) πA = 0.8 vs. πB = 0.5; (ii) πA = 0.004 vs. πB = 0.001. Most

likely, patients will strongly prefer treatment A in scenario (i) but have little preference

in scenario (ii), yet both have odds ratio 4.0.

Contrast-based network meta-analysis can back-transform odds ratios to population-

averaged absolute risks only if the absolute risk of a given reference treatment group

can be accurately estimated from external data, or can be estimated using a separate

model to analyze responses for the reference arm from the network [57, 58]. Both ap-

proaches depend on strong assumptions. For the approach using external data, even

if such external data are available, they may come from a population different from

the one represented in the network meta-analysis, and the assumption of transitivity

of relative effects on the odds ratio scale (i.e., that treatment effects are independent

of baseline risks) is rather strong. The choice of the odds ratio scale is generally ar-

bitrary or conventional, and there is no particular reason to expect effects in different

trials to be exchangeable on the odds ratio scale. For the approach using a distinct

model for the reference arm, under the theory of missing data, this analysis is unbiased

only under a strong assumption of missing completely at random, i.e., that each study

randomly chooses which treatment arms to include. In addition, if the estimation of

absolute effects uses a subset of the same trials used for the estimation of relative ef-

fects, then the estimated absolute and relative effects are not independent. Thus, one

would need to model the correlations among the two sets of estimates, which is not

straightforward. Finally, the back-transformed relative risks and risk differences can be

noticeably different depending on which treatment is chosen as the reference group, even

with exactly the same model and priors (Appendix A.7 gives an example). These con-

siderations suggest methodological limitations in contrast-based methods for estimating

population-averaged absolute risks.

When performing a network meta-analysis, selecting appropriate treatments for the

systematic review is crucial, as this will influence the validity and generalizability of both

the direct and indirect evidence summarized in the analysis. However, no guidelines exist

for treatment selection. Because the control treatment may not be defined consistently

across trials, some have suggested excluding such control treatments from a network

meta-analysis [59–61], but others have argued that having no comparison between an
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active intervention and placebo is problematic [62–64]. Moreover, the treatments of

interest may differ in different countries, and may vary over time due to introduction

of new drugs [65]. Therefore, the treatment arms included in a network meta-analysis

usually consist of a subset of a more extensive network. Using a contrast-based network

meta-analysis [50,51], Mills et al. [66] examined the sensitivity of estimated effect sizes

such as odds ratio to removal of certain treatments. They concluded that excluding a

treatment sometimes has substantial influence on estimated effect sizes. Consequently,

selection of treatment arms should be carefully considered when applying network meta-

analysis.

Chapter 6 examines the sensitivity to treatment exclusion of an alternative arm-

based approach to network meta-analysis, which has recently been developed from the

perspective of missing data analysis [67]. The difference between the contrast- and arm-

based approaches is substantial, and it is almost entirely due to single-arm trials. When

a treatment is removed from a contrast-based network meta-analysis, it is necessary

to exclude other treatments in two-arm studies that investigated the excluded treat-

ment; such exclusions are not necessary in arm-based network meta-analysis, leading to

substantial gain in performance.

As mentioned above, the Lu–Ades contrast-based Bayesian hierarchical model [51,54]

is still the most popular method to implement network meta-analysis, and it is generally

considered more powerful than conventional pairwise meta-analysis, leading to more

accurate effect estimates with narrower confidence intervals. However, the improvement

of effect estimates produced by Lu–Ades network meta-analysis has never been studied

theoretically. Chapter 7 shows that such improvement depends highly on evidence

cycles in the treatment network. Specifically, Lu–Ades network meta-analysis produces

posterior distributions identical to separate pairwise meta-analyses for all treatment

comparisons when a treatment network does not contain cycles. Even in a general

network with cycles, treatment comparisons that are not contained in any cycles do

not benefit from Lu–Ades network meta-analysis. Simulations and a case study will

be used to illustrate the equivalence of Lu–Ades network meta-analysis and pairwise

meta-analysis in certain networks.

Chapter 8 summarizes the major findings in this thesis and introduces some related

future topics.



Chapter 2

Alternative Measures of

Between-Study Heterogeneity in

Meta-Analysis: Reducing the

Impact of Outlying Studies

This chapter introduces several new heterogeneity measures, which are designed to be

less affected by outliers than conventional measures. The basic idea comes from least

absolute deviations (LAD) regression, which is known to have significant robustness ad-

vantages over classical least squares (LS) regression [68]. Specifically, LS regression aims

at minimizing the sum of squared errors
∑

(yi −xT
i β)

2, where xi represents predictors,

yi is the response, and β contains the regression coefficients. LAD regression minimizes

the sum of absolute errors
∑

|yi − xT
i β|. The impact of outliers is diminished by using

absolute values in LAD regression, compared to using squared values in LS regression.

In meta-analysis, the conventional Q statistic has the form Q =
∑
wi(yi−µ̄)2, where the

yi’s are the observed effect sizes, the wi’s are study-specific weights, and µ̄ is the weighted

average effect size. Analogously, we consider a new measure Qr =
∑√

wi|yi− µ̄|, which
is expected to be more robust against outliers than the conventional Q. An estimate of

the between-study variance can be obtained based on Qr. Also, since Qr depends on

9
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the number of collected studies, we further derive two statistics to quantify heterogene-

ity, which are counterparts of I2 and another statistic H also proposed by Higgins and

Thompson [13].

This chapter is organized as follows. Section 2.1 gives a brief review of conventional

measures and discusses the dilemma of handling outliers in meta-analysis. Section 2.2

proposes several new heterogeneity measures designed to be robust to outliers. Sec-

tion 2.3 uses theoretical properties to compare the proposed and conventional measures.

Section 2.4 presents simulations to compare the various approaches empirically, and Sec-

tion 2.5 applies the approaches to two actual meta-analyses. Section 2.6 provides a brief

discussion.

2.1 The conventional methods

2.1.1 Measures of between-study heterogeneity

Suppose that a meta-analysis contains n independent studies. Let µi be the underlying

true effect size, such as log odds ratio, in study i (i = 1, . . . , n). Typically, published

studies report estimates of the effect sizes and their within-study variances, which we

will call yi and s
2
i . It is customary to assume that the yi’s are approximately normally

distributed with mean µi and variance σ2i , respectively. Since the unknown σ2i can be

estimated by s2i , these data are commonly modeled as yi ∼ N(µi, s
2
i ) with s2i treated

as known. Also, we assume that the true µi’s are independently distributed as µi ∼
N(µ, τ2), where µ is the true overall mean effect size across studies and τ2 is the between-

study variance. The collected n studies are defined to be homogeneous if their underlying

true effect sizes are equal, that is, µi = µ for all i = 1, . . . , n, or equivalently τ2 = 0. On

the other hand, the studies are heterogeneous if their underlying true effect sizes vary,

that is, τ2 > 0.

To test the homogeneity of the yi’s (i.e., H0: τ
2 = 0 vs. HA: τ

2 > 0), the well-known

Q statistic [10] is defined as

Q =
n∑

i=1

wi(yi − µ̄)2,

which follows a χ2
n−1 distribution under the null hypothesis. Here, wi = 1/s2i is the

reciprocal of the within-study variance of yi, and µ̄ =
∑n

i=1wiyi/
∑n

i=1wi is the pooled
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fixed-effect estimate of µ. Based on the Q statistic, DerSimonian and Laird [69] intro-

duced a method of moments estimate of the between-study variance,

τ̂2DL = max

{
0,

Q− (n− 1)∑n
i=1wi −

∑n
i=1w

2
i /
∑n

i=1wi

}
.

Note that the Q statistic depends on the number of collected studies n and the

estimate of between-study variance depends on the scale of effect sizes. Hence, neither

Q nor τ̂2DL can be used to compare degrees of heterogeneity between different meta-

analyses. To allow such comparisons, Higgins and Thompson [13] proposed the measures

H and I2:

H =
√
Q/(n− 1), I2 = [Q− (n− 1)]/Q.

The H statistic is interpreted as the ratio of the standard deviation of the estimated

overall effect size from a random-effects meta-analysis compared to the standard de-

viation from a fixed-effect meta-analysis; I2 describes the proportion of total variance

between studies that is attributed to heterogeneity rather than sampling error. In prac-

tice, meta-analysts truncate H at 1 when H < 1 and truncate I2 at 0 when I2 < 0;

therefore, H ≥ 1 and I2 lies between 0 and 1. Since I2 is interpreted as a proportion, it

is usually expressed as a percent. Both measures have been widely adopted in practice.

2.1.2 Outlier detection

As in many other statistical applications, outliers frequently appear in meta-analysis.

Outliers may arise from at least three sources:

(i) The quality of collected studies and systematic review. The published results

(yi, s
2
i ) in a clinical study could be outlying due to errors in the process of record-

ing, analyzing, or reporting data. Also, the populations in certain clinical studies

may not meet the systematic review’s inclusion criteria; hence, such studies may

be outlying compared to most other collected studies.

(ii) A heavy-tailed distribution of study-specific underlying effect sizes. Conventionally,

at the between-study level, the study-specific underlying effect sizes µi are assumed

to have a normal distribution. However, the true distribution of the µi’s may

greatly depart from the normality assumption and have heavy tails, such as the

t-distribution with small degrees of freedom.
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(iii) Small sample sizes in certain studies. The true within-study variances σ2i could

be poorly estimated by the sample variances s2i if the sample sizes are small. In

some situations, effect sizes in small studies may be more informative than large

studies due to ‘small study effects’ [70]; if their true within-study variances σ2i are

seriously underestimated, then small studies could be outlying.

Hedges and Olkin [16] and Viechtbauer and Cheung [14] introduced outlier detection

methods for fixed-effect and random-effects meta-analyses, respectively. Both methods

use a ‘leave-one-study-out’ technique so that a potential outlier could have little influence

on the residuals of interest. Specifically, the residual of study i is calculated as ei =

yi − µ̄(−i). Here, µ̄(−i) is the estimated overall effect size using the data without study

i; that is, µ̄(−i) =
∑

j 6=i yj/s
2
j∑

j 6=i 1/s
2
j
under the fixed-effect setting, and µ̄(−i) =

∑
j 6=i yj/(s

2
j+τ̂2

(−i)
)

∑
j 6=i 1/(s

2
j+τ̂2

(−i)
)

under the random-effects setting, where τ̂2(−i) can be the DerSimonian and Laird estimate

using the data without study i. The variance of ei is estimated as vi = s2i+(
∑

j 6=i 1/s
2
j )

−1

and vi = s2i + τ̂2(−i) + [
∑

j 6=i 1/(s
2
j + τ̂2(−i))]

−1 under the fixed-effect and random-effects

settings, respectively. The standardized residuals ǫi = ei/
√
vi are expected to follow the

standard normal distribution and studies with ǫi’s greater than 3 in absolute magnitude

are customarily considered outliers.

Outliers may be masked if the above approaches are used in an inappropriate setting.

For example, Figures 2.3(b) and 2.3(d) in Section 2.5 show standardized residuals of

two actual meta-analyses; different outlier detection methods identify different outliers.

Hence, one must assess the heterogeneity of collected studies to correctly apply the

foregoing approaches to detect outliers. However, outliers may cause heterogeneity

to be overestimated and thus affect procedures to detect them. Additionally, even if

outliers are identified, there is no consensus in the statistical literature on what to do

about them unless these studies are evidently erroneous [71]. To avoid the dilemmas of

detecting and handling outliers, we propose robust measures to assess heterogeneity.
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2.2 The proposed alternative heterogeneity measures

2.2.1 Measures based on absolute deviations and weighted average

In linear regression, it is well-known that least absolute deviations regression is more

robust to outliers than classical least squares regression [68]. The former method mini-

mizes
∑

|yi−xT
i β| and the latter minimizes

∑
(yi−xT

i β)
2, where xi and yi are predictors

and response respectively and β contains the regression coefficients. In the context of

meta-analysis, the conventional Q statistic is analogous to least squares regression, be-

cause Q is a weighted sum of squared deviations. To reduce the impact of outlying

studies, we propose a new measure Qr which is analogous to least absolute deviations

regression. This measure is the weighted sum of absolute deviations, and is defined as

Qr =
n∑

i=1

√
wi|yi − µ̄|.

For random-effects meta-analysis, E[Qr] =
∑n

i=1

√
2vi/π, where vi = 1−wi/

∑n
j=1wj+

τ2[wi − 2w2
i /
∑n

j=1wj + wi
∑n

j=1w
2
j/(
∑n

j=1wj)
2].

DerSimonian and Laird [69] derived an estimate of the between-study variance τ2

based on the Q statistic by the method of moments, i.e., equating the observed Q with

its expectation. We can similarly obtain a new estimate of τ2, denoted as τ̂2r , from the

proposed Qr statistic. Specifically, τ̂2r is the solution to the following equation in τ2:

Qr

√
π

2
=

n∑

i=1

{
1− wi∑n

j=1wj
+ τ2

[
wi −

2w2
i∑n

j=1wj
+
wi
∑n

j=1w
2
j

(
∑n

j=1wj)2

]}1/2

. (2.1)

If this equation has no nonnegative solution, set τ̂2r = 0. Note that the right-hand side

of Equation (2.1) is monotone increasing in τ2, so the solution is unique.

The Qr statistic, like Q, is dependent on the number of studies; τ̂2r , like τ̂2DL, is

dependent on the scale of effect sizes. Following the approach of Higgins and Thomp-

son [13], we tentatively assume that all studies share a common within-study variance

σ2 and explore heterogeneity measures that are independent of both the number of

studies and the scale of effect sizes, so that they can be used to compare degrees of

heterogeneity between meta-analyses. Suppose the target heterogeneity measure can

be written as f(µ, τ2, σ2, n), which is a function of the true overall mean effect size µ,

the between-study variance τ2, the within-study variance σ2, and the number of studies
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n. Higgins and Thompson [13] suggested that this measure should satisfy the following

three criteria:

(i) (Dependence on the magnitude of heterogeneity) f(µ, τ ′2, σ2, n) > f(µ, τ2, σ2, n)

for any τ ′2 > τ2. This criterion is self-evident.

(ii) (Scale invariance) f(a+ bµ, b2τ2, b2σ2, n) = f(µ, τ2, σ2, n) for any constants a and

b. This criterion ‘standardizes’ comparisons between meta-analyses using different

scales of measurement and different types of outcome data.

(iii) (Size invariance) f(µ, τ2, σ2, n′) = f(µ, τ2, σ2, n) for any positive integers n and

n′. This criterion indicates that the number of studies collected in meta-analysis

does not systematically affect the magnitude of the heterogeneity measure.

Monotone increasing functions of ρ = τ2/σ2 can be easily shown to satisfy these three

criteria. Plugging wi = 1/σ2 into Equation (2.1), we have ρ + 1 = πQ2
r/[2n(n − 1)].

This implies that

H2
r =

πQ2
r

2n(n− 1)

is a candidate measure. Further, considering ρ/(ρ+1) = τ2/(τ2+σ2), commonly called

the intraclass correlation, Equation (2.1) yields another candidate:

I2r =
Q2

r − 2n(n− 1)/π

Q2
r

.

In practice, Hr would be truncated at 1 when Hr < 1 and I2r would be truncated at

0 when I2r < 0. These two measures, H2
r and I2r , are analogous to and have the same

interpretations as H2 and I2, respectively. Higgins and Thompson [13] also introduced

a so-called R2 statistic; since it has interpretation and performance similar to H2, we

do not present a version of R2 based on the new Qr statistic.

Since standard deviations are used more frequently in clinical practice, Higgins and

Thompson [13] suggested reporting H, instead of H2, for meta-analyses. For the pro-

posed measures, we also recommend reporting Hr rather than H
2
r . However, we suggest

presenting I2 and I2r instead of their square roots because their interpretation of ‘pro-

portion of variance explained’ is widely familiar to clinicians. Hr = 1 or I2r = 0 implies

perfect homogeneity. Also, since the expressions for Hr and I2r only involve Qr and
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n but not within-study variances, these two measures can be easily generalized to a

situation where the within-study variances s2i vary across studies.

2.2.2 Measures based on absolute deviations and weighted median

The proposed Qr statistic uses the weighted average µ̄ to estimate overall effect size

under the null hypothesis; it may be sensitive to potential outliers. To derive an even

more robust heterogeneity measure, we may replace the weighted average with the

weighted median µ̂m, which is defined as the solution to the following equation in θ:

n∑

i=1

wi [I(θ ≥ yi)− 0.5] = 0, (2.2)

where I(·) is the indicator function. This weighted median leads to a new test statistic,

Qm =
∑n

i=1

√
wi|yi−µ̂m|. Note that the solution to Equation (2.2) may be not unique; to

avoid this problem, we will approximate the indicator function by a monotone increasing

smooth function [72]. Section 2.2.3 introduces the details.

The expectation of Qm may not be explicitly calculated because the distribution of

weighted median of finite samples is unclear. By the theory of M-estimation [73], the

weighted median is a
√
n-consistent estimator of the true overall effect size µ. Suppose

that the weights wi have finite first-order moment, then it can be shown that

∣∣∣∣∣Qm/n− 1

n

n∑

i=1

√
wi|yi − µ|

∣∣∣∣∣ ≤ |µ̂m − µ| · 1
n

n∑

i=1

√
wi = Op(n

−1/2).

Therefore, when the number of collected studies n is large,

E[Qm/n] ≈
1

n
E

[
n∑

i=1

√
wi|yi − µ|

]
=

1

n

√
2/π

n∑

i=1

√
(s2i + τ2)/s2i .

By equating the Qm statistic to its approximated expectation, a new estimator of

between-study variance τ̂2m can be derived as the solution to

Qm

√
π/2 =

n∑

i=1

√
(s2i + τ2)/s2i

in τ2. If all within-study variances are further assumed to be equal to a common value

σ2 as in Section 2.2.1, E[Qm/n] ≈
√

2/π
√

(σ2 + τ2)/σ2. Based on Qm, the counterparts
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of H2
r and I2r—which assess (σ2 + τ2)/σ2 and τ2/(σ2 + τ2) respectively—are defined as

H2
m =

πQ2
m

2n2
, I2m =

Q2
m − 2n2/π

Q2
m

.

Note that many meta-analyses only collect a small number of studies; however, the

derivation of τ̂2m, H2
m, and I2m assumes a large n. The finite-sample performance of

these heterogeneity measures will be studied using simulations.

2.2.3 Calculation of P -values and confidence intervals

Due to the difficulty caused by summing the absolute values of correlated random vari-

ables in the expression of Qr and the intractable distribution of weighted median in Qm,

it is not feasible to explicitly derive the probability and cumulative density functions for

the proposed statistics. Instead, resampling method can be used to calculate P -values

and 95% confidence intervals (CIs). Since the weighted median in Qm is discontinuous

and may be not unique due to the indicator function in Equation (2.2), we apply the

approach by Horowitz [72] to approximate the indicator function I(t > 0) by a smooth

function J(t) in the following simulations and case studies. For example, J(t) can be

the scaled expit function Jǫ(t) = 1/[1 + exp(−t/ǫ)], where ǫ is a pre-specified small

constant. We use ǫ = 10−4; various choices of ǫ are shown to produce stable results in

Appendix A.1.

Parametric resampling can be used to calculate a P -value for Qr; similar procedures

can also be used for Q and Qm. First, estimate the overall effect size µ̄ under H0 : τ
2 = 0

(i.e., the fixed-effect setting) and calculate the Qr statistic based on the original data.

Second, draw n samples under H0, y
⋆
i ∼ N(µ̄, s2i ), and repeat this for B (say 10,000)

iterations. Here, the weighted average µ̄ is used to estimate µ because it is unbiased and

may have smaller variance than the weighted median under the null hypothesis. Third,

based on the B sets of bootstrap samples, calculate the Qr statistic as Q
(b)
r for b =

1, . . . , B. Finally, the P -value is calculated as P =
[∑B

b=1 I(Q
(b)
r > Qr) + 1

]
/(B + 1).

Here, 1 is added to both numerator and denominator to avoid calculating P = 0. To

derive 95% CIs for the various heterogeneity measures, the nonparametric bootstrap can

be used by taking samples of size n with replacement from the original data {(yi, s2i )}ni=1

and calculating 2.5% and 97.5% quantiles for each of the measures over the bootstrap

samples.
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2.3 The relationship between I
2, I2r , and I

2
m

2.3.1 When the number of studies is fixed

Since I2r and I2m are designed to be robust compared to the conventional I2, they are

expected to be smaller than I2 in the presence of outliers. Applying the Cauchy-Schwarz

Inequality, Q2
r ≤ nQ, and the equality holds if and only if each wi(yi − µ̄)2 equals a

common value for all studies, in which case outliers are unlikely to appear. The foregoing

inequality further implies Hr ≤ H
√
π/2 and I2r ≤ I2 + (1− 2/π) (1 − I2). Therefore,

the proposed Hr and I2r are not always smaller than H and I2, respectively; I2r may

be greater than I2 by up to (1 − 2/π)(1 − I2). Appendix A.2 provides artificial meta-

analyses to illustrate how the proposed measures may have better interpretations even

when no outliers are present; I2r and I2m are larger than I2 in those examples. As I2m

is based on the intractable weighted median, determining its relationship with I2 and

I2r is not feasible in finite samples except by simulations. Alternatively, the asymptotic

values of the three measures can be derived as n→ ∞; Section 2.3.2 considers this case.

2.3.2 When the number of studies becomes large

This section focuses on the asymptotic properties of the three heterogeneity measures as

the number of collected studies n→ ∞. Denote
P−→ as convergence in probability, and

let Φ(·) be the cumulative distribution function of the standard normal distribution.

We have the following two propositions if no outliers are present.

Proposition 1. Under the fixed-effect setting, the observed effect sizes are yi ∼ N(µ, s2i ).

Assume that the weights wi = 1/s2i are independent and identically distributed with fi-

nite positive mean, and independent of the yi’s. Then I2, I2r , and I
2
m converge to 0 in

probability as n→ ∞.

Proposition 2. Assume that all studies share a common within-study variance σ2.

Under the random-effects setting, the observed effect sizes are yi ∼ N(µi, σ
2) and

µi ∼ N(µ, τ2); hence, the true proportion of total variation between studies due to

heterogeneity is I20 = τ2/(σ2 + τ2). Then I2, I2r , and I2m converge to the true I20 in

probability as n→ ∞.
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Propositions 1 and 2 show that, for either homogeneous or heterogeneous studies,

all three heterogeneity measures converge to the true value and correctly indicate ho-

mogeneity or heterogeneity. Proposition 1 does not require that the n studies have a

common within-study variance; Proposition 2 makes this assumption to facilitate defi-

nition of the true I20 . The following proposition compares the three measures when the

collection of studies is contaminated by a certain proportion of outlying studies.

Proposition 3. Assume that all studies share a common within-study variance σ2. The

observed effect sizes are yi ∼ N(µi, σ
2). The meta-analysis is supposed to focus on a

certain population of interest, and in this population, the study-specific underlying effect

sizes are µi ∼ N(µ, τ2); therefore, the true proportion of total variation between studies

in this population that is due to heterogeneity is I20 = τ2/(σ2 + τ2). However, 100η

percent of the n studies are mistakenly included, having been conducted on inappropriate

populations; their study-specific underlying effect sizes are µi ∼ N(µ+ C, τ2), where C

is a constant, representing the discrepancy of outliers. Then, as n→ ∞,

I2
P−→ 1− [(1− I20 )

−1 + r1r2]
−1;

I2r
P−→ h(r1, r2; η, I

2
0 );

I2m
P−→ h(s1, s2; η, I

2
0 ).

Here, h(·, ·; η, I20 ) is a function depending on η and I20 defined as

h(t1, t2; η, I
2
0 ) = 1−

{

η

[

(1− I
2
0 )

−1/2 exp

(

−

1

2
t
2
1(1− I

2
0 )

)

+

√

π

2
t1

(

1− 2Φ
(

−t1(1− I
2
0 )

1/2
))

]

+ (1− η)

[

(1− I
2
0 )

−1/2 exp

(

−

1

2
t
2
2(1− I

2
0 )

)

−

√

π

2
t2

(

1− 2Φ
(

t2(1− I
2
0 )

1/2
))

]

}−2

;

also, r1 = (1− η)C/σ, r2 = ηC/σ, s2 = C/σ − s1, and s1 is the solution to

ηΦ
(
−s1(1− I20 )

1/2
)
+ (1− η)Φ

(
(C/σ − s1)(1− I20 )

1/2
)
= 0.5.

Appendix B.1 gives proofs of the three propositions. Proposition 3 suggests that

all three heterogeneity measures are affected by outlying studies, though to different

degrees. Specifically, their asymptotic values are determined by three factors: the true

proportion of total variation between studies that is due to heterogeneity I20 , the pro-

portion of outliers η, and the ratio of the discrepancy of the outliers C compared to the
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within-study standard deviation σ, that is, R = C/σ. Outliers are usually present in

small quantities, so the proportion of outliers η is usually not large. Also, an observation

is customarily considered an outlier if the distance to the overall mean is greater than

three times the standard deviation σ; therefore, the ratio R is usually greater than 3.

Figure 2.1 compares the asymptotic values of the three heterogeneity measures de-

rived in Proposition 3. The upper panels show the setting of true homogeneity (I20 = 0)

and the lower panels show the setting of true heterogeneity (I20 = 0.5). Under each

setting, the proportion of outliers is 1%, 5%, or 10%. Clearly, all panels present a com-

mon trend: the three heterogeneity measures increase as R increases. When η is 1%,

I2r and I2m are much less affected by outliers than I2, indicating the robustness of the

proposed measures. Also, I2m is a bit smaller than I2r . As η increases, the difference

between I2 and I2r becomes smaller, while the difference between I2r and I2m becomes

larger though it is never substantial. This implies that I2m is the most robust measure

when a meta-analysis is contaminated by a large proportion of outliers.

2.4 Simulations

Simulations were conducted to investigate the finite-sample performance of the various

approaches to assessing heterogeneity. Without loss of generality, the true overall mean

effect size was fixed as µ = 0. The number of studies in these simulated meta-analyses

was set to n = 10 or 30, and the between-study variance was τ2 = 0 (homogeneity)

or 1 (heterogeneity). Under the homogeneity setting, the within-study standard errors

si were sampled from U(0.5, 1); under the heterogeneity setting, we sampled si’s from

U(smin, smax), where (smin, smax) = (0.5, 1), (1, 2), or (2, 5) to represent different pro-

portions of total variation between studies that is due to heterogeneity. The observed

effect sizes were drawn from yi ∼ N(µi, s
2
i ), where µi’s are study-specific underlying

effect sizes. Regarding the µi, we considered the following two different scenarios to

produce outliers.

(I) (Contamination) The µi’s are normally distributed, µi ∼ N(µ, τ2); however, m

out of the n studies were contaminated by a certain outlying discrepancy, as in

Proposition 3. We setm = 0, 1, 2, and 3, and five outlier patterns were considered:

the m studies were created as outliers by artificially adding C, (C,C), (C,−C),
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(C,C,C), or (C,C,−C) to the original effect sizes for m = 1, 2, 2, 3, and 3

respectively. The discrepancy of outliers was set to C = 3
√
s2max + τ2.

(II) (Heavy tail) The µi’s are drawn from a heavy-tailed distribution. We considered

a location-scale transformed t distribution with degrees of freedom df = 3, 5, and

10; that is, µi = µ + zi
√
(df− 2)/df, where zi ∼ tdf. Note that the between-

study variance τ2 = Var[µi] = 1 in this scenario, so the generated studies are

heterogeneous. Also, as degrees of freedom increases, the distribution of µi’s

converges to the normal distribution and outliers are less likely.

Table 2.1 presents some results for n = 30, including statistical sizes (type I error

rates) and powers of the statistics Q, Qr, and Qm for testingH0 : τ
2 = 0 vs.HA : τ2 > 0,

and the root mean squared errors (RMSEs) and coverage probabilities of 95% CIs of τ̂2DL,

τ̂2r , and τ̂
2
m. Appendix A.3 contains complete simulation results. When the studies are

homogeneous, each of the three test statistics controls type I error rate well if no outliers

are present. Also, the RMSEs of the three estimators of τ2 are close and their coverage

probabilities are fairly high. However, when outliers appear, the type I error rate of

Q inflates dramatically compared to Qr and Qm. The RMSE of τ̂2DL becomes larger

than those of τ̂2r and τ̂2m; also, the coverage probability of τ̂2DL is lower, especially when

m = 3. As the number of outliers increases, the weighted-median-based τ̂2m has smaller

RMSE and its 95% CI has higher coverage probability than the weighted-mean-based

τ̂2r .

For heterogeneous studies, the conventional Q statistic is more powerful than Qr or

Qm, but the differences are not large; this is expected because Q sacrifices type I error

in the presence of outliers. In spite of this disadvantage of Qr and Qm, the proposed

estimators of τ2 still perform better than the conventional τ̂2DL in both Scenarios I and

II.

Figure 2.2 compares the impact of a single outlier in Scenario I with m = 1 on

the heterogeneity measures I2, I2r , and I
2
m. As expected, these heterogeneity measures

generally increase due to the outlying study, so their changes are mostly greater than 0.

However, for both homogeneous and heterogeneous studies, the changes of I2r and I2m

are generally smaller than the changes of I2, indicating that the proposed measures are

indeed less affected by outliers than the conventional I2.
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2.5 Two case studies

2.5.1 Homogeneous studies with outliers

Ismail et al. [74] reported a meta-analysis consisting of 29 studies to evaluate the effect

of aerobic exercise (AEx) on visceral adipose tissue (VAT) content/volume in overweight

and obese adults, compared to control treatment. Figure 2.3(a) shows the forest plot

with the observed effect sizes and their within-study 95% CIs; studies 1, 3, 19, and 29

seem to be outlying. If these four studies are removed, the remaining studies are much

more homogeneous. Figure 2.3(b) presents the standardized residuals using both the

fixed-effect and random-effects approaches described in Section 2.1.2. Studies 1, 19, and

29 have standardized residuals (under the fixed-effect setting) greater than 3 in absolute

magnitude; hence, they may be considered outliers. We conducted sensitivity analysis

by removing the following studies: (i) 1; (ii) 19; (iii) 29; (iv) 1 and 19; (v) 1 and 29;

(vi) 19 and 29; and (vii) 1, 19, and 29.

Table 2.2 presents the results for the original meta-analysis and for alternate meta-

analyses removing certain outlying studies. For the original meta-analysis, I2r = 0.44

and I2m = 0.45, compared to I2 = 0.59. Also, τ̂r and τ̂m are smaller than τ̂DL. To test

H0 : τ2 = 0 vs. HA : τ2 > 0, the P -value of the Q statistic is smaller than 0.001, and

those of the Qr and Qm statistics are 0.013 and 0.006, respectively. When study 29 is

removed, the Q statistic is still significant (P -value = 0.008), while the P -values of the

Qr and Qm statistics are larger than the commonly used significance level α = 0.05.

After removing all three outlying studies, the P -values of the three test statistics are

much larger than 0.05; also, I2r = I2m = 0 and I2 = 0.11. Hence, the heterogeneity

presented in the original meta-analysis is mainly caused by the few outliers. Note that

I2r and I2m are still noticeably smaller than I2 after removing the three identified outliers.

This may be because some studies other than studies 1, 19, and 29 are potentially

outlying. Figure 2.3(b) shows that the absolute values of the standardized residuals

of studies 3 and 28 are fairly close to 3. Although some outliers may not be clearly

detected, I2r and I2m automatically reduce their impact without removing them.
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2.5.2 Heterogeneous studies with outliers

Haentjens et al. [75] investigated the magnitude and duration of excess mortality after

hip fracture among older men by performing a meta-analysis consisting of 17 studies.

Figure 2.3(c) shows the forest plot with the observed effect sizes (log hazard ratios) and

their 95% within-study CIs. The forest plot indicates that the collected studies tend to

be heterogeneous. Despite this, we used both the fixed-effect and random-effects diag-

nostic procedure in Section 2.1.2 to detect potential outliers. Figure 2.3(d) shows the

study-specific standardized residuals, indicating that study 17 is apparently outlying.

Although study 9’s standardized residual is smaller than 2 in absolute magnitude when

using the random-effects approach, its standardized residual under the fixed-effect set-

ting is fairly large. To take all potential outliers into account, we conducted sensitivity

analysis by removing the following studies: (i) 9; (ii) 17; and (iii) 9 and 17.

The results are in Table 2.2. For the original meta-analysis, the P -values of all three

test statistics are smaller than 0.001, rejecting the null hypothesis of homogeneity. Also,

I2 = 0.74, I2r = 0.66 and I2m = 0.63, indicating substantial heterogeneity. If study 9 is

removed, the results seem to change little, implying that this study is not influential.

If study 17 is removed, the P -values of the test statistics change noticeably; also, each

of I2, I2r , and I
2
m is reduced by more than 0.10. The three heterogeneity measures are

still fairly high (larger than or close to 0.5); therefore, meta-analysts may keep paying

attention to the heterogeneity of the remaining studies.

2.6 Discussion

This paper proposed several alternative measures of heterogeneity in meta-analysis.

Large-sample properties and finite-sample studies showed that the new measures are

robust to outliers compared with conventional measures. Since outliers frequently ap-

pear in meta-analysis and may not simply be removed without sound evidence, the

proposed robust measures can provide useful information describing heterogeneity. The

robustness of the new approaches mainly arises from using the absolute deviations in

the Qr and Qm statistics; Qr summarizes the deviations using the weighted average,

and Qm summarizes the deviations using the weighted median. Note that the number
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of studies is assumed to be large in deriving τ̂2m, Hm, and I2m. However, many meta-

analyses may only collect a few studies [76]; these three measures need to be used with

caution for small meta-analyses.

When study-level covariates are collected in meta-analysis, meta-regression is widely

applied to investigate whether study characteristics explain heterogeneity [77]. To im-

prove robustness to outliers, instead of performing least squares regression, researchers

may consider least absolute deviations regression [68], which is related to the hetero-

geneity measures proposed in this chapter.

Heterogeneity measures are customarily used to select a fixed-effect or random-effects

model, but both models have limitations in certain situations. Some researchers believe

that heterogeneity is to be expected in any meta-analysis because the collected studies

were performed by different teams in different places using different methods [78]. Also,

the fixed-effect model produces confidence intervals with poor coverage probability when

the collected studies have different true effect sizes [79], so some researchers recommend

routinely using the random-effects model to yield conservative results [80]. However,

the random-effects model is not always better than the fixed-effect model, especially in

the presence of publication bias [81–83]. Besides robustly assessing heterogeneity, alter-

native approaches to robustly estimating overall effects size in the presence of outliers

remain to be studied.

The R code for the proposed methods are organized in the package ‘altmeta’ and

available at http://cran.r-project.org/package=altmeta.
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Figure 2.1: The asymptotic values of I2, I2r , and I2m as n → ∞. The horizontal axis

represents the ratio (R) of discrepancy of outliers (C) compared to within-study stan-

dard deviation (σ), that is, R = C/σ. The true proportion of total variation between

studies that is due to heterogeneity I20 is 0 (homogeneity, top row) or 0.5 (heterogeneity,

bottom row). The proportion of outlying studies η varies from 1% (left panels) to 10%

(right panels).
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(a) Impact of an outlier on homogeneous studies
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(b) Impact of an outlier on homogeneous studies
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(c) Impact of an outlier on heterogeneous studies
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Figure 2.2: Scatter plots of the changes of I2r and I2m due to an outlier against the

changes of I2. For the upper panels, τ2 = 0 (homogeneous studies) and si ∼ U(0.5, 1);

for the lower panels, τ2 = 1 (heterogeneous studies) and si ∼ U(1, 2). The left panels

compare I2r with I2; the right panels compare I2m with I2.
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Figure 2.3: Forest plots and standardized residual plots of two actual meta-analyses.

The upper panels show the meta-analysis conducted by Ismail et al.; the lower panels

show that conducted by Haentjens et al. In (a) and (c), the columns ‘Lower’ and ‘Upper’

are the lower and upper bounds of 95% CIs of the effect sizes within each study. In (b)

and (d), the filled dots represent standardized residuals obtained under the fixed-effect

setting; the unfilled dots represent those obtained under the random-effects setting.
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Table 2.1: Type I error rates and powers of three heterogeneity tests for the simulated

meta-analyses containing 30 studies.

Outlier pattern
Size/power† RMSE CP (%)

Q‡ Qr Qm τ̂2DL τ̂2r τ̂2m τ̂2DL τ̂2r τ̂2m

Scenario I (contamination) with τ2 = 0 (homogeneity) and si ∼ U(0.5, 1):

No outliers 0.05 (0.06) 0.05 0.05 0.10 0.12 0.10 98 99 99

C 0.55 (0.55) 0.27 0.25 0.37 0.24 0.20 97 97 98

(C,C) 0.89 (0.89) 0.66 0.60 0.63 0.42 0.35 88 90 94

(C,−C) 0.92 (0.92) 0.61 0.61 0.68 0.40 0.36 89 90 94

(C,C,C) 0.98 (0.98) 0.90 0.87 0.88 0.64 0.53 65 74 83

(C,C,−C) 0.99 (0.98) 0.89 0.88 0.99 0.61 0.55 64 73 83

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(0.5, 1):

No outliers 0.98 (0.99) 0.98 0.98 0.40 0.43 0.41 88 93 91

C 1.00 (1.00) 1.00 1.00 0.84 0.63 0.55 97 97 98

(C,C) 1.00 (1.00) 1.00 1.00 1.37 1.00 0.85 93 94 96

(C,−C) 1.00 (1.00) 1.00 1.00 1.45 0.97 0.85 93 94 96

(C,C,C) 1.00 (1.00) 1.00 1.00 1.86 1.44 1.22 76 83 90

(C,C,−C) 1.00 (1.00) 1.00 1.00 2.05 1.40 1.25 77 84 91

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(1, 2):

No outliers 0.48 (0.49) 0.42 0.43 0.74 0.81 0.75 89 93 91

C 0.89 (0.89) 0.78 0.77 1.97 1.36 1.17 98 97 98

(C,C) 0.99 (0.99) 0.94 0.94 3.33 2.29 1.93 91 92 96

(C,−C) 0.99 (0.99) 0.94 0.94 3.50 2.17 1.93 91 92 96

(C,C,C) 1.00 (1.00) 0.99 0.99 4.60 3.41 2.85 70 80 88

(C,C,−C) 1.00 (1.00) 0.99 0.99 5.03 3.24 2.90 71 81 88

Scenario II (heavy tail) with τ2 = 1 (heterogeneity) and si ∼ U(0.5, 1):

df = 3 0.92 (0.92) 0.89 0.88 1.45 0.59 0.56 72 79 73

df = 5 0.98 (0.98) 0.95 0.95 0.55 0.45 0.45 84 90 86

df = 10 0.98 (0.98) 0.97 0.97 0.43 0.43 0.42 88 93 90

Scenario II (heavy tail) with τ2 = 1 (heterogeneity) and si ∼ U(1, 2):

df = 3 0.41 (0.40) 0.35 0.35 1.53 0.88 0.82 83 90 87

df = 5 0.46 (0.46) 0.40 0.40 0.82 0.82 0.77 88 93 90

df = 10 0.48 (0.49) 0.42 0.42 0.76 0.82 0.77 88 94 90

RMSE: root mean squared error; CP: coverage probability of 95% confidence in-

terval.

† Size (type I error rate) for homogeneous studies (τ2 = 0) and power for heteroge-

neous studies (τ2 > 0) at the significance level α = 0.05.

‡ The sizes/powers outside the parentheses are produced by the resampling method;

those inside the parentheses are obtained using Q’s theoretical distribution under

the null hypothesis.
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Table 2.2: Results of assessing heterogeneity for two actual meta-analyses.

Removed studies
P -value of testing H0 : τ

2 = 0 Estimated τ (95% CI) Heterogeneity measure (95% CI)

Q† Qr Qm τ̂DL τ̂r τ̂m I2 I2r I2m

Meta-analysis in Ismail et al. [74]:

None (Original) < 0.001 (< 0.001) 0.013 0.006 0.39 (0, 0.62) 0.29 (0, 0.58) 0.30 (0, 0.56) 0.59 (0, 0.76) 0.44 (0, 0.73) 0.45 (0, 0.72)

1 < 0.001 (< 0.001) 0.047 0.030 0.35 (0, 0.58) 0.24 (0, 0.52) 0.24 (0, 0.51) 0.55 (0, 0.75) 0.36 (0, 0.69) 0.36 (0, 0.69)

19 < 0.001 (< 0.001) 0.048 0.031 0.34 (0, 0.58) 0.24 (0, 0.52) 0.24 (0, 0.51) 0.54 (0, 0.75) 0.36 (0, 0.69) 0.36 (0, 0.68)

29 0.008 (0.007) 0.100 0.070 0.28 (0, 0.46) 0.21 (0, 0.44) 0.21 (0, 0.43) 0.44 (0, 0.66) 0.29 (0, 0.63) 0.30 (0, 0.62)

1 and 19 0.003 (0.004) 0.154 0.121 0.29 (0, 0.54) 0.18 (0, 0.45) 0.18 (0, 0.44) 0.47 (0, 0.73) 0.25 (0, 0.64) 0.24 (0, 0.63)

1 and 29 0.052 (0.052) 0.272 0.223 0.22 (0, 0.40) 0.14 (0, 0.37) 0.13 (0, 0.36) 0.33 (0, 0.60) 0.16 (0, 0.56) 0.15 (0, 0.55)

19 and 29 0.057 (0.057) 0.278 0.232 0.21 (0, 0.40) 0.13 (0, 0.38) 0.13 (0, 0.37) 0.32 (0, 0.60) 0.15 (0, 0.56) 0.14 (0, 0.55)

1, 19 and 29 0.302 (0.298) 0.547 0.504 0.11 (0, 0.30) 0 (0, 0.29) 0 (0, 0.27) 0.11 (0, 0.47) 0 (0, 0.46) 0 (0, 0.42)

Meta-analysis in Haentjens et al. [75]:

None (Original) < 0.001 (< 0.001) < 0.001 < 0.001 0.16 (0.02, 0.34) 0.15 (0, 0.37) 0.08 (0, 0.36) 0.74 (0.15, 0.86) 0.66 (0, 0.85) 0.63 (0, 0.85)

9 < 0.001 (< 0.001) 0.006 0.006 0.16 (0, 0.37) 0.13 (0, 0.42) 0.06 (0, 0.37) 0.68 (0, 0.84) 0.56 (0, 0.83) 0.52 (0, 0.81)

17 0.001 (0.001) 0.013 0.015 0.11 (0, 0.23) 0.11 (0, 0.27) 0.05 (0, 0.27) 0.60 (0, 0.76) 0.52 (0, 0.77) 0.47 (0, 0.76)

9 and 17 0.062 (0.059) 0.156 0.144 0.09 (0, 0.24) 0.07 (0, 0.27) 0.02 (0, 0.25) 0.39 (0, 0.65) 0.28 (0, 0.67) 0.23 (0, 0.65)

† The P -values outside the parentheses are produced by the resampling method; the P -values inside the parentheses are calculated using Q’s theoretical distribution

under the null hypothesis.



Chapter 3

Performance of Publication Bias

Tests in the Cochrane Library

This chapter applies seven commonly-used publication bias tests to a large collection

of published meta-analyses in the Cochrane Library, which is the leading resource for

systematic reviews in health care. We investigate the proportion of meta-analyses that

have statistically significant publication bias detected by each test. Its association with

the size of the meta-analysis is also empirically assessed. In addition, we evaluate the

agreement among various test results. These findings may guide researchers in properly

assessing publication bias and interpreting test results in future systematic reviews.

3.1 Methods

We searched complete issues in the Cochrane Library that were available in January

2016; a total of 5677 systematic reviews were collected, containing more than 180,000

meta-analyses. We only considered meta-analyses with continuous or binary outcomes.

For binary outcomes, the treatment effects were measured by the log odds ratio. When a

study contained a zero data cell in one arm only, we added a continuity correction of 0.5

to all studies’ data cells in the corresponding meta-analysis so that log odds ratios and

their variances can be estimated [3, 84]. Studies with zero data cells in both treatment

and control arms were removed from the meta-analyses because information provided by

such studies is limited [3,85,86]. For continuous outcomes, some studies did not report

29
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the treatment effects’ standard errors; they were also removed from the meta-analyses.

After removing the ineligible studies, we focused on meta-analyses containing at least

five studies. We finally obtained a total of 20,603 meta-analyses; among them, 6080 and

14,523 meta-analyses have continuous and binary outcomes, respectively.

For meta-analyses with continuous outcomes, we applied Begg’s rank test, the trim

and fill method, and Egger’s and Tang’s regression tests to assess publication bias; these

approaches have been proposed for all types of outcomes [24–26,29]. For meta-analyses

with binary outcomes, we also considered Macaskill’s, Deeks’, and Peters’ regression

tests, which were originally designed for log odds ratios [31–33]. As suggested by many

authors, the statistical significance level was set to 0.1 because the statistical power for

testing publication bias is generally low [24, 25, 32]. Moreover, Cohen’s κ, a coefficient

upper bounded by 1, was used to measure pairwise agreement among publication bias

tests [87]. The agreement was considered strong if κ was larger than 0.6, and weak if κ

was smaller than 0.4; the agreement was moderate when κ is between 0.4 and 0.6 [88].

Within a systematic review, multiple meta-analyses may be performed for different

outcomes, but using information from some common populations; therefore, these meta-

analyses can be correlated [89]. To reduce the impact of such correlations, we also

conducted the analysis using a restricted dataset. Specifically, the meta-analysis with

the largest number of studies was chosen from each systematic review. If a systematic

review contained at least two meta-analyses with the same largest number of studies,

the one with the largest total sample size was selected; if the total sample sizes are still

equal, one meta-analysis was randomly chosen from those having the largest number

of studies and total sample size. Again, we focused on meta-analyses containing at

least five studies. Using these criteria, 499 and 1380 meta-analyses with continuous

and binary outcomes respectively were extracted from the entire set of 5677 systematic

reviews.

3.2 Results

Figures 3.1 and 3.2 show the P -values produced by the various publication bias tests for

the Cochrane meta-analyses with continuous and binary outcomes, respectively. The
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horizontal axis presents each meta-analysis sorted by its size (i.e., the number of stud-

ies); the meta-analyses with the same size are sorted by their IDs in the Cochrane

Library. The vertical axis shows the P -values transformed by negative base 10 loga-

rithm, and three statistical significance levels, 0.01, 0.05, and 0.1, are displayed. Both

figures illustrate that the area representing small meta-analyses is much wider than that

representing large meta-analyses, and most Cochrane meta-analyses contain less than 10

studies. Specifically, among the entire 20,603 meta-analyses with continuous or binary

outcomes, 5338 meta-analyses contain 5 studies, while only 132 meta-analyses contain

20 studies. The median number of studies is 7, and the lower and upper quartiles are 5

and 10 respectively.

Overall, Table 3.1 shows that Begg’s rank test and the trim and fill method detect

statistically significant publication bias in far fewer meta-analyses than the regression

tests. In particular, for small meta-analyses, Figures 3.1 and 3.2 indicate that the P -

values produced by Begg’s rank test and the trim and fill method are generally larger

than the regression tests. For example, among the meta-analyses containing 5 studies,

most P -values produced by Begg’s rank test and all P -values produced by the trim and

fill method are greater than 0.05, while the regression tests imply extreme publication

bias with P -value < 0.01 in some meta-analyses. In addition, Begg’s rank test and the

trim and fill method are more likely to detect publication bias in large meta-analyses

than in small ones. Furthermore, note that all P -values of the trim and fill method

are discontinuous and massed at several specific values, because this method uses the

negative binomial distribution, which is discrete, to calculate P -value [26]. Many P -

values of Begg’s rank test are also massed at several specific values. This is because

the rank test calculates an exact P -value, taking certain discontinuous values, when the

number of studies is small and the treatment effects have no ties; otherwise, the P -value

is calculated using the normal approximation of the rank statistic’s distribution.

Compared with Begg’s rank test and the trim and fill method, the significance of

publication bias assessed by the regression tests seems to be less dependent on the size

of the meta-analysis. Table 3.1 shows that Egger’s test detects statistically significant

publication bias in 13.9% of meta-analyses with continuous outcomes and 16.9% of those

with binary outcomes; these proportions are higher than the other regression tests.

The numbers of meta-analyses with statistically significant publication bias detected by
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Tang’s, Deeks’, and Peters’ tests are similar for binary outcomes. Moreover, the P -value

plots of Tang’s and Deeks’ tests in Figure 3.2 are fairly similar. However, the plots of

the other regression tests are noticeably different: one test may not detect statistically

significant publication bias for a meta-analysis, while another test could lead to an

extremely small P -value for the same meta-analysis.

Table 3.2 quantifies the agreement among the tests using Cohen’s κ coefficient. The

upper table uses all extracted Cochrane meta-analyses, and the lower one is based on

the restricted dataset, which consists of the largest meta-analysis from each systematic

review. Most results in the upper and lower tables are similar. We may focus on the

lower table, in which the meta-analyses are from different systematic reviews and may

be deemed independent. Begg’s rank test and the trim and fill method have a rather

weak agreement (κ ≤ 0.40), and their agreement with the regression tests is also weak.

Egger’s test has moderate agreement with Tang’s, Deeks’, and Peters’ regression tests.

Most Cohen’s κ coefficients between Tang’s, Macaskill’s, Deeks’, and Peters’ tests are

close to 0.60, which may imply moderately strong agreement. Note that the Cohen’s

κ coefficient between Tang’s and Deeks’ tests is close to 1, implying a nearly perfect

agreement; this confirms our observation in Figure 3.2.

Categorized by the number of studies, Figure 3.3 describes the proportions of meta-

analyses having statistically significant publication bias based on the various tests, and

their Wald-type 95% confidence intervals. On the one hand, similarly to the patterns

of the P -value plots in Figures 3.1 and 3.2, the proportion tends to be greater for larger

meta-analyses, especially for binary outcomes. On the other hand, the proportions of

the Cochrane meta-analyses having statistically significant publication bias are between

approximately 10% and 30% for most sizes of meta-analyses. In addition, publication

bias is detected by at least one test in more than 20% of meta-analyses with continuous

outcomes and in more than 30% of meta-analyses with binary outcomes.

Figures A.2–A.4 in Appendix A.4 show the P -value plots and the plot of proportions

of having publication bias based on the restricted dataset. The trends in these plots are

similar to those in Figures 3.1–3.3, though the 95% confidence intervals in Figure A.4

are wider than those in Figure 3.3 because the restricted dataset contains far fewer

meta-analyses.
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3.3 Discussion

Using a large collection of meta-analyses, this chapter illustrated that publication bias

frequently appears in the Cochrane systematic reviews, so it should be routinely as-

sessed. Egger’s regression test detects statistically significant publication bias in more

meta-analyses than the others. However, this study has several limitations. For ex-

ample, the Cochrane Library only contains meta-analyses in health care, so the results

may not be generalizable to other research fields. Also, since we never know whether

a Cochrane meta-analysis truly has publication bias, the results in Table 3.1 and Fig-

ures 3.1–3.3 may not directly imply statistical powers of the tests.

Since the agreement among most publication bias tests is weak or moderate, re-

searchers need to carefully interpret the test results. Instead of reporting the result

from a single test, researchers are encouraged to use a variety of methods: different

tests make different assumptions about the association between the treatment effects

and precision measures (e.g., treatment effects’ standard error or sample size), so the

tests that yield fairly small P -values may reveal some patterns for further investigation.

Tang’s and Deeks’ regression tests are shown to have almost identical performance.

Tang’s method is motivated by examining the asymmetry of the sample-size-based fun-

nel plot for all types of outcomes, and the independent variable in the regression is the

total sample size within each study [29]; Deeks’ method was originally developed for

meta-analysis of diagnostic tests, and the regression independent variable is the ‘effec-

tive sample size’ (Table 3.1) [31]. If the allocation ratio for the treatment and control

groups is close to 1:1, which is common in randomized controlled trials, then the ‘ef-

fective sample size’ is close to the total sample size. Therefore, it is not surprising to

obtain similar results using Tang’s and Deeks’ tests.

All seven tests considered in this chapter are motivated by the funnel plot; however,

the funnel plot’s asymmetry needs to be interpreted from various perspectives. For

example, since small studies may be biased due to poor quality in design and they are

likely targeted at high-risk groups that can produce positive treatment effects, some

authors often view the funnel plot as an approach to checking for ‘small study effects’ in

general, rather than publication bias in particular [30, 90, 91]. In addition, the P -value

plots in Figures 3.1 and 3.2 indicate that some publication bias tests tend to detect
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more statistically significant publication bias in larger meta-analyses. As the number of

studies increases, a meta-analysis likely collects more heterogeneous or outlying studies,

which can cause a funnel plot’s asymmetry for reasons other than publication bias.

Outliers may be present in meta-analysis due to several reasons. For example, some

study results could be outlying because of errors in the process of recording, analyzing,

or reporting data. Also, if the quality of a systematic review is poor, the populations

in certain studies may not meet strict inclusion and exclusion criteria, so such studies

may be outlying compared with the other collected studies. Outliers may lead to a

heavy tail on one side of the treatment effect’s distribution, so the funnel plot may look

asymmetric.

Between-study heterogeneity also seriously threatens proper interpretation of the

funnel plot’s asymmetry. It arises because the collected studies differ in their patient

selection, baseline disease severity, study location, etc. [78, 92]. The random-effects

meta-analysis is usually applied to deal with heterogeneity; a normal distribution is con-

ventionally specified to model study-specific underlying treatment effects [6, 93]. This

model is appropriate if heterogeneity permeates the entire collection of studies; however,

it is also possible that heterogeneity is mostly limited to several subgroups of studies,

while the studies within each subgroup share a common overall treatment effect. In the

presence of multiple subgroups, even if the funnel plot within each subgroup is fairly

symmetric, the funnel plot based on the entire collection of studies can be asymmetric;

such asymmetry is induced by heterogeneity, but not publication bias [34, 94]. Per-

forming separate analysis within each subgroup is more appropriate for such data than

pooling the results of all studies. As heterogeneity is common in meta-analysis [78,95],

researchers need to carefully assess heterogeneity along with checking for publication

bias. For example, Ioannidis and Trikalinos [89] advised that it may not be appropriate

to use the publication bias tests if the I2 statistic [13, 95] is greater than 50% or the

Q statistic [9, 10] is significant with P -value < 0.1. Although these criteria may not

be rigorous for determining whether the publication bias tests are appropriate, a fairly

large heterogeneity measure alerts researchers to interpret the funnel plot’s asymmetry

with great caution.
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(b) Trim and fill method
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(c) Egger's regression test
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(d) Tang's regression test
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Figure 3.1: The P -values produced by the various publication bias tests for the 6080

Cochrane meta-analyses with continuous outcomes. Plus signs indicate P -values <

10−7.
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(a) Begg's rank test
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(b) Trim and fill method
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(c) Egger's regression test
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(d) Tang's regression test
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(e) Macaskill's regression test
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(f) Deeks' regression test
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(g) Peters' regression test
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Figure 3.2: The P -values produced by the various publication bias tests for the 14,523

Cochrane meta-analyses with binary outcomes. Plus signs indicate P -values < 10−7.



3
7

●

No. of studies (Corresponding no. of meta−analyses)

(a) Proportion of meta−analyses with continuous outcomes having statistically significant publication bias

P
ro

p
o
rt

io
n
 (

%
)

●

●
●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

0

10

20

30

40

50

5

(1598)

6

(1051)

7

(744)

8

(522)

9

(429)

10

(318)

11

(230)

12

(179)

13

(161)

14

(113)

15

(103)

16

(89)

17

(70)

18

(53)

19

(62)

20

(24)

> 20

(334)

All

(6080)

●

No. of studies (Corresponding no. of meta−analyses)

(b) Proportion of meta−analyses with binary outcomes having statistically significant publication bias
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Figure 3.3: Proportions of the Cochrane meta-analyses having statistically significant publication bias (P -value < 0.1)

based on the various tests and their 95% confidence intervals. ‘Any test’ implies the proportion of having statistically

significant publication bias detected by at least one test. The label ‘All’ on the horizontal axis represents all extracted

meta-analyses with continuous/binary outcomes.
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Table 3.1: Brief descriptions for the various publication bias tests and summary of test results for the Cochrane meta-analyses.

No. of meta-analyses with P -value < 0.1 (Proportion)
Test Designed for Description Based on all Cochrane meta-analyses Based on the restricted dataseta

Continuousb Binaryc Continuousd Binarye

Begg’s rank All Use the rank correlation test to assess 467 (7.7%) 1253 (8.6%) 43 (8.6%) 133 (9.6%)
test outcomes the association between standardized

effect size and its standard error.

Trim and fill All Estimate the number of suppressed 378 (6.2%) 1523 (10.5%) 33 (6.6%) 177 (12.8%)
method outcomes studies, and calculate P -value using

its negative binomial distribution in
the absence of publication bias.

Egger’s All Weighted linear regression of y on s, 843 (13.9%) 2455 (16.9%) 74 (14.8%) 264 (19.1%)
regression test outcomes with weights 1/s2.

Tang’s All Weighted linear regression of y on 727 (12.0%) 1723 (11.9%) 67 (13.4%) 180 (13.0%)

regression test outcomes 1/
√
N , with weights N .

Macaskill’s Binary Weighted linear regression of y on N , N/A 2055 (14.1%) N/A 200 (14.5%)
regression test outcomes with weights Ns ×Nf/N .

Deeks’ Binary Weighted linear regression of y on N/A 1729 (11.9%) N/A 182 (13.2%)
regression test outcomes 1/

√
Ne, with weights Ne.

Peters’ Binary Weighted linear regression of y on N/A 1717 (11.8%) N/A 189 (13.7%)
regression test outcomes 1/N , with weights Ns ×Nf/N .

Notation: y, effect size; s2, within-study variance; N , total no. of patients; Ns and Nf , no. of patients with and without events for binary outcomes

respectively; Ne, effective sample size, defined as 4N0 ×N1/N , where N0 and N1 are sample sizes the control and treatment groups respectively;

N/A, not applicable.

a The restricted dataset consists of the meta-analyses with the largest numbers of studies in the corresponding Cochrane systematic reviews.

b Among 6080 meta-analyses with continuous outcomes.

c Among 14,523 meta-analyses with binary outcomes.

d Among 499 meta-analyses with continuous outcomes in the restricted dataset.

e Among 1380 meta-analyses with binary outcomes in the restricted dataset.
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Table 3.2: Cohen’s κ coefficients for the agreement among the pub-

lication bias tests. Within each sub-table, the results in the upper

and lower triangular are based on the Cochrane meta-analyses with

continuous and binary outcomes, respectively.

Based on all Cochrane meta-analyses with at least five studies:
Begg 0.23 0.48 0.33 N/A N/A N/A
0.25 T & F 0.35 0.20 N/A N/A N/A
0.46 0.43 Egger 0.51 N/A N/A N/A
0.26 0.30 0.43 Tang N/A N/A N/A
0.14 0.24 0.35 0.55 Macaskill N/A N/A
0.27 0.30 0.43 0.93 0.53 Deeks N/A
0.27 0.25 0.40 0.67 0.47 0.66 Peters

Based on the meta-analyses with the largest numbers of studies
in the corresponding Cochrane systematic reviews:
Begg 0.40 0.51 0.33 N/A N/A N/A
0.30 T & F 0.41 0.25 N/A N/A N/A
0.46 0.45 Egger 0.48 N/A N/A N/A
0.29 0.31 0.45 Tang N/A N/A N/A
0.17 0.24 0.38 0.60 Macaskill N/A N/A
0.28 0.31 0.45 0.95 0.59 Deeks N/A
0.27 0.28 0.46 0.69 0.55 0.70 Peters

Begg, the rank test; Egger, Tang, Macaskill, Deeks, and Peters,

the regression tests; T & F, the trim and fill method; N/A, not

applicable. Cohen’s κ coefficients ≥ 0.60 are in bold.



Chapter 4

Quantifying Publication Bias in

Meta-Analysis

This chapter introduces an alternative measure to quantify publication bias, the skew-

ness of the standardized deviates. The new measure not only has an intuitive inter-

pretation as the asymmetry of the collected study results but also can serve as a test

statistic. The large sample properties of the new measure are studied. We also evalu-

ate its performance using simulations and three actual meta-analyses published in the

Cochrane Database of Systematic Reviews.

4.1 Notation and the regression test

Suppose a meta-analysis collects n studies; each study reports an effect size yi (e.g.,

log odds ratio for binary outcomes) and its within-study variance s2i , due to sampling

error (i = 1, . . . , n). If the collected studies are deemed homogeneous, sharing a common

underlying true effect size µ, then the fixed-effect model is customarily used, specified by

yi ∼ N(µ, s2i ). The studies are heterogeneous if they have different underlying effect sizes

µi; the corresponding random-effects model assumes yi ∼ N(µi, s
2
i ) and µi ∼ N(µ, τ2),

where τ2 is the between-study variance and µ is interpreted as the overall mean effect

size [6]. The random-effects model reduces to the fixed-effect model by setting τ2 = 0.

To detect publication bias, Egger et al. [25] proposed a regression test, regressing

40



41

the standardized effect sizes (yi/si) on the corresponding precisions (1/si); that is,

yi/si = α+ µ · 1/si + ǫi, ǫi
iid∼ N(0, σ2).

Egger’s regression test transforms the original null hypothesis, H0: no publication bias,

to testing H ′
0: the regression intercept is zero. Alternatively, in the presence of no-

ticeable heterogeneity between studies, we may slightly modify Egger’s test by using

the marginal standard deviations to produce the regression predictors and responses

under the random-effects model. Note that the random-effects model can be written

marginally as yi = µ+δi+ξi, where δi
iid∼ N(0, τ2) is the random effect and ξi ∼ N(0, s2i )

is the sampling error in study i. Dividing by the marginal standard deviation (s2i+τ
2)1/2,

we have the following modified regression test:

yi(s
2
i + τ2)−1/2 = α+ µ(s2i + τ2)−1/2 + ǫi, ǫi

iid∼ N(0, σ2). (4.1)

Like Egger’s test, the intercept α is zero under the true model; in the presence of

publication bias, it departs from zero. The overall mean effect size µ becomes the

regression slope. Also, σ2 allows potential under- or over-dispersion of the errors. In

practice, heterogeneity is routinely assessed using the Q or I2 statistic [6,10,13,95], and

the between-study variance can be estimated as τ̂2 using the method of moments or the

maximum restricted likelihood method [69, 93]. If heterogeneity is not significant, then

setting τ2 = 0 reduces Equation (4.1) to Egger’s original test. Since the heterogeneity

frequently appears in meta-analyses [78], this chapter will introduce publication bias

measures based on the modified regression test.

Let the least squares estimates of the regression coefficients in model (4.1) be α̂ and

µ̂. The estimated regression intercept is essential in the regression test; we denote this

statistic as

TI = α̂.

Under the null hypothesis, TI divided by its standard error follows the t-distribution

with degrees of freedom n−2, which gives the P -value of the regression test, denoted as

PI . Since the standardized effect sizes are unit-free, the estimated regression intercept

TI is also unit-free. Therefore, TI can serve as a measure for quantifying publication

bias [25]. However, the regression intercept TI lacks an intuitive interpretation for the

asymmetry of the collected study results. Meta-analysts usually report only the P -value
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of the regression test, not the magnitude of TI , to describe the severity of publication

bias.

4.2 Skewness and skewness-based test

The regression test does not fully describe the asymmetry of the collected study re-

sults. By linear regression theory, the estimated intercept can be expressed as TI =

n−1
∑n

i=1 d̂i, where

d̂i =
yi − µ̂√
s2i + τ̂2

is an estimate of the study-specific standardized deviate di = (yi − µ)(s2i + τ2)−1/2.

Therefore, the regression intercept TI only reflects the average of the standardized

deviates. To better test and quantify publication bias, we further consider the shape of

the di’s.

Note that di = α+ ǫi, so the standardized deviates di are distributed with the same

shape as the errors ǫi. To test the original H0, we may alternatively test H ′′
0 : α = 0

and ǫi
iid∼ N(0, σ2) vs. H ′′

1 : α 6= 0 or ǫi’s are iid from a skewed distribution with mean

zero. Clearly, H ′′
0 is stronger than the null hypothesis H ′

0 of Egger’s test, but it is still

a necessary condition if the original null hypothesis H0 holds. Hence, the statistical

power should be enhanced by testing H ′′
0 compared to testing H ′

0.

In the statistical literature, skewness has long been used as a descriptive quan-

tity for the asymmetry of a distribution [96], but it is fairly novel in the literature of

meta-analysis. To assess publication bias in meta-analysis, we may quantify the asym-

metry of ǫ = (ǫ1, . . . , ǫn)
T by the skewness, calculated as Skew(ǫ) = m3/s

3, where s =
{
(n− 1)−1

∑n
i=1(ǫi − ǭ)2

}1/2
is the sample standard deviation, m3 = n−1

∑n
i=1(ǫi − ǭ)3

is the sample third central moment, and ǭ = n−1
∑n

i=1 ǫi. In practice, we may replace

the unknown errors ǫ with the regression residuals ǫ̂ = (ǫ̂1, . . . , ǫ̂n)
T, where ǫ̂i = d̂i−TI .

Denote the sample skewness of the errors as

TS = Skew(ǫ̂),

which we propose as an alternative measure of publication bias. We will show that TS

is a consistent estimate of the true skewness.
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The sample skewness TS can take any real value. A symmetric distribution (i.e.,

publication bias is not present) has zero skewness. A noticeably large positive skewness

indicates that the right tail of standardized deviates’ distribution is longer than its left

tail. Therefore, some studies on the left side in the funnel plot (i.e., those with negative

effect sizes) might be missing due to publication bias. In this situation, the regression

intercept TI is also expected to be positive. On the other hand, a large negative skewness

implies that some studies may be missing on the right side. A common but rough rule of

interpreting skewness is as follows. If the skewness is less than 0.5 in absolute magnitude,

the distribution of the standardized deviates is approximately symmetric; the skewness

is deemed considerable if it is between 0.5 and 1 in absolute magnitude, and it may

be substantial if its absolute value is greater than 1. To interpret the skewness more

rigorously, we study its large sample properties.

Denote βk = E(ǫ1 − β)k as the kth central moment of the errors ǫi, where β =

E(ǫ1) = 0, and the sample kth central moment is mk = n−1
∑n

i=1(ǫi − ǭ)k. Then the

true skewness of the errors is γ = β3/β
3/2
2 . In addition, let m̂k = n−1

∑n
i=1(ǫ̂i − ¯̂ǫ)k

be the sample kth central moment after plugging in the known residuals ǫ̂i; note that

¯̂ǫ = n−1
∑n

i=1 ǫ̂i = 0. Denote
D−→ as the convergence in distribution. We have the

following proposition regarding the asymptotic distribution of the sample skewness TS .

Proposition 4. Assume that the study-specific errors ǫi have finite sixth central moment

(i.e., β6 <∞) and the marginal precisions (s2i +τ
2)−1/2 have finite third moment. Then,

√
n(TS − γ)/

√
v̂

D−→ N(0, 1) as n→ ∞, where

v̂ = 9 +
35

4
m̂−3

2 m̂2
3 − 6m̂−2

2 m̂4 + m̂−3
2 m̂6 +

9

4
m̂−5

2 m̂2
3m̂4 − 3m̂−4

2 m̂3m̂5.

Proposition 4 provides an approximate 95% confidence interval (CI) of the sample

skewness TS . Consequently, TS not only quantifies publication bias but also serves as a

test statistic. Under H ′′
0 , we can simplify the asymptotic distribution of TS as follows.

Corollary 1. Under the null hypothesis H ′′
0 ,
√
n/6TS

D−→ N(0, 1) as n→ ∞.

Appendix B.2 provides the proofs. The P -value of the skewness-based test is calcu-

lated using Corollary 1:

PS = 2
(
1− Φ

(√
n/6|TS |

))
.
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The regression intercept TI quantifies the departure of the average standardized

deviate from zero; the skewness TS quantifies the departure of the standardized deviates’

distribution from symmetry. The regression test and the skewness-based test may differ

in power in different situations. Therefore, we may combine the test results of TI and

TS so that the combined test maintains high power across various settings. Under

H ′′
0 , note that TI is the least squares estimate of the intercept and TS depends only

on the residuals ǫ̂i. Because the least squares estimates of regression coefficients are

independent of the residuals if the errors ǫi are normally distributed, we immediately

have the following proposition.

Proposition 5. Under the null hypothesis H ′′
0 , TI and TS are independent.

Due to the independence of TI and TS , the adjusted P -value for combining TI and

TS can be calculated as PC = 1 − (1 − Pmin)
2, where Pmin = min{PI , PS} [97]. The

performance of the skewness-based test and the combined test will be studied using

simulations and actual meta-analyses.

In practice, many meta-analyses only collect a small number of studies, and the

large sample properties may apply poorly for them. Alternatively, a nonparametric

bootstrap can be used to derive the 95% CI of the skewness: take samples of size n with

replacement from the original data {(yi, s2i )}ni=1 for B (say 1000) iterations and calculate

2.5% and 97.5% quantiles of the skewness over the B bootstrap samples. A parametric

resampling method can also be used to produce a P -value for the skewness-based test.

Specifically, first, estimate the overall mean effect size µ̄ under the null hypothesis that

there is no publication bias. Second, draw n samples under the null hypothesis, i.e.,

y⋆i ∼ N(µ̄, s2i + τ̂2), and repeat this for B iterations. Third, based on the B sets of

bootstrap samples, calculate the skewness as T
(b)
S for b = 1, . . . , B. Finally, the P -value

of the skewness-based test is PS =
[∑B

b=1 I(|T
(b)
S | ≥ |TS |) + 1

]
/(B + 1), where I(·) is

the indicator function. Similar procedures can also be used for the regression intercept

TI .

The code to implement the proposed methods will be included in our R package

‘altmeta’, available on the Comprehensive R Archive Network (CRAN).
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4.3 Simulations

We performed simulations to evaluate the type I error rate and power of the modified

regression test TI , the proposed skewness-based test TS , and the combined test based on

the adjusted P -value PC . The commonly-used Egger’s regression test, Begg’s rank test,

and the trim and fill method (T & F) were also considered. In addition, we calculated the

P -values of TI and TS using both their theoretical null distributions and the resampling

methods. As suggested by many other authors (e.g., [32]), the nominal significance

level was set to 10% for publication bias tests because the tests usually have low power.

For each simulated meta-analysis, the true overall effect size was µ = 1, the within-

study standard errors were drawn from si ∼ U(1, 4), and the between-study standard

deviation was set to τ = 0 (I2 = 0%), 1 (6% ≤ I2 ≤ 50%), and 4 (50% ≤ I2 ≤ 94%).

The study-specific effect sizes were then generated as yi ∼ N(µi, s
2
i ) and µi ∼ N(µ, τ2).

The number of studies collected in each meta-analysis was set to n = 10, 30, and 50.

We considered the following three scenarios to induce publication bias.

I. (Suppressing non-significant findings) We used the above parameters to generate

artificial studies, and suppose that they aimed at testing H0 : µ = 0 vs. H1 :

µ 6= 0. We assumed that studies with significant findings (i.e., P -value < 0.05

for treatment effect size) were published with probability 1. Also, studies with

non-significant findings were published with probability π; the publication rate

was set to π = 0, 0.02, 0.05, and 1. Note that π = 1 implies no publication bias.

Studies were generated iteratively until we obtained n published studies to form

a simulated meta-analysis.

II. (Suppressing small studies with non-significant findings) In many cases, small

studies with non-significant findings are more likely to be suppressed than large

studies; hence, some authors prefer to treat the funnel-plot-based methods as

approaches to checking for ‘small-study effects’ [91]. We also simulated meta-

analyses following this scenario. Studies with significant findings were published

with probability 1. Large studies with non-significant findings and standard errors

si < 1.5 were also published with probability 1; however, small studies with non-

significant findings and standard errors si ≥ 1.5 were published with probability

π, where π = 0, 0.1, 0.2, and 1. Again, π = 1 implies no publication bias. The



46

studies were generated iteratively until we obtained n published studies to form a

simulated meta-analysis.

III. (Suppressing negative effect sizes) Publication bias can be also induced on the

basis of study effect size [26, 33, 98]. For each simulated meta-analysis, n + m

studies were generated, and the m studies with the most negative effect sizes were

suppressed. We set m = 0, ⌊n/3⌋, and ⌊2n/3⌋, where ⌊x⌋ denotes the largest

integer not greater than x. Note that m = 0 implies no publication bias.

For each setting, 10,000 meta-analyses were simulated. The Monte Carlo standard errors

of all type I error rates and powers reported below were less than 1%.

Table 4.1 presents the type I error rates and powers for Scenario I. Type I error

rates of most tests are controlled well, while that of Egger’s test is a little inflated when

the heterogeneity is substantial (τ = 4). For weak or moderate heterogeneity (τ = 0 or

1), Egger’s regression test and the modified regression test TI have similar power, and

Begg’s rank test seems to be more powerful than the regression test. Also, the trim

and fill method performs poorly. Note that its power drops as π decreases from 0.05

to 0 when n = 50 and τ = 0 or 1. Indeed, the trim and fill method is based on the

assumption in Scenario III; that is, studies are suppressed if they have most negative

(or positive) effect sizes, not according to their P -values. In Scenario I, the two-sided

hypothesis testing for treatment effects H0 : µ = 0 vs. H1 : µ 6= 0 can produce significant

findings with both negative and positive effect sizes, so the simulated meta-analyses can

seriously violate the assumption of the trim and fill method.

For small meta-analysis with n = 10, using the asymptotic property in Corollary 1,

the skewness-based test TS is less powerful than the regression test and Begg’s rank

test when π = 0.02 or 0.05, and its type I error rate is much smaller than the nominal

significance level 10%. This is possibly because TS ’s asymptotic property is a poor

approximation for small n. However, using the resampling method, the power of TS is

dramatically higher than the other tests when τ = 0 and 1. Moreover, as the number

of studies n increases to 30 and 50, the skewness-based test using either the asymptotic

property or the resampling method still outperforms the other tests, and its power

remains high as the heterogeneity becomes substantial (τ = 4).
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Table 4.2 shows the results for Scenario II. The regression test and Begg’s rank

test are more powerful than TS when τ = 0 and 1, while they are outperformed by TS

when τ = 4. In this scenario, TS seems to be less powerful than in Scenario I. For

each simulated meta-analysis, because only small studies with non-significant findings

were suppressed, large studies are still symmetric in the funnel plot. Consequently,

the distribution of the n studies may have two modes: the large studies are centered

around the true overall effect size µ, and the small studies have an overestimated mean

due to the suppression. Since the interpretation of skewness is obscure for multi-modal

distributions, TS may lose power in this scenario.

Table 4.3 presents the type I error rates and powers for Scenario III. Since the

trim and fill method’s assumption is perfectly satisfied in this scenario, this method is

generally more powerful than the other tests. In the absence of heterogeneity (τ = 0),

both the regression test and Begg’s rank test are more powerful than the skewness-based

test TS ; as the heterogeneity increases, they are outperformed by TS , especially when n

is large.

In summary, the skewness-based test TS can be much more powerful than the existing

tests in some settings, while no test can uniformly outperform the others. Although TS

suffers from low power when the heterogeneity is weak or moderate in Scenarios II and

III, the combined test of TI and TS maintains high power in most settings by borrowing

strengths from each of the separate test.

4.4 Case studies

We illustrate the performance of the skewness measure and test by three actual meta-

analyses published in the Cochrane Database of Systematic Reviews. The first meta-

analysis was performed by Stead et al. [99] to investigate the effect of nicotine gum

for smoking cessation; it contains 56 studies and the effect size is the log risk ratio.

The second meta-analysis, performed by Hróbjartsson and Gøtzsche [100], investigates

the effect of placebo interventions for all clinical conditions regarding patient-reported

outcomes; it contains 109 studies and the effect size is standardized mean difference.

The third meta-analysis reported in Liu and Latham [101] compares the effect of the

progressive resistance strength training exercise vs. control; it contains 33 studies and
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the effect size is also standardized mean difference. Figure 4.2 presents their contour-

enhanced funnel plots; the shaded regions represent different significance levels [102].

The proposed methods and the commonly-used tests were applied to the three meta-

analyses, and both the theoretical null distributions and the resampling methods were

used to calculate the 95% CIs and P -values for TI and TS . We also calculated the

P -values for the combined test. Table 4.4 presents the results. Since the size of each ex-

ample n is large (for meta-analyses), the 95% CIs and P -values based on the theoretical

null distributions are similar to those based on the resampling methods.

For the meta-analysis in Stead et al. [99], the three commonly-used tests yield P -

values > 0.10, indicating non-significant publication bias; the P -value of the modified

regression test TI is also large. However, the proposed skewness TS is 0.91 with 95%

CI (0.14, 1.68) and P -value 0.005 using the resampling methods; it implies substantial

publication bias. Since TS is significantly greater than zero, some studies with negative

effect sizes may be missing. Indeed, the funnel plot in Figure 4.2(a) shows that most

studies are massed on the right side, tending to have significant positive results; some

studies are potentially missing on the left side. Moreover, benefiting from the high power

of the skewness-based test, the combined test also indicates significant publication bias.

For the meta-analysis in Hróbjartsson and Gøtzsche [100], all tests imply significant

publication bias; the P -values of Begg’s rank test, the trim and fill method, and the

skewness-based test are fairly small (< 0.01). Both the regression intercept TI and the

skewness TS are significantly negative, indicating that some studies are missing on the

right side in the funnel plot; Figure 4.2(b) confirms this. For the meta-analyses in Liu

and Latham [101], Figure 4.2(c) shows that its funnel plot is approximately symmetric,

so there appears to be no publication bias. Indeed, all tests yield P -values much greater

than 0.1, and the publication bias measures TI and TS are close to zero.

4.5 Discussion

This chapter proposed a new measure, the skewness of the standardized deviates, for

quantifying potential publication bias in meta-analysis. The intuitive interpretation of

the asymmetry of the collected study results makes this measure appealing; its per-

formance was illustrated by three actual meta-analyses. Also, the skewness can serve
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as a test statistic and its large sample properties have been studied. The simulations

showed that the skewness-based test has high power in many cases. The large-sample

properties of the skewness did not perform well for small n, but this can be remedied by

using resampling methods. In addition, we proposed a combined test that depends on

the P -values of both the regression and skewness-based tests; it is shown to be powerful

in most simulation settings.

The proposed skewness has some limitations. First, for small meta-analyses, the

variation of the sample skewness can be large. Researchers should always use skewness

along with its 95% confidence interval. Second, although a symmetric distribution has

zero skewness, zero skewness does not necessarily imply a symmetric distribution; for

example, an asymmetric distribution may have zero skewness if it has a long but thin

tail on one side and a short but fat tail on the other side. Also, the skewness generally

describes publication bias well when the effect sizes are unimodal, but its interpretation

for multi-modal distributions is obscure. Therefore, the regression intercept is preferred

when the studies appear to have multiple modes, which may be identified by visual

examining the funnel plot. Third, like many other approaches to assessing publication

bias, the skewness is based on checking the funnel plot’s asymmetry. However, such

asymmetry can be caused by sources other than publication bias [90], such as reference

bias [103, 104], studies with poor quality in design [105, 106], the existence of multiple

subgroups [34], etc. When applying the methods in this chapter to detect or quantify

the asymmetry of study results, researchers may need to examine carefully whether the

asymmetry is caused by publication bias or other sources of bias. In addition, in the

simulations and actual meta-analyses, different methods for publication bias can lead

to fairly different conclusions. Therefore, we are allowed to use a wealth of methods to

detect any potential publication bias.

Like the routinely-used I2 statistic for assessing heterogeneity, the skewness may be

a good characteristic of meta-analysis for quantifying publication bias. In the statistical

literature, the skewness is a conventional descriptive quantity for asymmetry, but it

may not be optimal to serve as a test statistic; more sophisticated tests for a continuous

distribution have been extensively discussed (e.g., [107–109]). Exploring more powerful

tests based on the standardized deviates warrants future study.
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Figure 4.1: The funnel plot of a simulated meta-analysis containing 60 studies. The 10

studies with the most negative effect sizes were suppressed due to publication bias, and

the remaining 50 studies were ‘published’.
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(b) Hróbjartsson and Gøtzsche (2010)
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(c) Liu and Latham (2009)
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Figure 4.2: Contour-enhanced funnel plots of the three actual meta-analyses. The

vertical and diagonal dashed lines represent the overall estimated effect size and its

95% confidence limits, respectively, based on the fixed-effect model. The shaded regions

represent different significance levels for the effect size.



52

Table 4.1: Type I error rates (π = 1) and powers (π < 1) expressed as percentage, for various tests for publication bias due to

suppressing non-significant findings (Scenario I).

Test
τ = 0 (I2 = 0%) τ = 1 (6% ≤ I2 ≤ 50%) τ = 4 (50% ≤ I2 ≤ 94%)

π = 1 π = 0.05 π = 0.02 π = 0 π = 1 π = 0.05 π = 0.02 π = 0 π = 1 π = 0.05 π = 0.02 π = 0

n = 10:

Egger 10 15 23 35 11 14 20 31 13 10 10 11

Begg 7 13 28 57 5 12 23 44 5 4 4 4

T & F 11 8 12 30 11 7 10 21 5 8 9 9

TI 10 17 26 40 10 17 25 39 10 14 15 16

TI
* [9] [21] [29] [41] [11] [19] [27] [39] [9] [15] [17] [17]

TS 1 7 20 37 1 8 18 32 1 3 3 4

TS
* [10] [27] [48] [59] [10] [29] [46] [58] [10] [15] [17] [19]

Combined 6 14 29 61 6 14 27 52 5 9 10 11

Combined* [10] [26] [50] [75] [10] [27] [47] [68] [8] [15] [17] [18]

n = 30:

Egger 10 17 27 45 10 14 23 35 14 11 12 12

Begg 7 28 64 97 7 24 55 89 5 4 5 6

T & F 12 16 18 17 13 19 20 18 9 21 21 20

TI 10 18 27 42 10 17 25 36 10 15 16 18

TI
* [9] [22] [33] [49] [11] [21] [31] [43] [10] [18] [20] [22]

TS 6 50 83 94 6 59 83 92 5 16 20 24

TS
* [10] [61] [88] [96] [10] [70] [88] [94] [10] [26] [30] [34]

Combined 8 42 77 93 8 48 76 90 8 16 19 23

Combined* [10] [53] [85] [96] [11] [61] [84] [94] [9] [23] [28] [32]

n = 50:

Egger 9 20 35 58 11 17 28 46 14 12 13 14

Begg 7 38 83 100 7 33 75 98 5 5 7 9

T & F 12 20 17 10 12 23 19 13 9 18 18 18

TI 9 19 31 49 10 18 28 43 10 16 18 20

TI
* [9] [24] [38] [57] [11] [23] [34] [51] [10] [19] [21] [24]

TS 7 77 96 99 7 84 96 98 7 30 36 41

TS
* [10] [82] [97] [99] [10] [87] [97] [99] [10] [37] [44] [49]

Combined 8 67 94 99 9 75 93 98 8 25 30 35

Combined* [9] [74] [96] [100] [11] [81] [96] [99] [9] [31] [36] [42]

The nominal significance level is 10%.

* The results in square brackets are based on the parametric resampling method.
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Table 4.2: Type I error rates (π = 1) and powers (π < 1) expressed as percentage, for various tests for publication bias due to

suppressing small studies with non-significant findings (Scenario II).

Test
τ = 0 (I2 = 0%) τ = 1 (6% ≤ I2 ≤ 50%) τ = 4 (50% ≤ I2 ≤ 94%)

π = 1 π = 0.2 π = 0.1 π = 0 π = 1 π = 0.2 π = 0.1 π = 0 π = 1 π = 0.2 π = 0.1 π = 0

n = 10:

Egger 10 14 22 51 11 13 19 43 13 9 10 12

Begg 7 8 13 30 5 7 12 30 5 4 5 7

T & F 11 10 11 15 11 9 10 13 5 4 5 5

TI 10 15 23 56 10 14 23 54 10 13 16 21

TI
* [9] [19] [29] [61] [11] [19] [28] [59] [9] [15] [18] [25]

TS 1 1 1 5 1 1 1 5 1 1 1 3

TS
* [10] [10] [11] [19] [10] [9] [11] [22] [10] [9] [11] [17]

Combined 6 9 16 48 6 8 15 46 5 7 9 14

Combined* [10] [15] [23] [58] [10] [14] [22] [55] [8] [10] [14] [21]

n = 30:

Egger 10 20 34 69 10 18 30 62 14 10 12 16

Begg 7 16 30 68 7 14 28 66 5 5 7 13

T & F 12 18 23 32 13 15 17 21 9 13 14 13

TI 10 21 36 70 10 20 33 66 10 14 18 25

TI
* [9] [24] [40] [74] [11] [23] [37] [71] [10] [17] [22] [32]

TS 6 5 12 54 6 6 14 58 5 6 10 21

TS
* [10] [10] [18] [59] [10] [10] [21] [64] [10] [11] [17] [31]

Combined 8 16 30 80 8 14 28 75 8 10 14 24

Combined* [10] [20] [36] [83] [11] [18] [33] [81] [9] [13] [20] [33]

n = 50:

Egger 9 26 46 82 11 24 41 78 14 12 14 20

Begg 7 21 43 85 7 19 41 84 5 5 9 19

T & F 12 17 19 21 12 14 15 13 9 12 12 10

TI 9 26 46 82 10 25 42 79 10 15 19 29

TI
* [9] [29] [50] [85] [11] [27] [46] [82] [10] [19] [24] [36]

TS 7 7 20 79 7 9 24 83 7 10 18 36

TS
* [10] [10] [25] [81] [10] [11] [30] [85] [10] [14] [24] [43]

Combined 8 20 41 92 9 19 39 89 8 12 18 34

Combined* [9] [23] [46] [93] [11] [22] [44] [91] [9] [16] [24] [41]

The nominal significance level is 10%.

* The results in square brackets are based on the parametric resampling method.
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Table 4.3: Type I error rates (m = 0) and powers (m > 0) expressed as percentage, for various

tests for publication bias due to suppressing the m most negative effect sizes out of a total of n+m

studies (Scenario III).

Test
τ = 0 (I2 = 0%) τ = 1 (20% ≤ I2 ≤ 50%) τ = 3 (70% ≤ I2 ≤ 90%)

m = 0 ⌊n/3⌋ ⌊2n/3⌋ m = 0 ⌊n/3⌋ ⌊2n/3⌋ m = 0 ⌊n/3⌋ ⌊2n/3⌋
n = 10:

Egger 10 21 31 10 19 25 13 15 14

Begg 6 12 18 6 10 14 4 5 6

T & F 11 27 38 11 25 33 5 13 18

TI 10 21 31 10 18 25 10 11 13

TI
* [9] [12] [13] [11] [13] [12] [9] [12] [13]

TS 2 2 4 2 2 3 1 2 3

TS
* [10] [13] [17] [10] [13] [16] [10] [14] [16]

Combined 6 14 20 6 12 16 6 7 8

Combined* [9] [13] [15] [11] [13] [15] [8] [13] [16]

n = 30:

Egger 10 57 77 11 44 60 14 18 20

Begg 8 46 67 7 35 54 5 12 17

T & F 13 87 97 13 81 92 9 51 63

TI 10 57 77 10 44 60 10 14 16

TI
* [10] [38] [46] [12] [33] [39] [10] [13] [17]

TS 6 25 40 6 25 39 6 26 40

TS
* [10] [34] [51] [11] [34] [51] [10] [37] [52]

Combined 8 54 76 8 43 64 8 23 35

Combined* [10] [42] [56] [12] [39] [53] [9] [30] [44]

n = 50:

Egger 10 77 93 11 61 80 14 19 22

Begg 8 69 89 8 56 76 5 18 26

T & F 12 98 100 13 95 99 9 69 75

TI 10 77 93 11 61 80 10 16 20

TI
* [10] [59] [74] [12] [52] [61] [10] [15] [19]

TS 8 46 69 7 47 68 7 51 69

TS
* [10] [53] [75] [10] [54] [75] [10] [58] [76]

Combined 9 77 95 10 67 87 8 44 62

Combined* [10] [65] [85] [12] [62] [79] [9] [49] [67]

The nominal significance level is 10%.

* The results in square brackets are based on the parametric resampling method.
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Table 4.4: Results of assessing publication bias for three actual meta-analyses.

Meta-analysis
No. of

I2 (%)
P -value Intercept TI Skewness TS P -value of the

studies Egger Begg T & F Measure 95% CI P -value Measure 95% CI P -value combined test

Stead et al. 56 39 0.173 0.136 0.500 0.47 (−0.47, 1.41) 0.323 0.91 (0.14, 1.68) 0.005 0.011

[−0.43, 1.42] [0.317] [0.06, 1.50] [0.005] [0.010]

Hróbjartsson and Gøtzsche 109 42 0.049 0.009 <0.001 −0.81 (−1.54, −0.09) 0.028 −0.74 (−1.23, −0.24) 0.002 0.003

[−1.56, −0.10] [0.030] [−1.17, −0.25] [0.002] [0.004]

Liu and Latham 33 11 0.905 0.469 0.500 0.06 (−0.91, 1.02) 0.905 0.01 (−0.63, 0.64) 0.989 0.991

[−1.09, 1.25] [0.894] [−0.73, 0.68] [0.987] [0.989]

The results in square brackets are based on the parametric resampling method.



Chapter 5

Bayesian Multivariate

Meta-Analysis of Multiple

Factors

This chapter proposes multivariate meta-analysis of multiple factors (MVMA-MF) to

jointly synthesize all risk and protective factors in a field-wide systematic review. Us-

ing the information across multiple factors, this method can produce better estimates

of association measures between the factors and the disease condition, compared with

separate meta-analyses. Multivariate meta-analysis methods have gained much atten-

tion in the recent literature [110–113]. They improve effect estimates by borrowing

information on the correlations between multiple endpoints [114]. Multivariate meta-

analysis methods have been applied to several areas, such as meta-analysis of diagnostic

tests [115–117], meta-analysis of multiple outcomes [118,119], and network meta-analysis

of mixed treatment comparisons [51,53,56,67]. Mixed treatment comparisons use both

direct and indirect evidence of treatment contrasts to synthesize the comparisons be-

tween multiple treatments; its focus is different from MVMA-MF, because MVMA-MF

is concerned with estimating the effect of multiple factors, but not the contrasts between

them.

A multivariate random-effects model generally requires estimates of correlations

within each collected study. In some situations, within-study correlations are known

56
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to be zero. For example, in meta-analysis of diagnostic tests, the study-specific sensi-

tivity and specificity are statistically independent within studies because they are cal-

culated from the true negative and true positive patients, respectively [111]. However,

in MVMA-MF, the factors can be correlated within each study because they may be

measured on the same patients. Such within-study correlations are unknown unless in-

dividual patient data are available. Ignoring within-study correlations in the standard

multivariate random-effects model may have a great impact on the estimated overall

effect sizes [120].

To deal with unknown within-study correlations, this chapter considers an alterna-

tive Bayesian model for MVMA-MF. The conventional multivariate model partitions

the overall covariance matrix into two parts: the within-study level that is due to

sampling error, and the between-study level that is due to heterogeneity between the

collected studies. Instead of partitioning the overall correlations into the two levels, the

alternative model directly specifies one single overall correlation matrix; hence, it may

be viewed as a hybrid approach. This model is the Bayesian version of the model in-

troduced by Riley et al. [121]. Currently, Riley’s model is implemented in a frequentist

way, such as using the restricted maximum likelihood method [122]. However, the data

for a MVMA-MF are usually fairly sparse (e.g., Table 5.1), and our simulation study

in Appendix A.6 shows that the frequentist method generates poor 95% confidence in-

tervals for sparse data; also, the algorithm for maximizing the (restricted) likelihood

does not converge for many simulated data. Instead of using the frequentist method, a

fully Bayesian approach is applied to perform MVMA-MF. Both the simulations and

the case study demonstrate the benefit of joint modeling.

5.1 The motivating pterygium data

Instead of reporting only one risk factor at a time, Serghiou et al. [49] collected the

odds ratios of all putative risk factors for pterygium, an eye disease. Specifically, they

identified 60 eligible studies reporting on a total of 65 risk factors. Since most risk factors

were only reported in less than 3 studies, we focus on the following 8 risk factors, each

of which was reported in at least 4 studies: (1) occupation type (outdoor vs. indoor);

(2) smoking status (yes vs. no); (3) education attainment (low vs. high); (4) use of hat
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(yes vs. no); (5) use of spectacles (yes vs. no); (6) area of residence (rural vs. urban);

(7) use of sunglasses (yes vs. no); and (8) latitude of residence (low vs. high). These

risk factors are sorted from high to low according to their frequencies reported in the

collected studies. Also, we cleaned the data by removing the log odds ratios that were

obtained using a multivariate regression model, because they were adjusted for different

risk factors in different studies. Table 5.1 presents the cleaned data and Figure 5.1 shows

the network plot of the 8 risk factors. The network indicates that most pairs of risk

factors are simultaneously reported in some studies, but several pairs, such as ‘area of

residence’ and ‘use of hat’, are not. From Table 5.1, the risk factor ‘latitude of residence’

was reported in only 4 studies, while 23 studies reported ‘occupation type’. Most studies

reported different subsets of the 8 risk factors, and many entries in Table 5.1 are missing.

The estimated overall effect sizes produced by univariate models may be poor because

some risk factors have data in few studies. Also, many factors (e.g., ‘area of residence’

and ‘education attainment’) are expected to be correlated, so a multivariate model may

be more appropriate for this dataset than univariate models.

5.2 Conventional meta-analysis models

This section reviews some existing models for general multivariate meta-analysis. Sup-

pose that n independent studies are collected; each study reports a p-dimensional vector

of effect sizes, denoted as yi = (yi1, . . . , yip)
T. Denote its within-study covariance ma-

trix as Si (i = 1, . . . , n). The conventional univariate meta-analysis pools the results

for each j = 1, . . . , p separately; a fixed- or random-effects model is applied to the data

{(yij , vij)}ni=1, where vij is the within-study variance, i.e., the jth diagonal element in

Si [6,7]. Since most studies were conducted by different research teams in different places

using different methods, the studies are usually expected to be heterogeneous [78]. Also,

the random-effects model may produce more conservative results than the fixed-effects

model [123,124], so this chapter focuses on the random-effects setting that accounts for

the heterogeneity between studies. We denote the univariate model as Model U, which

ignores both within- and between-study correlations.

Multivariate meta-analysis has recently gained much attention for simultaneously



59

synthesizing the p-dimensional effect sizes [110–112]. Given that the within-study co-

variance matrices Si are known, the commonly used random-effects model is specified

as follows to analyze the multivariate data {(yi,Si)}ni=1:

yi ∼ N(µi,Si);

µi ∼ N(µ,T),
(5.1)

where µi represents study i’s underlying true effect sizes, µ = (µ1, . . . , µp)
T contains

the overall effect sizes, and T = (τij) is the p × p between-study covariance matrix.

We denote this multivariate model as Model M . Note that within-study variances

are routinely reported in published articles, but within-study correlations are usually

unavailable. Let Di = diag(Si) be the diagonal matrix consisting of the within-study

variances.

To analyze the data {(yi,Di)}ni=1 when the within-study correlations are unknown,

a näıve multivariate method is to simply ignore these correlations by setting them to 0

but still account for the between-study correlations; we denote this model as Model M0.

Nevertheless, ignoring within-study correlations could lead to poor estimated effect sizes,

especially when the within-study correlations are comparable to or greater than the

between-study correlations [120]. The following section introduces an alternative model

that can incorporate both within- and between-study correlations for MVMA-MF.

5.3 Multivariate meta-analysis of multiple factors

5.3.1 Multivariate hybrid meta-analysis model

Model M may be deemed ideal to perform MVMA-MF: it uses the factors’ within-study

correlations that are usually unknown, and it provides a benchmark for the performance

of other potential models. Note that study i’s marginal covariance matrix in Model M

is Mi = Si + T, which can be written as Mi = (Di + ∆)1/2Ri(Di + ∆)1/2, where

∆ = diag(τ21 , . . . , τ
2
p ) contains the between-study variances (i.e., diagonal elements in

T), and Di is a diagonal matrix containing the within-study variances (i.e., diagonal

elements in Si). The marginal correlation matrix of study i, Ri, is determined by both

Si and T, and thus needs to be estimated if the within-study correlations are unknown.
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It may be inefficient to use the data merely from the n studies to simultaneously estimate

all the Ri’s, which involve too many parameters.

Alternatively, extending the bivariate model in Riley et al. [121], we consider a mul-

tivariate model that does not require within-study correlations to perform MVMA-MF:

yi ∼ N
(
µ, (Di +Ψ)1/2R(Di +Ψ)1/2

)
,

where Ψ = diag(ψ2
1, . . . , ψ

2
p) is a diagonal matrix that consists of additional variances

beyond sampling error due to between-study heterogeneity for the p effect sizes. In this

model, all collected studies are assumed to share a common marginal correlation matrix

R. This assumption effectively reduces the number of parameters to be estimated and

accounts for both within- and between-study correlations. The simulation study in

Appendix A.6 generates data with different study-specific correlation matrices; it shows

that the alternative model still performs well even if its assumption that Ri ≡ R does

not hold. Like Model M, the alternative model partitions the marginal variances of yi,

Di +Ψ, into the within- and between-study levels; however, it directly uses the matrix

R to model the overall correlations, instead of partitioning the correlations into the

previous two levels. Therefore, the alternative model may be deemed hybrid, and we

denote it as Model H .

5.3.2 Missing data

So far, only models for complete data have been discussed. In MVMA-MF, each col-

lected study often reports a small subset of the complete set of factors, and many factors

are missing, as in Table 5.1. It is straightforward to extend the four methods (Models U,

M, M0, and H) to deal with missing data; Model H for missing data will be detailed here.

Suppose that ỹi = (ỹi1, . . . , ỹip)
T contains the complete p factors in study i; however, we

only observe ti factors and their within-study variances (1 ≤ ti ≤ p). Denote the effect

sizes of the ti factors as yi = (yi1, . . . , yiti)
T, which is a ti-dimensional sub-vector of ỹi,

and let Di be the ti × ti diagonal matrix containing the within-study variances. We

write yi = Xiỹi, where Xi = (ei1, . . . , eiti)
T is a ti × p matrix indicating missingness.

Specifically, for each j = 1, . . . , ti, we define eij = (eij1, . . . , eijp)
T with eijk = 1 if the

observed yij is the effect size of factor k, and eijk = 0 otherwise. For example, for



61

study 3 in the pterygium data (Table 5.1),

X3 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0


 .

Recall that µ, Ψ, and R represent the overall mean effect sizes, the between-study

variances, and the marginal correlation matrix for the complete p factors, respectively.

Hence, for the observed ti-dimensional vector yi, its overall mean is Xiµ, its marginal

variances form the diagonal matrix Di +XiΨXT
i , and its marginal correlation matrix

is XiRXT
i . Consequently, the hybrid model for missing data can be specified as

yi ∼ N (Xiµ,Φi) ,where Φi = (Di +XiΨXT
i )

1/2XiRXT
i (Di +XiΨXT

i )
1/2.

The simulation study in Appendix A.6 compares the performance of Model H with

Models M, M0, and U when some factors are missing under various mechanisms. The

performance of Model H is shown to be close to the ideal Model M that requires unknown

within-study correlations. When factors are missing not at random (e.g., in the presence

of publication bias), Model H produces estimated overall effect sizes with smaller biases

and mean squared errors and larger 95% credible interval (CrI) coverage probabilities,

compared with Models M0 and U.

5.3.3 Bayesian hybrid model

Currently existing statistical software, such as the Stata command ‘mvmeta’, can only

implement Model H in a frequentist way [121,122]. However, when the dimension of fac-

tors p is large compared with the number of collected studies, the estimated covariance

matrix using the frequentist method may be quite inconsistent [125], leading to poor

interval estimates. Indeed, the simulation study in Appendix A.6 shows that the fre-

quentist method produces poor 95% confidence intervals when the data for MVMA-MF

are sparse, and the algorithm for maximizing the (restricted) likelihood does not con-

verge for many simulated datasets. Therefore, we use a fully Bayesian approach to

estimating the overall multivariate effect size µ and its covariance matrix, which are

of interest in Model H. Vague priors are assigned to both the mean and variance-

covariance structures. Appendix A.5 provides the details of the implementation. The
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R code for the Bayesian MVMA-MF will be provided in our package ‘altmeta’, freely

available at http://cran.r-project.org/package=altmeta. The simulation study in

Appendix A.6 indicates that the 95% CrIs obtained using the Bayesian method gener-

ally have higher coverage probabilities than those obtained using the frequentist method

for sparse data, which are common in MVMA-MF.

5.4 Real data analysis

Section 5.1 introduced the pterygium dataset in detail. Since the within-study cor-

relations are unknown, we used Models H, M0, and U but not Model M to estimate

the overall log odds ratios of the 8 risk factors. Due to the sparsity of the dataset, the

Bayesian method may be preferred. The Markov chain Monte Carlo (MCMC) algorithm

was used to implement the Bayesian analysis with three chains; each chain contained

a run of 100,000 updates after a 100,000-run burn-in period. The convergence of each

chain was checked using trace plots. Table 5.2 presents the median overall log odds

ratios with 95% CrIs. Figure 5.2 shows the posterior density plots of the 8 risk factors;

each plot contains three density curves corresponding to the three models.

For risk factors that are reported in a relatively large number of studies (e.g., occu-

pation type, smoking status, and education attainment), the three models yield similar

estimated overall log odds ratios; their density curves are also fairly similar. For risk

factors that are only reported in a few studies (e.g., use of spectacles, area of residence,

and latitude of residence), the peaks of the posterior densities produced by Model H are

narrower and higher compared with those produced by Models M0 and U, indicating

that Model H produces narrower 95% CrIs. Also, for the risk factor use of sunglasses,

the location of its posterior density produced by Model H is noticeably different from

those produced by the other two modes. Figure 5.3 depicts the estimated overall corre-

lations between the 8 risk factors produced by Model H. It shows that many factors are

correlated and some correlations are fairly high. Hence, ignoring the within-study corre-

lations could lead to fairly different estimated log odds ratios; the unknown within-study

correlations need to be carefully considered in MVMA-MF.

Furthermore, we performed a sensitivity analysis to investigate the impact of risk

factor selection on the estimated overall log odds ratios. We considered two scenarios

http://cran.r-project.org/package=altmeta
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for the set of risk factors to be included in MVMA-MF: (i) the sub-dataset consists of

the k most frequently reported risk factors; and (ii) the sub-dataset consists of the k

least frequently reported risk factors (k = 2, . . . , 8). For example, when k = 2, the sub-

dataset under scenario (i) contains the risk factors (1) occupation type and (2) smoking

status; the sub-dataset under scenario (ii) contains the risk factors (7) use of sunglasses

and (8) latitude of residence. The proposed hybrid model was implemented using the

Bayesian method to analyze these sub-datasets.

Figure 5.4 shows the 95% CrIs of the overall log odds ratios under both scenarios;

the labels of risk factors used in the figure can be found in Table 5.2’s first column. In

scenario (i), starting from the two most frequently reported risk factors, infrequently re-

ported risk factors are iteratively added to the multivariate meta-analysis. Figure 5.4(i)

shows that the estimated overall log odds ratios of risk factors 4 and 5 have some

changes as new factors were added to the sub-datasets. The 95% CrIs of the three

most frequently reported risk factors 1–3 change little. This might be explained by two

reasons. First, the correlations between these three factors are weak (Figure 5.3), so

the addition of risk factor 3 has little impact on estimating the effect sizes of factors 1

and 2. Also, the later added factors 4–8 have much smaller sample sizes (less than six

studies) compared with factors 1–3, which are reported in more than ten studies, so the

correlations may contribute little to the estimated effect sizes of factors 1–3.

Compared with scenario (i), Figure 5.4(ii) shows larger changes of estimated overall

log odds ratios in scenario (ii). Under this scenario, starting from the two least frequently

reported risk factors, more frequently reported risks are iteratively added to the mul-

tivariate meta-analysis. The 95% CrIs of infrequently reported risk factors, such as 5

and 6, become narrower as more reported risk factors are included in the MVMA-MF.

This illustrates the benefit of jointly modeling multiple risk factors: the inference on

infrequently reported risk factors can be strengthened by borrowing information from

frequently reported risk factors through the correlations between them.

5.5 Discussion

This chapter proposed MVMA-MF with application to the pterygium data. In contrast

to the tradition of meta-analyzing each single factor separately, we encourage researchers
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to collect all possible factors and analyze them jointly to enhance the estimation of over-

all effect sizes. A multivariate hybrid model was introduced to implement MVMA-MF

in which within-study correlations are usually unknown. The simulation study in Ap-

pendix A.6 shows that the proposed method performs better than the univariate model

and the model that ignores within-study correlations, especially when some factors are

missing not at random.

An important issue of MVMA-MF is to incorporate the effect size of a certain factor

that has been adjusted for other factors. For example, in the original pterygium data

presented in Serghiou et al. [49], many collected studies report only log odds ratios that

are obtained using multivariate regression after adjusting for different factors (e.g., age

and gender), while log odds ratios without any adjustments are unavailable from these

studies. We do not include such data in Table 5.1 due to the inconsistent adjustments.

How to incorporate such data with different adjustments is of great interest to enrich

the data for MVMA-MF and enhance the robustness and precision of MVMA-MF. We

leave this to future studies.

Another interesting but challenging problem is to robustly impute the missing factors

when the missingness is not at random; this missingness mechanism is closely related

to publication bias [28]. Although the simulation study in Appendix A.6 shows that

the proposed hybrid model performs better than Models M0 and U, its performance

(assessed by bias and 95% CrI coverage probability) is expected to be further improved

in the presence of publication bias. Approaches to correcting publication bias have been

introduced and widely used in univariate meta-analysis [26]; similar methods are highly

needed for multivariate meta-analysis.
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Figure 5.1: Network plot of the pterygium data. The nodes represent the risk factors,

and the edge between two nodes indicate that these nodes are simultaneously reported

in common studies. The node size is proportional to the number of studies that report

the corresponding risk factor, and the edge thickness is proportional to the number of

studies that simultaneously report the corresponding two risk factors.
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Figure 5.2: Posterior density plots produced by Models H (accounting for both between-

and within-study correlations), Model M0 (only accounting for between-study correla-

tions), and Model U (ignoring both between- and within-study correlations) for the log

odds ratios of the 8 risk factors in the pterygium data.
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Figure 5.4: Bayesian estimates of log odds ratios produced by Model H based on subsets

of the pterygium data. Each horizontal solid line represents 95% CrI of log odds ratio.

The number placed at the median log odds ratio within each 95% CrI represents the

corresponding risk factor’s label. The results of the sub-datasets that contain k =

2, . . . , 8 risk factors are accordingly listed from upper to lower, separated by the dotted

lines.
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Table 5.1: The pterygium data containing 29 studies with 8 risk factors. The effect size is log odds ratio with within-study standard

error in parentheses. The blank entries indicate that the risk factors are unavailable from the corresponding studies.

Study
Risk factor

(1) Occupation (2) Smoking (3) Education (4) Hat (5) Spectacles (6) Area (7) Sunglasses (8) Latitude

1 −0.08 (0.34)

2 1.54 (0.10)

3 0.28 (0.17) 0.53 (0.10) 0.53 (0.13)

4 0.45 (0.11) 0.41 (0.10) 0.97 (0.23)

5 0.30 (0.40)

6 0.12 (0.40) 0.48 (0.70)

7 1.40 (0.23)

8 0.39 (0.13) 0.05 (0.13)

9 0.55 (0.22) −0.04 (0.26)

10 3.04 (1.03)

11 1.95 (0.40) 1.21 (0.42) 0.67 (0.36) −1.34 (0.34) 0.12 (0.31)

12 1.10 (0.30)

13 2.03 (0.39) −0.69 (0.21) −1.14 (0.38) −1.64 (0.21) 2.99 (0.74)

14 0.83 (0.09) 0.11 (0.09) 0.91 (0.09) −0.58 (0.12) 1.14 (0.13)

15 0.41 (0.22)

16 −0.20 (0.24) 1.73 (0.18)

17 0.42 (0.15) −0.11 (0.25) 0.38 (0.21) 0.22 (0.15) −0.64 (0.15) −0.52 (0.37)

18 0.63 (0.12) 0.03 (0.05) 1.24 (0.24)

19 0.89 (0.08) −0.08 (0.07) 1.70 (0.08) −0.17 (0.08) −0.06 (0.14)

20 0.39 (0.22) −0.13 (0.30)

21 0.90 (0.30) 0.85 (0.49)

22 −0.48 (0.25) 0.31 (0.25) 0.87 (0.20)

23 0.66 (0.26)

24 −0.46 (0.72) −0.73 (0.52)

25 0.76 (0.34) −0.48 (0.55) 1.05 (0.33)

26 0.03 (0.11) 0.19 (0.09)

27 1.16 (0.36) 0.53 (0.23) 0.83 (0.25)

28 0.12 (0.03) 0.14 (0.20) 1.43 (0.28) 1.43 (0.22)

29 0.41 (0.09) −0.26 (0.10) 0.46 (0.09)

Risk factors: (1) occupation type; (2) smoking status; (3) education attainment; (4) use of hat; (5) use of spectacles; (6) area of

residence; (7) use of sunglasses; and (8) latitude of residence.
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Table 5.2: The estimated overall log odds ratios (95% CrI) of the 8 risk factors in

the pterygium data obtained by Models H (accounting for both between- and within-

study correlations), Model M0 (only accounting for between-study correlations), and

Model U (univariate model ignoring both between- and within-study correlations) using

the Bayesian method.

Risk factor No. of Studies
Estimated overall log odds ratio

Model H Model M0 Model U

(1) Occupation type 23 0.65 (0.40, 0.92) 0.65 (0.41, 0.93) 0.66 (0.42, 0.91)

(2) Smoking status 16 0.10 (−0.07, 0.29) 0.10 (−0.07, 0.29) 0.08 (−0.07, 0.25)

(3) Education attainment 10 0.74 (0.40, 1.11) 0.74 (0.42, 1.07) 0.74 (0.46, 1.06)

(4) Use of hat 6 0.49 (−0.84, 1.61) 0.44 (−0.77, 1.55) 0.32 (−0.84, 1.41)

(5) Use of spectacles 6 −0.59 (−1.00, −0.11) −0.58 (−1.06, −0.06) −0.60 (−1.26, 0.05)

(6) Area of residence 5 1.05 (0.30, 1.78) 1.10 (0.22, 1.97) 1.24 (0.39, 2.11)

(7) Use of sunglasses 5 −0.34 (−1.55, 0.75) −0.51 (−1.64, 0.62) −0.57 (−1.76, 0.63)

(8) Latitude of residence 4 0.91 (−0.73, 2.68) 1.04 (−0.98, 3.10) 1.14 (−0.70,3.37)



Chapter 6

Sensitivity to Excluding

Treatments in Network

Meta-Analysis

This chapter examines the sensitivity to treatment exclusion of an alternative approach

to network meta-analysis, namely the arm-based approach, recently developed from

the perspective of missing data analysis [67]. The detailed model is briefly reviewed

in Appendix A.8. This model assumes: 1) each study is independently chosen from a

conceptual urn containing a large number of studies, and thus we can assign a joint dis-

tribution on the arm parameters independently across different studies; 2) each study

hypothetically compares all treatments, many of which are missing at random. The

arm-based model does not estimate the population-averaged absolute risk of each arm

independently; instead, it respects the study randomization by accounting for the corre-

lations between treatments within each study, which allows for ‘borrowing information’

across treatment arms. This point is illustrated by an example in Appendix A.7, in

which absolute risk estimates from the arm-based model differ from estimates from a

simple logit random effects model using only studies with a specific treatment arm. In

addition, simulation results and real data analyses have shown that in some cases the

effect size estimates given by this arm-based method are less biased than those given

by the contrast-based model [67].

71
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Besides reporting changes due to treatment exclusion in the population-averaged

absolute risk estimates from the arm-based model, we compare changes in relative ef-

fects (i.e., log odds ratio change) with those obtained from the contrast-based model.

In this regard, the arm-based and contrast-based methods have a key difference: If a

study only has two treatment arms and one of these arms is omitted from the network

meta-analysis, a contrast-based analysis must omit the entire study, while an arm-

based analysis can retain the single remaining arm. Note that single-arm studies do

contribute information to estimation of relative effects from the perspective of missing

data analysis, which is somewhat counter-intuitive. To give a simple illustration, con-

sider paired bivariate normally distributed random variables X and Y with parameters

(µx, µy, σ
2
x, σ

2
y , ρ), e.g., the probit-transformed absolute risks in the arm-based model.

The expected value of Y given X is µy + ρ
σy

σx
(X − µx). Once we observe a value X = x

in a particular pair (with Y unobserved), the expected difference between Y and X for

this pair becomes µy−x+ρσy

σx
(x−µx), which does not equal µy−µx. Also, the variance

of Y given X is (1 − ρ2)σ2y ≤ σ2y . Therefore, even if Y is unobserved, modeling X and

Y jointly, as in the arm-based model, helps reduce the standard error of a comparison.

This point is illustrated by an example in Appendix A.7.

This chapter is organized as follows. Section 6.1 describes the specific network meta-

analysis models being compared and the datasets to which we applied them. Section 6.2

presents results describing sensitivity of the network meta-analysis models to treatment

exclusion. Section 6.3 closes with some suggestions on network meta-analysis and several

limitations in our study.

6.1 Statistical analysis methods

6.1.1 Dataset selection

We reviewed forty network meta-analyses studied by Veroniki et al. [126] and selected

fourteen networks containing 567 randomized controlled trials with a total of 389,361

participants. Our selection criteria were that every treatment in the network should be

evaluated in at least three studies; otherwise, the networks are poorly connected at that

treatment node. We denote the fourteen networks as Ara 2009 [127], Ballesteros 2005

[128], Bucher 1997 [129], Cipriani 2009 [61], Eisenberg 2008 [130], Elliott 2007 [131],
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Lu 2006 [52,132], Lu 2009 [54,133,134], Middleton 2010 [135], Mills 2009 [136], Picard

2000 [137], Puhan 2009 [138], Thijs 2008 [139], and Trikalinos 2009 [140]. Tables 6.1

and 6.2 lists their characteristics including the outcomes, the investigated treatments

with their weighted node degrees, and the total number of studies, participants, and

events. For each node (treatment) in a network, the weighted degree is defined as

the sum of weights on all edges incident to that node. In a network meta-analysis,

the edge weight equals the number of pairwise comparisons between two treatments,

so the weighted degree represents the frequency with which a particular treatment is

investigated in all of the network’s studies. The node with the greatest weighted degree

can be considered the most well-connected. Figure 6.1 shows network plots for the 14

datasets.

6.1.2 Performing network meta-analysis and removing treatments

We fit the arm-based and contrast-based network meta-analysis Bayesian hierarchical

models separately to each of the 14 network datasets. Appendix A.8 gives details about

these models. We used Markov chain Monte Carlo (MCMC) to compute posteriors for

the effect sizes of interest, implemented using JAGS via the R package ‘rjags’.

Analyses with a treatment removed were performed as follows. Suppose a network

includes K treatments. We first applied both the arm-based and contrast-based models

to the complete network dataset (the full network) to estimate log odds ratios comparing

each pair from the K treatments; we also estimated the population-averaged treatment-

specific absolute risks using the arm-based model. Next, for each treatment, we excluded

it from the network and applied the analyses to the remaining dataset (the reduced

network) consisting of K − 1 treatments. The key difference between the arm-based

and contrast-based models becomes pertinent at this point. If a treatment was removed

from a network, then for any two-arm studies that included that treatment, only one

treatment arm remained. For an analysis using the arm-based model, we could keep the

single-arm studies as they still contribute to the likelihood function from the perspective

of an analysis with missing data. However, for an analysis using the contrast-based

model, because it uses information about contrasts, the single remaining arm no longer

provides any information for estimation in the reduced network, so the whole two-

arm study must be deleted if one of the treatments is excluded. Multi-arm studies
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– those comparing more than two treatments – that included the removed treatment

were retained for analyses under both the arm-based and contrast-based models. For

the present study, we did not consider any exclusion that creates a disconnected or

poorly connected network, i.e., that resulted in at least one treatment in a network

being evaluated in fewer than three studies. Table 6.2’s ‘ineligible trt removal’ column

shows treatment exclusions that produce such ineligible reduced networks under analyses

with the arm-based and contrast-based models. When comparing the arm-based and

contrast-based models, we only considered treatment removals that were eligible under

both models. Appendix A.9 gives an example of which treatments were considered for

exclusion.

6.1.3 Fold changes of estimated absolute risks in the arm-based model

For analysis using the arm-based model, we used fold changes of estimated population-

averaged treatment-specific absolute risks to assess the impact of the treatment exclu-

sion. Assume that the population-averaged absolute risk for a particular treatment is

estimated as π̂f using the full network and π̂r using the reduced network. Then, the

fold change for this treatment-specific absolute risk is defined as the maximum of π̂f/π̂r

and π̂r/π̂f . Thus, the fold change is never less than 1. Mills et al. [66] judged that a

relative change not exceeding 1.03-fold is minor while a change greater than 1.10-fold

is large, and over 1.20-fold is substantial, though such categorization is subjective and

may need to be adapted to specific situations.

6.1.4 Comparison between arm-based and contrast-based methods

Without either external data or a separate model to estimate a reference treatment’s

absolute risk, the contrast-based method can only estimate odds ratios or their loga-

rithms [58,65,67]. We focused on the changes of log odds ratio (LOR) when comparing

the arm-based and contrast-based methods according to their sensitivity to treatment

exclusion in the fourteen networks. For each network and treatment exclusion, we ap-

plied both models to the full and reduced networks. Then we calculated the LOR

change (LORC) as the difference between the LOR estimates using the full and reduced

networks: LORC
(−k)
ij = L̂OR

(−k)

ij − L̂ORij , where i, j index the treatments compared
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by this LOR and k indexes the treatment removed in the reduced network, i 6= j 6= k.

L̂ORij and L̂OR
(−k)

ij are point estimates from the Bayesian analysis, which can be either

the posterior means or medians; this chapter presents results for the posterior means.

Because of LORC
(−k)
ij + LORC

(−k)
ji = 0 by the symmetry of LOR, when we used

statistical tests to compare the arm-based and contrast-based models according to sensi-

tivity to treatment exclusion, we considered the absolute LOR change, i.e., |LORC
(−k)
ij |.

Further, the average absolute LOR change is calculated for each model by averaging

every |LORC
(−k)
ij | comparing all possible pairs of treatments based on all eligible treat-

ment exclusions across all networks; a smaller average absolute change indicates a more

robust network meta-analysis model with respect to treatment exclusion. To demon-

strate that LOR changes resulting from an individual treatment exclusion in a network

may be in opposite directions for the arm-based and contrast-based models, we present

LORC
(−k)
ij with their directions in Figure 6.2, rather than their absolute values. To

preserve any correlation structure between treatments in a network, when testing the

difference between the arm-based and contrast-based methods, we used bootstrap re-

sampling [141] at the network level (using 10,000 bootstrap samples); that is, each boot-

strap sample consisted of fourteen resampled networks, drawn with replacement from

the original fourteen networks. Based on the bootstrap samples, we calculated 95%

confidence intervals (CIs) and P -values for each model’s mean absolute LOR change

and their difference.

6.2 Results

6.2.1 Fold changes of estimated population-averaged absolute risks by

the arm-based model

For the arm-based model, Table 6.3 reports the average and maximal fold changes of

estimated population-averaged absolute risks and connectivity information about nodes

associated with the maximal change for each network. The average fold changes in all

networks are 1.05 or less; in 13 of 14 networks, the maximal change is below 1.10-fold.

These small changes indicate the arm-based model’s robustness to treatment exclusion.

Although the arm-based model is robust in most cases, treatment exclusion can still

produce significant changes (larger than 1.20-fold) for certain networks. For example,
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in the network Trikalinos 2009, excluding the treatment PTCA results in a 1.39-fold

change in the absolute risk estimate of the treatment MT. Referring to Tables 6.1–6.3,

several potential factors affecting the fold changes are listed below.

1. Removing treatments with larger weighted degree tends to cause larger fold changes,

while the most affected treatment tends to have small weighted degree. In 6/14

networks, the maximal fold change is caused by the removal of treatment with the

largest weighted degree; in 7/14 networks, the most affected treatment has the

smallest weighted degree.

2. Including more studies and increasing network connectivity may help to reduce

the impact of treatment exclusion. For example, Cipriani 2009 examined 111

studies on 12 treatments, and each treatment is connected to at least three other

treatments. All changes are smaller than 1.04-fold, and the average change is less

than 1.01-fold. On the other hand, Ara 2009 summarized only 11 studies on 5

treatments, and treatment exclusion caused changes as large as 1.09-fold.

3. Network meta-analyses with low event rates may produce large fold changes. For

example, the näıve absolute risk in Trikalinos 2009 is only 3.1%, and 22/124

treatment groups reported zero events (Table 6.2). Although this network includes

62 studies, the maximal fold change is 1.39.

We should note that the factors above are not sufficient or necessary conditions when

judging whether a network is robust to treatment exclusion. For example, Ballesteros

2005 has only 9 studies, but its average and maximal fold changes are smallest among

the fourteen networks. The changes may be small in this network because it has a high

näıve absolute risk.

6.2.2 Comparing the arm-based and contrast-based models

Figure 6.2 presents all LOR changes (LORC
(−k)
ij ) due to treatment exclusions in the

fourteen networks under the arm-based and contrast-based models. In Figure 6.2’s

upper panels, the LOR changes under the arm-based model are estimated including

single-arm studies. The scatter plot indicates that LOR changes for the arm-based

model tend to be smaller in magnitude than those for the contrast-based model. The
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empirical cumulative distribution function (ECDF) in top right panel of Figure 6.2

supports this observation. Because LORC
(−k)
ij + LORC

(−k)
ji = 0, the LOR changes

between treatments i and j appear symmetrically in both the scatter plot and the

ECDF graph. In addition, as each symmetric pair has the same absolute LOR change,

we may only keep one value when we statistically test the difference between the arm-

based and contrast-based models. (The resulting P -value remains the same if we include

both values, as we use a nonparametric bootstrap resampling technique at the network

level.)

Let µAB and µCB denote the true mean absolute LOR change (i.e., the expected

value of |LORC
(−k)
ij | across all treatment exclusions in all networks) under the arm-

based and contrast-based models, respectively. Based on 10,000 bootstrap samples, µAB

is estimated as 0.020 with 95% CI (0.015, 0.031), and µCB is estimated as 0.047 with 95%

CI (0.029, 0.100); µCB − µAB is estimated as 0.028 with 95% CI (0.011, 0.071) and two-

sided P -value 0.005 for testing H0 : µAB = µCB vs. HA : µAB 6= µCB. Therefore, at 0.05

significance level, the absolute change under the contrast-based model is significantly

larger than the change under the arm-based model, which suggests that the arm-based

model is more robust than the contrast-based model to treatment exclusion.

To see whether the smaller average absolute LOR change caused by the arm-based

model is due to the additional information it uses (that is, the retained single-arm

studies), we applied the arm-based model to the same reduced networks that were used

by the contrast-based model, in which single-arm studies were excluded. Figure 6.2’s

lower panels show the resulting LOR changes: the scatter plot and ECDF graph suggest

that the arm-based and contrast-based models perform nearly the same when they use

the same information. Let µ̃AB denote the true mean absolute LOR change when

applying the arm-based model to the data used by the contrast-based model. Using

the same bootstrap approach as above, the 95% CI for µ̃AB is (0.044, 0.089) with point

estimate 0.054. The point estimate is comparable to that of the contrast-based model,

but the 95% CI is slightly narrower; µCB − µ̃AB is estimated as −0.006 with 95% CI

(−0.049, 0.027), with two-sided P -value 0.59 for testing H0 : µ̃AB = µCB vs. HA : µ̃AB 6=
µCB. These findings indicate that single-arm studies – which the arm-based model can

use – provide valuable information.
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The above conclusions are based on using posterior means as Bayesian point esti-

mates. We also considered posterior medians as point estimates, with results similar to

those presented here.

6.3 Discussion

This chapter examined the sensitivity of arm-based network meta-analysis to treatment

exclusion, and compared that to the sensitivity of the contrast-based approach. For the

arm-based model, we investigated the fold changes of estimated population-averaged

absolute risks and found that the arm-based model is fairly robust for most networks.

Because the changes of estimated population-averaged absolute risks were mostly less

than 1.05-fold, relative effect sizes based on the marginal absolute risks, such as the

odds ratio or relative risk, would also have small changes. Although in general the

changes were minor, removing specific treatments can be influential, as in, e.g., Trikali-

nos 2009. An influential treatment is typically investigated in many studies [66], while

infrequently studied treatments are most likely to be affected by exclusion of other treat-

ments to which they were compared. This suggests that when performing a network

meta-analysis, researchers should be cautious if they only want to assess new treatments

or if they want to exclude placebo arms or well-established treatments [66].

When comparing log odds ratio changes, the arm-based model generally outper-

formed the contrast-based model. Using bootstrap resampling, the difference between

the arm-based and contrast-based models was statistically significant when single-arm

studies were included in analyses using the arm-based model. However, when we

dropped single-arm studies from reduced networks, the arm-based model performed

almost the same as the contrast-based model. This implies that the arm-based model’s

greater robustness arises mainly from retaining single-arm studies. Some traditional

pairwise meta-analyses have considered incorporating single-arm studies [142–145]; when

single-arm studies are available for network meta-analysis, the arm-based model can be

an attractive alternative approach.

One might wonder why the arm-based and contrast-based models did not give iden-

tical results when the arm-based model was restricted by excluding single-arm studies
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in Section 6.2.2. The reason is that the two models involve different random-effect as-

sumptions. Specifically, Shuster et al. [146] described two types of assumptions about

random effects in meta-analysis. The first type of random effects, called ‘studies at

random’ (SR), assumes that the studies are independently chosen from a conceptual

urn containing a large number of studies. The second type assumes that the relative

effects in each study are randomly drawn from a conceptual urn while the studies are

fixed; this is called ‘effects at random’ (ER), which makes assumptions over and above

SR, namely that the distribution of the random relative effects is independent of the

study design. Arguably, the arm-based model requires the SR assumption, while the

contrast-based model requires ER.

Our study has several limitations. First, we did not check evidence consistency in

the investigated networks; detecting inconsistency in network meta-analysis is still an

open question, which is partly discussed by Lu and Ades [52]. For the contrast-based

model, this study assumes that the pairwise comparisons among any trio of treatments,

say A, B, and C, are inter-related as θBC = θAC−θAB. If this consistency does not hold,

we could use approaches based on an inconsistency model such as θBC = θAC−θAB+φ,

which is discussed in Salanti et al. [53]. Here, φ represents the inconsistency between

the direct evidence for treatment B vs. C and the indirect evidence from pairwise com-

parisons of A vs. B and A vs. C. For the arm-based model, one may consider detecting

inconsistency between two treatments by comparing their absolute risk differences in

direct comparisons vs. indirect comparisons [147]. A large discrepancy implies poten-

tial inconsistency between these two treatments. The second limitation of our study

is that we used a selection criterion requiring each treatment to be studied in at least

three studies, mainly due to the need for an adequate number of studies to estimate

parameters for the distribution of random effects. The literature has no well-established

criterion serving this purpose.

In conclusion, arm-based methods can be an attractive alternative when data from

some single-arm studies are available. For example, if we are interested in comparing

treatments A, B, and C in a network meta-analysis, ‘single-arm’ study data on A can

come from two-arm studies comparing A vs. D or other treatments. Furthermore,

although the arm-based model is generally more robust than the contrast-based model,

for some network meta-analyses, the contrast-based methods seem to be more robust
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to some treatment exclusions. For example, the LOR changes under the arm-based

model can be fairly large, while the corresponding changes under the contrast-based

model can be nearly zero (Figure 6.2). Therefore, analysts are advised to consider both

the arm-based and contrast-based models for network meta-analysis, especially when

making inference for a small or poorly connected network.
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comparisons between the treatments (nodes) of the edge.
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Figure 6.2: Comparing the arm-based and contrast-based models according to log odds

ratio changes. In the upper two panels, single-arm studies are kept in the reduced

networks for the arm-based model; in the lower panels, the arm-based model is applied

only to studies that can also be used by the contrast-based model, i.e., single-arm

studies are excluded. Left panels are scatter plots of log odds ratio changes under the

contrast-based model (vertical axis) vs. those under the arm-based model (horizontal

axis). Right panels show the empirical cumulative distribution function of log odds ratio

changes under the two models.
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Table 6.1: Characteristics of the fourteen network meta-analyses.

Network Outcome
No. of No. of Treatment names (abbreviations) [weighted degree], sorted by weighted degree (largest to
studies treatments smallest)

Ara 2009 Adverse event leading to 11 5 Atorvastatin 80 mg/day (ATO 80) [9]; Simvastatin 40 mg/day (SIM 40) [8]; Simvastatin 80
drug discontinuation mg/day (SIM 80) [7]; Rosuvastatin 40 mg/day (ROS 40) [5]; Placebo [3].

Ballesteros 2005 Efficacy of antidepressants in 9 4 Placebo [12]; Tricyclic antidepressant (TCA) [8]; Monoamine oxidase inhibitor (MAOI) [5];
dysthymia Selective serotonin reuptake inhibitor (SSRI) [5].

Bucher 1997 Number of Pneumocystis 18 4 Aerosolized pentamidine (AP) [14]; Trimethoprim-sulphamethoxazole (TMP-SMX) [13];
carinii pneumonia Dapsone/pyrimethamine (D/P) [5]; Dapsone (D) [4].

Cipriani 2009 Unipolar major depression 111 12 Fluoxetine (FLU) [54]; Paroxetine (PAR) [32]; Sertraline (SER) [28]; Venlafaxine (VEN)
[27]; Escitalopram (ESC) [17]; Citalopram (CIT) [14]; Mirtazapine (MIR) [13]; Bupropion
(BUP) [12]; Fluvoxamine (FVX) [11]; Duloxetine (DUL) [8]; Reboxetine (REB) [8];
Milnacipran (MIL) [6].

Eisenberg 2008 Smoking abstinence 61 5 Placebo [64]; Transdermal nicotine (TN) [23]; Nicotine gum (NG) [20]; Bupropion (BUP)
[18]; Varenicline (VAR) [9].

Elliott 2007 The proportion of patients 22 6 β blocker (BB) [12]; Calcium-channel blocker (CCB) [12]; Angiotensin-converting enzyme
who developed diabetes 22 6 inhibitor (ACEI) [11]; Placebo [10]; Thiazide diuretic (TD) [10]; Angiotensin-receptor

blocker (ARB) [5].

Lu 2006 Smoking cessation 24 4 Individual counselling (IC) [21]; No contact [20]; Group counselling (GC) [8]; Self-help [7].

Lu 2009 Gastroesophageal reflux 40 6 H2 receptor antagonist (H2RA) [34]; Proton pump inhibitor (PPI) [17]; Placebo [14]; PPI
disease double dose (PPI-D) [13]; Prokinetic agent (PA) [6]; H2RA double dose (H2RA-D) [4].

Middleton 2010 Patients’ dissatisfaction 20 4 ‘First generation’ endometrial destruction techniques (FG) [17]; ‘Second generation’
endometrial destruction techniques (SG) [14]; Hysterectomy (HYST) [5]; Mirena (MIR) [4].

Mills 2009 Smoking abstinence at at-least 89 4 Control [92]; Nicotine replacement therapy (NRT) [49]; Bupropion (BUP) [39]; Varenicline
4 weeks post-target quit data (VAR) [10].

Picard 2000 Pain on injection with 43 8 Placebo [48]; Lidocaine (mg) mixed with propofol 200 mg (LIDm) [26]; Lidocaine (mg)
propofol given before the injection of propofol (LIDb) [19]; No treatment (No Trt) [19]; Opioids

(OPI) [19]; Lidocaine (mg) with tourniquet (LID+TOU) [13]; Temperature (TEM) [13];
Metoclopramide (MET) [7].

Puhan 2009 Exacerbation in patients with 34 5 Placebo [44]; Long-acting beta-agonists (BA) [33]; Inhaled corticosteroids (IC) [24];
chronic obstructive pulmonary Combined treatment with a long-acting beta-agonist and an inhaled corticosteroid (CT) [20];
disease Long-acting anticholinergics (AC) [11].

Thijs 2008 Efficacy of antiplatelet 23 5 Aspirin (ASA) [22]; Placebo [16]; Aspirin and dipyridamole (ASA+DP) [10];
Thienopyridines (ticlopidin or clopidogrel, THI) [7]; THI+ASA [3].

Trikalinos 2009 Non-acute coronary artery 62 4 Bare-metal stents (BMS) [52]; Percutaneous transluminal balloon coronary angioplasty
disease (PTCA) [43]; Drug-eluting stents (DES) [16]; Medical therapy (MT) [13].
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Table 6.2: (Continued) Characteristics of the fourteen network meta-analyses.

Network

Total Total no. of Näıve Total no. of Total no. of Ineligible treatment removal Smallest Largest

no. of no. of absolute treatment treatment groups Arm-based Contrast-based weighted weighted

participants events risk† groups with zero events model model degree‡ degree

Ara 2009 24,793 1155 0.047 24 2
SIM 40; ATO 80;

3 9
SIM 80

Ballesteros 2005 1386 663 0.478 21 0 Placebo 5 12

Bucher 1997 3416 248 0.073 36 4 AP; TMP-SMX 4 14

Cipriani 2009 24,595 13,951 0.567 224 0 6 54

Eisenberg 2008 26,750 3908 0.146 125 0 Placebo Placebo 9(9)* 64(23)*

Elliott 2007 154,176 10,962 0.071 48 0 5 12

Lu 2006 16,737 2072 0.124 50 2 7 21

Lu 2009 4626 2273 0.491 82 4 H2RA 4 34

Middleton 2010 2886 342 0.119 40 0 FG FG; SG 4(4)* 17(14)*

Mills 2009 29,525 10,847 0.367 181 1 Control 10 92

Picard 2000 4495 2400 0.534 104 2 7 48

Puhan 2009 26,789 7200 0.269 81 1 11 44

Thijs 2008 42,666 6830 0.160 49 0 ASA; THI 3 22

Trikalinos 2009 26,521 821 0.031 124 22 BMS BMS 13(13)* 52(43)*

† Näıve absolute risk is calculated as the ratio of the total no. of Events compared to the total no. of Participants.

‡ Weighted degree of a node (treatment) is the sum of weights (the number of pairwise comparisons between two treatments) on all edges incident

to that node.

* In each of these three networks, one particular treatment is not removed to remain network connectivity; the numbers in parentheses are given

without accounting for these treatments.
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Table 6.3: Summary of fold changes of estimated population-averaged absolute risks using the

arm-based model.

Network

Fold change Removed treatment Maximally affected

Average Maximal

(weighted degree§) causing treatment (weighted

maximal fold change degree§) by the removal

[Rank†/No. of eligible [Rank‡/No. of treatments]

treatment removals]

Ara 2009 1.030 1.087 ATO 80 (9) [1/5] ROS 40 (5) [2/5]

Ballesteros 2005 1.003 1.007 MAOI (5) [3/4] Placebo (12) [4/4]

Bucher 1997 1.019 1.058 TMP-SMX (13) [2/4] D (4) [1/4]

Cipriani 2009 1.005 1.033 SER (28) [3/12] MIL (6) [1/12]

Eisenberg 2008 1.003 1.008 VAR (9) [4/4*] BUP (18) [2/5]

Elliott 2007 1.015 1.056 Placebo (10) [4/6] ACEI (11) [4/6]

Lu 2006 1.012 1.028 No contact (20) [2/4] Self-help (7) [1/4]

Lu 2009 1.006 1.036 H2RA (34) [1/6] Placebo (14) [4/6]

Middleton 2010 1.013 1.037 SG (14) [1/3*] FG (17) [4/4]

Mills 2009 1.011 1.045 Control (92) [1/4] VAR (10) [1/4]

Picard 2000 1.009 1.050 LIDb (19) [3/8] MET (7) [1/8]

Puhan 2009 1.017 1.055 Placebo (44) [1/5] BA (33) [4/5]

Thijs 2008 1.019 1.084 ASA+DP (10) [3/5] THI+ASA (3) [1/5]

Trikalinos 2009 1.055 1.390 PTCA (43) [1/3*] MT (13) [1/4]

† Rank from largest to smallest according to the weighted degrees within the corresponding net-

work.

‡ Rank from smallest to largest according to the weighted degrees within the corresponding net-

work.

§ The weighted degrees refer to the corresponding full network.

* In each of these three networks, one particular treatment is not removed to remain network

connectivity (See Table 6.2).



Chapter 7

On Network Meta-Analysis

Without Evidence Cycles

Although a variety of methods are available for performing network meta-analysis [67,

148–151], currently the most widely used approach is the Bayesian hierarchical model

proposed by Lu and Ades [51], which this chapter calls the Lu–Ades model. In a recent

survey by Nikolakopoulou et al. [152], 111 out of 186 network meta-analyses used the

Lu–Ades model.

By combining information from both direct and indirect comparisons, network meta-

analysis is generally considered more powerful than conventional pairwise meta-analysis,

which compares each pair of treatments separately and thus can only use direct compar-

isons [50]. In network meta-analysis, treatments A and B can be compared via a common

comparator, say treatment C, and the information from A vs. C and B vs. C provides

indirect evidence, while a trial including both A and C provides direct evidence. Hence,

provided that the studies are consistent with each other, network meta-analysis may be

expected to produce more accurate effect estimates with narrower confidence/credible

intervals, compared to pairwise meta-analysis; also, it can provide a coherent ranking

of treatments and thus guide decision making [153]. Because of these attractive fea-

tures, many researchers focus on collecting as many treatments as possible in a network

meta-analysis, but pay little attention to the network’s geometry, taking for granted the

benefit from synthesizing direct and indirect evidence.

86
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If each pair of treatments A, B, and C is directly compared in at least one study,

then the three treatments form a so-called evidence cycle [52]. This chapter shows

that evidence cycles in the treatment network play a critical role in the improvement

of effect estimates produced by Lu–Ades network meta-analysis compared to separate

pairwise meta-analyses. Specifically, Lu–Ades network meta-analysis yields posterior

distributions identical to separate pairwise meta-analyses for all treatment comparisons

when a treatment network does not contain any evidence cycles. Networks without

evidence cycles frequently appear in systematic reviews. A special case is the star-

shaped network, that is, all collected studies share a common treatment, which is usually

placebo or a well-established standard treatment. For example, among the 186 network

meta-analyses investigated by Nikolakopoulou et al. [152], 35 networks are star-shaped.

We also extend our conclusion to networks with general shapes, which are common in

real applications: treatment comparisons that are not in any evidence cycles cannot

benefit from Lu–Ades network meta-analysis. Instead of discouraging researchers from

performing network meta-analysis, we seek to raise awareness of the power of network

meta-analysis compared to pairwise meta-analysis when using the Lu–Ades model in

certain situations.

The remaining of this chapter is organized as follows. After reviewing the develop-

ment of the Lu–Ades model in Section 7.1, Section 7.2 shows theoretically that the joint

posterior distributions of effect estimates produced by Lu–Ades and by separate pair-

wise meta-analyses are identical for networks without evidence cycles. The proofs are in

Appendix B.3 unless given in the main text. Simulations and a case study to illustrate

the equivalence relationship are presented in Section 7.3, and Section 7.4 concludes with

some discussion.

7.1 Methods for general network meta-analysis: a review

7.1.1 Smith model for pairwise meta-analysis

First, we introduce the Bayesian hierarchical model for the conventional pairwise meta-

analysis proposed by Smith et al. [154], which lays the foundation for Lu–Ades network

meta-analysis of multiple treatment comparisons. Suppose that a pairwise meta-analysis

collects N studies and each study compares the same two treatments, such as an active
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treatment and a control. Let yi1 and yi2 be the observed aggregated outcome measures in

study i’s treatment groups 1 and 2, respectively. The overall relative effect comparing

the two treatments is usually of interest. The Smith random-effects model can be

generalized as follows to estimate the overall relative effect [154]:

yik ∼ f(y | ∆ik, ξik), i = 1, . . . , N, k = 1, 2;

g(∆i1) = µi, g(∆i2) = µi + δi;

δi ∼ N(d, σ2).

(7.1)

Here, µi is commonly called the baseline effect of study i, and the study-specific rel-

ative effects δi are assumed to be exchangeable across studies with mean d, which is

interpreted as the overall relative effect. The variance parameter σ2 reflects heterogene-

ity between studies. The link function is g(·), and f(· | ·, ·) is the outcome measure’s

density function, depending on an unknown location parameter ∆ik and a nuisance pa-

rameter ξik, which is assumed to be known. For example, if the outcome is continuous,

yik is usually assumed to be normally distributed with unknown mean ∆ik and known

standard error ξik, and g(·) is the identity link. If the outcome is binary, such as the

condition of having a certain event, then yik is the number of events, which follows a

binomial density with unknown event rate ∆ik and known sample size ξik. When the

logit link function logit(t) = log{t/(1− t)} is used for binary outcomes, the fixed effect

d represents the overall log odds ratio of treatment 2 compared to treatment 1.

7.1.2 Lu–Ades model for network meta-analysis

Lu and Ades [51, 54] extended the Smith model to multiple treatment comparisons.

Instead of comparing merely two treatments, N studies are included comparing a total

of K treatments in a network meta-analysis (K > 2). Specifically, each study compares

a subset of the K treatments; denote the treatment subset of study i as Ti. A study is

called a two-arm study if it compares two treatments, while a multi-arm study investi-

gates more than two treatments. Again, assume that the observed aggregated outcome

measure yik in study i’s treatment group k follows the distribution f(· | ∆ik, ξik). To

use the Lu–Ades model, a baseline treatment bi needs to be specified for each study i.

Different studies can have different baseline treatments in the Lu–Ades model because

the treatment subsets Ti need not intersect. We denote bi simply as b when it does
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not lead to confusion. The Lu–Ades random-effects model for network meta-analysis is

specified as follows:

yik ∼ f(y | ∆ik, ξik), i = 1, . . . , N, k ∈ Ti;

g(∆ik) = µi +Xikδibk;

δibk ∼ N(dbk, σ
2
bk), Corr(δibh, δibk) = γbhk, h, k ∈ Ti.

(7.2)

Here, Xik is a dummy variable; Xik = 0 if k = b and Xik = 1 if k ∈ Ti\{b}. Within a

multi-arm study, the correlation between the treatment contrasts δibh and δibk is assumed

to be γbhk. Again, µi represents the baseline effect of study i, the study-specific relative

effects are assumed to be exchangeable, and we focus on estimating the relative effects

of all treatment contrasts dhk (1 ≤ h 6= k ≤ K).

A critical assumption in Lu–Ades network meta-analysis is the consistency equation

for an evidence cycle, which relates the contrasts for a trio of treatments as

dhk = dℓk − dℓh, for all 1 ≤ h 6= k 6= ℓ ≤ K. (7.3)

If a treatment network contains evidence cycles, this equation synthesizes both direct

and indirect evidence for the treatment comparisons in the cycles, so that the network

meta-analysis uses more information than a conventional pairwise meta-analysis, which

uses only direct evidence.

The consistency assumption may not hold even approximately in many cases, and

alternative approaches have been proposed to deal with evidence inconsistency; see,

e.g., [52, 53, 58,155–157]. A popular method is to add inconsistency factors w to Equa-

tion (7.3), that is, dhk = dℓk − dℓh +whkℓ. This method is closely related to the number

of independent cycles in the network, which is quantified by the inconsistency degrees

of freedom dfIC [52]. If all studies are two-armed, then dfIC = T −K + 1, where T is

the number of all treatment comparisons, i.e., the edges in the network. However, when

multi-arm studies are present, the definition of inconsistency degrees of freedom is fairly

complex and needs to be considered case by case.

Besides random-effects models, fixed-effects models are also frequently used in meta-

analysis. These models assume that the collected studies are homogeneous, that is, that

the relative effects for each treatment comparison share a common mean across studies,

and their variation is entirely due to sampling error within studies. To be specific, the
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Smith fixed-effects model for pairwise meta-analysis is

yik ∼ f(y | ∆ik, ξik), i = 1, . . . , N, k = 1, 2;

g(∆i1) = µi, g(∆i2) = µi + d,
(7.4)

while the Lu–Ades fixed-effects model for network meta-analysis is

yik ∼ f(y | ∆ik, ξik), i = 1, . . . , N, k ∈ Ti;

g(∆ik) = µi +Xikdbk.
(7.5)

Implementation is easier for the fixed-effects model than the random-effects model be-

cause the latter involves complex specification of heterogeneity variances, which will

be detailed in Section 7.2.3. However, the homogeneity assumption may be unrealistic

in many cases [78], and the credible intervals produced by the fixed-effects model may

have low coverage probabilities if heterogeneity is present in some treatment compar-

isons [158].

7.2 Network meta-analysis without evidence cycles

7.2.1 Direct and indirect evidence

The treatment network is assumed to be connected throughout this chapter; if the

network consists of several disjoint sub-networks, then a separate analysis can be applied

to each sub-network. For a treatment network without cycles, all collected studies must

be two-armed because multi-arm studies create evidence cycles. Consequently, we no

longer need to account for the correlations between treatment contrasts within studies

in the Lu–Ades random-effects model (7.2).

To investigate the performance of the Lu–Ades model for a network without cycles,

we explore the posterior distributions of all treatment contrasts. The (K − 1)K/2

treatment contrasts are denoted as a vector e = (dhk; 1 ≤ h < k ≤ K)T. In graph

theory, a connected network without cycles is a spanning tree and contains exactly

K − 1 edges; denote the set of these edges as a (K − 1)-dimensional vector eb =

(e1, . . . , eK−1)
T, where ej = dhk for some h < k and each ej provides direct evidence.

Thus, the set of all treatment contrasts e can be split into two subsets: eb, each contrast

in which is directly compared in the network, and a (K − 2)(K − 1)/2-dimensional
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vector ef = (dhk; dhk /∈ eb)
T that can only be imputed from indirect evidence. By the

definition of Lu and Ades [52], the treatment contrasts in eb are basic parameters, which

involve all K treatments but do not form cycles; those in ef are referred to as functional

parameters because they can be represented as functions of the basic parameters. The

evidence consistency equation (7.3) necessarily holds for networks without cycles because

evidence inconsistency only occurs within evidence cycles; indeed, these networks have

zero inconsistency degrees of freedom. Therefore, ef is entirely determined by eb; that is,

we may write ef = Aeb, where A is a known (K−2)(K−1)/2× (K−1) transformation

matrix. We have the following proposition regarding the transformation matrix A.

Proposition 6. The transformation matrix A is unique for each set of basic parameters,

and each entry of A is 0 or ±1.

Proposition 6 holds for any type of connected network, including those containing

cycles, under the assumption of evidence consistency. In networks without cycles, there

is only one set of basic parameters eb, so the transformation matrix A is uniquely

defined.

7.2.2 Equivalence of the Lu–Ades model and separate Smith models

In a network without cycles, suppose that study i, which must be two-armed, compares

treatments ki vs. hi (hi < ki); that is, the corresponding treatment contrast is dhiki .

For j = 1, . . . ,K − 1, let Sj = {i : dhiki = ej} be the set of studies that give the

direct treatment comparison ej . Consequently, the N studies S = {1, . . . , N} in the

network can be partitioned into K − 1 subsets according to their treatment contrasts:

S =
⋃K−1

j=1 Sj . Moreover, let Dj = {(yik, ξik); i ∈ Sj , k ∈ Ti} be the data (aggregated

outcome measures and nuisance parameters) provided by the studies in Sj , and let

D =
⋃K−1

j=1 Dj be the full data in the whole network. The Smith model for pairwise

meta-analysis uses the data Dj for each j separately to estimate the corresponding

treatment contrast ej , and we denote the resulting posterior distribution as p(ej | Dj).

The Lu–Ades model for network meta-analysis uses the full data D to simultaneously

compare all treatments, and we denote the joint posterior distribution of the direct

treatment contrasts as p(eb | D). We have the following theorem.
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Theorem 1. For a treatment network without evidence cycles, given the same set of

priors, the Lu–Ades fixed-effects model (7.5) gives posterior distributions of direct treat-

ment contrasts identical to those from separate Smith fixed-effects model (7.4), that is,

p(eb | D) =

K−1∏

j=1

p(ej | Dj). (7.6)

This equation also holds for the Smith and Lu–Ades random-effects models (7.1) and

(7.2), if the Lu–Ades model uses different heterogeneity variances for different treatment

contrasts.

Equation (7.6) implies that the posterior estimate of ej produced by the Lu–Ades

model is only informed by the data in studies Sj ; thus, the posterior distributions of

the ej ’s are mutually independent.

Proof of Theorem 1. In the Smith and Lu–Ades fixed-effects models, we denote µ =

(µ1, . . . , µN )T as the vector of all studies’ baseline effects, and let µ̃j = (µi; i ∈ Sj)
T be

the vector of those baseline effects in studies Sj . For j = 1, . . . ,K − 1, denote yj =

(yik; i ∈ Sj , k ∈ Ti)T and ξj = (ξik; i ∈ Sj , k ∈ Ti)T. Also, let y = (yik; i ∈ S, k ∈ Ti)T

and ξ = (ξik; i ∈ S, k ∈ Ti)T; thus, D = {(y, ξ)} and Dj = {(yj , ξj)}. By the properties

of conditional probability, the joint posterior of the direct treatment contrasts produced

by the Lu–Ades fixed-effects model is

p(eb | D) =

∫
p(eb,µ | D) dµ ∝

∫
f(y | eb,µ, ξ)p(eb)p(µ) dµ.

Here, f(· | ·) is the probability density function of the observed outcome measures con-

ditional on the pertinent parameters, and p(eb) =
∏K−1

j=1 p(ej) and p(µ) =
∏K−1

j=1 p(µ̃j)

are priors for the treatment contrasts and baseline effects, respectively. Since condi-

tional on µ and eb, the outcome measure yj in studies Sj depends on µ̃j and ej but

not the other basic parameters in eb, we have f(y | eb,µ, ξ) =
∏K−1

j=1 f(yj | ej , µ̃j , ξj).

Consequently,

p(eb | D) ∝
K−1∏

j=1

∫
f(yj | ej , µ̃j , ξj)p(ej)p(µ̃j) dµ̃j ∝

K−1∏

j=1

p(ej | Dj).
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In the random-effects models, we further denote σj as the heterogeneity standard

deviation of the treatment contrast ej . Let σ = (σ1, . . . , σK−1)
T. Similarly, we have

p(eb | D) =

∫∫
p(eb,σ,µ | D) dσ dµ ∝

∫∫
f(y | eb,σ,µ, ξ)p(eb)p(σ)p(µ) dσ dµ,

where p(σ) =
∏K−1

j=1 p(σj) is the prior for the heterogeneity standard deviations. Again,

because f(y | eb,σ,µ, ξ) =
∏K−1

j=1 f(yj | ej , σj , µ̃j , ξj), the joint posterior distribution

of direct treatment contrasts produced by the Lu–Ades random-effects model is

p(eb | D) =

K−1∏

j=1

∫∫
f(yj | ej , σj , µ̃j , ξj)p(ej)p(σj)p(µ̃j) dσj dµ̃j ∝

K−1∏

j=1

p(ej | Dj).

This completes the proof.

Unlike the ej ’s in eb that are directly compared in the network, the estimates of ef

are entirely informed by indirect evidence. The network meta-analysis seems to be an

efficient approach to simultaneously estimating all treatment contrasts, including the

indirect ones. However, the following theorem shows that separate Smith models also

produce posterior distributions of indirect treatment contrasts identical to those given

by the Lu–Ades model.

Theorem 2. Under the model settings in Theorem 1 and using the evidence consis-

tency equation (7.3), the joint posterior distributions of the indirect treatment contrasts

ef produced by the Lu–Ades model and by separate Smith models are identical for a net-

work without evidence cycles. Specifically, under some regularity assumptions given in

Appendix B.3, the joint posterior distribution of ef is

p(ef | D) =
1

(2π)P

∫

RP

e−itTefϕf(t) dt,

where P = (K − 2)(K − 1)/2 and i2 = −1. The characteristic function of ef is ϕf(t) =

ϕb(A
Tt) for t ∈ RP , where ϕb(s) =

∏K−1
j=1

∫
R
eisjejp(ej | Dj) dej is the characteristic

function of the direct treatment contrasts eb for s = (s1, . . . , sK−1)
T ∈ RK−1.

Theorems 1 and 2 imply that for a network without cycles Lu–Ades network meta-

analysis does not change the posterior distributions (thus, point estimates and credi-

ble intervals) of any treatment contrasts produced by separate Smith pairwise meta-

analyses.
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7.2.3 Lu–Ades random-effects model with equal heterogeneity vari-

ances

Besides potential evidence inconsistency, modeling the heterogeneity variances and co-

variances is another important issue in the Lu–Ades random-effects model (7.2). The

difficulty arises from the fundamental relationship of the relative effects, δihk = δiℓk−δiℓh,
so the heterogeneity standard deviations are constrained by the triangular inequality

|σℓh − σℓk| ≤ σhk ≤ |σℓh + σℓk|. (7.7)

Lu and Ades [54] introduced a reparameterization of the σhk’s that permits specifica-

tion of unstructured variance and correlation components for network meta-analysis.

However, for conceptual and technical simplicity, the heterogeneity variances σ2bk are

often assumed to be equal to a common variance σ2 and the between-contrast cor-

relations γbkl are set to 1/2 [50, 51]. This assumption is widely used in applications

(e.g., [61, 159, 160]), though it imposes a possibly quite strong constraint on the treat-

ment comparisons, which may be unrealistic for many cases [54].

Under the assumption of equal heterogeneity variances, we have the following theo-

rem.

Theorem 3. For a treatment network without evidence cycles, the Lu–Ades random-

effects model (7.2) with equal heterogeneity variances σ2bk = σ2 is equivalent to simulta-

neously using the Smith random-effects models (7.1) for studies Sj, conditional on the

common heterogeneity variance σ2.

The Smith models in Theorem 3 may not be deemed separate, because each model

uses the common heterogeneity variance σ2, which is informed by all studies S instead

of the study set Sj for a specific treatment contrast. Although the Lu–Ades random-

effects model can therefore produce different results from separate Smith random-effects

models that have no constraints on the heterogeneity variances σ2bk, Theorem 3 implies

that these differences are caused entirely by the specification of heterogeneity variances

if the treatment network does not contain evidence cycles. Thus, under this model

setting, the Lu–Ades model still provides no gain from synthesizing direct and indirect

evidence apart from the strong assumption that σ2bk = σ2.
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7.2.4 Acyclic treatment comparisons in general networks

In a general treatment network that may contain evidence cycles, it commonly occurs

that some treatment comparisons are not in any cycles [161]; we refer to such treat-

ment comparisons as acyclic comparisons. Theorem 1 can be extended to the posterior

distributions of acyclic comparisons in networks with general shapes. Specifically, sup-

pose that a network with K treatments contains J acyclic comparisons, denoted as

ea = (e1, . . . , eJ)
T.

Proposition 7. For a network with K treatments, the number of acyclic comparisons

J does not exceed K − 1.

Studies that report the acyclic comparison ej (j = 1, . . . , J) must be two-armed;

otherwise, multi-arm studies create evidence cycles containing ej , contradicting the

definition of an acyclic comparison. As in Section 7.2.2, let Sj be the set of studies

that report the acyclic comparison ej , and S⋆ = S\
⋃J

j=1 Sj be the remaining studies

in the network. The studies in S⋆ produce a sub-network that does not have any

acyclic comparisons and thus must contain evidence cycles if the set S⋆ is not empty.

Suppose that e⋆b is a set of basic parameters in the sub-network consisting of S⋆; then

eb = (eT
a , e

⋆T
b )T is a set of basic parameters for the full network S. Also, denote the data

provided by Sj as Dj and the data provided by S⋆ as D⋆. Then we have the following

theorem.

Theorem 4. For acyclic treatment comparisons in a general network, the Lu–Ades

model does not improve their posterior distributions compared to separate Smith models

under the model settings in Theorem 1. Specifically, using the same set of priors in

the two models, the joint posterior distribution of the basic parameters produced by the

Lu–Ades model is

p(eb | D) = p(e⋆b | D⋆)
J∏

j=1

p(ej | Dj). (7.8)

Here, p(eb | D) is produced by the Lu–Ades network meta-analysis on the full

network S, while p(e⋆b | D⋆) is the posterior based on the sub-network consisting of S⋆.

The study set S⋆ does not exist in a network without cycles so that p(e⋆b | D⋆) drops out

of Equation (7.8), which is thus reduced to Equation (7.6). Theorem 4 can therefore be

viewed as a generalization of Theorem 1.
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Since the acyclic comparisons ea are not contained in any evidence cycles, they are

not subject to the risk of evidence inconsistency. The sub-network consisting of S⋆

contains evidence cycles, so the evidence may be inconsistent; however, Theorem 4 still

applies for this situation.

7.3 Numerical studies

7.3.1 Simulations

We conducted simulations to illustrate the equivalence of the Lu–Ades and Smith mod-

els’ performance when the treatment network does not contain any cycles. The outcome

was assumed to be continuous and normally distributed, and each treatment’s outcome

measure yik and its within-study standard error ξik were observed. The situation of a

binary outcome will be explored in the real data analysis in Section 7.3.2. We simu-

lated data containing five treatments with three network shapes, shown in Figure 7.1.

Each network does not contain cycles: Shape 1 is a star-shaped network with its cen-

ter at treatment 1; Shape 2 is a chain-shaped network with treatment contrasts from

2 vs. 1 to 5 vs. 4; and Shape 3 is more general than the star and chain shapes. Also, in

each network four treatment contrasts are observed and form a set of basic parameters

eb. These treatment contrasts are reported in 5, 10, 15, or 20 studies, as described in

Figure 7.1. Thus, each simulated network contained a total of 50 studies.

To simulate the outcome measures, we first generated samples for all five treat-

ments in each study, and then omitted certain treatment arms to create networks with

the shapes in Figure 7.1; the omitted data were assumed to be missing completely

at random. Specifically, the five treatments’ within-study standard errors were drawn

from ξik ∼ U(0.1, 1) (i = 1, . . . , 50, k = 1, . . . , 5). The observed treatment-specific

outcome measure was generated from yik ∼ N(µik, ξ
2
ik), where µik represents the un-

derlying true measure of treatment k in study i. The study-specific true measures

were drawn from (µi1, . . . , µi5)
T ∼ N((µ1, . . . , µ5)

T,Ψ), where µk represents the over-

all mean of treatment k (k = 1, . . . , 5), and Ψ represents the between-study covari-

ance matrix. We set µk = k; hence, the true relative effect of treatments k vs. h was

dhk = µk−µh = k−h. Also, Ψ = DRD, where R = (ρhk) is the correlation matrix with

ρkk = 1 and ρhk = 0.4 (1 ≤ h 6= k ≤ 5), and the between-study standard deviations
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D = diag(τ1, . . . , τ5) were sampled for three cases: (i) all studies were homogeneous

with τk = 0; (ii) all treatments had a common heterogeneity standard deviation τk = τ

with τ ∼ U(1, 1.5); and (iii) the five treatments had different heterogeneity standard

deviations with τk ∼ U(0.4k − 0.4, 0.4k) for k = 1, . . . , 5. Finally, certain treatments

in certain studies were randomly omitted to produce networks with Shapes 1–3. For

example, in the network with Shape 1, treatments 3–5 were omitted in five studies, so

these five studies compared treatments 2 vs. 1. For each network shape, 1000 repli-

cates of network data were generated; for each replicate, the Markov chain Monte Carlo

algorithm was applied to implement the Smith and Lu–Ades models using one chain,

which contained a run of 50,000 updates after a 20,000-run burn-in period. For both

the Smith and Lu–Ades models, three model settings were considered: a fixed-effects

model, a random-effects model with different heterogeneity variances, and a random-

effects model with a common heterogeneity variance. Vague priors were used for the

study-specific baseline effects and the basic parameters; U(0, 10) priors were used for

the heterogeneity standard deviations in the random-effects models. The functional

parameters, such as d23 in network with Shape 1, were estimated using the evidence

consistency equation (7.3). The models’ performance was evaluated according to bias

and mean squared error of the estimated relative effects and coverage probability of the

95% credible intervals.

Table 7.1 presents the results of some treatment contrasts for Case (iii) of the

between-study standard deviation; the simulation results for Cases (i) and (ii) are in

Appendix A.10. Since the treatments were missing completely at random in all cases,

each model produced nearly unbiased point estimates for each treatment contrast. In

Case (i), where the treatment effects were homogeneous across studies, using either pair-

wise or network meta-analysis for all three networks in Figure 7.1, both the fixed- and

random-effects models produced estimated relative effects with similar mean squared

errors. Also, the fixed-effects model led to credible interval coverage probabilities that

are fairly close to the nominal level 95%, while the two random-effects models produced

slightly inflated coverage probabilities, indicating that their 95% credible intervals were

wider than the fixed-effects model. However, in Cases (ii) and (iii), due to the high

heterogeneity, the fixed-effects model led to very poor credible interval coverage proba-

bilities, while those produced by the random-effects models were generally satisfactory;
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the mean squared errors produced by the fixed-effects model were also much larger than

those of the random-effects models. Moreover, in Case (iii), the true heterogeneity vari-

ances τ2k differed across treatments, while the second random-effects model incorrectly

assumed the τ2k ’s were equal. Interestingly, the results produced by this random-effects

model were fairly similar to those produced by the correct random-effects model as-

suming different heterogeneity variances, although the incorrect model had slightly low

credible interval coverage for the treatment contrast d15 in network with Shape 1 and

d45 in networks with Shapes 2 and 3. Most importantly, for all three network shapes,

the Smith model for pairwise meta-analysis produced effect estimates with biases, mean

squared errors, and credible interval coverage probabilities almost identical to those

produced by the Lu–Ades model for network meta-analysis; some slight differences are

due to Monte Carlo error. Therefore, the Lu–Ades network meta-analysis did not im-

prove the effect estimates compared to Smith pairwise meta-analysis, as suggested in

Theorems 1–3.

7.3.2 Real data analysis

We applied the Smith and Lu–Ades models to the data collected by Trikalinos et al. [140],

consisting of 63 studies of four treatments for non-acute coronary artery disease. All

studies are two-armed. We indexed the treatments as (1) medical therapy; (2) per-

cutaneous transluminal balloon coronary angioplasty; (3) bare-metal stents; and (4)

drug-eluting stents. The outcome is the number of deaths due to the disease in each

treatment group, which follows a binomial distribution. The complete data are available

in Appendix A.11. We used the logit link function for the Smith and Lu–Ades models,

so the overall relative effects produced by these models are log odds ratios comparing

pairs among the four treatments. Also, in the Lu–Ades model, the treatment with the

smallest index was used as the baseline in each study.

Figure 7.2 presents the treatment network; we refer to this as the full network.

The full network has one evidence cycle, while the treatment comparison 4 vs. 3 is

acyclic as it is not contained in any cycles. To illustrate the performance of the Lu–

Ades model in a network without evidence cycles, we removed the four studies that

directly compare treatments 3 vs. 1 from the complete data; the remaining studies lead

to a chain-shaped network without cycles, which we call the reduced network. The
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Smith and Lu–Ades models were applied to both the full and reduced networks. In the

Lu–Ades model, eb = (d12, d23, d34)
T was chosen as the set of basic parameters; thus,

ef = (d13, d14, d24)
T was the set of functional parameters. The three model settings in

Section 7.3.1’s simulations were considered, and vague priors were assigned to the study-

specific baseline effects and the basic parameters. In the random-effects models, U(0, 10)

priors were used for the heterogeneity standard deviations σ12, σ23, and σ34. When the

Lu–Ades random-effects model with different heterogeneity variances was applied to the

full network, due to the triangle inequality constraint (7.7) in the evidence cycle, the

prior of σ13 was set to U(|σ12−σ23|, σ12+σ23) as suggested by Lu and Ades [52]. Three

chains were used to implement the Smith and Lu–Ades models via Markov chain Monte

Carlo; each chain contained a run of 100,000 updates after a 100,000-run burn-in period.

Table 7.2 presents the median overall log odds ratios of all treatment contrasts

with their 95% credible intervals. When pairwise meta-analysis was applied to the full

network, the estimation of the indirect comparisons d14 and d24 was not applicable due

to unknown correlations between the separate estimated effects of d12, d13, d23, and d34;

however, this difficulty does not exist in the reduced network without cycles, as shown

in Theorem 1. The potential scale reduction factors [162] of all traced parameters were

much smaller than 1.05, indicating that the Markov chains sampled from the posterior

distributions have stabilized; also, the convergence of the chains was visually checked

using trace plots. In addition, we assessed the Monte Carlo standard errors of the point

and interval estimates using the R package ‘mcmcse’. Most results have Monte Carlo

standard errors much less than 0.01; those with standard errors greater than 0.01 are

noted in Table 7.2.

For the reduced chain-shaped network, under each model setting, the Smith and Lu–

Ades models produced nearly the same estimates of log odds ratios for all six treatment

contrasts. Most differences between the two models are no more than 0.01 in absolute

magnitude for point estimates and lower/upper bounds of 95% credible intervals, and

are due entirely to Monte Carlo error. These results are consistent with Theorems 1–3.

When the Lu–Ades model was applied to the full network, Table 7.2 shows that the

estimated overall log odds ratios of the basic parameters d12 and d23 differ from those

using the reduced network; thus, d13, d14, and d24, which are based on the basic pa-

rameters d12 and d23, also differ from their results using the reduced network. Recall
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that the reduced network only removed four studies that compare treatments 3 vs. 1.

However, two of the four studies enrolled more than 1000 patients in each of their treat-

ment groups, and they are the largest two among all 63 studies in the full network;

see Table A.10 in Appendix A.11. Thus, the removal of these large studies caused the

large differences noted above. Nevertheless, since the treatment contrast 4 vs. 3 is not

contained in any evidence cycles, the estimated overall log odds ratio of d34 differs by no

more than Monte Carlo error when the Lu–Ades model was used for the full and reduced

networks under both the fixed-effects setting and the random-effects setting with differ-

ent heterogeneity variances. This is consistent with Theorem 4. Furthermore, when all

treatment contrasts were assumed to have a common heterogeneity variance, the 95%

credible interval of the log odds ratio for d34 using the reduced network noticeably differs

from that using the full network. This change arises because the estimate of d34 partly

depends on the estimated heterogeneity variance, which is influenced by the removal of

the four studies that compare treatments 3 vs. 1 from the full network.

7.4 Discussion

In applications, the equivalence of Lu–Ades network meta-analysis and Smith pairwise

meta-analysis for acyclic comparisons is rarely noticed, even if the results from both

types of meta-analyses are reported. This may be due to two reasons: inconsistent

model assumptions and model specifications. First, most articles implement the Lu–

Ades model using a common heterogeneity variance for all treatment comparisons, while

performing separate pairwise meta-analyses using different heterogeneity variances for

each treatment comparison. Due to these inconsistent model assumptions, the effect

estimates produced by network and pairwise meta-analyses for acyclic comparisons are

different, as suggested by Theorem 3. As noted, the assumption of a common hetero-

geneity variance was used in Lu and Ades [51] for conceptual and technical simplicity,

and it may not be realistic in many cases [54]. Second, compared to the Smith Bayesian

hierarchical model, the frequentist inverse-variance fixed-effects model or DerSimonian–

Laird random-effects model [69] currently dominates pairwise meta-analysis, possibly

because the frequentist models can be easily implemented by various statistical software

packages (e.g., [163, 164]). These frequentist methods usually produce effect estimates
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noticeably different from the Smith Bayesian model. Hence, when reporting results from

both pairwise and network meta-analyses, researchers are encouraged to use consistent

model specifications, such as the Lu–Ades model combined with the Smith model, so

that the benefit of network meta-analysis can be accurately reflected by the differences

between the results from pairwise and network meta-analyses.

This chapter showed that evidence cycles are necessary to improve effect estimates

when using Lu–Ades network meta-analysis. Such improvement depends highly on

the evidence consistency assumption (7.3) for each cycle, which effectively reduces the

degrees of freedom of the total of (K − 1)K/2 treatment comparisons dhk (1 ≤ h < k ≤
K). However, each cycle potentially suffers from evidence inconsistency [52, 58], which

is caused by a discrepancy among the trio of treatment comparisons within evidence

cycles. By allowing inconsistency factors w for evidence cycles to deal with this problem,

the degrees of freedom of the treatment contrasts increases, and the power of Lu–Ades

network meta-analysis is accordingly reduced. In other words, when using the Lu–Ades

model to gain more power from network meta-analysis, researchers must accept a greater

risk of evidence inconsistency.
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Figure 7.1: Simulated treatment networks with three shapes. Vertices represent treat-

ments; edges represent direct comparisons. Edge width is proportional to the number

of studies that report the corresponding direct comparison; vertex size is proportional

to the number studies that include the corresponding treatment.
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Figure 7.2: Network of four treatments on non-acute coronary artery disease. Treatment

IDs: (1) medical therapy; (2) percutaneous transluminal balloon coronary angioplasty;

(3) bare-metal stents; and (4) drug-eluting stents.
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Table 7.1: Biases (outside brackets), mean squared errors (inside parentheses), and

95% credible interval coverage probabilities (%, inside square brackets) of the esti-

mated relative effects produced by the Smith model (pairwise meta-analysis) and the

Lu–Ades model (network meta-analysis) in simulations. The data were simulated

using different heterogeneity standard deviations for different treatments.

Network Treatment Network meta-analysis Pairwise meta-analysis
shape contrast FE RE1 RE2 FE RE1 RE2
Shape 1 d12 −0.03 −0.03 −0.03 −0.03 −0.03 −0.02

(0.21) (0.20) (0.20) (0.21) (0.20) (0.20)
[81] [99] [100] [81] [99] [100]

d15 0.03 0.03 0.03 0.03 0.03 0.03
(0.35) (0.18) (0.18) (0.35) (0.18) (0.18)
[41] [96] [92] [40] [95] [92]

d23 0.02a 0.02 0.02 0.02a 0.02 0.02
(0.43) (0.35) (0.35) (0.43) (0.35) (0.35)
[73] [99] [100] [73] [99] [100]

d45 0.04a 0.03 0.03 0.04a 0.03 0.03
(0.59c) (0.31) (0.31) (0.59c) (0.31) (0.31)
[44] [97] [95] [44] [97] [95]

Shape 2 d12 −0.02 −0.03 −0.02 −0.03 −0.03 −0.02
(0.21) (0.20) (0.21) (0.21) (0.20) (0.21)
[82] [99] [100] [81] [99] [100]

d13 −0.01a −0.02 −0.02 −0.03a −0.02 −0.02
(0.42) (0.35) (0.37) (0.42) (0.35) (0.36)
[76] [99] [99] [75] [99] [100]

d15 −0.01b −0.03a −0.02a −0.03b −0.02a −0.02a

(1.09d) (0.73d) (0.74d) (1.09d) (0.73d) (0.74d)
[63] [99] [98] [62] [99] [98]

d45 0.02 0.02 0.02 0.02 0.02 0.02
(0.37) (0.18) (0.18) (0.37) (0.18) (0.18)
[37] [96] [92] [36] [96] [92]

Shape 3 d12 −0.02 −0.03 −0.02 −0.03 −0.03 −0.02
(0.21) (0.20) (0.21) (0.21) (0.20) (0.21)
[82] [99] [100] [81] [99] [100]

d13 −0.02a −0.02 −0.02 −0.03a −0.02 −0.02
(0.42) (0.35) (0.37) (0.42) (0.35) (0.37)
[75] [99] [100] [75] [99] [100]

d15 −0.01a −0.02a −0.02a −0.02a −0.02a −0.02a

(0.63c) (0.44) (0.44) (0.63c) (0.43) (0.44)
[62] [99] [99] [61] [99] [99]

d45 0.02 0.02 0.02 0.02 0.02 0.02
(0.37) (0.18) (0.18) (0.37) (0.18) (0.18)
[37] [96] [92] [36] [96] [92]

FE: fixed-effects model; RE1: random-effects model with different heterogeneity

variances for different treatment contrasts; RE2: random-effects model with a

common heterogeneity variance.

dhk: treatment k compared to h.

Monte Carlo standard error of bias: a, 0.02–0.03; b, 0.03–0.04; otherwise, less

than 0.02. Monte Carlo standard error of mean squared error: c, 0.02–0.03; d,

0.03–0.05; otherwise, less than 0.02. Monte Carlo standard errors of all coverage

probabilities are less than 2%.
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Table 7.2: Log odds ratios (95% credible intervals) between the four treatments on non-acute coronary artery

disease.

Network meta-analysis Pairwise meta-analysis

LOR FE RE1 RE2 FE RE1 RE2

Full network:

d12 −0.07 −0.16 −0.12 −0.21 −0.29 −0.29

(−0.31, 0.17) (−0.65, 0.32) (−0.58, 0.28) (−0.52, 0.09) (−1.06, 0.30) (−0.84, 0.20)

d13 −0.11 −0.24 −0.22 −0.04 0.00 −0.01

(−0.31, 0.08) (−0.91a, 0.25) (−0.73, 0.20) (−0.26, 0.18) (−2.06c, 2.64c) (−0.65, 0.73)

d14 −0.03 −0.22 −0.19 N/A N/A N/A

(−0.49, 0.42) (−1.10a, 0.50a) (−0.98, 0.46)

d23 −0.05 −0.10 −0.10 −0.21 −0.22 −0.21

(−0.29, 0.20) (−0.58, 0.34) (−0.47, 0.25) (−0.53, 0.11) (−0.81, 0.34) (−0.62, 0.19)

d24 0.03 −0.07 −0.07 N/A N/A N/A

(−0.45, 0.52) (−0.83a, 0.60) (−0.75, 0.54)

d34 0.08 0.04 0.03 0.08 0.04 0.03

(−0.33, 0.49) (−0.56a, 0.53) (−0.52, 0.54) (−0.33, 0.50) (−0.55, 0.53) (−0.53, 0.55)

Reduced chain-shaped network:

d12 −0.21 −0.29 −0.31 −0.21 −0.29 −0.30

(−0.51, 0.09) (−1.03b, 0.31a) (−0.91, 0.24) (−0.52, 0.09) (−1.06, 0.30) (−0.91, 0.24)

d13 −0.42 −0.52 −0.52 −0.42 −0.53 −0.51

(−0.86, 0.03) (−1.41b, 0.31a) (−1.26, 0.17) (−0.86, 0.02) (−1.47, 0.30) (−1.26, 0.17)

d14 −0.34 −0.49a −0.51 −0.34 −0.49 −0.50

(−0.95, 0.27) (−1.55b, 0.46a) (−1.48a, 0.36) (−0.95, 0.27) (−1.60, 0.48) (−1.48, 0.35)

d23 −0.21 −0.22 −0.21 −0.21 −0.22 −0.21

(−0.53, 0.11) (−0.80, 0.34) (−0.64, 0.21) (−0.53, 0.11) (−0.81, 0.34) (−0.65, 0.21)

d24 −0.13 −0.19 −0.20 −0.13 −0.18 −0.20

(−0.66, 0.40) (−1.00a, 0.56) (−0.94, 0.49) (−0.66, 0.40) (−1.02, 0.56) (−0.94, 0.48)

d34 0.08 0.04 0.01 0.08 0.04 0.01

(−0.34, 0.50) (−0.55a, 0.53) (−0.58, 0.55) (−0.33, 0.50) (−0.55, 0.53) (−0.58, 0.55)

LOR: log odds ratio; FE: fixed-effects model; RE1: random-effects model with different heterogeneity

variances for different treatment contrasts; RE2: random-effects model with a common heterogeneity

variance; N/A: not applicable.

dhk: treatment k compared to h.

Monte Carlo standard error: a, 0.01–0.02; b, 0.02–0.03; c, 0.06–0.07; otherwise, less than 0.01.



Chapter 8

Conclusion

8.1 Summary of major findings

This thesis introduced several innovative statistical methods and ideas for both univari-

ate and multivariate meta-analyses. Outlying studies are common in meta-analyses and

have great impact on conventional heterogeneity measures; however, no widely accepted

guidelines exist for handling outliers. Chapter 2 proposed new heterogeneity measures

that are less affected by outliers than the conventional ones. Assessing publication

bias is another critical problem in meta-analysis. Chapter 3 empirically compared the

performance of seven popular methods for publication bias using a large collection of

real meta-analyses from the Cochrane Library. We found that Egger’s regression test

detected publication bias in more meta-analyses than the other methods, while the

agreement among the seven tests was generally low or moderate, indicating potential

limitations of current methods. Chapter 4 proposed an intuitive measure to quantify

publication bias so that the severity of publication bias can be compared across meta-

analyses. Specifically, the intercept from Egger’s regression test can serve as a measure

of publication bias, though it does not fully reflect the collected studies’ asymmetry

due to publication bias. We introduced a new measure, the skewness of the regression

residuals, which has a more intuitive interpretation than the regression intercept. It

can be also used as a test statistic for publication bias; simulations showed that it is

powerful in many settings.

The data available for meta-analysis have been greatly enriched due to recent trends
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of data sharing, and methods for multivariate meta-analysis are being increasingly devel-

oped to synthesize the effects of multiple outcomes, multiple treatments, etc. A disease

condition is typically associated with multiple risk and protective factors in medical

sciences. Many studies report associations for multiple factors, but so far nearly all

published meta-analyses separately synthesize the association between each factor and

the disease condition. As the collected studies usually report different subsets of fac-

tors and use different subpopulations, results from separate meta-analyses may not be

comparable. Chapter 5 introduced an innovative concept, multivariate meta-analysis of

multiple factors, which synthesizes the factors simultaneously and thus improves sta-

tistical efficiency and reduces potential biases compared with separate analyses. The

difficulty in multivariate meta-analysis of multiple factors is that the factors are likely

correlated within studies but such correlations are usually unavailable from published

articles. We used a Bayesian hierarchical model to handle this problem.

Network meta-analysis has also become very popular in the last decade. We have

released a user-friendly R package ‘pcnetmeta’ to implement an arm-based network

meta-analysis model, which focuses on estimating treatment-specific effects and is based

on a missing data perspective. For binary outcomes, the arm-based method reports

comprehensive summary results, including event rates, risk ratios, risk differences, and

odds ratios; thus, it is more flexible than the contrast-based network meta-analysis

method, which focuses only on estimating relative effects (e.g., odds ratios). The arm-

based method can use single-arm studies, while the contrast-based method cannot.

Chapter 6 showed that single-arm studies provide valuable information for treatment

comparisons and enhance the robustness of a network meta-analysis.

Although network meta-analysis is generally considered more powerful than conven-

tional pairwise meta-analyses of pairs of treatments, the improvement of effect estimates

produced by network meta-analysis has never been studied theoretically. Chapter 7

proved that a pairwise comparison that is not part of an evidence cycle in a contrast-

based network meta-analysis has posterior distribution identical to that produced by a

simple pairwise meta-analysis. Many network meta-analyses do not contain evidence

cycles, such as star-shaped treatment networks, in which several active treatments are

compared with the control but the active treatments are not mutually compared. In
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such settings, the results of Lu–Ades network meta-analysis model are therefore equiva-

lent to performing separate pairwise meta-analyses on each treatment comparison. We

also illustrated this equivalence using simulation studies and a real data analysis. We

hope that the findings in this thesis will provide other researchers with valuable insights

into future systematic reviews and meta-analyses.

8.2 Future research

Data sharing will necessarily lead to fast development of multivariate meta-analysis so

that all available information can be used effectively. In this connection, we have several

aims for future research on meta-analysis.

(i) Methods for assessing publication bias in multivariate meta-analysis. Although

many methods are available for univariate meta-analysis, assessing publication

bias in multivariate meta-analysis (including network meta-analysis) is largely un-

touched. As the dimension increases, assessing publication bias becomes challeng-

ing because some studies may be completely suppressed while some may selectively

report subsets of their outcomes. Approaches to adjusting for publication bias will

greatly improve the precision of conclusions from multivariate meta-analyses. We

plan to extend the work of quantifying publication bias in univariate meta-analysis

to multivariate settings. Based on the multivariate version of Egger’s regression

test, the skewness of study-specific multivariate residuals can be used as an overall

publication bias measure for all endpoints. We will derive test statistics and their

theoretical properties based on this overall measure.

(ii) Meta-analysis methods based on penalized likelihood. As discussed in Chapter 2,

conventionally, heterogeneity between studies needs to be assessed separately for

each endpoint, and either fixed or random effects are accordingly used to estimate

the effect of that endpoint. This process is inefficient when the meta-analysis

dataset contains many endpoints. Also, it is generally recognized that both the

fixed- and random-effects models have several limitations. In addition, hetero-

geneity is overestimated in the presence of outliers, which are common in meta-

analyses. The new penalized-likelihood-based method will use a set of tuning
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parameters to control the strength of penalties on the likelihood of the random-

effects model. If the tuning parameters are set to zero, the resulting effect esti-

mates are identical to those produced by the conventional random-effects model.

If the tuning parameters are large enough, the new method leads to the fixed-

effects estimates. Therefore, this method can be viewed as trading off between

the fixed- and random-effects models.

(iii) Meta-analysis that combines patient-level data from existing databases with ag-

gregated summary data from a literature search. This combination can overcome

many drawbacks of using only aggregated data. For example, aggregated data

are often poorly reported and presented differently across studies, such as report-

ing odds ratio vs. relative risk. The trend toward data sharing lays a promising

foundation for meta-analysis of individual patient data. Taking advantage of the

increasing attention from governmental organizations and medical journals, we

plan to request individual patient data from data-sharing resources and use them

to help evaluate the performance of the new methods.

(iv) Meta-analysis accounting for post-randomization variables. Non-compliance with

assigned treatments is common in randomized controlled trials and may induce

bias in estimated treatment effects. The main existing method, meta-regression,

adjusts for study-level baseline covariates, not for arm-level post-randomization

variables. We will develop an arm-based approach to jointly modeling both out-

come measures and post-randomization variables in both univariate and multi-

variate meta-analyses, so that the estimated effects of different endpoints can be

comparable at the same level of non-compliance.

Additionally, an important step in promoting new statistical methods is to provide

open-source user-friendly software. We will continue to develop R packages and SAS

macros so that researchers who do not specialize in (bio)statistics can implement the new

methods easily. For example, many frequentist and Bayesian methods for publication

bias are based on so-called selection models that not only detect but also adjust for

publication bias. These methods are usually complicated and require careful coding,

limiting their applications. We plan to release a sophisticated R package that includes

a comprehensive set of selection-model-based methods for assessing publication bias.
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man, D. G., Egger, M., and Jüni, P. Small study effects in meta-analyses of

osteoarthritis trials: meta-epidemiological study. BMJ, 341:c3515, 2010.

[71] Barnett, V. and Lewis, T. Outliers in Statistical Data. John Wiley & Sons, New

York, NY, 3rd edition, 1994.

[72] Horowitz, J. L. Bootstrap methods for median regression models. Econometrica,

66(6):1327–1351, 1998.

[73] Huber, P. J. and Ronchetti, E. M. Robust Statistics. John Wiley & Sons, Hoboken,

NJ, 2nd edition, 2009.

[74] Ismail, I., Keating, S. E., Baker, M. K., and Johnson, N. A. A systematic review

and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral

fat. Obesity Reviews, 13(1):68–91, 2012.

[75] Haentjens, P., Magaziner, J., Colón-Emeric, C. S., Vanderschueren, D., Milisen,

K., Velkeniers, B., and Boonen, S. Meta-analysis: excess mortality after hip

fracture among older women and men. Annals of Internal Medicine, 152(6):380–

390, 2010.

[76] Davey, J., Turner, R. M., Clarke, M. J., and Higgins, J. P. T. Characteristics

of meta-analyses and their component studies in the cochrane database of sys-

tematic reviews: a cross-sectional, descriptive analysis. BMC Medical Research

Methodology, 11(1):160, 2011.

[77] Higgins, J. P. T. and Thompson, S. G. Controlling the risk of spurious findings

from meta-regression. Statistics in Medicine, 23(11):1663–1682, 2004.

[78] Higgins, J. P. T. Commentary: Heterogeneity in meta-analysis should be expected

and appropriately quantified. International Journal of Epidemiology, 37(5):1158–

1160, 2008.



118

[79] Hedges, L. V. and Vevea, J. L. Fixed- and random-effects models in meta-analysis.

Psychological Methods, 3(4):486–504, 1998.

[80] Chalmers, T. C. Problems induced by meta-analyses. Statistics in Medicine,

10(6):971–980, 1991.

[81] Poole, C. and Greenland, S. Random-effects meta-analyses are not always con-

servative. American Journal of Epidemiology, 150(5):469–475, 1999.

[82] Henmi, M. and Copas, J. B. Confidence intervals for random effects meta-analysis

and robustness to publication bias. Statistics in Medicine, 29(29):2969–2983, 2010.

[83] Stanley, T. D. and Doucouliagos, H. Neither fixed nor random: weighted least

squares meta-analysis. Statistics in Medicine, 34(13):2116–2127, 2015.

[84] Walter, S. D. and Cook, R. J. A comparison of several point estimators of the

odds ratio in a single 2 × 2 contingency table. Biometrics, 47(3):795–811, 1991.

[85] Sweeting, M. J., Sutton, A. J., and Lambert, P. C. What to add to nothing? use

and avoidance of continuity corrections in meta-analysis of sparse data. Statistics

in Medicine, 23(9):1351–1375, 2004.

[86] Bradburn, M. J., Deeks, J. J., Berlin, J. A., and Russell Localio, A. Much ado

about nothing: a comparison of the performance of meta-analytical methods with

rare events. Statistics in Medicine, 26(1):53–77, 2007.

[87] Cohen, J. A coefficient of agreement for nominal scales. Educational and Psycho-

logical Measurement, 20(1):37–46, 1960.

[88] Landis, J. R. and Koch, G. G. The measurement of observer agreement for

categorical data. Biometrics, 33(1):159–174, 1977.

[89] Ioannidis, J. P. A. and Trikalinos, T. A. The appropriateness of asymmetry

tests for publication bias in meta-analyses: a large survey. Canadian Medical

Association Journal, 176(8):1091–1096, 2007.

[90] Sterne, J. A. C., Egger, M., and Davey Smith, G. Investigating and dealing with

publication and other biases in meta-analysis. BMJ, 323(7304):101–105, 2001.



119

[91] Harbord, R. M., Egger, M., and Sterne, J. A. C. A modified test for small-study

effects in meta-analyses of controlled trials with binary endpoints. Statistics in

Medicine, 25(20):3443–3457, 2006.

[92] Thompson, S. G. Why sources of heterogeneity in meta-analysis should be inves-

tigated. BMJ, 309(6965):1351–1355, 1994.

[93] Normand, S.-L. T. Tutorial in biostatistics meta-analysis: formulating, evaluating,

combining, and reporting. Statistics in Medicine, 18(3):321–359, 1999.

[94] Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., Rushton, L., and

Moreno, S. G. Assessing publication bias in meta-analyses in the presence of

between-study heterogeneity. Journal of the Royal Statistical Society: Series A

(Statistics in Society), 173(3):575–591, 2010.

[95] Higgins, J. P. T., Thompson, S. G., Deeks, J. J., and Altman, D. G. Measuring

inconsistency in meta-analyses. BMJ, 327(7414):557–560, 2003.

[96] MacGillivray, H. L. Skewness and asymmetry: measures and orderings. The

Annals of Statistics, 14(3):994–1011, 1986.

[97] Wright, S. P. Adjusted P -values for simultaneous inference. Biometrics,

48(4):1005–1013, 1992.

[98] Duval, S. and Tweedie, R. Trim and fill: a simple funnel-plot–based method of

testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2):455–

463, 2000.

[99] Stead, L. F., Perera, R., Bullen, C., Mant, D., Hartmann-Boyce, J., Cahill, K.,

and Lancaster, T. Nicotine replacement therapy for smoking cessation. Cochrane

Database of Systematic Reviews, 11:Art. No.: CD000146, 2012.
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Catalá-López, F., Gøtzsche, P. C., Dickersin, K., Boutron, I., Altman, D. G., and

Moher, D. The PRISMA extension statement for reporting of systematic reviews

incorporating network meta-analyses of health care interventions: checklist and

explanations. Annals of Internal Medicine, 162(11):777–784, 2015.

[149] Efthimiou, O., Debray, T. P. A., van Valkenhoef, G., Trelle, S., Panayidou, K.,

Moons, K. G. M., Reitsma, J. B., Shang, A., and Salanti, G. GetReal in net-

work meta-analysis: a review of the methodology. Research Synthesis Methods,

7(3):236–263, 2016.



125

[150] Hong, H., Chu, H., Zhang, J., and Carlin, B. P. A Bayesian missing data frame-

work for generalized multiple outcome mixed treatment comparisons. Research

Synthesis Methods, 7(1):6–22, 2016.

[151] Lin, L., Zhang, J., Hodges, J. S., and Chu, H. Performing arm-based network

meta-analysis in R with the pcnetmeta package. Journal of Statistical Software,

page in press, 2016.

[152] Nikolakopoulou, A., Chaimani, A., Veroniki, A. A., Vasiliadis, H. S., Schmid,

C. H., and Salanti, G. Characteristics of networks of interventions: a description

of a database of 186 published networks. PLoS One, 9(1):e86754, 2014.

[153] Higgins, J. P. T. andWelton, N. J. Network meta-analysis: a norm for comparative

effectiveness? The Lancet, 386(9994):628–630, 2015.

[154] Smith, T. C., Spiegelhalter, D. J., and Thomas, A. Bayesian approaches to

random-effects meta-analysis: A comparative study. Statistics in Medicine,

14(24):2685–2699, 1995.

[155] Dias, S., Welton, N. J., Caldwell, D. M., and Ades, A. E. Checking consistency in

mixed treatment comparison meta-analysis. Statistics in Medicine, 29(7-8):932–

944, 2010.

[156] Higgins, J. P. T., Jackson, D., Barrett, J. K., Lu, G., Ades, A. E., and White, I. R.

Consistency and inconsistency in network meta-analysis: concepts and models for

multi-arm studies. Research Synthesis Methods, 3(2):98–110, 2012.

[157] White, I. R., Barrett, J. K., Jackson, D., and Higgins, J. P. T. Consistency

and inconsistency in network meta-analysis: model estimation using multivariate

meta-regression. Research Synthesis Methods, 3(2):111–125, 2012.

[158] Mills, E. J., Thorlund, K., and Ioannidis, J. P. A. Demystifying trial networks

and network meta-analysis. BMJ, 346:f2914, 2013.

[159] Trelle, S., Reichenbach, S., Wandel, S., Hildebrand, P., Tschannen, B., Villiger,
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Appendix A

Supplementary Materials

A.1 Sensitivity analysis for the weighted-median-based ro-

bust heterogeneity measure

Since the weighted median in Qm is discontinuous due to the indicator function [165] in

Equation (2.2), the approach by Horowitz [72] is applied to approximate the indicator

function I(t > 0) by a smooth function J(t) in the following simulations and case studies.

For example, J(t) can be the scaled expit function Jǫ(t) = 1/[1 + exp(−t/ǫ)], where ǫ
is a pre-specified small constant, say 10−4. This section presents sensitivity analysis on

the choice of ǫ. We use the data of the case study in Section 2.5.1. Table A.1 presents

the results based on B = 10, 000 resampling iterations.

A.2 Performance of heterogeneity measures in three arti-

ficial meta-analyses

This section illustrates that I2r and I2m can be larger than I2 and provide useful in-

formation on assessing heterogeneity. Three artificial meta-analyses were created; each

contains ten studies with the same within-study variance 1. The observed effect sizes

in half of the studies are yi = b, and those in another half are yi = −b, where b was

set to 0.5, 1, and 2. Figure A.1 presents the corresponding forest plots. Note that

in these meta-analyses, the condition wi(yi − µ̄)2 = C is satisfied, so the equality in

129
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I2r ≤ I2 + (1− 2/π)(1− I2) holds.

Figure A.1(a) shows the meta-analysis with b = 0.5. Since the observed effect size

of each study is contained in the 95% CIs of all other studies, the collected studies

are considered homogeneous; all of I2, I2r , and I2m are calculated as 0. For the meta-

analysis with b = 1.0 shown in Figure A.1(b), five studies report the effect size −1,

lying outside the 95% CIs (−0.96, 2.96) of the other five studies. Despite this, the 95%

CIs of the total ten studies overlap in a large region, i.e., (−0.96, 0.96). Therefore,

the between-study heterogeneity is moderate, but may not be substantial. The three

heterogeneity measures are calculated as I2 = 0.10, I2r = 0.43, and I2m = 0.36; I2 may

indicate homogeneity but both I2r and I2m imply moderate heterogeneity. Figure A.1(c)

shows the meta-analysis with b = 2. The 95% CIs of five studies do not overlap with

those in the other five studies; therefore, these studies are clearly heterogeneous. The

heterogeneity measures are calculated as I2 = 0.78, I2r = 0.86, and I2m = 0.84; all

suggest considerable heterogeneity.

A.3 Complete simulation results for heterogeneity mea-

sures

The simulation settings have been detailed in Section 2.4. Tables A.2–A.4 present the

complete results.

A.4 Performance of various publication bias tests based

on the restricted dataset

Figures A.2–A.4 present the results based on the restricted Cochrane dataset, which

consists of the largest meta-analysis from each systematic review. They correspond to

Figures 3.1–3.3 in Section 3.2.
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A.5 Implementation of multivariate hybrid model

A.5.1 Restricted maximum likelihood method

Since the hybrid model for complete data is a special case of that for missing data by

setting Xi to the p× p identity matrix Ip, we only discuss the situation of missing data.

For the frequentist approach, we consider the restricted maximum likelihood (REML)

method, which is commonly used to estimate variance/covariance components [166].

The restricted log-likelihood of the hybrid model is [167]

λREML = Const.− 1

2

n∑

i=1

log |Φi| −
1

2
log

∣∣∣∣∣
n∑

i=1

XT
i Φ

−1
i Xi

∣∣∣∣∣−
1

2

n∑

i=1

rT
i Φ

−1
i ri,

where ri = yi −Xiµ̃ represents the residuals and

µ̃ = (

n∑

i=1

XT
i Φ

−1
i Xi)

−1(

n∑

i=1

XT
i Φ

−1
i yi).

We may treat λREML as the log-likelihood of the residuals ri, and the REML estimates

are obtained by maximizing λREML. Denote the estimates of Ψ and R as Ψ̂ and R̂,

respectively. Hence, the overall effect size µ is estimated as

µ̂ = (
n∑

i=1

XT
i Φ̂

−1
i Xi)

−1(
n∑

i=1

XT
i Φ̂

−1
i yi),

where Φ̂i = (Di +XiΨ̂XT
i )

1/2XiR̂XT
i (Di +XiΨ̂XT

i )
1/2. The covariance matrix of µ̂ is

estimated as V̂ar[µ̂] = (
∑n

i=1X
T
i Φ̂

−1
i Xi)

−1.

The optimization problem is subject to that the marginal correlation matrix R is

positive definite and its diagonal elements are 1. To ensure these constraints, we consider

the spherical decomposition of R [168]. This technique is basically a reparameterization

of the Cholesky decomposition. Specifically, write R = LLT, where L = (Lij) is a lower

triangular matrix with nonnegative diagonal elements. Let L11 = 1 and for i = 2, . . . , p,

Lij =





cos θi2 if j = 1;
(∏j

k=2 sin θik

)
cos θi,j+1 if j = 2, . . . , i− 1;

∏i
k=2 sin θik if j = i.
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Here, θij ’s are angle parameters for 2 ≤ j ≤ i ≤ p. Note that using this parameter-

ization, the diagonal elements of R, rjj =
∑j

i=1 L
2
ij , are guaranteed to be 1 by the

properties of sine and cosine functions. Moreover, to ensure the uniqueness of Lij ’s,

the angle parameters are constrained to be θij ∈ (0, π). Since the boundaries of the

parameters are linear, and the optimization problem for the REML estimates can be

solved by many statistical software, such as the R function optim().

A.5.2 Bayesian method

In high-dimensional data analysis, it is well-known that the sample covariance is not

consistent if the dimension is close to or greater than the sample size [125, 169]. For

the proposed hybrid model, the estimated overall correlation matrix using the REML

method may also suffer from the ‘curse of dimensionality’, especially when the number

of factors is large and the data are sparse. The covariance matrix of the overall effect

sizes could be poorly estimated, so the 95% confidence intervals (CIs) of the overall

effect sizes may have inappropriate coverage probabilities. Alternatively, the Bayesian

method may provide better estimates by assigning vague priors to variance/covariance

parameters; it has been used in mixed treatment comparisons in which the data are also

sparse [54, 67]. The performance of the Bayesian and REML methods will be studied

using simulations in Appendix A.6.

In Bayesian analysis, the inverse-Wishart prior is frequently specified for unstruc-

tured positive definite matrix [170]; however, the posterior estimates may be sensitive

to the selection of hyperparameters for the inverse-Wishart prior [171, 172]. Instead,

we consider the separation strategy to specify vague priors for the variance and cor-

relation components separately [54, 173]. Again, the aforementioned spherical decom-

position of the marginal correlation matrix R is applied to guarantee its positive def-

initeness. Specifically, for each j = 1, . . . , p, we use vague priors N(0, 103) for the

fixed effects µj and uniform priors U(0, 10) for the between-study standard deviations

ψj [174]. For the correlation matrix that is parameterized using the angle parameters

θij (2 ≤ j ≤ i ≤ p), we specify uniform priors θij ∼ U(0, π). We implement the

Bayesian method using the MCMC algorithm through the software JAGS version 4.2.0

(http://mcmc-jags.sourceforge.net/). The medians of posterior samples are used

as the point estimate, and the 2.5% and 97.5% quantiles are used as the lower and upper

http://mcmc-jags.sourceforge.net/
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bounds of the 95% credible interval, respectively.

Practitioners need to be cautious for the convergence of the hybrid model. The

REML method may fail to converge when the dimension of factors is high and the

sample size is small. An estimated overall correlation close to ±1 may lead to poor

convergence and unstable estimated covariance of the overall effect sizes [121]. We

may check the sensitivity of the REML estimates by specifying several different initial

values for maximizing restricted log-likelihood; large changes of the results may indicate

that the estimates are unstable, possibly due to high dimension. The Bayesian method

may be preferred in such situations; this method has been popular in the literature of

mixed treatment comparisons which also deal with sparse data [54,67]. When using the

Bayesian method, researchers still need to pay attention on checking the stabilization

and convergence of MCMC algorithm by various criteria [162,175].

A.6 Simulations for multivariate meta-analysis of multiple

factors

We conducted simulations in various settings to compare the performance of the pro-

posed hybrid model (Model H) with the ideal model that uses within-study correlations

(Model M), the model that ignores within-study correlations but accounts for between-

study correlations (Model M0), and the univariate model that ignores both types of

correlations (Model U). Bias and root mean squared error (RMSE) of point estimate

and 95% CI/CrI coverage probability are used to evaluate the models’ performance.

We set the number of studies in each simulated MVMA-MF dataset to 30 and con-

sidered 5 factors in total. Without loss of generality, the true overall effect sizes of

the 5 factors were set to 0, i.e., µ = (0, 0, 0, 0, 0)T. Also, the between-study standard

deviation τ was fixed as 1 for each factor; the within-study standard deviation σ of

each factor was set to 0.5, 1, or 2. These choices for σ represent different extents of

heterogeneity between studies; since the between-study variance τ2 was fixed, the stud-

ies tend to be more homogeneous as the within-study variance σ2 increases. Moreover,

we considered the exchangeable correlation structure for both the between- and within-

study correlation matrices, RB = (rBij) and RW = (rWij), which are determined by the

correlation parameters ρB and ρW respectively; that is, rBij = ρB and rWij = ρW for
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1 ≤ i 6= j ≤ 5. The between-study correlation was fixed as ρB = 0.5, and ρW was drawn

from U(0, 0.3), U(0.3, 0.6), or U(0.6, 0.9) to represent different extents of within-study

correlations. Hence, the simulated studies have different marginal correlation matri-

ces, and the settings do not favor the assumption in the proposed hybrid model. For

each setting, 1000 MVMA-MF datasets were simulated using the ideal Model M, i.e.,

Equation (5.1), with Si = σ2RW and T = τ2RB. Finally, three scenarios of missing-

ness were considered: (I) all 5 factors were observed in all studies, i.e., the data were

complete; (II) the data of factors 1, 3, and 5 in 10 studies were missing completely at

random; and (III) the smallest 10 effect sizes of factors 1, 3, and 5 were missing. The

missingness that is not at random in scenario (III) can be considered as the effect of

publication bias. Moreover, we also considered a missingness scenario that is similar to

(III) but contains more missing values: (III′) the smallest 25 effect sizes of factors 1, 3,

and 5 were missing; in this case, the three factors were only available from 5 studies, so

the simulated MVMA-MF dataset was much sparser than the previous settings. Both

the REML and Bayesian methods were applied to implement the four models. For the

Bayesian method, the results of each simulated MVMA-MF dataset was based on one

chain with a run of 10,000 updates after a 10,000-run burn-in period.

To save space, here we present the results of factors 1, 2, and 3 in some settings

in Table A.5; the results of factors 4 and 5 are fairly similar to those of factors 2 and

1, respectively. First, recall that the data of factors 2 and 4 were complete under

each scenario; their corresponding results produced by the four models are almost the

same. All models lead to nearly unbiased estimated effect sizes and proper 95% CI/CrI

coverage probabilities for these two factors under each scenario. Second, the results of

factors 1, 3, and 5 produced by the four models differ little when the data are complete

under scenario (I) or missing completely at random under scenario (II); this is expected

from the perspective of missing data analysis [176]. Third, if the missingness is not at

random under scenario (III), the results produced by the four models are noticeably

different. The univariate model leads to the largest bias and RMSE and the lowest

95% CI/CrI coverage probability. Since Model M0 still accounts for the between-study

correlations, its performance is similar to the proposed Model H when ρW is small

compared to ρB. However, the proposed Model H outperforms Model M0 when ρW is

larger than ρB. This is due to that the within-study level dominates the estimation of
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the overall effect sizes in such a situation, but Model M0 ignores correlations at this

level. Finally, note that Model M is ideal as it uses the within-study correlations that

are usually unavailable in real data. Although Model H does not use the within-study

correlations, Table A.5 shows that the biases and RMSEs produced by Model H are

fairly close to the ideal Model M across various settings. Also, the 95% CI/CrI coverage

probability produced by Model H is generally higher than those produced by Models M0

and U.

In most situations, the biases and RMSEs of point estimates obtained using the

REML method are close to those obtained using the Bayesian method. However, under

the missingness scenarios (III) and (III′), the 95% CrI coverage probabilities for factors 1,

3, and 5 obtained using the Bayesian method are generally higher than those obtained

using the REML method. As noted in Section 5.3.3, this may be due to that the

estimated covariance matrix is inconsistent when many observations are missing and

the dimension is close to the sample size. In addition, when using the hybrid model

to analyze the data under scenario (III′), the optimization algorithm for the REML

estimates did not converge for many simulated replicates, likely due to the sparsity of

the data (only five samples observed for each of factors 1, 3, and 5). We ran around

2500 iterations to obtain 1000 datasets that produced converged REML estimates, and

these 1000 datasets were used to produce the results in Table A.5 for scenario (III′).

Also, under this scenario, the biases and RMSEs produced by the hybrid model using

the REML method are noticeably different from those using the Bayesian method for

factors 1, 3, and 5; again, the differences may be caused by the poor estimates of the

REML method for sparse data. Hence, the Bayesian method is possibly preferred to

implement the multivariate hybrid model when the dimension of factors is high but the

number of observations is limited.

A.7 Estimating population-averaged absolute risks for the

smoking cessation data

Consider using both the arm-based and contrast-based models to estimate absolute risks

for the smoking cessation data presented by Hasselblad [132] and Lu and Ades [52]. This

network meta-analysis dataset consists of 24 studies on a total of 16,737 participants,
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comparing the effects of self-help (B), individual counseling (C), and group counseling

(D) vs. no contact (A). It is straightforward to estimate the population-averaged ab-

solute risks using the arm-based model.2 To illustrate that the arm-based model does

not simply estimate the population-averaged absolute risks for each treatment arm in-

dependently, we also consider separate logit and probit random effects models on each

treatment to estimate the corresponding population-averaged absolute risks. Specif-

ically, the random effects model for a treatment is yi ∼ bin(ni, pi), g(pi) = u + vi,

vi ∼ N(0, σ2), where i indexes different studies, and yi and ni represent the number

of events and participants on a given treatment arm. We used a vague prior for the

fixed effect u and an inverse gamma prior for the variance σ2. The link function g(·)
is either the logit or probit link. The treatment’s population-averaged absolute risk

can be estimated for the logit link as 1
1+exp(−u/

√
1+C2σ2)

where C = 16
√
3

15π , and for the

probit link as Φ(u/
√
1 + σ2), where Φ(·) is the standard normal cumulative distribution

function [177].

To estimate absolute risks using contrast-based NMA, we first selected a reference

treatment group and used the above logit random effects model to estimate absolute risk

distribution for the reference group, which was further used to estimate the population-

averaged absolute risks of other treatment groups. The related WinBUGS code for the

‘random effect models for multiple arm trials’ is available at http://www.bristol.ac.

uk/social-community-medicine/projects/mpes/mtc/. Specifically, based on sep-

arate logit random effects models on each treatment, we used N(−2.62, 2.68−1) as

the prior of logit absolute risks for treatment A, N(−1.94, 1.23−1) for treatment B,

N(−1.69, 1.69−1) for treatment C, and N(−1.44, 1.51−1) for treatment D, when each is

chosen as the reference group, respectively. The results were based on 500,000 MCMC

iterations with 500,000 additional burn-in iterations, and are listed in Table A.6.

Table A.6 illustrates differences between the population-averaged absolute risks es-

timated by the arm-based model and by separate logit or probit models. In particular,

because the arm-based approach models the absolute risks of treatment arms jointly

to account for correlations among them within a study, the posterior of population-

averaged absolute risks from the arm-based model generally have narrower 95% cred-

ible intervals than those from separate models. In addition, the contrast-based model

leads to much wider 95% credible intervals. This may arise because the contrast-based

http://www.bristol.ac.uk/social-community-medicine/projects/mpes/mtc/
http://www.bristol.ac.uk/social-community-medicine/projects/mpes/mtc/
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model only uses the point estimates of u and σ2 from the separate logit/probit random

effects models as a ‘fixed’ prior distribution for the reference group, and the absolute

risk estimates of other treatments greatly depend on this prior information.

A.8 The arm-based and contrast-based models

Assume that a network meta-analysis reviews I studies on K treatments, where each

study investigates a subset of the K treatments. Label the studies i = 1 to I and the

treatments k = 1 to K. Let Ti be the subset of the K treatments that is compared

in ith study. Further, in the ith study, let nik be the number of participants allocated

to treatment k (k ∈ Ti), and let yik be the number of events. For binary outcome,

both types of NMA models are based on the binomial likelihood yik ∼ bin(nik, pik) for

k ∈ Ti; they differ in the way they model the underlying absolute risks pik in each

study’s treatment group.

The arm-based model [67] is specified as follows:

g(pik) = µk + νik;

(νi1, νi2, . . . , νiK)T ∼ N(0,ΣK),

where g(·) is a link function and ΣK is the variance-covariance matrix of the vector of

random effects (νi1, νi2, . . . , νiK)T. Let σ2k, k = 1, 2, . . . ,K denote the diagonal elements

of ΣK . The µk’s are fixed effects for the treatments. Notice that the νik’s are correlated

within each study via the multivariate normal distribution; thus the arm-based model

respects within-study randomization. When the link function g(·) is the probit link (i.e.,

Φ−1(·)), the population-averaged absolute risk of treatment k is πk = E[pikµk, σk] =

Φ
(
µk/
√
1 + σ2k

)
[177]. With this estimate for absolute risks, we can calculate odds

ratios, relative risks, and risk differences. This study uses an inverse-Wishart prior for

ΣK , Σ−1
K ∼ W (VK ,K), where VK is a K × K matrix with diagonal elements 1 and

off-diagonal elements 0.005. The inverse-Wishart prior is commonly used for variance-

covariance matrices and is considered vague [171, 173]. Also, since it is conjugate,

this prior allows some mathematical simplicity [178]. Zhang et al. [67] give practical

computer code implementing MCMC for this model, and the R package ‘pcnetmeta’

(http://cran.r-project.org/package=pcnetmeta) provides user-friendly functions.

http://cran.r-project.org/package=pcnetmeta
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A popular contrast-based model proposed by Lu and Ades [51,54] specifies a baseline

treatment b(i) in the ith study. For convenience, we simply denote b(i) as b. The

Bayesian hierarchical model for this approach is

g(pik) = µi +Xikδibk;

δibk ∼ N(dbk, σ
2
bk).

In this model, Xik is a dummy variable taking the value 1 if k 6= b and 0 if k = b. Also,

µi is the baseline effect for treatment b in the ith study, and δibk is the relative effect of

treatment k compared to the baseline b on the logit scale. This model treats the µi’s as

nuisances and uses non-informative priors for them. This model focuses on the treatment

contrasts δibk and the parameter of interest is the overall relative effect dhk = dbk − dbh;

therefore, this model is described as contrast-based. Practical computer code is available

at http://www.bristol.ac.uk/social-community-medicine/projects/mpes/mtc/.

This study uses the two models as described above. Since the contrast-based model

cannot estimate absolute effects, some authors have proposed the so-called ‘contrast-

based + baseline’ model [58], which is specified as

g(pik) = µi +Xikδi1k;

δi1k ∼ N(d1k, σ
2
1k);

µi ∼ N(m,σ2m).

Here, instead of being treated as a nuisance, µi is modeled as the absolute effect of the

‘reference’ treatment 1. The absolute effect of treatment k is estimated by ak = m+d1k.

This model not only assumes that the relative effects δi1k are exchangeable between

studies, but also requires exchangeability between studies of the absolute effect µi for

the ‘reference’ treatment. Also, this model can be reduced to the arm-based model: we

may rewrite g(pik) = (m+d1k)+(µ̃i1+ δ̃i,1k) for k 6= 1, where µ̃i1 = µi1−m ∼ N(0, τ2m)

and δ̃i,1k = δi,1k − d1k ∼ N(0, σ21k). Therefore, m + d1k and µ̃i1 + δ̃i,1k correspond to

the treatment-specific fixed effect µk and the random effect νik in the arm-based model,

respectively. More details of NMA models can be found in the work by Hong et al. [150]

with discussion [179, 180]. Due to its similarity to the arm-based model and its strong

assumptions, this study does not consider the ‘contrast-based + baseline’ model.

http://www.bristol.ac.uk/social-community-medicine/projects/mpes/mtc/
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A.9 An example of excluding a treatment to form a re-

duced network

Table A.7 gives an example to illustrate the data available for arm-based and contrast-

based models after excluding each treatment being considered. This network consists

of six studies labeled A to F, which evaluate the efficacy of three treatments, labeled 1

to 3. Studies A to E are two-armed, while Study F is three-armed. The six rightmost

columns show data that can be used by the arm-based and contrast-based methods if

each of the three treatments is excluded. For the arm-based model, in the complete

network and reduced networks each retained treatment is investigated in at least 3

studies. However, for the contrast-based model only exclusion of treatment 3 is eligible

for consideration under our criteria (i.e., that each retained treatment is investigated in

at least 3 studies).

The foregoing criterion would imply that no treatment exclusions need to be ruled

out for the arm-based method. However, certain treatment exclusions, such as the

removal of treatment placebo in Eisenberg 2008, would create a disconnected network.

Therefore, we ruled out such treatment exclusions in the present study.

A.10 Additional simulations comparing pairwise and net-

work meta-analyses in the absence of evidence cycles

Tables A.8 and A.9 present the simulation results for Cases (i) and (ii) of the five

treatments’ heterogeneity standard deviations, respectively.

A.11 Complete data for the network meta-analysis of non-

acute coronary artery disease

Table A.10 presents the dataset of the network meta-analysis performed by Trikalinos

et al. [140]. It investigates the effects of four treatments for non-acute coronary artery

disease.
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Figure A.1: Forest plots of the three artificial meta-analyses. The column ‘Est’ contains the observed effect size in each

study; the columns ‘Lower’ and ‘Upper’ contain the lower and upper bounds of the corresponding 95% CI.
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(a) Begg's rank test
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(b) Trim and fill method
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(c) Egger's regression test

−
lo

g
1

0
(P

)

0
1
2
3
4
5
6
7

5 6 7 8 9 10 11 12 13 16 > 20

●

No. of studies

●

●

●

●●●●●●
●●

●

●●

●

●

●●●●●
●
●●●●●

●
●●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●●●●●
●
●
●

●
●

●

●

●

●
●
●
●
●

●

●
●●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●●●●
●●

●●

●

●

●

●
●

●

●●●●
●

●

●●●

●

●

●

●

●●●
●●

●
●
●
●
●
●

●

●

●●●
●
●

●●

●

●●

●

●
●●

●
●

●
●
●●

●

●
●●

●●

●
●

●

●

●
●●

●

●
●

●

●
●
●●

●

●

●

●●

●●

●●

●
●

●
●

●●●

●

●

●
●

●

●

●

●●
●
●●

●

●●
●●

●

●

●

●

●

●●

●

●

●
●●

●

●●
●
●

●
●

●

●

●

●

●●
●●

●
●

●

●

●●

●●●

●
●
●●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●●

●
●

●●
●
●●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●●

●

●

●

●

●

●●
●●●

●

●●

●

●

●

●●●●●

●

●
●

●

●

●

●

●●

●●

●
●
●

●

●●●
●●

●

●

●●

●

●

●●●●●●●

●

●●●●

●

●●●

●

●●

●
●

●●

●

●
●

●
●

●

●

●
●●

●●

●●●

●

●

●●●●●●
●
●

●

●

●●●●●●●●●●●●●

●●
●

●●
●
●●

●

●

●

●

●
●

●●●

●
●

●
●●

●

●

●

●●●●●●●●●

●

●●●●

●

●

●●●

●

●●●

●
●

●

●●●●
●
●

●

●

●

●●
●
●●●

●

●

●

●

●
●

●●●●●

●

●
●●●

●

●
●

●

●

●

(d) Tang's regression test
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Figure A.2: The P -values produced by the various publication bias tests for the 499

Cochrane meta-analyses with continuous outcomes in the restricted dataset. Plus signs

indicate P -values < 10−7.
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(a) Begg's rank test
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(b) Trim and fill method
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(c) Egger's regression test
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(d) Tang's regression test
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(e) Macaskill's regression test
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(f) Deeks' regression test
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Figure A.3: The P -values produced by the various publication bias tests for the 1380

Cochrane meta-analyses with binary outcomes in the restricted dataset. Plus signs

indicate P -values < 10−7.
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Figure A.4: Proportions of the Cochrane meta-analyses having statistically significant publication bias (P -value < 0.1)

based on the various tests in the restricted dataset and their 95% confidence intervals. ‘Any test’ implies the proportion

of having statistically significant publication bias detected by at least one test. The label ‘All’ on the horizontal axis

represents all extracted meta-analyses with continuous/binary outcomes.
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Table A.1: Sensitivity analysis on the choice of ǫ for the weighted-median-based hetero-

geneity measures.

ǫ Qm P -value τ̂m (95% CI) Hm (95% CI) I2m (95% CI)

10−2 31.340 0.006 0.298 (0, 0.561) 1.354 (1, 1.884) 0.455 (0, 0.718)

10−3 31.273 0.006 0.296 (0, 0.563) 1.352 (1, 1.886) 0.453 (0, 0.719)

10−4 31.259 0.006 0.296 (0, 0.563) 1.351 (1, 1.886) 0.452 (0, 0.719)

10−5 31.259 0.006 0.296 (0, 0.563) 1.351 (1, 1.886) 0.452 (0, 0.719)
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Table A.2: Type I error rates and powers of three heterogeneity tests for the simulated

meta-analyses containing 10 studies with outliers in Scenario I.

Outlier pattern
Size/power† RMSE CP (%)

Q‡ Qr Qm τ̂2DL τ̂2r τ̂2m τ̂2DL τ̂2r τ̂2m

Scenario I (contamination) with τ2 = 0 (homogeneity) and si ∼ U(0.5, 1):

No outliers 0.04 (0.05) 0.04 0.04 0.18 0.22 0.16 100 100 100

C 0.74 (0.74) 0.53 0.47 1.04 0.80 0.56 99 98 100

(C,C) 0.97 (0.97) 0.93 0.91 1.70 1.68 1.16 92 92 98

(C,−C) 0.98 (0.98) 0.93 0.92 2.14 1.55 1.24 91 91 97

(C,C,C) 0.99 (0.99) 0.99 0.99 2.21 2.66 1.91 48 55 78

(C,C,−C) 1.00 (1.00) 0.99 1.00 3.01 2.57 2.07 48 57 79

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(0.5, 1):

No outliers 0.75 (0.74) 0.72 0.70 0.72 0.82 0.71 76 88 82

C 0.99 (0.98) 0.97 0.97 2.24 1.89 1.37 98 98 99

(C,C) 1.00 (1.00) 1.00 1.00 3.57 3.58 2.59 92 93 98

(C,−C) 1.00 (1.00) 1.00 1.00 4.44 3.49 2.77 92 92 98

(C,C,C) 1.00 (1.00) 1.00 1.00 4.47 5.29 3.94 67 71 88

(C,C,−C) 1.00 (1.00) 1.00 1.00 6.35 5.60 4.54 63 70 86

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(1, 2):

No outliers 0.26 (0.26) 0.22 0.22 1.27 1.52 1.21 76 88 81

C 0.88 (0.89) 0.78 0.75 5.34 4.28 3.06 98 98 99

(C,C) 0.99 (0.99) 0.98 0.98 8.73 8.68 6.15 92 92 98

(C,−C) 1.00 (1.00) 0.99 0.99 10.81 8.09 6.48 91 92 97

(C,C,C) 1.00 (1.00) 1.00 1.00 11.02 13.15 9.66 56 61 83

(C,C,−C) 1.00 (1.00) 1.00 1.00 15.66 13.46 10.97 56 62 82

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(2, 5):

No outliers 0.08 (0.08) 0.08 0.07 4.23 5.28 3.77 77 87 82

C 0.81 (0.81) 0.64 0.60 27.07 20.71 14.06 98 98 100

(C,C) 0.98 (0.98) 0.96 0.95 44.75 44.94 30.35 90 90 97

(C,−C) 1.00 (1.00) 0.96 0.96 55.85 39.94 31.44 90 91 97

(C,C,C) 1.00 (1.00) 1.00 1.00 56.81 69.04 49.87 44 53 75

(C,C,−C) 1.00 (1.00) 1.00 1.00 81.37 68.52 55.13 45 54 74

RMSE: root mean squared error; CP: coverage probability of 95% confidence interval.

† Size (type I error rate) for homogeneous studies (τ2 = 0) and power for heterogeneous

studies (τ2 > 0) at the significance level α = 0.05.

‡ The sizes/powers outside the parentheses are produced by the resampling method; those

inside the parentheses are obtained using Q’s theoretical distribution under the null

hypothesis.
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Table A.3: Type I error rates and powers of three heterogeneity tests for the simulated

meta-analyses containing 30 studies with outliers in Scenario I.

Outlier pattern
Size/power† RMSE CP (%)

Q‡ Qr Qm τ̂2DL τ̂2r τ̂2m τ̂2DL τ̂2r τ̂2m

Scenario I (contamination) with τ2 = 0 (homogeneity) and si ∼ U(0.5, 1):

No outliers 0.05 (0.06) 0.05 0.05 0.10 0.12 0.10 98 99 99

C 0.55 (0.55) 0.27 0.25 0.37 0.24 0.20 97 97 98

(C,C) 0.89 (0.89) 0.66 0.60 0.63 0.42 0.35 88 90 94

(C,−C) 0.92 (0.92) 0.61 0.61 0.68 0.40 0.36 89 90 94

(C,C,C) 0.98 (0.98) 0.90 0.87 0.88 0.64 0.53 65 74 83

(C,C,−C) 0.99 (0.98) 0.89 0.88 0.99 0.61 0.55 64 73 83

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(0.5, 1):

No outliers 0.98 (0.99) 0.98 0.98 0.40 0.43 0.41 88 93 91

C 1.00 (1.00) 1.00 1.00 0.84 0.63 0.55 97 97 98

(C,C) 1.00 (1.00) 1.00 1.00 1.37 1.00 0.85 93 94 96

(C,−C) 1.00 (1.00) 1.00 1.00 1.45 0.97 0.85 93 94 96

(C,C,C) 1.00 (1.00) 1.00 1.00 1.86 1.44 1.22 76 83 90

(C,C,−C) 1.00 (1.00) 1.00 1.00 2.05 1.40 1.25 77 84 91

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(1, 2):

No outliers 0.48 (0.49) 0.42 0.43 0.74 0.81 0.75 89 93 91

C 0.89 (0.89) 0.78 0.77 1.97 1.36 1.17 98 97 98

(C,C) 0.99 (0.99) 0.94 0.94 3.33 2.29 1.93 91 92 96

(C,−C) 0.99 (0.99) 0.94 0.94 3.50 2.17 1.93 91 92 96

(C,C,C) 1.00 (1.00) 0.99 0.99 4.60 3.41 2.85 70 80 88

(C,C,−C) 1.00 (1.00) 0.99 0.99 5.03 3.24 2.90 71 81 88

Scenario I (contamination) with τ2 = 1 (heterogeneity) and si ∼ U(2, 5):

No outliers 0.11 (0.11) 0.09 0.09 2.32 2.64 2.25 88 92 91

C 0.70 (0.70) 0.43 0.41 9.89 5.96 5.02 97 97 99

(C,C) 0.96 (0.96) 0.81 0.78 17.19 10.92 8.97 90 91 94

(C,−C) 0.96 (0.96) 0.76 0.77 18.10 10.02 8.94 90 91 95

(C,C,C) 1.00 (1.00) 0.95 0.94 23.87 16.90 13.59 65 74 82

(C,C,−C) 1.00 (1.00) 0.95 0.95 26.10 15.49 13.78 64 74 83

RMSE: root mean squared error; CP: coverage probability of 95% confidence interval.

† Size (type I error rate) for homogeneous studies (τ2 = 0) and power for heterogeneous

studies (τ2 > 0) at the significance level α = 0.05.

‡ The sizes/powers outside the parentheses are produced by the resampling method;

those inside the parentheses are obtained using Q’s theoretical distribution under the

null hypothesis.
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Table A.4: Powers of three heterogeneity tests for the simulated meta-analyses con-

taining 30 studies with outliers in Scenario II.

Outlier pattern
Power RMSE CP (%)

Q‡ Qr Qm τ̂2DL τ̂2r τ̂2m τ̂2DL τ̂2r τ̂2m

Scenario II (heavy tail) with τ2 = 1 (heterogeneity) and si ∼ U(0.5, 1):

df = 3 0.92 (0.92) 0.89 0.88 1.45 0.59 0.56 72 79 73

df = 5 0.98 (0.98) 0.95 0.95 0.55 0.45 0.45 84 90 86

df = 10 0.98 (0.98) 0.97 0.97 0.43 0.43 0.42 88 93 90

Scenario II (heavy tail) with τ2 = 1 (heterogeneity) and si ∼ U(1, 2):

df = 3 0.41 (0.40) 0.35 0.35 1.53 0.88 0.82 83 90 87

df = 5 0.46 (0.46) 0.40 0.40 0.82 0.82 0.77 88 93 90

df = 10 0.48 (0.49) 0.42 0.42 0.76 0.82 0.77 88 94 90

Scenario II (heavy tail) with τ2 = 1 (heterogeneity) and si ∼ U(2, 5):

df = 3 0.10 (0.10) 0.10 0.10 2.66 2.71 2.33 88 92 91

df = 5 0.09 (0.09) 0.09 0.08 2.18 2.54 2.17 88 93 92

df = 10 0.10 (0.10) 0.08 0.09 2.18 2.48 2.12 88 93 91

RMSE: root mean squared error; CP: coverage probability of 95% confidence in-

terval.

‡ The sizes/powers outside the parentheses are produced by the resampling method;

those inside the parentheses are obtained using Q’s theoretical distribution under

the null hypothesis.
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Table A.5: The simulation results produced by Models M, H, M0, and U in various settings of within-study variances and

correlations under different missingness scenarios.

Model
Factor 1 Factor 2 Factor 3

Bias RMSE CP (%) Bias RMSE CP (%) Bias RMSE CP (%)

τ = 1, σ = 1, ρB = 0.5, ρW ∼ U(0.6, 0.9):

No missing data (I)

M 0.00 (0.00) 0.26 (0.26) 94 (94) 0.00 (0.00) 0.26 (0.26) 93 (92) 0.00 (0.00) 0.25 (0.25) 95 (94)

H 0.00 (0.00) 0.26 (0.26) 94 (95) 0.00 (0.00) 0.26 (0.26) 93 (95) 0.00 (0.00) 0.25 (0.25) 95 (96)

M0 0.00 (0.00) 0.26 (0.26) 95 (97) 0.00 (0.00) 0.26 (0.26) 94 (96) 0.00 (0.00) 0.25 (0.25) 96 (97)

U 0.00 (0.00) 0.26 (0.26) 94 (95) 0.00 (0.00) 0.26 (0.26) 94 (94) 0.00 (0.00) 0.25 (0.25) 95 (96)

Factors 1, 3, and 5 in 10 studies are missing completely at random (II)

M 0.00 (0.00) 0.30 (0.29) 93 (95) 0.00 (0.00) 0.26 (0.26) 94 (93) 0.00 (0.01) 0.30 (0.28) 93 (95)

H 0.00 (0.00) 0.31 (0.29) 92 (96) 0.00 (0.00) 0.26 (0.26) 93 (95) 0.00 (0.01) 0.30 (0.29) 92 (96)

M0 0.00 (0.00) 0.30 (0.29) 96 (97) 0.00 (0.00) 0.26 (0.26) 94 (95) 0.00 (0.01) 0.29 (0.28) 95 (98)

U −0.01 (0.00) 0.32 (0.32) 94 (95) 0.00 (0.00) 0.26 (0.26) 94 (94) −0.01 (0.02) 0.32 (0.31) 94 (96)

Factors 1, 3, and 5 in 10 studies are missing not at random (III)

M 0.46 (0.48) 0.54 (0.56) 51 (54) 0.00 (0.00) 0.26 (0.26) 94 (94) 0.46 (0.48) 0.54 (0.55) 48 (52)

H 0.49 (0.51) 0.57 (0.58) 43 (54) 0.00 (0.00) 0.26 (0.26) 94 (96) 0.48 (0.52) 0.56 (0.59) 41 (49)

M0 0.56 (0.58) 0.62 (0.64) 44 (53) 0.00 (0.00) 0.26 (0.26) 94 (95) 0.55 (0.61) 0.62 (0.67) 41 (46)

U 0.75 (0.75) 0.80 (0.80) 16 (19) 0.00 (0.00) 0.26 (0.26) 94 (94) 0.75 (0.75) 0.80 (0.80) 14 (18)

τ = 1, σ = 1, ρB = 0.5, ρW ∼ U(0, 0.3):

Factors 1, 3, and 5 in 10 studies are missing not at random (III)

M 0.68 (0.69) 0.74 (0.74) 23 (26) 0.01 (0.01) 0.26 (0.26) 94 (95) 0.68 (0.70) 0.73 (0.75) 22 (23)

H 0.67 (0.68) 0.73 (0.74) 21 (30) 0.01 (0.01) 0.26 (0.26) 94 (96) 0.67 (0.69) 0.73 (0.74) 21 (27)

M0 0.69 (0.71) 0.75 (0.76) 23 (26) 0.01 (0.01) 0.26 (0.26) 94 (95) 0.70 (0.72) 0.75 (0.77) 21 (24)

U 0.75 (0.75) 0.80 (0.80) 16 (19) 0.01 (0.01) 0.26 (0.26) 94 (95) 0.75 (0.75) 0.80 (0.80) 13 (16)

τ = 1, σ = 2, ρB = 0.5, ρW ∼ U(0.6, 0.9):

Factors 1, 3, and 5 in 10 studies are missing not at random (III)

M 0.58 (0.57) 0.74 (0.73) 70 (74) 0.01 (0.01) 0.42 (0.41) 96 (96) 0.59 (0.59) 0.74 (0.74) 71 (73)

H 0.60 (0.63) 0.76 (0.78) 66 (74) 0.01 (0.01) 0.42 (0.42) 96 (97) 0.61 (0.65) 0.76 (0.80) 65 (73)

M0 0.90 (0.96) 1.00 (1.05) 56 (62) 0.01 (0.01) 0.42 (0.42) 97 (97) 0.90 (1.01) 1.00 (1.10) 55 (57)

U 1.18 (1.18) 1.26 (1.26) 25 (29) 0.01 (0.01) 0.42 (0.42) 94 (96) 1.19 (1.19) 1.27 (1.27) 24 (28)

Factors 1, 3, and 5 in 25 studies are missing not at random (III′)

M 1.60 (1.57) 1.76 (1.72) 32 (76) −0.01 (0.01) 0.41 (0.42) 95 (95) 1.60 (1.58) 1.77 (1.73) 31 (75)

H 1.46 (2.36) 1.64 (2.75) 26 (65) −0.02 (0.01) 0.43 (0.42) 93 (96) 1.47 (2.45) 1.67 (2.73) 27 (65)

M0 2.92 (3.05) 2.99 (3.11) 4 (73) −0.01 (0.01) 0.41 (0.42) 96 (96) 2.95 (3.14) 3.02 (3.20) 3 (62)

U 3.19 (3.21) 3.26 (3.28) 1 (11) −0.01 (0.01) 0.41 (0.42) 94 (95) 3.21 (3.23) 3.27 (3.30) 1 (9)

The results outside parentheses are obtained using the REML method; those inside parentheses are obtained using the Bayesian

method. RMSE: root mean square error; CP: 95% CI/CrI coverage probability.
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Table A.6: Population-averaged absolute risks of the four treatments in the smoking

cessation network meta-analysis. They are obtained by the arm-based model, contrast-

based model using different reference treatments, and separate logit/probit random

effects models on each treatment.

Treatment

Population-averaged absolute risks (posterior mean with 95% credible intervals)

Contrast-based model Separate logit Separate probit Arm-based

Reference treatment (# of studies including this treatment) random effects random effects model (using

A (19) B (6) C (19) D (6) models models probit link)

A
0.078 0.110 0.093 0.098 0.075 0.072 0.083

(0.021, 0.194) (0.012, 0.378) (0.016, 0.280) (0.013, 0.325) (0.055, 0.104) (0.045, 0.108) (0.058, 0.117)

B
0.126 0.156 0.144 0.147 0.174 0.182 0.170

(0.027, 0.334) (0.024, 0.456) (0.023, 0.422) (0.020, 0.454) (0.084, 0.352) (0.069, 0.384) (0.086, 0.304)

C
0.162 0.207 0.180 0.188 0.175 0.173 0.185

(0.044, 0.379) (0.028, 0.587) (0.039, 0.455) (0.029, 0.525) (0.128, 0.241) (0.118, 0.245) (0.135, 0.248)

D
0.203 0.248 0.225 0.220 0.231 0.244 0.233

(0.048, 0.491) (0.034, 0.665) (0.042, 0.574) (0.046, 0.540) (0.125, 0.403) (0.106, 0.450) (0.127, 0.382)
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Table A.7: An example for treatment exclusion in network meta-analysis.

Full network Usable data

Study Treatment (no. of events / Remove Treatment 1 Remove Treatment 2 Remove Treatment 3

ID ID no. of Arm- Contrast- Arm- Contrast- Arm- Contrast-

participants) based based based based based based

A 1 yA1/nA1 – – yA1/nA1 – yA1/nA1 yA1/nA1

A 2 yA2/nA2 yA2/nA2 – – – yA2/nA2 yA2/nA2

B 1 yB1/nB1 – – yB1/nB1 – yB1/nB1 yB1/nB1

B 2 yB2/nB2 yB2/nB2 – – – yB2/nB2 yB2/nB2

C 1 yC1/nC1 – – yC1/nC1 – yC1/nC1 yC1/nC1

C 2 yC2/nC2 yC2/nC2 – – – yC2/nC2 yC2/nC2

D 2 yD2/nD2 yD2/nD2 yD2/nD2 – – yD2/nD2 –

D 3 yD3/nD3 yD3/nD3 yD3/nD3 yD3/nD3 – – –

E 1 yE1/nE1 – – yE1/nE1 yE1/nE1 yE1/nE1 –

E 3 yE3/nE3 yE3/nE3 – yE3/nE3 yE3/nE3 – –

F 1 yF1/nF1 – – yF1/nF1 yF1/nF1 yF1/nF1 yF1/nF1

F 2 yF2/nF2 yF2/nF2 yF2/nF2 – – yF2/nF2 yF2/nF2

F 3 yF3/nF3 yF3/nF3 yF3/nF3 yF3/nF3 yF3/nF3 – –
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Table A.8: Biases (outside brackets), mean squared errors (inside parenthe-

ses), and 95% credible interval coverage probabilities (%, inside square brack-

ets) of the estimated relative effects produced by the Smith model (pairwise

meta-analysis) and the Lu–Ades model (network meta-analysis) in simula-

tions. The data were simulated assuming that treatment effects were homo-

geneous across studies.

Network Treatment Network meta-analysis Pairwise meta-analysis
shape contrast FE RE1 RE2 FE RE1 RE2
Shape 1 d12 −0.01 −0.01 0.00 0.00 −0.01 0.00

(0.10) (0.11) (0.10) (0.10) (0.11) (0.10)
[96] [100] [98] [96] [100] [98]

d15 0.00 0.00 0.00 0.00 0.00 0.00
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
[95] [98] [97] [95] [98] [97]

d23 0.01 0.01 0.00 0.00 0.01 0.00
(0.15) (0.16) (0.15) (0.15) (0.16) (0.15)
[96] [100] [97] [96] [100] [97]

d45 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
[94] [98] [97] [94] [98] [97]

Shape 2 d12 0.01 0.00 0.00 0.00 −0.01 0.00
(0.10) (0.11) (0.10) (0.10) (0.11) (0.10)
[97] [100] [98] [96] [100] [98]

d13 0.02 0.00 0.00 0.00 −0.01 0.00
(0.14) (0.15) (0.14) (0.14) (0.15) (0.14)
[96] [100] [97] [96] [100] [97]

d15 0.02 0.00 0.01 0.00 0.00 0.01
(0.19) (0.20) (0.19) (0.19) (0.20) (0.19)
[97] [100] [97] [96] [100] [98]

d45 0.00 0.00 0.00 0.00 0.00 0.00
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
[94] [98] [96] [94] [98] [97]

Shape 3 d12 0.00 0.00 0.01 0.00 −0.01 0.00
(0.10) (0.11) (0.10) (0.10) (0.11) (0.10)
[97] [100] [98] [96] [100] [98]

d13 0.01 0.00 0.01 0.00 −0.01 0.00
(0.14) (0.15) (0.14) (0.14) (0.15) (0.14)
[96] [100] [97] [96] [100] [98]

d15 0.01 0.00 0.01 0.00 0.00 0.01
(0.13) (0.15) (0.14) (0.13) (0.14) (0.14)
[96] [99] [96] [96] [100] [97]

d45 0.00 0.00 0.00 0.00 0.00 0.00
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
[94] [98] [97] [94] [98] [96]

FE: fixed-effects model; RE1: random-effects model with different hetero-

geneity variances for different treatment contrasts; RE2: random-effects

model with a common heterogeneity variance.

dhk: treatment k compared to h.

Monte Carlo standard errors of all biases, mean squared errors, and cov-

erage probabilities are less than 0.02, 0.01, and 2%, respectively.
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Table A.9: Biases (outside brackets), mean squared errors (inside parentheses),

and 95% credible interval coverage probabilities (%, inside square brackets) of the

estimated relative effects produced by the Smith model (pairwise meta-analysis)

and the Lu–Ades model (network meta-analysis) in simulations. The data were

simulated using a common heterogeneity standard deviation for all treatments.

Network Treatment Network meta-analysis Pairwise meta-analysis
shape contrast FE RE1 RE2 FE RE1 RE2
Shape 1 d12 −0.01a 0.01a 0.01a 0.00a 0.01a 0.01a

(0.76e) (0.55d) (0.54d) (0.76e) (0.55d) (0.54d)
[54] [98] [95] [54] [98] [95]

d15 0.02 0.01 0.01 0.02 0.01 0.01
(0.24) (0.12) (0.12) (0.24) (0.12) (0.12)
[48] [96] [96] [48] [96] [96]

d23 −0.02b −0.02a −0.02a −0.02b −0.02a −0.02a

(1.18f) (0.80e) (0.79e) (1.18f) (0.80e) (0.79e)
[53] [99] [95] [53] [98] [95]

d45 0.01a 0.00 0.00 0.01a 0.00 0.00
(0.52d) (0.27) (0.27) (0.52d) (0.27) (0.27)
[50] [97] [96] [50] [97] [96]

Shape 2 d12 0.01a 0.00a 0.01a 0.00a 0.01a 0.01a

(0.76e) (0.55d) (0.54d) (0.76e) (0.55d) (0.54d)
[55] [98] [95] [54] [98] [95]

d13 0.02b 0.00a 0.02a −0.01b 0.01a 0.01a

(1.15f) (0.83e) (0.82e) (1.15f) (0.83e) (0.82e)
[52] [98] [95] [50] [98] [95]

d15 0.02c −0.01b 0.00b −0.01c 0.00b 0.00b

(1.66f) (1.17f) (1.17f) (1.66f) (1.17f) (1.16f)
[50] [98] [95] [49] [98] [95]

d45 −0.01 −0.03 −0.03 −0.01 −0.03 −0.03
(0.23) (0.12) (0.12) (0.23) (0.12) (0.12)
[47] [95] [95] [46] [95] [95]

Shape 3 d12 0.00a 0.00a 0.01a 0.00a 0.01a 0.01a

(0.76e) (0.55d) (0.54d) (0.76e) (0.55d) (0.54d)
[55] [98] [95] [54] [98] [95]

d13 0.00b 0.01a 0.02a −0.01b 0.01a 0.01a

(1.15f) (0.83e) (0.82e) (1.15f) (0.83e) (0.82e)
[51] [98] [94] [50] [98] [94]

d15 0.03b 0.02a 0.03a 0.02b 0.02a 0.03a

(1.02e) (0.69e) (0.69e) (1.02e) (0.69e) (0.68e)
[54] [98] [95] [54] [98] [94]

d45 −0.01 −0.03 −0.03 −0.01 −0.03 −0.03
(0.23) (0.12) (0.12) (0.23) (0.12) (0.12)
[47] [95] [95] [46] [95] [95]

FE: fixed-effects model; RE1: random-effects model with different heterogeneity

variances for different treatment contrasts; RE2: random-effects model with a

common heterogeneity variance.

dhk: treatment k compared to h.

Monte Carlo standard error of bias: a, 0.02–0.03; b, 0.03–0.04; c, 0.04–0.05;

otherwise, less than 0.02. Monte Carlo standard error of mean squared error:

d, 0.02–0.03; e, 0.03–0.05; f, 0.05–0.08; otherwise, less than 0.02. Monte Carlo

standard errors of all coverage probabilities are less than 2%.
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Table A.10: The effects of four treatments for non-acute coronary artery disease.

Study Treatment ID Study Treatment ID
ID 1 2 3 4 ID 1 2 3 4
1 7/107 5/105 33 0/60 0/60
2 1/44 0/44 34 0/66 0/31
3 6/72 6/72 35 0/48 0/48
4 10/50 9/51 36 4/189 1/192
5 15/112 16/115 37 1/182 1/169
6 43/514 43/504 38 1/71 1/74
7 22/105 6/96 39 0/143 0/145
8 1/34 2/32 40 0/195 4/393
9 84/1084 87/1082 41 0/106 1/96
10 0/51 0/50 42 10/111 0/110
11 95/1138 85/1148 43 1/100 1/100
12 8/257 15/259 44 1/22 0/23
13 3/202 3/205 45 1/122 0/124
14 0/59 0/58 46 1/26 0/24
15 0/42 0/42 47 0/58 1/117
16 10/60 4/60 48 0/38 1/152
17 4/410 4/413 49 5/519 5/522
18 2/176 2/178 50 0/30 0/31
19 1/59 0/57 51 0/134 0/135
20 3/54 6/56 52 2/136 0/131
21 1/30 0/30 53 8/652 9/662
22 14/796 4/794 54 8/576 7/569
23 5/223 6/229 55 2/227 0/219
24 1/208 3/202 56 1/10 0/20
25 0/55 0/55 57 4/525 7/533
26 0/43 1/42 58 5/118 9/120
27 3/365 3/370 59 1/177 2/175
28 4/322 5/286 60 0/50 0/50
29 3/200 2/204 61 5/250 7/250
30 0/196 0/192 62 1/159 1/163
31 3/146 0/154 63 1/100 0/100
32 0/126 3/125

The outcome is death due to non-acute coronary artery disease.

Each entry shows (number of deaths)/(total number of patients).

Blank entries represent treatments that were not investigated in the correspond-

ing studies.

Treatment IDs: (1) medical therapy; (2) percutaneous transluminal balloon coro-

nary angioplasty; (3) bare-metal stents; and (4) drug-eluting stents.



Appendix B

Proofs of Propositions and

Theorems

B.1 Asymptotic values of heterogeneity measures

The proofs will frequently use the property about the mean of folded normal distribution:

if X ∼ N(µ, σ2), then E|X| = σ
√

2
πe

−µ2/(2σ2) + µ(1 − 2Φ(−µ/σ)), where Φ(·) is the

cumulative density function of standard normal distribution. Let ⌊x⌋ be the largest

integer less than or equal to x.

Proof of Proposition 1. Note that µ̄ =
∑n

i=1 wiyi/n∑n
i=1 wi/n

P−→ E[w1y1]
E[w1]

= µ, we have

Q/n =
1

n

n∑

i=1

wi[(yi − µ)− (µ̄− µ)]2

=
1

n

n∑

i=1

wi(yi − µ)2 − 2(µ̄− µ) · 1
n

n∑

i=1

wi(yi − µ) + (µ̄− µ)2 · 1
n

n∑

i=1

wi

P−→ E[w1(y1 − µ)2] = 1.

Therefore, I2 = 1− 1
Q/(n−1)

P−→ 0.

For Qr, applying the triangle inequality |x| − |y| ≤ |x− y|, we have

√
wi|yi − µ̄| − √

wi|yi − µ| ≤ √
wi|µ̄− µ|;

√
wi|yi − µ| − √

wi|yi − µ̄| ≤ √
wi|µ̄− µ|.
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Averaging each of the above two inequalities for i = 1, . . . , n, we have

∣∣∣∣∣Qr/n− 1

n

n∑

i=1

√
wi|yi − µ|

∣∣∣∣∣ ≤ |µ̄− µ| · 1
n

n∑

i=1

√
wi

P−→ 0.

Furthermore,

1

n

n∑

i=1

√
wi|yi − µ| P−→ E[|√w1(y1 − µ)|] =

√
2/π.

Therefore, Qr/n
P−→
√
2/π, and I2r = 1− n−1

n · 2/π
(Qr/n)2

P−→ 0.

For Qm, by the theory of M-estimation [73], the weighted median µ̂m
P−→ µ. Simi-

larly applying the triangle inequality, we have

∣∣∣∣∣Qm/n− 1

n

n∑

i=1

√
wi|yi − µ|

∣∣∣∣∣ ≤ |µ̂m − µ| · 1
n

n∑

i=1

√
wi

P−→ 0.

Hence, Qm/n
P−→ E[|√w1(y1 − µ)|] =

√
2/π and I2m = 1− 2/π

(Qm/n)2
P−→ 0.

Proof of Proposition 2. Now, the weights wi have a common value w = 1/σ2. Under

the random-effects setting, the weighted average and weighted median still converge to

the true overall effect size µ in probability. Similarly to the derivations in Proposition 1,

Q/n
P−→ E[w(y1 − µ)2] = (σ2 + τ2)/σ2; both Qr/n and Qm/n converge to E[|√w(y1 −

µ)|] =
√

2
π

√
(σ2 + τ2)/σ2. Hence, I2 = 1− 1

Q/(n−1)

P−→ I20 , I
2
r = 1− n−1

n · 2/π
(Qr/n)2

P−→ I20 ,

and I2m = 1− 2/π
(Q2

m/n)2

P
P−→ I20 , where I

2
0 = τ2/(σ2 + τ2).

Proof of Proposition 3. Without loss of generality, let yi = zi + C for i = 1, . . . , ⌊nη⌋
and yi = zi for i = ⌊nη⌋ + 1, . . . , n, where zi

iid∼ N(µ, σ2 + τ2). Denote the weights

wi = w = 1/σ2.

Note that µ̄ =
∑n

i=1 yi
n = ⌊nη⌋

n ·
∑⌊nη⌋

i=1 (zi+C)
⌊nη⌋ + n−⌊nη⌋

n ·
∑n

i=n−⌊nη⌋+1 zi

n−⌊nη⌋
P−→ η(µ + C) +

(1− η)µ = µ+ ηC. Therefore,

Q/n =
w

n

n∑

i=1

[(yi − µ− ηC)− (µ̄− µ− ηC)]2

=
w

n

n∑

i=1

(yi − µ− ηC)2 − 2w(µ̄− µ− ηC) · 1
n

n∑

i=1

(yi − µ− ηC) + w(µ̄− µ− ηC)2.
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The last two terms on the right hand side converge to 0 in probability. For the first

term, note that

w

n

n∑

i=1

(yi − µ− ηC)2

= w
⌊nη⌋
n

·
∑⌊nη⌋

i=1 (zi − µ+ (1− η)C)2

⌊nη⌋ + w
n− ⌊nη⌋

n
·
∑n

i=n−⌊nη⌋+1(zi − µ− ηC)2

n− ⌊nη⌋ .

It converges in probability to wηE[(z1 − µ+ (1− η)C)2] +w(1− η)E[(z1 − µ− ηC)2] =

η[σ2+τ2+(1−η)2C2]/σ2+(1−η)(σ2+τ2+η2C2)/σ2 = (σ2+τ2)/σ2+η(1−η)C2/σ2 =

(1− I20 )−1+r1r2, where I
2
0 = τ2/(σ2+ τ2), r1 = (1−η)C/σ, and r2 = ηC/σ. Therefore,

Q/n
P−→ (1− I20 )

−1 + r1r2,

and

I2 = 1− 1

Q/(n− 1)

P−→ 1− [(1− I20 )
−1 + r1r2]

−1.

To derive the asymptotic value of I2r , we apply the triangle inequality again as in

the proof of Proposition 1, and obtain
∣∣∣∣∣Qr/n−

√
w

n

n∑

i=1

|yi − µ− ηC|
∣∣∣∣∣ ≤

√
w|µ̄− µ− ηC| P−→ 0.

Note that
√
w

n

n∑

i=1

|yi − µ− ηC|

=
√
w
⌊nη⌋
n

·
∑⌊nη⌋

i=1 |zi − µ+ (1− η)C|
⌊nη⌋ +

√
w
n− ⌊nη⌋

n
·
∑n

i=n−⌊nη⌋+1 |zi − µ− ηC|
n− ⌊nη⌋

P−→
√
wηE[|z1 − µ+ (1− η)C|] +

√
w(1− η)E[|z1 − µ− ηC|]

=
η

σ

[√
σ2 + τ2

√
2

π
exp

(
−(1− η)2C2

2(σ2 + τ2)

)
+ (1− η)C

(
1− 2Φ

(
− (1− η)C√

σ2 + τ2

))]

+
1− η

σ

[√
σ2 + τ2

√
2

π
exp

(
− η2C2

2(σ2 + τ2)

)
− ηC

(
1− 2Φ

(
ηC√
σ2 + τ2

))]

= η

[√
2

π
(1− I20 )

−1/2 exp

(
−1

2
r21(1− I20 )

)
+ r1

(
1− 2Φ

(
−r1(1− I20 )

1/2
))]

+ (1− η)

[√
2

π
(1− I20 )

−1/2 exp

(
−1

2
r22(1− I20 )

)
− r2

(
1− 2Φ

(
r2(1− I20 )

1/2
))]

.
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Therefore, Qr/n also converges to the value above in probability, and

I2r = 1− n− 1

n
· 2/π

(Qr/n)2

P−→ 1−
{
η

[
(1− I20 )

−1/2 exp

(
−1

2
r21(1− I20 )

)
+

√
π

2
r1

(
1− 2Φ

(
−r1(1− I20 )

1/2
))]

+ (1− η)

[
(1− I20 )

−1/2 exp

(
−1

2
r22(1− I20 )

)
−
√
π

2
r2

(
1− 2Φ

(
r2(1− I20 )

1/2
))]}−2

.

Finally, we derive the asymptotic value of I2m. The weighted median µ̂m is defined as

the solution to
∑n

i=1 ψ(θ) = 0, where ψ(θ) = w[I(θ ≥ yi)− 0.5]. Equivalently, µ̂m is the

solution to
∑n

i=1 ψ̃(θ) = 0, where ψ̃(θ) = I(θ ≥ yi)− 0.5 as we assume that the weights

are equal. By the theory of M-estimation [73], µ̂m
P−→ µ0, where µ0 is the solution to

E[ψ̃(θ)] = 0. Specifically,

E[ψ̃(θ)] = Pr(θ ≥ yi)− 0.5

= Pr(θ ≥ yi, 1 ≤ i ≤ ⌊nη⌋) + Pr(θ ≥ yi, ⌊nη⌋+ 1 ≤ i ≤ n)− 0.5

= ηPr(zi ≤ θ − C) + (1− η) Pr(zi ≤ θ)− 0.5

= ηΦ

(
θ − µ− C√
σ2 + τ2

)
+ (1− η)Φ

(
θ − µ√
σ2 + τ2

)
− 0.5.

Therefore, µ0 satisfied the following equation:

ηΦ

(
−µ+ C − µ0√

σ2 + τ2

)
+ (1− η)Φ

(
µ0 − µ√
σ2 + τ2

)
= 0.5. (B.1)

Applying the triangle inequality as in the proof of Proposition 1, we have

∣∣∣∣∣Qm/n−
√
w

n

n∑

i=1

|yi − µ0|
∣∣∣∣∣ ≤

√
w|µ̂m − µ0| P−→ 0.
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Note that
√
w

n

n∑

i=1

|yi − µ0|

=
√
w
⌊nη⌋
n

·
∑⌊nη⌋

i=1
|zi − µ0 + C|
⌊nη⌋ +

√
w
n− ⌊nη⌋

n
·
∑n

i=n−⌊nη⌋+1
|zi − µ0|

n− ⌊nη⌋
P−→

√
wηE[|z1 − µ0 + C|] +

√
w(1− η)E[|z1 − µ0|]

=
η

σ

[√
σ2 + τ2

√
2

π
exp

(
− (µ− µ0 + C)2

2(σ2 + τ2)

)
+ (µ− µ0 + C)

(
1− 2Φ

(
−µ− µ0 + C√

σ2 + τ2

))]

+
1− η

σ

[√
σ2 + τ2

√
2

π
exp

(
− (µ− µ0)

2

2(σ2 + τ2)

)
+ (µ− µ0)

(
1− 2Φ

(
− µ− µ0√

σ2 + τ2

))]

= η

[√
2

π
(1− I20 )

−1/2 exp

(
−1

2
s21(1− I20 )

)
+ s1

(
1− 2Φ

(
−s1(1− I20 )

1/2
))]

+ (1− η)

[√
2

π
(1− I20 )

−1/2 exp

(
−1

2
s22(1− I20 )

)
− s2

(
1− 2Φ

(
s2(1− I20 )

1/2
))]

,

where s1 = (µ+ C − µ0)/σ and s2 = (µ0 − µ)/σ. Therefore,

I2m = 1− 2/π

(Qm/n)2

P−→ 1−
{
η

[
(1− I20 )

−1/2 exp

(
−1

2
s21(1− I20 )

)
+

√
π

2
s1

(
1− 2Φ

(
−s1(1− I20 )

1/2
))]

+ (1− η)

[
(1− I20 )

−1/2 exp

(
−1

2
s22(1− I20 )

)
−
√
π

2
s2

(
1− 2Φ

(
s2(1− I20 )

1/2
))]}−2

.

Notice that s2 = C/σ − s1 and Equation (B.1) can be rewritten as

ηΦ
(
−s1(1− I20 )

1/2
)
+ (1− η)Φ

(
(C/σ − s1)(1− I20 )

1/2
)
= 0.5; (B.2)

that is, s1 is the solution to Equation (B.2). This completes the proof.

B.2 Asymptotic distribution of the publication bias mea-

sure TS

Let X1, . . . , Xn be iid random variables and denote the kth central moment βk =

E(X1 − β)k, where β = E(X1). Also, denote the sample kth central moment mk =

n−1
∑n

i=1(Xi − X̄)k, where X̄ = n−1
∑n

i=1Xi. We have the following lemma regarding

the asymptotic distribution of the sample kth central moment.
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Lemma 1. If X1, . . . , Xn are iid with mean β and β2k <∞ for k ≥ 1, then

mk − βk =
1

n

n∑

i=1

[
(Xi − β)k − βk − kβk−1(Xi − β)

]
+ op(n

−1/2).

as n→ ∞.

Proof of Lemma 1. See page 72 in [181].

Now, let us back to the notation in the main text. Specifically, let xi = (s2i +τ
2)−1/2

and zi = yi(s
2
i + τ2)−1/2. The regression test is zi = α + µxi + ǫi, where ǫi’s are iid

following a distribution with mean zero; α̂ and µ̂ are the least squares estimates of

α and µ respectively, and the residuals ǫ̂i = yi − µ̂xi − α̂. Also, βk = E(ǫ1 − β)k is

the kth central moment of ǫi’s, where β = E(ǫ1) = 0, and mk = n−1
∑n

i=1(ǫi − ǭ)k.

The true skewness of ǫi’s is γ = β3/β
3/2
2 . Let m̂k = n−1

∑n
i=1(ǫ̂i − ¯̂ǫ)k be the sample

kth central moment by plugging in the residuals ǫ̂i, where ¯̂ǫ = n−1
∑n

i=1 ǫ̂i = 0. The

sample skewness of ǫ = (ǫ1, . . . , ǫn)
T is Skew(ǫ) = m3/s

3, where s =
√
nm2/(n− 1),

and TS = Skew(ǫ̂) is obtained by plugging ǫ̂ = (ǫ̂1, . . . , ǫ̂n)
T in Skew(ǫ).

Proof of Proposition 4. First, we show that
√
n(Skew(ǫ) − γ)

D−→ N(0, v) as n → ∞,

where

v = 9 +
35

4
β−3
2 β23 − 6β−2

2 β4 + β−3
2 β6 +

9

4
β−5
2 β23β4 − 3β−4

2 β3β5.

Because Skew(ǫ) = [(n− 1)/n]3/2m3/m
3/2
2 , Skew(ǫ) have the same asymptotic distribu-

tion as m3/m
3/2
2 . By Lemma 1, we have

[
m2

m3

]
−
[
β2

β3

]
=

1

n

n∑

i=1

[
ǫ2i − β2

ǫ3i − β3 − 3β2ǫi

]
+ op(n

−1/2).

Therefore,

√
n

([
m2

m3

]
−
[
β2

β3

])
D−→ N

([
0

0

]
,

[
β4 − β22 β5 − 4β2β3

β5 − 4β2β3 β6 − β23 − 6β2β4 + 9β32

])
.

Denote the asymptotic covariance matrix above as Σ. Let g(r, s) = s/r3/2, then

g′(r, s) =
(
−3

2sr
−5/2, r−3/2

)T
. By the delta method,

√
n(g(m2,m3)− g(β2, β3))

D−→ N(0, [g′(β2, β3)]
TΣ[g′(β2, β3)]);
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that is,
√
n(Skew(ǫ)− γ)

D−→ N (0, v) .

Second, we show that
√
n(TS − Skew(ǫ))

D−→ 0 as n → ∞. We write Skew(ǫ) =

[(n − 1)/n]3/2f(δ), where f(δ) = m3/m
3/2
2 is a continuous and differentiable function

of δ = (δ1, δ2, δ3, δ4, δ5)
T = (ǭ2, ǭ3, ǭ · ǫ2, ǫ2, ǫ3)T; here, ǫk = n−1

∑n
i=1 ǫ

k
i . Specifically,

f(δ) = (δ5 − 3δ3 + 2δ2)(δ4 − δ1)
−3/2; it is free of n. Also, TS = Skew(ǫ̂) = [(n −

1)/n]3/2f(δ̂), where δ̂ =
((

¯̂ǫ
)2
,
(
¯̂ǫ
)3
, ¯̂ǫ · ǫ̂2, ǫ̂2, ǫ̂3

)T

, and ǫ̂k = n−1
∑n

i=1 ǫ̂
k
i . Because the

average of the residuals is ¯̂ǫ = 0, we have δ̂ =
(
0, 0, 0, ǫ̂2, ǫ̂3

)T

. By multivariate Taylor

expansion,

f(δ̂) = f(δ) + [h(δ)]T(δ̂ − δ) +Op(‖δ̂ − δ‖2),

where h(δ) = ▽f(δ) is the gradient of f(δ) and ‖·‖ is the Euclidean norm. Specifically,

h(δ) =




h1(δ)

h2(δ)

h3(δ)

h4(δ)

h5(δ)



=




3
2(δ5 − 3δ3 + 2δ2)(δ4 − δ1)

−5/2

2(δ4 − δ1)
3/2

−3(δ4 − δ1)
3/2

−3
2(δ5 − 3δ3 + 2δ2)(δ4 − δ1)

−5/2

(δ4 − δ1)
3/2



.

Since δ1, δ2, δ3
P−→ 0, δ4

P−→ β2 > 0, and δ5
P−→ β3, we have hj(δ) = Op(1) for

j = 1, . . . , 5. Now, we focus on

δ̂ − δ =
(
−ǭ2,−ǭ3,−ǭ · ǫ2, ǫ̂2 − ǫ2, ǫ̂3 − ǫ3

)T

.

Due to ǭ = Op(n
−1/2), we have δ̂1 − δ1 = −ǭ2 = Op(n

−1), δ̂2 − δ2 = −ǭ3 = Op(n
−3/2),

and δ̂3 − δ3 = −ǭ · ǫ2 = Op(n
−1/2). Note that

ǫ̂i = (α− α̂) + (µ− µ̂)xi + ǫi,

and α̂−α = Op(n
−1/2), µ̂−µ = Op(n

−1/2). Also, by the assumption that xi’s have finite

third moment and the weak law of large numbers, 1
n

∑n
i=1 x

k
i = Op(1) for k = 1, 2, 3.
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Consequently, we have

δ̂4 − δ4 = ǫ̂2 − ǫ2

=
1

n

n∑

i=1

[(α− α̂) + (µ− µ̂)xi + ǫi]
2 − 1

n

n∑

i=1

ǫ2i

= (α− α̂)2 + (µ− µ̂)2
∑n

i=1 x
2
i

n
+ 2(α− α̂)(µ− µ̂)

∑n
i=1 xi
n

+ 2(α− α̂)ǭ+ 2(µ− µ̂)

∑n
i=1 xiǫi
n

= Op(n
−1),

and

δ̂5 − δ5 = ǫ̂3 − ǫ3

=
1

n

n∑

i=1

[(α− α̂) + (µ− µ̂)xi + ǫi]
3 − 1

n

n∑

i=1

ǫ3i

= (α− α̂)3 + (µ− µ̂)3
∑n

i=1 x
3
i

n
+ 3(α− α̂)2(µ− µ̂)

∑n
i=1 xi
n

+ 3(α− α̂)(µ− µ̂)2
∑n

i=1 x
2
i

n
+ 3(α− α̂)2ǭ+ 3(µ− µ̂)2

∑n
i=1 x

2
i ǫi

n

+ 6(α− α̂)(µ− µ̂)

∑n
i=1 xiǫi
n

+ 3(α− α̂)ǫ2 + 3(µ− µ̂)

∑n
i=1 xiǫ

2
i

n

= 3(α− α̂)ǫ2 + 3(µ− µ̂)

∑n
i=1 xiǫ

2
i

n
+Op(n

−1)

= Op(n
−1/2).

Therefore, Op(‖δ̂ − δ‖2) = Op(n
−1), implying

f(δ̂)− f(δ) = [h(δ)]T(δ̂ − δ) +Op(n
−1)

=

5∑

j=1

hj(δ)(δ̂j − δj) +Op(n
−1)

= h3(δ)(δ̂3 − δ3) + h5(δ)(δ̂5 − δ5) +Op(n
−1)

= 3(δ4 − δ1)
3/2 · ǭ · ǫ2 + (δ4 − δ1)

3/2

[
3(α− α̂)ǫ2 + 3(µ− µ̂)

∑n
i=1

xiǫ
2
i

n

]
+Op(n

−1)

= 3(δ4 − δ1)
3/2

{
[(α− α̂) + ǭ] ǫ2 + (µ− µ̂)

∑n
i=1

xiǫ
2
i

n

}
+Op(n

−1)
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Note that
∑n

i=1 ǫ̂i = 0, so (α− α̂) + ǭ = (µ̂− µ)
∑n

i=1 xi

n . Consequently,

f(δ̂)− f(δ) = 3(δ4 − δ1)
3/2

{
(µ̂− µ)

∑n
i=1 xi
n

ǫ2 − (µ̂− µ)

∑n
i=1 xiǫ

2
i

n

}
+Op(n

−1)

= 3(δ4 − δ1)
3/2(µ̂− µ)

{∑n
i=1 xi
n

ǫ2 −
∑n

i=1 xiǫ
2
i

n

}
+Op(n

−1)

= Op(n
−1/2)

{
[E(x1) +Op(n

−1/2)][β2 +Op(n
−1/2)]

− [E(x1ǫ
2
1) +Op(n

−1/2)]
}
+Op(n

−1)

= Op(n
−1/2)

{
[E(x1)β2 +Op(n

−1/2)]− [E(x1)β2 +Op(n
−1/2)]

}
+Op(n

−1)

= Op(n
−1).

This leads to
√
n(f(δ̂)−f(δ)) D−→ 0; hence,

√
n(TS−Skew(ǫ))

D−→ 0, and
√
n(TS−γ) D−→

N(0, v).

Finally, we show that v̂
P−→ v. By continuous mapping theorem, it is sufficient to

show that m̂k
P−→ βk for k = 2, . . . , 6. Recall that βk = E(ǫk1) and m̂k = n−1

∑n
i=1 ǫ̂

k
i .

Since ǫ̂i = (α − α̂) + (µ − µ̂)xi + ǫi = ǫi + Op(n
−1/2), we have m̂k = n−1

∑n
i=1(ǫi +

Op(n
−1/2))k = n−1

∑n
i=1 ǫ

k
i + op(1) = βk + op(1); that is, m̂k

P−→ βk. By Slutsky’s

theorem,
√
n(TS − γ)/

√
v̂

D−→ N(0, 1); this completes the proof.

Proof of Corollary 1. Under H ′′
0 , we have ǫi ∼ N(0, σ2), so β2k = (2k − 1)!!σ2k and

β2k−1 = 0 for k ≥ 1. Here, c!! = c · (c−2) · (c−4) · · · is the double factorial. Specifically,
β2 = σ2, β4 = 3σ4, and β6 = 15σ6. In the proof of Proposition 1, we showed that
√
n(TS − γ)

D−→ N(0, v). Under H ′′
0 , v is simplified as v = 9− 6(σ2)−2 · 3σ4 + (σ2)−3 ·

15σ6 = 6. This completes the proof.

B.3 Properties of pairwise and network meta-analyses

Proof of Proposition 6. For simplicity, let P = (K − 2)(K − 1)/2, the dimension of ef,

so A is P × (K− 1). First, if there are two distinct transformation matrices A1 and A2

such that ef = A1eb and ef = A2eb, then (A1 −A2)eb = 0. Let A1 = (a11, . . . ,a1P )
T

and A2 = (a21, . . . ,a2P )
T. Since A1 6= A2, there is at least one k = 1, . . . , P such that

a1k 6= a2k. Consequently, (a1k − a2k)
Teb = 0; this implies evidence cycles in eb and

contradicts the definition of basic parameters.
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Second, to investigate the entries of A = (a1, . . . ,aP )
T, consider the pth indirect

treatment contrast in ef (p = 1, . . . , P ), denoted as dhk (h < k); it corresponds to the

vector ap = (ap1, . . . , ap,K−1)
T in A. Due to the network’s connectivity, treatments h

and k must be linked through a certain path; the argument in the above paragraph

implies that the path is unique. Suppose that this unique path contains M +1 vertices

(M ≥ 2), say ℓ0 = h, ℓ1, . . . , ℓM−1, ℓM = k. Consequently, iteratively using the evidence

consistency equation, the indirect treatment contrast dhk can be obtained fromM direct

treatment contrasts; that is, dhk = dℓ0ℓ1 + dℓ1ℓ2 + · · · + dℓM−1ℓM . Recall that eb =

(e1, . . . , eK−1)
T contains all direct treatment contrasts. For each i = 1, . . . ,M , there is

some eji (ji = 1, . . . ,K − 1) such that dℓi−1ℓi = xieji , where xi = 1 if ℓi−1 < ℓi and

xi = −1 if ℓi−1 > ℓi. Consequently, we can write dhk =
∑M

i=1 xieji . On the other hand,

dhk = aT
peb =

∑K−1
j=1 apjej . Therefore, if j /∈ {j1, . . . , jM}, apj = 0; if j = ji for some i,

apj = xi. This completes the proof.

Proof of Theorem 2. Both the Lu–Ades and Smith models use the evidence consistency

equation (i.e., ef = Aeb) to impute the indirect treatment contrasts, so the posterior

distributions of ef produced by the two models are entirely determined by eb. Since

Theorem 1 showed that the two models produce identical posterior distributions of eb,

the posterior distributions of ef must also be identical. Furthermore, we make regularity

assumptions that ϕf(t) and p(ef | D) are in LP space. Given ef’s characteristic function

ϕf(t), its posterior distribution is

p(ef | D) =
1

(2π)P

∫

RP

e−itTefϕf(t) dt;

see Equation (10.6.3) in [182]. Note that

ϕf(t) = E
(
eit

T
ef | D

)
= E

(
eit

T
Aeb | D

)
= E

(
ei(A

T
t)Teb | D

)
= ϕb(A

Tt).

Since p(eb | D) =
∏K−1

j=1 p(ej | Dj), for s = (s1, . . . , sK−1)
T, we have

ϕb(s) = E
(
eis

T
eb | D

)
= E

(
ei

∑K−1
j=1 sjej | D

)

=

K−1∏

j=1

E
(
eisjej | D

)
=

K−1∏

j=1

∫

R

eisjejp(ej | Dj) dej .

This completes the proof.
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Proof of Theorem 3. We retain the notation µ̃j , yj , ξj (j = 1, . . . ,K − 1), µ, y, and ξ

defined in the proof of Theorem 1 for treatment networks without evidence cycles; how-

ever, now σ is a scalar, not a vector, representing the common heterogeneity standard

deviation of all treatment contrasts. Consequently, under the assumption of equal het-

erogeneity standard deviations, the Lu–Ades random-effects model gives the posterior

distribution of eb as:

pLA(eb | D) =

∫∫
p(eb, σ,µ | D) dσ dµ

∝
∫∫

f(y | eb, σ,µ, ξ)p(eb)p(σ)p(µ) dσ dµ

=

∫∫ 


K−1∏

j=1

f(yj | ej , σ, µ̃j , ξj)p(ej)p(µ̃j)



 p(σ) dµ dσ

=

∫ 


K−1∏

j=1

∫
f(yj | ej , σ, µ̃j , ξj)p(ej)p(µ̃j) dµ̃j



 p(σ) dσ.

Like the proof of Theorem 1, the first two steps above are consequences of the properties

of conditional probability and the likelihood of the outcome measure y; these are also

valid for the Smith random-effects models. The third step is due to the partition of

studies in the network without cycles, i.e., S =
⋃K−1

j=1 Sj , and the outcome measures

yj in studies Sj depending on ej but not the other basic parameters in eb. This

study partition also naturally holds when the Smith random-effects models are used for

different sets of studies Sj . Therefore, by simultaneously using the Smith random-effects

models conditional on the common heterogeneity standard deviation σ, the posterior

distribution of eb is also

pS(eb | D) ∝
∫∫ 


K−1∏

j=1

f(yj | ej , σ, µ̃j , ξj)p(ej)p(µ̃j)



 p(σ) dµ dσ

=

∫ 


K−1∏

j=1

∫
f(yj | ej , σ, µ̃j , ξj)p(ej)p(µ̃j) dµ̃j



 p(σ) dσ.

That is, pLA(eb | D) = pS(eb | D). This completes the proof.

Proof of Proposition 7. Among all connected networks with K treatments, we consider

the network which has the largest number of acyclic comparisons. This network may
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not be unique, but it must contain no evidence cycles. Otherwise, the removal of

certain comparisons in evidence cycles would add acyclic comparisons; this contradicts

the fact that this network has the most acyclic comparisons among all networks with

K treatments. As this network does not have cycles, it is a spanning tree and contains

K − 1 treatment comparisons. Hence, the number of acyclic comparisons does not

exceed K − 1; i.e., J ≤ K − 1.

Proof of Theorem 4. If there is evidence inconsistency in the sub-network consisting of

S⋆, let w⋆ be the inconsistency factors. Consequently, the functional parameters e⋆f in

the sub-network are determined by e⋆b and w⋆. The remaining proof is similar to that

of Theorem 1. In the Smith and Lu–Ades fixed-effects models, let µ = (µ1, . . . , µN )T be

the study-specific baseline effects, µ̃j = (µi; i ∈ Sj)
T be the baseline effects in studies

Sj , and µ⋆ = (µi; i ∈ S⋆)T be those in studies S⋆. Denote yj = (yik; i ∈ Sj , k ∈ Ti)T,
ξj = (ξik; i ∈ Sj , k ∈ Ti)T, and y⋆ = (yik; i ∈ S⋆, k ∈ Ti)T, ξ⋆ = (ξik; i ∈ S⋆, k ∈ Ti)T.
We have

p(eb | D) =

∫∫
p(eb,µ,w

⋆ | D) dµ dw⋆

∝
∫∫

f(y | eb,µ,w⋆, ξ)p(eb)p(µ)p(w
⋆) dµ dw⋆

=

∫∫
f(y⋆ | e⋆b,µ⋆,w⋆, ξ⋆)p(e⋆b)p(µ

⋆)p(w⋆) dµ⋆ dw⋆

×
J∏

j=1

∫
f(yj | ej , µ̃j , ξj)p(ej)p(µ̃j) dµ̃j

∝ p(e⋆b | D⋆)
J∏

j=1

p(ej | Dj).

The notation in the equation above is similar to the notation in the proof of Theorem 1,

and p(w⋆) is the prior of w⋆.

In the random-effects models, further denote σj as the heterogeneity standard de-

viation of the acyclic treatment comparison ej (j = 1, . . . , J), and let σ⋆ be the

vector of heterogeneity standard deviations in the sub-network consisting of S⋆ and
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σ = (σ1, . . . , σJ , (σ
⋆)T)T be the vector of heterogeneity standard deviations in the en-

tire network. As in the foregoing, we have

p(eb | D) =

∫∫∫
p(eb,σ,µ,w

⋆ | D) dσ dµ dw⋆

∝
∫∫∫

f(y | eb,σ,µ,w⋆, ξ)p(eb)p(σ)p(µ)p(w
⋆) dσ dµ dw⋆

=

∫∫∫
f(y⋆ | e⋆b,σ⋆,µ⋆,w⋆, ξ⋆)p(e⋆b)p(σ

⋆)p(µ⋆)p(w⋆) dσ⋆ dµ⋆ dw⋆

×
J∏

j=1

∫∫
f(yj | ej , σj , µ̃j , ξj)p(ej)p(σj)p(µ̃j) dσj dµ̃j

∝ p(e⋆b | D⋆)
J∏

j=1

p(ej | Dj).

If all evidence cycles are consistent, the inconsistency factors w⋆ can be simply

ignored in the equations above. This completes the proof.




