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Statistical methods for modeling repeated
measures of maternal environmental exposure
biomarkers during pregnancy in association with
preterm birth
Yin-Hsiu Chen1, Kelly K Ferguson2, John D Meeker2, Thomas F McElrath3 and Bhramar Mukherjee1*

Abstract

Background: It is of critical importance to evaluate the role of environmental chemical exposures in premature
birth. While a number of studies investigate this relationship, most utilize single exposure measurements during
pregnancy in association with the outcome. The studies with repeated measures of exposure during pregnancy
employ primarily cross-sectional analyses that may not be fully leveraging the power and additional information
that the data provide.

Methods: We examine 9 statistical methods that may be utilized to estimate the relationship between a
longitudinal exposure and a binary, non-time-varying outcome. To exemplify these methods we utilized data from
a nested case–control study examining repeated measures of urinary phthalate metabolites during pregnancy in
association with preterm birth.

Results: The methods summarized may be useful for: 1) Examining sensitive windows of exposure in association
with an outcome; 2) Summarizing repeated measures to estimate the relationship between average exposure and
an outcome; 3) Identifying acute exposures that may be relevant to the outcome; and 4) Understanding the
contribution of temporal patterns in exposure levels to the outcome of interest. In the study of phthalates, changes
in urinary metabolites over pregnancy did not appear to contribute significantly to preterm birth, making summary
of average exposure across gestation optimal given the current design.

Conclusions: The methods exemplified may be of great use in future epidemiologic research projects intended to:
1) Elucidate the complex relationships between environmental chemical exposures and preterm birth; 2) Investigate
biological mechanisms in prematurity using repeated measures of maternal factors throughout pregnancy; and 3)
More generally, address the relationship between a longitudinal predictor and a binary, non-time-varying outcome.

Keywords: Prematurity, Environment, Statistical methods, Biomarkers, Repeated measures

Background
Preterm birth, defined as delivery before 37 weeks com-

pleted gestation, is both a significant public health problem

and a multifactorial disease [1]. In attempt to identify pre-

dictive markers, underlying causes, and/or mechanistic

pathways, many research projects have investigated the

contribution of various maternal or fetal factors during

pregnancy in relation to risk of prematurity. One example

is the investigation of biomarkers of inflammation; C-reactive

protein, interleukins (e.g., IL-6), matrix metalloprotein-

ases, and angiogenic factors measured in maternal blood,

amniotic fluid, or various other matrices during pregnancy

have been explored with rigor as predictors of preterm

birth [2-4]. Additionally, a number of studies have ex-

amined biomarkers of environmental chemical exposures

which may be important contributors to prematurity [5].

A majority of these studies have utilized measurements

from one time point during pregnancy [5]. However, there
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is additional utility in having multiple measures across

gestation. For markers with poor reproducibility within

subject, having multiple measures of exposure may give a

more accurate representation of average exposure and

confer greater power for detecting an association with pre-

term birth. For markers with good reproducibility within

subject, having multiple measures may provide additional

information about the relationship between exposure and

disease, if the relationship does vary across time. For ex-

ample, they could provide information about windows of

vulnerability during gestation [6].

Methods for examining data with a longitudinal expos-

ure and non-time-varying outcome do not fall in the

standard realm of generalized linear mixed models as in-

stead of having correlated outcome data, the repeated

measures of the exposures are correlated. There is no gen-

eral consensus on how the information contained in the

longitudinal exposure trajectory can be used in a binary

regression model [7]. Consequently, the few studies with

this type of data simply examine a series of cross-sectional

associations as well as an average of repeated measures

across pregnancy in standard binary regression analyses

[8,9]. This paper illustrates several different methods that

may be used to examine this unique but not uncommon

data structure, specifically for epidemiologic studies that

examine biomarkers during pregnancy, when fewer mea-

surements may be available because of practical limita-

tions in collecting repeated samples from a large number

of expecting mothers. We also specify, for data with spe-

cific characteristics, which methods may be more useful

for powerfully detecting subtle associations or for captur-

ing relationships between exposure profiles over time in

relation to a binary endpoint of interest.

Methods
We applied each method using data from a nested case–

control study examining exposure to phthalates during

pregnancy and preterm birth. The study population and

measurement of phthalate monoester metabolites in urine

samples has been described in detail previously [10].

Briefly, mothers were recruited early in pregnancy at

Brigham and Women’s Hospital in Boston, MA, as part of

a prospective cohort. In addition to demographic informa-

tion, mothers provided urine samples for phthalate meas-

urement at up to four time points during pregnancy.

From this population 130 mothers who delivered preterm

and 352 random controls were selected and their urine

samples extracted from freezer storage for phthalate ana-

lysis. Collection times for urine samples within this study

population were median 9.79 for visit 1 (range 4.71 to

16.1), 17.9 for visit 2 (range 14.9 to 21.9), 26.0 for visit 3

(range 22.9 to 29.3) and 35.1 for visit 4 (range 33.1 to

38.3) weeks gestation [11]. The number of phthalate mea-

surements available at each visit was relatively stable for

visits 1–3 (visit 1 = 479, visit 2 = 422, visit 3 = 412) but

fewer were available at visit 4 (N = 380) as many of the

preterm cases had already delivered at that time point

[11]. Phthalate metabolites were measured using high per-

formance liquid chromatography and tandem mass spec-

trometry by NSF International in Ann Arbor, MI [11]. At

the time of metabolite measurement, specific gravity was

also measured in urine samples as an indicator of urine di-

lution using a digital handheld refractometer (Atago Co.,

Ltd., Tokyo, Japan). For the present study, repeated mea-

sures of mono-2-ethylhexyl phthalate (MEHP) as well as

mono-n-butyl phthalate (MBP) were examined as they

were both observed to be associated with preterm birth in

previously published results [10,11], but differ in variability

of measurements across gestation. Based on intraclass cor-

relation coefficients (ICC), MEHP is less stable over time

(ICC = 0.30, 95% confidence interval [CI] = 0.25, 0.35)

compared to MBP (ICC = 0.57, 95% CI = 0.53, 0.62) [11].

As with many biomarker measurements, distributions of

MEHP and MBP were right-skewed and natural log trans-

formed to fit normality assumptions in statistical models.

We have adjusted for specific gravity and urine dilution

as time-varying covariates in our regression models to be

consistent with our previously published studies. One can

adopt alternative approaches to standardize the urinary

phthalate measures, for example, by regressing phthalate

levels on these covariates and using the resultant residuals

as exposure in the subsequent outcome-exposure model.

We conducted a sensitivity analysis to compare our simul-

taneous adjustment strategy to this two-step strategy and

noted that there is no systematic pattern in terms of en-

hanced significance in one adjustment strategy versus an-

other (data not shown). Thus, for all of the methods

presented we opted to include specific gravity as a covari-

ate in the statistical models we fit.

The primary dilemma for examining exposure data

with this time-varying structure is how to account for

the longitudinal features of the exposure trajectory in a

final disease risk model with the binary outcome, condi-

tional on the complete set of exposure measures. This

type of problem is somewhat unique, as in most regres-

sion settings the independent variable and the dependent

variable are either both cross-sectional, both longitu-

dinal, or the outcome is longitudinal with a single base-

line measure of exposure. A commonly used approach

in the realm of studying environmental exposures in re-

lation to preterm birth is to examine multiple cross-

sectional models, e.g., the relationship between trimester

specific exposure levels in association with preterm birth

[8,9,11,12]. This approach enhances the burden of mul-

tiple hypothesis testing. Another previously employed

solution is to include the exposure measures at each

time point simultaneously in a multivariate logistic re-

gression model [12], however this too is problematic as
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these measures are likely to be correlated, leading to in-

flated standard error estimates and erroneous odds ratio

estimates. Additionally, studies with this type of data struc-

ture commonly model an average of repeated exposure

measures, but doing so wastes all information on temporal

variation of the exposure and reduces exposure variability.

In each section of the results, we will examine these as

well as six additional methods to elucidate possible model-

ing strategies that might be useful in different applications.

For each method we examine the association between a

single binary variable (preterm birth status) and a conti-

nuous variable with repeated biomarker measurements

(MEHP or MBP) controlling for time-invariant (maternal

age at visit 1, race/ethnicity, health insurance provider,

education level, and pre-pregnancy body mass index

[BMI]) as well as time-varying (urinary specific gravity

as well as time of day of urine sample collection) covari-

ates. In previous analyses published by this group, dif-

ferent combinations of covariates were included based

on their improvement of specific model types for each

phthalate metabolite. For consistency and illustration

purposes in this paper, all of the above covariates were

included for each model presented and this may ac-

count for incongruence between these and other previ-

ously published results.

For notational convention, we will let Yi denote the

binary outcome for subject i, Xij denote the continuous

measurement corresponding to subject i at visit j (oc-

curring at time tij, with time measured in units of gesta-

tional days), and Zij denote the vector of covariates

where i = 1, …, N and j = 1, …, n. For convenience, we

also let Xi = (Xi1, Xi2, …, Xin)
T and Zi ¼

Zi1
T

⋮

Zin
T

2
4

3
5 denote

all exposure and covariate data available for subject i.

Each subject may not have all n measurements and in that

case we will let ni denote the number of exposure mea-

sures available per subject and use j = 1, …, ni. R codes

for each method are included in Additional file 1 and

are available at http://www-personal.umich.edu/~yinhsiuc/

Rcode-longitudinal.html.

Results and discussion
Standard methods

Multiple logistic regression model

A simple way of modeling this association is to regress

Yi on all available Xij s (for j = 1, …, n) controlling for

the mean vector of covariates �Z i
�Z i ¼

1
n

Xn

j¼1
ZijÞ

�
,

that is:

logit Pr Y i ¼ 1jð X i; Zi½ Þ� ¼ β0 þ
Xn

j¼1

βjX ij þ �Z i
T
βZ

Note that, since this model requires a complete set of

predictors Xij, it will use only the subjects having all ex-

posure data at all n visits, a major limitation of such an

approach. Using our dataset, we modeled urinary phthal-

ate metabolite levels measured at four visits in one

model predicting preterm birth. MEHP at visit 3 only

was significantly associated with increased odds of pre-

term birth (Table 1). Likewise, MBP at visit 3 was sug-

gestively associated with increased odds of preterm

delivery but levels measured at other visits showed no

association (Table 1).

There are several potential problems with this ana-

lysis. First, collinearity between the repeated of mea-

sures of phthalate metabolites may be an issue because

it may lead to inflated standard errors and plausibly

change the direction of estimates of βj s [13]. We exam-

ined the correlation matrix for both the phthalates by

study visit and found relatively high collinearity be-

tween visits, indicated by pairwise correlation coeffi-

cients ranging from 0.26 to 0.48 for MEHP and from

0.50 to 0.57 for MBP (Table 2) [11]. The inverse associ-

ations between preterm birth and MEHP at visit 2 and

MBP at visit 1 might indicate unstable estimation

resulting from this collinearity between the longitudinal

phthalate measures.

A second issue with this method is interpretation of

results, as each regression coefficient represents how the

phthalate level at a certain visit is associated with pre-

term delivery status after controlling for the measures at

other visits, and it is unrealistic to vary only one of a

series of longitudinal measures with other measures

fixed. Finally, as mentioned before, this approach re-

quires that X be measured at, at least nearly, a uniform

set of time points in order to make βj s interpretable, as the

X s are indexed by visit and not continuous time. If the

missing exposure observations are infrequent and the

data are almost complete and missing completely

at random, approximating an unbalanced data set by a

Table 1 Odds of preterm birth from multiple logistic

regression models (method multiple logistic regression

model)

MEHP MBP

Odds ratio (95%
confidence interval)

Odds ratio (95%
confidence interval)

Visit 1 1.08 (0.85, 1.38) 0.84 (0.56, 1.25)

Visit 2 0.93 (0.70, 1.24) 1.17 (0.83, 1.66)

Visit 3 1.33 (0.99, 1.79) 1.49 (0.98, 2.27)

Visit 4 1.11 (0.83, 1.48) 1.17 (0.80, 1.72)

N = 282 for MEHP and MBP models. Odds ratios in association with ln-unit

increase in urinary phthalate metabolite concentration at each study visit.

Models adjusted for maternal age at visit 1, race/ethnicity, health insurance

provider, education level, BMI at visit 1, and urinary specific gravity and time

of day of sample collection at each study visit.
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balanced one is subject to limited loss of efficiency.

Otherwise, the efficiency loss might be considerable

and the approximation may result in serious bias [14].

In this case, as many of the preterm cases had already

delivered by visit 4 and there was consequently poten-

tial missingness explained by the outcome (missing at

random) in phthalate measurements at this time point,

the results from this method may be biased.

We also adapted a Bayesian method originally proposed

by Warren et al. [15] for spatio-temporal data to handle

longitudinal exposure measurements in association with a

binary outcome of interest. The Bayesian method includes

exposure at each visit (1 to n) simultaneously in the out-

come model (e.g., multiple logistic regression) but intro-

duces a specificform of covariance structure for the

Gaussian prior on the coefficients β
→

¼ β1; β2; …; βn
� �T

.

The a priori structure handles the correlation among the

effects of exposures at each visit through shrinkage of the

regression coefficients, just like Ridge regression, by as-

suming that correlation between temporally and spatially

proximate coefficients is higher. However, the advantage

of this method may be quite limited for studies utilizing a

small number of repeated maternal biomarker measure-

ments during pregnancy, and may be more practical for

applications where a large number of exposure measure-

ments, such as ambient air monitoring data. In our appli-

cation the Bayesian approach yields results very similar to

those from the multiple logistic regression model with

slight attenuation towards the null. However, the Bayesian

method handles correlated within-subject exposures across

pregnancy in a more principled manner.

This method and the other three standard methods in-

troduced later in this section assume a linear relationship

between exposure and response. Adding higher-order

polynomial term(s) or replacing the linear term with a

smoothing spline term in the framework of Generalized

Additive Models (GAM) can accommodate non-linearity

in any of these methods.

Parallel cross-sectional logistic regression models

A commonly-used approach to circumvent the collin-

earity problem from Method Multiple Logistic Regression

Model is to fit n separate cross-sectional models for each

visit as:

logit Pr Y i ¼ 1jX ij; Zij

� �� �
¼ β0 þ βjX ij þ ZT

ij βzj f or j

¼ 1; …; n

In the example data, MEHP and MBP measures at

each visit are positively correlated with preterm delivery

although none of the effect estimates are statistically sig-

nificant (Table 3). Odds ratios for preterm delivery range

from 1.10 to 1.17 and from 1.15 to 1.34 with an ln-unit

increase in MEHP and MBP, respectively, after adjust-

ment for covariates. One major drawback of this method

is that there is no straightforward way to combine the

results from multiple regression models and assess the

aggregate effect of X on Y. Also, if desired, controlling

for family-wise error rate (e.g., using Bonferroni correc-

tion) may be conservative because of the varying degree

of dependency between the multiple tests. If instead of

fitting separate models we jointly estimate βj s using the

generalized estimating equations (GEE) approach de-

scribed by Sanchez et al. [6], it is possible to circumvent

some of these concerns as well as test the differences in

associations across visits (i.e., H0 : β1 = β2 =… = βn). In our

example, there are no significant differences in the associ-

ations across four study visits for either MEHP (p = 0.95)

or MBP (p = 0.81) based on this GEE-based joint estima-

tion method. The odds ratios for preterm delivery based

on joint estimation are identical to those in Table 3 with

slightly narrower confidence intervals for MEHP and

slightly wider confidence intervals for MBP (data not

shown).

Model using mean exposure across visits as a summary

The third method regresses the binary variable on the

subject-specific averages of the continuous time-varying

Table 2 Pairwise correlation coefficients for MEHP

(upper triangle) and MBP (lower triangle)

Visit 1 Visit 2 Visit 3 Visit 4

Visit 1 0.33 0.26 0.26

Visit 2 0.52 0.48 0.37

Visit 3 0.57 0.55 0.41

Visit 4 0.53 0.49 0.56

Table 3 Odds of preterm birth from parallel cross-sectional

logistic regression models (Method Parallel cross-sectional

logistic regression models)

MEHP MBP

N Odds ratio 95%
confidence interval

Odds ratio 95%
confidence interval

Visit
1

456 1.10 (0.93, 1.30) 1.19 (0.95, 1.48)

Visit
2

407 1.12 (0.93, 1.35) 1.15 (0.91, 1.46)

Visit
3

392 1.17 (0.96, 1.43) 1.23 (0.97, 1.55)

Visit
4

322 1.11 (0.86, 1.43) 1.34 (0.98, 1.83)

Odds ratios in association with ln-unit increase in urinary phthalate metabolite

concentration at each study visit. Models adjusted for maternal age at visit 1,

race/ethnicity, health insurance provider, education level, BMI at visit 1, and

urinary specific gravity and time of day of sample collection at each

study visit.
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exposure variable in a logistic regression framework as

follows:

logit Pr Y i ¼ 1jX i; Zið Þ½ � ¼ β0 þ β�X l þ �Z i
T
βz

where �X l ¼
1
ni

Xni

j¼1
X ij . This approach is the first at-

tempt to summarize the longitudinal information into

one measure and is useful when there is no particular

trend in X or the trends over time are similar for sub-

jects with either binary outcome (Yi = 1 or Yi = 0, pre-

term or term). If this is true, �X l adequately captures the

longitudinal feature of X to differentiate the two groups.

Since phthalate measures are log-normally distributed,

subject-specific geometric rather than arithmetic aver-

ages were considered as summary predictors [10]. This

method has been utilized previously to examine associa-

tions within this dataset but in that analysis visit 4 mea-

sures were excluded because of the aforementioned bias

in availability of measures at that time point [10]. In the

present analysis all available measurements were in-

cluded in subject-specific averages, and averages were

ln-transformed for modeling purposes. The time-varying

covariates were also averaged to create subject specific

average covariate values (�Z i).

The association between average MEHP levels and

preterm birth was statistically significant (β = 0.27,

standard error [SE] = 0.13, adjusted odds ratio [aOR] =

1.30, p = 0.05, N = 417). MBP average was also suggest-

ively associated with preterm birth (β = 0.24, SE = 0.14,

aOR = 1.28, p = 0.08, N = 417). An advantage of this

method is that the interpretation of odds ratios is more

natural. Odds of preterm delivery was 1.30 times and

1.28 times higher for mothers with an ln-unit increase in

average urinary MEHP or MBP concentration over the

course of pregnancy, respectively.

One difficulty in this method is the treatment of time-

varying covariates. For example, to control for time of

day of urine sample collection (before vs. after 1 pm),

we also used an average of time of day at each study

visit. However, the averaged variable is difficult to inter-

pret and may not accurately reflect differences in urinary

phthalate metabolite concentrations by time of day. This

method may be additionally limited if the data are un-

balanced and not missing at random, as mentioned

above, or if there are trends in biomarker measures over

time that are more relevant to the outcome than the bio-

marker levels themselves.

Model using maximum exposure value across visits as

summary

This method resembles the Model using mean exposure

across visits as a summary, except now we regress the

binary variable on the maximum, rather than the aver-

age, of the continuous variable:

logit Pr Y i ¼ 1 X i; ZiÞ� ¼ β0 þ βX i; max þ ~ZT
i βZ

����

where X i; max ¼ max X i1; …; X inið Þ and Zei is defined as

the vector of covariates at the visit of which the continu-

ous variable assumes its maximum value for subject i. In

other words, time-varying covariates corresponding to

the maximum value of Xi are included in the final

model. This approach may be more appropriate when

the association between Y and X is not driven by the

longitudinal trend of X or an average level but rather an

acute or extreme instance of exposure.

Associations using this method were not statistically

significant for MEHP (β = −0.07, SE = 0.09, aOR = 0.94,

p = 0.46, N = 442) or MBP (β = 0.10, SE = 0.12, aOR =

1.11, p = 0.39, N = 444). This method may be inappropri-

ate for examining associations with phthalates, which

are metabolized and excreted quickly but may be mea-

sured at very high levels following a recent exposure.

Two stage methods

Two stage mixed effects model

A two-stage approach can relax the assumption for the

Model using mean exposure across visits as a summary

or the Model using maximum exposure value across

visits as summary, that the longitudinal trend is irrele-

vant in terms of detecting the association between X and

Y. In this approach, the longitudinally time-varying ex-

posure is first modeled as a function of time (e.g., using

random slopes and intercepts) and at the second step

best unbiased linear predictor (BLUP) estimates of these

random coefficients are used as predictors in a logistic

regression model. The formulation for this model is as

follows:

Stage 1 : X ij ¼ a0i þ α0 þ a1itij þ α1tij þ εij

Stage 2 : logit
�
Pr
�
Y i ¼ 1ja0i; a1i; ZiÞ�

¼ β0 þ β1â0i þ β2â1i þ �Z i
T
βZ

where a0i and a1i are the random intercept and ran-

dom slope jointly distributed as bivariate normal random

variables representing the longitudinal trend of X, α0
and α1 are corresponding fixed effects, and εij is the

error term distributed independently of the random ef-

fects. In this method the subject-specific time trends of

X from Stage 1 are extracted and modeled in the second

stage along with relevant covariates. This method is ap-

propriate if it seems plausible that the predicted subject-

specific intercepts and slopes for X provide an accurate

summary characterization of distinct patterns across the

two outcome groups. If the exposure variable X is not
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normally distributed, the joint normality assumption for

the random intercept and random slope may be in-

appropriate. As mentioned in the Methods section, we

natural-log transformed MEHP and MBP prior to ana-

lysis in order to better approximate the normality as-

sumption. If needed, more sophisticated methods for

treating specific exposure distributions have been sug-

gested by Arellano-Valle et al. (skew-normal linear

mixed model) [16] and Zhang et al. (log-gamma linear

mixed model) [17].

Subject-specific slopes and/or intercepts from Stage 1

can be simultaneously included as continuous predictors

in the Stage 2 logistic regression model. Alternatively,

one can cluster fitted intercepts and slopes from Stage 1

on a 2-dimensional Euclidean space and model the

resulting clustering index (â0i, â1i ) in the Stage 2 logistic

regression model. This second method effectively groups

subjects based on similarities in trends in exposure levels

over pregnancy and may have greater power over model-

ing BLUP estimates. Additionally, if desired, this method

can flexibly accommodate a non-linear trend in Stage 1

with higher-order terms, such as quadratics (e.g., â2i or α2)

or curvature characteristics (e.g., 2(â2 + â2i) + (â1 + â1i))

as predictors of the binary outcome in Stage 2. Finally, if

the relationship between exposure and response is found

to be non-linear, one can include a smooth functional rep-

resentation of the summarized characteristics from Stage

1 in Stage 2 to account for the non-linearity.

In the example analysis, we modeled subject-specific

slopes and intercepts extracted from Stage 1 continuously

in Stage 2. Using this method, MEHP exhibits evidence

suggestive association (β1=0.35, SE = 0.20, aOR = 1.43,

p = 0.08, N = 417) between the subject-specific predicted

intercepts and preterm delivery, but the effect estimate for

predicted slope was not statistically significant. This result

suggests that the mean MEHP exposure level, as indicated

by the subject-specific predicted intercepts, was associated

with preterm birth, but trends in levels across pregnancy

were not contributors to the outcome. With respect to

MBP, the predicted slopes and predicted intercepts were

highly correlated in the Stage 1 model suggesting that

the additional inclusion of random slope for gestational

age at sample collection was not necessary. We thus re-

fit the model without random slope and used the ran-

dom intercept only as a predictor in the Stage 2 model.

An ln-unit increase in the predicted intercept for MBP

was associated with an increased odds of preterm

birth (β1 =0.32, SE = 0.17, aOR = 1.37, p = 0.07, N = 417),

which is again similar to the interpretation from the mean

model.

We also examined the effect of dividing subjects into

two clusters based on a k-means clustering with subject-

specific predicted intercepts and slopes plotted on the

two-dimensional space described above. This was

performed only for MEHP, as subject-specific slopes

were not important for predicting MBP concentrations.

For MEHP, the clearest separation occurred based on

the predicted intercept, and the predicted slope term

was less important (Figure 1). In the Stage 2 model the

clustering index for MEHP was marginally associated

with preterm delivery (β1 =0.43, SE = 0.26, aOR = 1.54,

p = 0.09, N = 417). The individuals classified in the

“greater predicted intercept” group (red dots) had 1.54

times the odds of having a preterm delivery compared

to the “smaller predicted intercept” group (black dots).

A major drawback of this model is that BLUP estimates

or clustering uncertainty from the Stage 1 model is not

accounted for in the Stage 2 analysis, which may lead to

biased results. A Bayesian analysis or an analysis based on

a joint likelihood of the longitudinal model and the final

logistic model (as done in [7]) can ensure proper propaga-

tion of uncertainty. The functional methods discussed

in Methods based on clustering section involve joint

estimation, but suffer from having sparse measurements

over time.

Generalized additive mixed model to contrast exposure

trajectories

In all of the previous methods, we treated X as the in-

dependent variable and Y as the dependent variable in

the regression framework. However, if the focus is not

to establish causality, or characterize risk of preterm

birth, a reverse temporal model that treats X as a longi-

tudinal dependent variable and Y as a time-invariant

independent binary variable can be used to contrast

exposure trajectories in the two groups. To that end,
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Figure 1 Scatterplot of fitted intercepts and slopes from

the mixed effects model with MEHP regressed on

gestational age.
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we use the following generalized additive mixed model

(GAMM):

X ij ¼ β0 þ b0i þ f 1 tij
� �

þ f 2 tij
� �

Y i þ ZT
ij βZ þ εij

where b0i is the random intercept and f1(.) and f2(.) are

smooth functions, represented by a natural spline in this

example. Time is equivalent to gestational age at urine

sample collection. This model naturally accounts for the

longitudinal nature of X and the trend curves can be

depicted parametrically or non-parametrically. While the

model is not interpretable in terms of temporality, since

the occurrence of X precedes Y, the results may provide

information about the differences in X for each level of

Y over the time course of pregnancy.

The fully flexible saturated model allows a separate

smooth curve for each level of Y, which is equivalent to

allowing an unconstrained interaction term between Y

and gestational age. In the present analysis we started

with these freely fitted smooth curves (MEHP or MBP

predicted by gestational age at sample collection) in

mothers who delivered preterm compared to mothers

who delivered term. This has been illustrated previously

in this dataset [11] and is replicated in Figure 2. The es-

timated degrees of freedom (EDF) for the difference be-

tween the two curves was 2 for both MEHP and MBP

models, indicating a linear difference in the two groups

across gestation. Additionally, the slope of the linear dif-

ference in the two groups was not significantly different

from zero (type one error rate = 0.05), further confirming

a constant difference in MEHP or MBP levels in the two

groups. There was a nearly significant interaction be-

tween gestational age at sample collection and preterm

birth for both MEHP (p = 0.09) and MBP (p = 0.07),

which parallels the significant differences in cases and

controls observed in previous methods. However, to fully

characterize differences using the exposure trajectories

from this method a larger sample size and/or additional

study visits would be necessary.

This method accounts for potential non-linearity in

the relationship between exposure and gestational age.

However, there is no clear way to examine the non-

linear relationship between exposure and preterm birth

status in this model. A possible alternative is to regress

preterm birth status on a tensor product smoother of

gestational age and exposure [18]. However, the diffi-

culty of interpreting these results and the sparseness of

our data limit the applicability of this alternative in this

situation.

Methods based on clustering

Gaussian mixture model by clustering the exposure values

This method treats the longitudinal measures in Xi =

(Xi1, Xi2,…, Xin)
T as a vector and distinguishes the sub-

jects with Yi = 1 vs. Yi = 0 by characterizing the Xi vec-

tors of each group. If the dataset is almost balanced in

a sense that every subject has the same number of ob-

servations for X with minimal amount of missingness,

we can assume that each Xi follows a multivariate nor-

mal distribution with an unknown mean and variance.

In this method, we hypothesize that there are K latent

multivariate normal distributions with different means

and variances from which Xi s are drawn [19]. Subjects

with Xi s from some of the latent distributions will

have a higher probability of being Yi = 1 compared to

subjects with other latent distributions for Xi. A two-

stage procedure can then be devised to identify clusters

of Xi that have an increased probability of Yi = 1. In the

first stage, subject-specific exposure vectors, Xi s, are

clustered based on Gaussian distributions with a pre-

determined number of clusters (K). Each subject is

grouped into one of the K clusters. In the second stage,
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Figure 2 Fitted smooth curves between phthalate levels and gestational age.
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we then regress Yi on this clustering index along with

the covariates as:

logit Pr Y i ¼ 1jCi; Zið Þ½ � ¼ β0 þ Ciβþ �Z i
T
βZ

where Ci is the clustering index, which may be more

than one-dimensional when K > 2. A limitation to this

method is that X has to be balanced (ni = n). Thus, in

the present analysis, the dataset had to be restricted to

subjects with phthalate measurements available at all

four study visits (N = 280), which may bias results as

many fewer cases had observations available at visit 4

(median gestational age = 35 weeks). Nevertheless, we

performed the analysis to illustrate the application of

this method. An additional limitation of this method is

that n must be relatively small compared to the number

of subjects, N. If n is too large, there may be more pa-

rameters in the model than there are subjects, and the

covariance matrices would have to be restricted [19]. In

this dataset n (4) was sufficiently smaller than N (280).

As with other applications we natural-log transformed

MEHP and MBP to better approximate the normality as-

sumptions required for this method. As an alternative,

non-Gaussian clustering methods may be performed as

suggested by Banfield and Raftery [20].

We selected the optimal number of clusters according

to Bayesian information criterion (BIC) approximation

for model-based clustering [21]. The number of clusters

chosen for MEHP and MBP were three and two, respect-

ively. The means of the phthalate metabolite concentra-

tions within each cluster by study visit are displayed in

Figure 3. In Stage 2 we modeled each clustering index in

relation to odds of having a preterm delivery. For MEHP,

the odds of having a preterm birth for subjects in cluster 2

was 1.84 times (β1 =0.61, SE = 0.65, p-value = 0.35) the

odds for subjects in cluster 1; subjects in cluster 3 had

2.09 times (β2 =0.74, SE = 0.55, p-value = 0.18) the odds of

having a preterm birth compared to subjects in cluster 1.

For MBP, subjects in cluster 2 had 5.44 times the odds

of having a preterm birth (β1 =1.69, SE = 0.87, p = 0.05)

compared to subjects in cluster 1. However, for MBP,

274 subjects fall into cluster 1 and only 6 fall into clus-

ter 2, making these results unreliable. The imprecision

of the MEHP estimates and the instability in the Stage 1

clustering for MBP may stem from the small sample size

of the complete dataset. Additionally, as suggested by

the results from the method using Generalized additive

mixed model to contrast exposure trajectories, the tra-

jectories characterized by vectors in this method may

not be meaningful for phthalates or identifiable with

only 4 exposure measurements.

Functional clustering model

Whereas the previous method entailed clustering based

on Gaussian distributions of X, here we employ k-

means clustering based on non-parametric distributions.

This method utilizes principal points which summarize

important features of the relationship between Xij and tij,

or, in this example, the relationship between urinary

phthalate metabolite concentration and gestational age

at sample collection [22,23]. The principal points, which

can be based on either raw curves or derivatives, effect-

ively reduce the functional data to multivariate data,

and enable subsequent k-means clustering. The advan-

tage of functional clustering compared to Gaussian mix-

ture clustering is that it does not require X to be

balanced. Thus, this method is preferable for the present

example compared to Method (Gaussian mixture model

by clustering the exposure values).

This two-stage procedure can be conducted in two

ways. The first is to cluster the curves of Xij against tij
first, and then to regress the binary outcome Yi on the

clustering index along with covariates in the second

stage. A drawback to this method is that clustering of

the curves may be dependent on one of the covariates,

e.g., the race/ethnicity of the subject. An alternative
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Figure 3 Estimated mean of clusters* suggested by the Gaussian mixture model, stratified by study visit.
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approach is to first regress Xij on all covariates of inter-

est, then to cluster curves of the residuals vs. tij and use

those clusters in a logistic regression model. For either

variation of this method, the dependency between Yi and

the clustering index can be tested with a chi-square test

(with degrees of freedom = K − 1).

In the present dataset we fixed the number of clusters

to two for this method. In order to determine whether

the functional clustering was dependent on covariate

distributions only, rather than phthalate exposure, we con-

ducted two-sample t-tests and chi-square tests for the

continuous and categorical variables, respectively, with

grouping based on the clustering results (data not shown).

For MEHP, clustering was strongly associated with mater-

nal race/ethnicity, BMI, and urinary specific gravity. For

MBP, most covariates were significantly associated with

the clustering index. Thus, in this example, functional

clustering based on a model of tij vs. the residuals from

the model of Xij regressed on all covariates was more ap-

propriate. Figure 4 displays the mean smooth curves of

phthalate metabolite residuals vs. gestational age at sample

collection for the two clusters identified. Subjects in

cluster 1 had an elevated odds of having a preterm

birth compared to subjects in cluster 2 for both MEHP

(aOR = 1.60, p = 0.03) and MBP (aOR = 1.27, p = 0.36).

Functional logistic regression model

In this method, we assume that the binary outcome de-

pends on the longitudinal predictor variable along with

the covariates of interest through the functional logistic

regression model proposed by Muller et al. [24] as follows:

logit Pr Y i ¼ 1jX i; Zið Þ½ � ¼ β0 þ
�Z i

T
βZ þ

Z
Tβ tð ÞX i tð Þdt

where β(t) is the time-varying coefficient for the longitu-

dinal predictor variable. The interpretation is that the log

odds of Yi = 1 would increase by amount
Z t2

t1

β tð Þdt from

time point t1 to time point t2 with a unit increase in the

predictor Xi(t) across the time interval t1 to t2. In the con-

text of this example, the odds of being born preterm

would be dependent on aggregate phthalate concentra-

tions across gestation periods (e.g., from Visit 1 to Visit 4).

This method utilizes functional principal component

(FPC) scores to summarize the important features of func-

tional curves of exposure levels over time and include the

scores in the regression model. The FPC scores can be esti-

mated via the conditional expectation method proposed by

Yao et al. [25]. The number of basis functions used to con-

struct the functional curves and the number of leading

FPC scores included (L) can be determined by the leave-

one-curve-out cross-validation score suggested by Peng

and Paul [26]. A global test of Ho : β1 = β2 =… = βL = 0 such

as L -degree-of-freedom likelihood ratio test (LRT) can be

conducted to investigate the global association between

longitudinal X and the stationary binary outcome Yi.

The number of basis functions and the number of lead-

ing FPC scores selected by modified BIC are nine and

two, respectively, for both MEHP and MBP. The 2-df LRT

statistic for testing if there is an overall association be-

tween MEHP and preterm delivery was 3.48 (p = 0.18).

For MBP, the 2-df LRT statistic was 4.81 (p = 0.09). The

inclusion of the estimated FPC scores does not signifi-

cantly improve the proportion of variance explained by

the model for either phthalate metabolite. In other

words, there is not sufficiently strong evidence for an

association between MEHP or MBP measures summa-

rized by FPC analysis and preterm delivery. This may
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mean that: a) the changes in phthalate levels over preg-

nancy are not associated with preterm birth; or b) that

there is not sufficient data (sample size or number of

observations) to detect associations with phthalate

change over pregnancy and preterm birth in this data-

set. For other exposures or biomarkers that have more

substantial increases or decreases across gestation or for

a study with larger sample size and/or additional re-

peated measures this method may provide more useful

information.

The clustering strategies underlying each method in

the Methods based on clustering section, based on the

longitudinal measures of the exposure in the original

scale, assumes a linear relationship, albeit indirectly, be-

tween exposure and response. If desired, one can per-

form clustering based on the transformed exposure

levels, such as X2 and eX, in order to account for rela-

tionships that are non-linear in nature.

Conclusions
In the context of examining repeated maternal bio-

markers during pregnancy in association with preterm

birth, we described 9 statistical methods that may be

useful for fully utilizing longitudinal characteristics of

data in future studies. Each has strengths and limitations

and may be suitable in some circumstances but not

others based on both characteristics of the predictor as

well as goal of the analysis (summarized in Table 4). For

identifying windows of vulnerability, examining informa-

tion from each study visit simultaneous or separately

(Multiple logistic regression model and Parallel cross-

sectional logistic regression models) or modeling indi-

vidual (Two stage mixed effects model) or population

level (Generalized additive mixed model to contrast ex-

posure trajectories) patterns of exposure in relation to

the health outcome may be most useful. Sanchez et al.

previously contrasted utility of these approaches for

identifying particularly important windows of exposure

[6]. This case-study alternatively presents methods for le-

veraging multiple exposure measurements over time to

more powerfully detect a true association with a non-

time-varying outcome. Such a relationship may arise

from: 1) Exposure during a particularly sensitive win-

dow of pregnancy; 2) Generally elevated levels of expos-

ure across gestation; 3) An acute exposure; or 4) A

change in exposure over time, e.g., an increasing trend

over the course of weeks or months.

The preponderance of the research on environmental

exposures during pregnancy and preterm birth examine

an association with generally elevated levels of exposure,

and utilize one metric during gestation. The Model using

mean exposure across visits as a summary and random

intercepts from the Two stage mixed effects model use

repeated measures that can more powerfully detect such

an effect than any single measurement model, e.g. the

Multiple logistic regression model and the Parallel cross-

sectional logistic regression models, regardless of the

number of exposure measurements available. Notably,

employing the two stage model from the Two stage mixed

effects method did not improve results obtained from

simply taking an average of exposures in this example,

although the Two stage mixed effects model accounts for

time-varying covariates in a more sensible manner.

Fewer studies have expressed interest in identifying

whether an acute exposure at any time point or during

sensitive period is associated with preterm birth. To some

extent the methods for investigating windows of vulner-

ability address this question, as do some studies utilizing

ambient air pollution measures and survival analyses

[27,28]. Additionally, the Maximum Model (Model using

maximum exposure value across visits as summary) may

serve to this end, and the functional logistic regression ap-

proach (Functional logistic regression model) has been

used recently to identify windows of susceptibility for long

term trajectories of exposure with rich repeated measure-

ments, and for studying how genetic factors may modify

these windows [29]. These approaches may not be useful

for urinary phthalate metabolites, or other biomarkers that

are highly variable over time, as high concentrations may

be indicative of temporally recent rather than acute

exposure.

The contribution of temporal changes in environmen-

tal exposures to preterm birth is relatively understudied,

particularly in research utilizing biomarkers of exposure

measurement during pregnancy. However, it is plausible

that these patterns may contribute to prematurity and

other adverse birth outcomes when steady exposures do

not. For air-pollution studies or ambient monitoring

data measured at a finer time scale where personalized

measures are not needed, this temporal feature can and

has been studied in greater detail, for example, as pre-

sented in Warren et al. [15]. The Two stage mixed ef-

fects model, when incorporating random slopes, and the

Gaussian mixture model by clustering the exposure

values, Functional clustering model, and Functional lo-

gistic regression model, are different ways of capturing

the additional information that repeated measures over

time provide that may contribute more than pure expos-

ure measure contributions to preterm birth. Addition-

ally, though not capable of quantifying an effect, the

Generalized additive mixed model to contrast exposure

trajectories can characterize patterns and establish dif-

ferences in preterm vs. term groups. These methods

were not useful for further understanding the relationship

between phthalate exposure and preterm birth, potentially

due to few exposure measurements, the instability of urine

levels, or because phthalates are not chemicals whose pat-

terns over pregnancy contribute to this outcome. These
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Table 4 Advantages and limitations to methods for modeling repeated biomarkers of exposure in association with a

binary, non-time-varying outcome

Advantages Limitations

Method - Simple implementation - Collinearity in longitudinal phthalate measures
can cause instable effect estimates and inflated
variance estimates

Multiple logistic regression model - Jointly account for longitudinal phthalate
measures in one model

- Requires time points to be uniform

- Only the subjects with complete data are used

- Difficult interpretation

Method - Simple implementation - No straightforward way to combine results from
multiple regression models to assess aggregate
effect of phthalate levels on preterm birth

Parallel cross-sectional logistic regression
models

- Subjects with incomplete data can be retained - Control for family-wise error rate using Bonferroni
correction may be too conservative

- Simple interpretation

Method - Simple implementation - Difficult to handle time-varying covariates

Model using mean exposure across visits
as a summary

- Simple way to account for and summarize
longitudinal phthalate measures

- Limited if data are unbalanced and/or not
missing at random

- Straightforward interpretation - Trends of phthalate measures relevant to the
outcome may be missed

- Improved power when exposure has poor
stability over time and exposure levels
themselves are most relevant to the outcome

Method - Simple implementation - May be inappropriate when maximum
concentrations are indicative of recent rather
than acute exposure

Model Using maximum exposure value
across visits as summary

- Straightforward interpretation - Deposition of time-varying covariates is
questionable

- Powerful when the association is not driven by
the longitudinal trend and/or average level but
rather an acute instance of phthalate exposure

Method - Flexible modeling of exposure pattern over
time in Stage 1

Two stage mixed effects model - Examines effect of characteristics carried from
Stage 1 in Stage 2

- Uncertainty from Stage 1 is not incorporated in
Stage 2 which may lead to biased results

- Naturally accounts for between subject
heterogeneity

- May not be useful when phthalate levels are
unstable over time

Method - Accounts for longitudinal nature of exposure - Not temporally logical

Generalized additive mixed model to
contrast exposure trajectories

- Trends of exposure can be depicted
parametrically or non-parametrically for each
group

- Risk cannot be estimated

Method - Allows risk estimation based on cluster identity - Requires dataset to be balanced and complete

Gaussian mixture model by clustering the
exposure values

- Characteristics of each cluster well-depicted by
a multivariate Gaussian distribution

- Requires longitudinal phthalate measures to
follow a multivariate Gaussian distribution

- Direct interpretation - Subtle characteristics cannot be captured by
the first two moments

- Computationally expensive

Method - Accounts for longitudinal nature of the
exposure and time-varying covariates

- May be underpowered if trends of phthalate
levels are unimportant

Functional clustering model - Allows risk estimation based on cluster identity - Trends are unreliable if the data are sparse with
(few time points for each subject)

- Does not require exposure to be balance and
complete

- Direct interpretation
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methods may be more useful for datasets with higher

frequency of exposure assessment, with a more tem-

porally resolved structure. Collection of a dense set of

measurements may not be practically feasible for stud-

ies analyzing expensive biomarkers during a short

time window (40 weeks gestation) in a large prospect-

ive cohort study. However, they may be applicable in

studies utilizing less costly exposure metrics, such as

ambient air monitoring or using simpler, less expen-

sive and non-invasive techniques for exposure assess-

ment. In addition to requiring this robust data

structure, the temporal methods have other limita-

tions. The Two stage mixed effects model, Gaussian

mixture model by clustering the exposure values, and

Functional clustering model ignore uncertainty in the

first step estimation or clustering and thus underesti-

mate the standard error in the final odds ratio, in-

creasing the likelihood of a false positive in the

results. The Functional logistic regression model is

more desirable because it does not require these two

steps and carries out inference based on a joint likeli-

hood. Another limitation is that these methods do not

appropriately account for drop-out which is inherent

in a longitudinal study. In this case-study, missingness

at visit 4 is likely related to the outcome of interest,

preterm birth, leading to a missing at random mech-

anism [30]. In addition, missingness could also be re-

lated to other unmeasured covariates. We recommend

that sensitivity analyses with respect to the parameters

of the drop-out probability model be performed when-

ever this may be the case. If a probability model for

drop-out can be validly constructed, one can leverage

an inverse probability weighting approach. Despite

these limitations, the temporal methods described

may provide new insight into the study of environ-

mental exposures and prematurity.

In conclusion, the methods exemplified in this case

study may be of great use in future epidemiologic re-

search projects intended to: 1) Elucidate the complex re-

lationships between environmental chemical exposures

and preterm birth; 2) Investigate biological mechanisms

in prematurity using repeated measures of maternal fac-

tors throughout pregnancy; and 3) More generally, ad-

dress the relationship between a longitudinal predictor

and a binary, non-time-varying outcome.
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