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Summary

In this article, we present an overview and tutorial of statistical methods for meta-analysis of 

diagnostic tests under two scenarios: 1) when the reference test can be considered a gold standard; 

and 2) when the reference test cannot be considered a gold standard. In the first scenario, we first 

review the conventional summary receiver operating characteristics (ROC) approach and a 

bivariate approach using linear mixed models (BLMM). Both approaches require direct 

calculations of study-specific sensitivities and specificities. We next discuss the hierarchical 

summary ROC curve approach for jointly modeling positivity criteria and accuracy parameters, 

and the bivariate generalized linear mixed models (GLMM) for jointly modeling sensitivities and 

specificities. We further discuss the trivariate GLMM for jointly modeling prevalence, sensitivities 

and specificities, which allows us to assess the correlations among the three parameters. These 

approaches are based on the exact binomial distribution and thus do not require an ad hoc 

continuity correction. Last, we discuss a latent class random effects model for meta-analysis of 

diagnostic tests when the reference test itself is imperfect for the second scenario. A number of 

case studies with detailed annotated SAS code in procedures MIXED and NLMIXED are 

presented to facilitate the implementation of these approaches.
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1. Introduction

In the medical literature, a diagnostic test commonly refers to a medical test to classify 

subjects with respect to a (disease) state of interest. Accurate diagnosis plays an important 

role in the disease control and prevention. Diagnostic test outcomes could be dichotomous, 

ordinal or continuous. This article only focuses on the dichotomous outcome. The 

performance of a binary test is commonly measured by a pair of indices such as sensitivity 

*Corresponding author: chux0051@umn.edu.
aThis article reflects the views of the author and should not be construed to represent FDA’s views or policies.

HHS Public Access
Author manuscript
Stat Methods Med Res. Author manuscript; available in PMC 2014 December 26.

Published in final edited form as:

Stat Methods Med Res. 2016 August ; 25(4): 1596–1619. doi:10.1177/0962280213492588.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and specificity. Sensitivity is defined as the probability of testing positive given a person 

being diseased and specificity is defined as the probability of testing negative given a person 

being disease-free.1, 2 Other frequently used indices include positive and negative predictive 

values, and positive and negative diagnostic likelihood ratios.1, 2

In meta-analysis of diagnostic tests, there is a great potential for heterogeneity due to 

differences in such things as disease prevalence, study population characteristics, laboratory 

methods, and study designs. While some study level covariates such as mean age may 

explain some variation, random effects models are commonly recommended to account for 

other unobserved sources of variation. When a reference test can be considered a gold 

standard, a few methods are available to account for this heterogeneity.3–12 Specifically, 

random effects models including the hierarchical summary receiver operating characteristic 

model3 and bivariate random effects meta-analysis on sensitivities and specificities are 

recommended.5, 11, 12 These approaches are identical in some situations.6, 9, 13 Some 

examples and extensive simulations demonstrated that bivariate random-effects meta-

analysis offers numerous advantages over separate univariate meta-analysis.14, 15 In general, 

generalized linear mixed models, which use the exact binomial likelihood, often perform 

better than the linear mixed models which use a normal approximation.12, 16 In addition, a 

trivariate generalized linear random-effects model were proposed to jointly models the 

disease prevalence, sensitivities and specificities.17

In practice, disease status is often measured by a reference test that is subject to nontrivial 

measurement error. This leads to a setting without a gold standard. When the reference test 

is subject to measurement error, the evaluation of diagnostic tests in a meta-analysis setting 

becomes more challenging. To the best of our knowledge, only a few articles have 

considered meta-analysis methods for diagnostic tests in the absence of a gold standard. 

Walter et al. discussed a latent class model for a meta-analysis of two diagnostic tests 

assuming varying prevalence, but constant sensitivity and specificity across studies.18 A 

more general latent class random effects model by Chu et al. assumes sensitivity and 

specificity of both tests as well as prevalence to be random effects.19 Sadatsafavi et al. 

presented a model where conditional dependence between tests is allowed, but beyond 

prevalence, only one of the sensitivity or specificity can be implemented using a random 

effect.20 Dendukuri et al. presented a Bayesian method for the meta-analysis of a 

tuberculous pleuritis diagnostic test in the absence of a gold standard.21

In this article, we present an overview and tutorial summarizing the pros and cons of these 

approaches and provide detailed case studies with annotated SAS code. The outline of this 

article is as follows. In Section 2, we summarize and compare different models when the 

referent test can be considered a gold standard. In Section 3, we introduce models in the 

absence of a gold standard. In Section 4, we present case studies to illustrate the approaches 

described in Sections 2 and 3. The annotated SAS code to implement these approaches is 

presented in the appendix.

The following notation is used throughout this paper:

π Disease prevalence
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Se (Sp) Sensitivity (Specificity)

TPR (FPR) True positive rate (false positive rate)

ROC Receiver operating characteristic

AIC Akaike information criterion

BIC Bayesian information criterion

GLMM Generalized Linear Mixed Model

BLMM Bivariate Linear Mixed Model

SE Standard Error

2. Statistical methods when the reference test is a gold standard

When the reference test can be considered a gold standard, let ni11, ni00, ni01, and ni10 be the 

number of true positives, true negatives, false positives and false negatives for the ith study (i 

= 1, 2, …, N), respectively. Let ni1+ = ni11 + ni10 and ni0+ = ni01 + ni00 be the study-specific 

numbers of diseased and disease-free subjects. Then the study-specific sensitivity and 

specificity can be estimated as , and . See Table 1 for a typical 

2 by 2 table.

In this section, we will first discuss the conventional summary ROC approach and a bivariate 

approach using linear mixed models (LMM). Both methods require direct calculations of 

study-specific sensitivities and specificities, and an ad hoc continuity correction when there 

are empty cells. Second, we will discuss the hierarchical summary ROC approach for jointly 

modeling positivity criteria and accuracy parameters, and a bivariate approach using 

generalized linear mixed models (GLMM) for jointly modeling sensitivities and 

specificities. At last, we will discuss a trivariate approach using GLMM for jointly modeling 

prevalence, sensitivities and specificities to account for the correlations among the three 

parameters. The hierarchical summary ROC approach, and the bivariate and trivariate 

approaches are based on the exact binomial distribution and thus do not require any ad hoc 

continuity correction.

2.1 The summary ROC method

The summary ROC curve method was first proposed by Moses et al.22 Reflecting the trade-

off between sensitivity and specificity caused by implicit thresholds, this method had been 

widely used in diagnostic tests studies. As test threshold varies, the observed Se and Sp 

estimates can form a concave shape for the ROC curve. Such a curve can be fitted by back-

transforming the linear relationship between the logit transformations of Se and Sp to the 

ROC space: First, if some studies have ni11 =0 or ni00 =0, an ad hoc continuity correction is 

applied by adding 0.5 to each of the 4 cells of such studies. After the correction, sensitivity 

is estimated as  and specificity is estimated as 

 for the ith study. Second, define variables S and D as the sum and 

the difference of logit transformed sensitivity and specificity, such that 

 and , where logit(p) = log(p / (1– p)). 

This notation is slightly different than Moses et al.22 because the original transformation is 

on Se and one minus Sp (1– Sp). One can see that , where  is 

Ma et al. Page 3

Stat Methods Med Res. Author manuscript; available in PMC 2014 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the diagnostic odds ratio for the ith study. Third, for N studies, fit a linear regression line S = 

a + bD either by an ordinary least squares or by a weighted least squares method weighing 

by the inverse of within-study variance , where 

.5 After fitting the regression line using 

either un-weighted or weighted method, one can plot the summary ROC curve by the two 

estimated coefficients (i.e., intercept â and slope b̂),

(1)

with Se on the y-axis and 1– Sp on the x-axis. To adjust for study-level covariates Z (e.g., 

different anatomical sites from which the diagnostic tests were obtained), one can fit a model 

with Si = a +bDi + cZi. We can then have Si = â + b̂Di +ĉZi = (â + ĉZi) + b̂Di = â′ + b̂′Di. 

The summary ROC curve can be plotted according to new estimates â′ and b̂′ given Z.

The summary ROC method is easy to perform but suffers limitations. First, its interpretation 

is known to be problematic. Walter discussed the interpretation of area under the curve 

(AUC).23 A summary ROC curve located closer to the left upper corner of the ROC space 

will have a larger AUC, indicating better predictive accuracy of a test.23 However, the 

conclusion becomes unreliable when comparing tests whose summary ROC curves may 

cross each other. Alternative statistics, such as the partial AUC24 and the Q point25 also have 

limited application. Second, the model setting has some drawbacks. First, because 

, the data are reduced to one outcome measure per study: diagnostic odds ratio. 

Independent summaries of sensitivity and specificity are not available, which could be 

important in test evaluation. Also, the model is restricted in that the between-study 

heterogeneity can only be adjusted by study level covariates, such that some components of 

the variance might not be explained. This is the reason why both Moses et al.22 and Irwig et 

al.26 recommended the unweighted least squares rather than the weighted, as in a fixed effect 

model, a few large studies may dominate the result if the between-study variation is present. 

In addition, in practice, study characteristics besides the cut-point effect contribute to the 

trade-off between sensitivity and specificity within a study,22, 27 which are not incorporated 

in the summary ROC curves. Finally, an arbitrary continuity correction is needed to handle 

zero cells. Moses showed that it can push the summary ROC curve far from the ideal upper 

left corner of the ROC space, giving biased results.24 Moreover, there is a long-standing 

debate on what arbitrary number should be added to handle zero cells.28, 29

2.2 A Bivariate Approach Based on Linear Mixed Models

To improve upon the summary ROC method, Reitsma et al. proposed a bivariate LMM.11 

The model proceeds as follows. First, logit transforms of the sensitivity and specificity are 

applied to each study. Different from the summary ROC method, they are considered as 

random by allowing variation according to normal distributions, that is 

 and . A bivariate normal distribution can 

include possible correlation between sensitivity and specificity within study: 
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, where  and σμν denotes the 

covariance between logit sensitivity and specificity.

Second, to account for the sampling variation, the estimated logit sensitivity and specificity 

are assumed to be normally distributed as  for 

study i, where Ci is a diagonal matrix with components of 

 and . Note that, the 

general rule that , and  are at least five need to 

hold for normal approximation to be valid. Consequently,  and  are 

assumed to have the following bivariate normal distribution:

(2)

Because the distributions of sensitivity and specificity are often skewed, one may prefer 

inference based on the medians rather than means as overall diagnostic test performance 

summaries. Based on parameter estimates, the median sensitivity and specificity can be 

back-transformed as  and . Similarly, confidence 

intervals for  and  can be transformed from the confidence intervals of μ̂0 and ν̂0. 

The correlation between sensitivity and specificity can be estimated as . The standard 

errors are  and  based on the Delta 

method. A summary ROC curve can be constructed by

(3)

In general, this approach is superior to the summary ROC model by analyzing sensitivity 

and specificity jointly in a bivariate linear mixed model. However, the bivariate approach 

estimates the degree of correlation between sensitivity and specificity, as well as both 

within- and between-study variation in the two indexes separately. A drawback of this 

approach is that an ad hoc continuity correction is required in the presence of zero cells, as 

with the summary ROC approach. In addition, the normal approximation is sometimes 

violated in practice12. The bivariate model can adjust for covariates by regression model for 

the mean vector of the bivariate normal distribution: 

, where Zi is the study-level covariate and γ, λ are 
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the corresponding coefficient parameters.5 Adjusting for individual level covariates is also 

straightforward.

2.3 The Hierarchical summary ROC Approach

Rutter and Gatsonis proposed a hierarchical summary ROC approach,3 which is a 

simplification of the ordinal regression model by Tosteson and Begg: g(γj (x)) =(θj –α
′x)eβ′x, where g(.) is a link function, γj (x) is the probability of a response being in one of 

the ordered categories given covariates x, θj is the cutoff values of each category, α is the 

location parameters and β is the scale parameter.30 The hierarchical summary ROC approach 

reduces the ordinal regression model to two categories (j=1,2), with x indicates true disease 

status (coded as 0.5 for D+ and −0.5 for D−) and γj (x) correspond to positive test rates: Sei 

and 1– Spi (FPR).3

The first stage of this model assumes binomial distributions of the number of positive 

outcomes in the ith study, i.e., ni11 ~ Bin(ni1+, Sei) and ni01 ~ Bin(ni0+,1 – Spi). Choose g(.) 

to be a logit link, the model is written as,

(4)

where the latter is the same as logit(Spi) = −(θi – 0.5αi)e
0.5β. The positivity criterion θi 

models the tradeoff between sensitivity and specificity in each study. Direct interpretations 

of the accuracy parameters αi are that when β = 0, αi =logit(Sei) + logit(Spi) = log(DORi), 

which is independent of θi. In the second stage, Rutter and Gatsonis allow θi and αi to vary 

across studies.3 Thus, θi and αi are assumed independently and normally distributed as: 

.

A summary ROC curve can be derived based on solving functions in (4) as

Another possible construction of a summary ROC curve pointed out by Chu et al.13 is based 

on the bivariate normal distribution of θi and αi as

(5)

In addition, Arends et al. discussed several choices of SROC curves.10 Median sensitivity 

and specificity estimates are  and 

Ma et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2014 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



. Also, similar as the previous models, the 

hierarchical summary ROC approach can incorporate study level covariates by 

.

The hierarchical summary ROC approach incorporates both within- and between-study 

variability and the correlation between the summary statistics by random effects θi and αi. 

Because sparse data is common in meta-analysis of diagnostic tests, an important advantage 

over the previous models is that the hierarchical summary ROC approach avoids the 

continuity correction by assuming the exact binomial distributions.3 A practical limitation of 

this model is that originally it was fitted using Bayesian Markov Chain Monte Carlo 

approach implemented in BUGS, which requires some programming expertise. This 

approach is found to be the same as the following bivariate GLMM with alternative 

parameterizations in some situations.

2.4 The Bivariate Generalized Linear Mixed Model

Chu and Cole presented a bivariate GLMM to jointly analyze sensitivity and specificity 

using logit link.12 Later, the bivariate GLMM was broadened to a general link function.31 

The model starts with binomial distribution assumptions and applies link functions on the 

probability parameters:

(6)

where μi and νi are random effects follow bivariate normal distribution 

, and g(.) is a link function such as the logit, 

probit, or complimentary log-log link. Different link functions can be applied to sensitivity 

and specificity. Though to date the logit link is the most widely used in meta-analysis, Chu 

et al. argued that, for some meta-analyses, the choice of the link may affect model fit and 

inference.31 The parameters  estimate the between-study variances and ρεμ, ρεν, 

ρμν explain possible correlations.

The model gives median estimates as  and . Similarly, 

confidence intervals for  and  can be transformed from the confidence intervals of 

μ ̂0 and ν0̂. Study-level covariate Z can be included as g(Sei) = μ0 + μi + γZi and g(Spi) = ν0 

+νi + λZi, where γ, λ are corresponding coefficient parameters. Different covariates could 

be used for sensitivity and specificity. A regression line of g(Se) on g(Sp), 

, gives the summary ROC curve by transforming to the ROC 

space. Also, alternative choices of the regression lines can construct different summary ROC 

curves with corresponding interpretations.10
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In addition to estimating the heterogeneity and correlation parameters, both hierarchical 

summary ROC and bivariate GLMM approaches have advantages over the bivariate LMM. 

First, the bivariate GLMM does not require the normal approximation to estimate 

 and . Second, neither of the two approaches requires a 

continuity correction because direct calculation of study-specific sensitivities and 

specificities is not involved. In the absence of study-level covariates, the two approaches are 

equivalent (with alternative parameterizations).6

Both hierarchical summary ROC and bivariate GLMM can be fitted using maximum 

likelihood. Several numerical methods might be used, for instance, the dual quasi-Newton 

optimization techniques, as implemented in the SAS procedure NLMIXED. The standard 

errors and confidence intervals for parameters are estimated by the Delta method and are 

reported automatically if specified in the ESTIMATE statement. To restrict the correlation 

coefficient ρ in the range [−1, 1] in the bivariate GLMM, one can use the Fisher’s z 

transformation of ρ. AUC for both hierarchical summary ROC and bivariate GLMM can be 

computed by numerical integration implemented in a SAS macro, which is available upon 

request from the first author.

2.5 The Trivariate Generalized Linear Mixed Model

The above approaches involving only sensitivities and specificities work best if all or the 

majority of the studies use case-control designs. When disease prevalence estimation is 

allowed, as in cohort study designs, we can derive other clinically interesting indices such as 

positive and negative predictive values. In this case, the test performance indexes Se and Sp 

can be correlated with the prevalence, which is commonly termed ‘spectrum bias’.32 Such 

dependence is particularly of concern when the binary diagnostic outcome is based on a cut-

off point on a continuous trait, thus misclassification rates could be higher among subjects 

with true value near the cut point.33 To account for this potential dependence, Chu et al. 

extended the bivariate GLMM to a trivariate GLMM jointly modeling the disease 

prevalence, sensitivity and specificity.17 Recently, Li and Fine proposed a Pearson-type 

correlation coefficient to assess this dependence by an estimating equation-based regression 

framework.34

Here, we consider a trivariate GLMM based on the parameterization of πi, Sei and Spi, 

where πi is the disease prevalence in the ith study. The first level of this model assumes 

binomial distributions:

(7)

The parameters are modeled via link functions: g(πi) = ε0 + εi, g (Sei) = μ0 + μi and g (Spi) 

=ν0 +νi. See Table 2 a two by two table accounting for disease prevalence.

To consider heterogeneity and potential correlations of the 3 parameters, εi, μi and νi are 

assumed to be random effects with trivariate normal distribution:
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The parameters  capture the between-study variance of the disease prevalence, 

sensitivity and specificity while ρεμ, ρεν, ρμν represent correlations.

Standard software such as SAS NLMIXED can maximize this likelihood. To avoid including 

unnecessary parameters, model selection criteria such as AIC can be used. The medians are 

derived as π̂M =g−1(ε̂0),  and . In this model, covariates can be 

incorporated for sensitivities, specificities and disease prevalence as was done for the 

bivariate GLMM.

3. Statistical methods when the reference test is not a gold standard

Limited meta-analysis tools are available when the reference test is imperfect. Walter et al. 

discussed the latent class model for a meta-analysis of two diagnostic tests.18 Sadatsafavi et 

al. presented a latent class random effects model.20 However, beyond prevalence, only one 

of the sensitivity and specificity can be implemented as a random effect. Dendukuri et al. 

presented a Bayesian approach, which is an extension of the hierarchical summary ROC 

model, to adjust for different reference standards.21 We describe the latent class random 

effects model by Chu et al. using random effects to allow variation and correlation in 

sensitivity, specificity and prevalence between studies.19

Let (SeBi, SpBi) be the pair of diagnostic accuracy parameters for the reference test while 

(SeAi, SpAi) be the pair for the diagnostic test of interest. To construct the 2 by 2 table (Table 

3) for such studies, both the above pairs of statistics and the disease prevalence are needed.

The four counts in Table 3 follow a multinomial distribution, with the log-likelihood being:

(8)

Chu et al. used random effects to model between and within study heterogeneity and 

potential correlations.19 We write this model in a form suitable for a general link function:
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where random effects follow a multivariate normal distribution: (εi, μAi, νAi, μBi, νBi)′ ~ N 

(0, Σ) with variance-covariance matrix 

.

Median estimates of prevalence, sensitivities and specificities can be constructed as π̂M = 

g−1(ε̂0),  and . 

Variance and correlation parameter estimates can be derived from Σ̂. Covariates Zi can be 

adjusted by linear regressions for the mean vectors, for instance g(πi) =ε0 +εi +γZi.

This latent class random effects model fills a gap in the existing models for meta-analysis 

with imperfect reference tests. This model can be used to evaluate the performance of both 

the diagnostic test of interest and the reference test while retaining all the advantages of the 

GLMMs. A limitation applies when fitting this model by SAS NLMIXED. One may 

encounter convergence problems because of the limited number of studies and relatively 

large number of parameters. Possible simplification of model assumptions may include 

letting disease prevalence be independent of sensitivities and specificities. Also, to avoid 

including unnecessary random effects whose variance approaches zero, one can apply a 

forward selection based on AIC. We will illustrate this process in Section 4.2 with an 

example.

4. Case Study

4.1 A meta-analysis of rotator cuff tears diagnosis using ultra-sound

4.1.1 Study background—We demonstrate an application of the methods in Section 2 

using data on ultra-sound diagnosis of rotator cuff tears. Rotator cuff tears are a common 

reason for shoulder pain, which is the third most common musculoskeletal complaint. The 

incidence of partial rotator cuff tears is reported to be 13% to 32% in cadaveric studies, yet 

much of this incidence goes undiagnosed.35 Among the diagnostic tests for this disease, 

ultrasound is non-invasive and less expensive. However, it has lower sensitivity and 

specificity in detecting the disease than MRI or arthroscopic evaluation.36 We will re-

analyze the data from a meta-analysis of 30 studies of diagnostic accuracy of ultrasound for 

rotator cuff tears in adults, performed by Smith et al.37 The studies compared the accuracy 

of ultrasound with either arthroscopic or open surgical findings as a gold standard test. The 

data is presented in Appendix A1. Figure 1 and 2 present the forest plots of sensitivity and 

specificity, respectively. In the rest of this section, we explore this example using the models 

discussed in Section 2. The corresponding SAS code can be found in Appendix B1-B6.

4.1.2 Summary ROC method—Applying the summary ROC method, we analyze the 

data first by unweighted least squares, then by weighted least squares. The un-weighted 

method gives estimates â =3.39, b̂ =0.131 and AUC=0.911. The AUC can be interpreted as a 

likelihood of 91.11% that a randomly selected diseased subject will receive a more 
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suspicious rating than a non-diseased subject. The weighted method give estimates âw 

=3.573, b ̂w =0.400 and AUCw=0.910. To build the summary ROC curve, we plug in â and b̂ 

(âw and b ̂w) into equation (1) then plot Se against 1–Sp. The summary ROC curves are 

presented in Figure 3.

4.1.3 Bivariate LMM—To fit the bivariate linear mixed model, we use the SAS procedure 

MIXED. The bivariate LMM method can provide summary estimates of sensitivity and 

specificity other than the summary ROC curve. Parameter estimates are: μ̂ =1.351, ν̂ = 

1.853, , σμ̂ν = −0.116. The sensitivity and specificity are estimated as 

 and . Correlation estimate is ρ̂ = −0.18. The standard errors (SE) 

can be calculated by delta method:  and . Plugging in the 

estimates into the equation (3), one can draw the summary ROC curve as presented in Figure 

3. This model gives an AUC of 0.858. With the estimated medians, standard errors and 

correlation coefficients, one can draw confidence and prediction regions around the median 

estimates. Compared with the summary ROC method, the Bivariate LMM can provide 

summary estimates of overall sensitivity and specificity and their confidence regions. It may 

be more intuitive for investigators to compare different diagnostic tests.

4.1.4 Hierarchical summary ROC model—The hierarchical summary ROC model is 

fitted using the SAS procedure NLMIXED. Estimates of the parameters are: θ̂0 = −0.738, σ̂θ 
= 0.708, α0̂ = 3.887, σ̂α = 1.045 and β̂ = −0.522. The median sensitivity and specificity are 

 with SE 0.042 and  with SE 0.021. To draw the summary ROC 

curve, plug in the estimates into the expected logit sensitivity given specificity as in equation 

(5), then transform to ROC space, as presented in Figure 3. The AUC is 0.908.

4.1.5 Bivariate GLMM method—The bivariate GLMM models are fitted using the SAS 

procedure NLMIXED under three link functions: logit, probit and complementary log-log. 

The ‘estimate’ statements in the NLMIXED procedure can transform the parameter 

estimates to median sensitivity and specificity and carry out the estimation of standard errors 

via delta method. Table 4 reports summary indexes with standard errors. When dependence 

is assumed in the model, the three links give comparable summary estimates. The logit link 

provides the smallest AIC (214.8), and thus selected as the best fitted model. However, the 

negative correlation estimate has a large standard error. In fact, if one fit a logit link GLMM 

assuming independence, the AIC (213.5) is slightly smaller than the correlated model. This 

example does not strongly support correlation between sensitivity and specificity.

To summarize estimates from bivariate models, we compare the bivariate LMM method, 

hierarchical summary ROC model and GLMM model using logit link. The summary ROC 

curves and confidence and prediction ellipses of these models are presented in Figure 3. 

Hierarchical summary ROC and GLMM models achieve same sensitivity and specificity 

median estimates and standard errors, which agrees with the argument by Harbord et al. that 

the two models are the same with different parameterizations.6 The bivariate LMM model 

has lower estimates of sensitivity and specificity. The differences may be due to the 

continuity correction applied in bivariate LMM and the some degrees of approximation 
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involved in the MIXED procedure when study size is small.6 A simulation study from Chu 

and Cole demonstrated that the GLMM method provides unbiased estimates while the 

bivariate LMM model has biased estimates of SeM, SpM and ρ.12

4.1.6 Trivariate GLMM—When the prevalence of disease is involved as in a trivariate 

model, case-control studies need to be excluded. All our studies included satisfy the 1st 

criterion in the QUADAS checklist which requires random selection of the sample.37

To successfully capture possible correlations without including unnecessary correlations, we 

fit models with all possible correlation combinations. The parameters and desired estimates, 

AIC and log-likelihoods are summarized in Table 5. The best model with the smallest AIC 

of 2653.8 is model I with no correlations (boldfaced estimates in Table 5). This suggests no 

correlations among disease prevalence, sensitivity and specificity in this example. This 

conclusion agrees with the bivariate GLMM and the estimated median sensitivity and 

specificity are similar as the estimates from bivariate GLMM method using logit link in 

Section 4.1.5. This example shows that, when the prevalence is weakly correlated with 

sensitivity and specificity, the bivariate GLMM gives very similar estimates to that from the 

trivariate GLMM.

4.2 A meta-analysis of cervical cancer diagnosis using Pap smears test

In this section, we re-visit the example used by Walter et al. 18 and apply the latent class 

random effects models. The data is collected from a meta-analysis of Papanicolau (Pap) 

smears test accuracy by Fahey et al. The Pap smear is a quick, noninvasive and relatively 

inexpensive test for cervical cancer.38 Fahey’s analysis consists of 59 cross-sectional studies 

using Pap smears as the diagnostic test and histology as the gold standard. However, 

Walter’s model argued that the histology test has sensitivity of 0.97 and specificity of 0.62, 

revealing lack of a perfect gold standard.18 Hence we will treat histology as an imperfect 

reference test then fit the data by the latent class random effects models in Section 3. The 

data is listed in Appendix A2 and corresponding SAS code is included in Appendix B7.

When fitting the model using the SAS procedure NLMIXED, convergence problems 

appeared as more random effects were added. Thus we assume prevalence to be independent 

of sensitivities and specificities for ease of fitting and apply a forward-selection procedure to 

select random effects. We begin with a fixed effects model, and add random effects 

sequentially. The process of selection is outlined in Table 6. The final model obtained is IVe, 

in which random effects are considered for the disease prevalence, Pap smear test sensitivity 

and specificity and the specificity of the histology test. The parameter estimates of the best 

fitted models at each step are provided in Table 7.

After adjustment for possible variation and correlations by random effects in our method, the 

final model IVe shows a low sensitivity for the Pap smears of 0.655 (SE=0.042) and a 

specificity of 0.835 (SE=0.032). However, the histology test outperforms the Pap smears 

with sensitivity of 0.903 (SE=0.013) and specificity of 0.989 (SE=0.014). Moreover, our 

estimates of the histology test differ from the estimates in Walter’s, suggesting a somewhat 

different interpretation in practice.18
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5. Discussion

In this paper, we discussed methods for evaluating the performance of diagnostic tests for 

situations when the reference test can be considered a gold standard, as well as situations 

when it is error-prone. Under the scenario with a gold standard, we reviewed the traditional 

summary ROC method, bivariate LMM and the hierarchical summary ROC model. Then we 

focused on the random effect GLMM, because it has several advantages over the simpler 

methods. We showed how the bivariate GLMM can be fitted using a variety of link functions 

including logit, probit and complementary log-log, and extended the approach to a trivariate 

GLMM to jointly model prevalence, sensitivity and specificity. Under the situation with no 

gold standard, we built upon the latent class model proposed by Walter et al.18 by adding 

random effects to quantify possible correlation and variation following the methods by Chu 

et al..19 We worked through two empirical examples to illustrate the application of our 

models. We used the SAS procedures MIXED and NLMIXED to fit all models, and provide 

SAS code with detailed explanation in the Appendix. The SAS macro METADAS may 

assist in automating the fitting of bivariate and hierarchical summary ROC models for meta-

analysis of diagnostic tests.39

Several extensive simulation studies have been conducted in the literature to compare 

different methods. Hamza et al.40 studied the univariate exact binomial likelihood approach 

against the univariate approximate normal likelihood approach in different simulation 

settings. The size of meta-analysis varied from 10 to 100 studies and the true median 

sensitivity values ranged from 0.6 to 0.93. Overall the simulations showed that the exact 

likelihood approach performs superior than the approximate approach in terms of bias and 

coverage probabilities. Riley et al.41 compared the bivariate random-effects meta-analysis 

dealing with dependence between two outcomes to the univariate random-effects meta-

analysis. Simulation studies showed that the bivariate approach has smaller mean-square 

error and is recommended over the univariate approach. Chu et al.12 conducted simulations 

to study the bivariate GLMM and the BLMM approaches. Size of meta-analysis varied from 

25 to 250, and Se/Sp was either relatively low (0.7/0.8) or relatively high (0.9/0.95). The 

bivariate GLMM was shown to yield unbiased estimates of Se, Sp and their correlation, 

while the BLMM gave biased results. Another paper of Chu et al.31 conducted simulations 

to compare different links used in bivariate GLMM with 40 meta-studies, 200 subjects in 

each study and median Se/Sp as 0.8/0.9. It suggested that the AUC and median Se/Sp 

estimates are relatively robust to the choice of link functions. The trivariate GLMM and 

bivariate GLMM were compared in Chu et al.17 under different correlation assumptions. The 

results suggested that misspecification resulting from AIC-based model selection is 

reasonably low in studied settings. When the reference test is imperfect, Chu et al.19 used 

different selection criteria DIC, AIC and BIC on selecting the appropriate random effects. 

The simulation results recommended including random effects because omitting important 

variability can cause inflated variance and decreased coverage.

Among the models presented, the summary ROC approach is simple and widely used. 

However, it is limited as it does not assess the within- and between-study variations and 

possible correlations between Se and Sp. The bivariate LMM improves over the summary 

ROC approach by assuming random effects to explain both within- and between-study 
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variations and possible correlations. The bivariate LMM can provide inferences both in 

terms of summary ROC curves and summary statistics of overall test performance. However, 

it has limitations due to the use of a continuity correction and a normal approximation. The 

GLMMs do not have the limitations of the above models because they assume exact 

binomial distributions. The bivariate GLMM, which is essentially the same as the 

hierarchical summary ROC model in certain situations, is recommended when research 

interests focus on sensitivity and specificity and there’s strong suggestion of independence 

with disease prevalence. The trivariate GLMM will be most appropriate when there’s 

interest in estimating PPV or NPV, because estimation of disease prevalence is required and 

correlation among prevalence and Se, Sp should not be ignored. Besides, the trivariate 

GLMM is most reliable when most of the studies are cohorts. When the reference test is not 

a gold standard, the latent class random effects model should be used to avoid biased 

estimates.

A limitation related to the GLMMs is that the meta-analysis reported often includes a 

mixture of case-control and cohort studies designs. Thus using either the bivariate or the 

trivariate GLMM for all the studies can lead to problems. Another issue arises when fitting 

the trivariate GLMM and the latent class random effects models in the SAS procedure 

NLMIXED. The more random effects included, the longer it takes to converge. Under such 

situations, one can first get raw estimates of the desired parameters by fitting the data in 

models with fewer random effects. The raw estimates can then be used as starting values to 

improve convergence in a more complex model. For the latent class random effects model, 

one may need to apply simpler assumptions for ease of fitting. For instance, our example 

assumes independence between prevalence and the paired indices. However, as discussed, 

dependence between the indices may be expected.

In the example of rotator cuff tears, we excluded seven studies having the partial verification 

problem to avoid biased results, though these studies might still be able to contribute to our 

analysis. To the best of our knowledge, multivariate methods to correct publication bias in a 

meta-analysis of diagnostic test settings still await for further development. A recent 

Bayesian approach to correct such bias by de Groot et al. may be applied to diagnostic tests 

with nominal outcomes.42 In summary, sensitivity analysis methods for meta-analysis of 

diagnostic tests investigating the impact of publication bias through a selection or pattern 

mixture model framework are yet to be developed.
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Appendix A. Data for case studies

Appendix A1

Partial rotator cuff tears meta-analysis data

study year True positive False positive False negative True negative

Al-Shawi 2008 65 12 1 65
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study year True positive False positive False negative True negative

Alasaarela 1998 1 0 0 19

Brenneke and Morgan 1992 11 8 14 45

Cullen 2007 11 2 3 21

Ferrari 2002 8 1 10 25

Friedman 1993 2 0 2 0

Hedtmann and Fett 1995 121 0 12 0

Iannotti 2005 26 7 2 16

Kang 2009 2 5 2 5

Kayser 2005 41 16 11 171

Labanauskaite 2002 11 3 2 9

Milosavljevic 2005 17 0 7 6

Naqvi 2009 4 2 0 11

Read et al 1998 6 1 7 28

Roberts et al 2001 5 0 2 7

Rutten et al 2010 8 12 0 24

Takagishi 1996 10 7 10 57

Teefey 2000 10 3 5 17

Teefey 2005 13 4 2 52

van Holsbeeck et al 1995 14 3 1 47

Vlychou et al 2009 44 2 3 7

Wiener and Seitz 1993 64 4 3 71

Yen et al 2004 9 1 1 9

Appendix A2

Pap smear test meta-analysis data

Study Type* ni11 ni10 ni00 ni01

Alloub et al SC 8 23 84 3

Alons-van Kordelaar and Boon SC 31 43 14 3

Anderson et al SC 70 121 25 12

Anderson et al FU 65 6 6 10

Anderson et al FU 20 19 4 3

Andrews et al FU 35 20 156 92

August FU 39 111 271 7

Bigrigg et al SC 567 140 157 117

Bolger and Lewis SC 26 12 18 37

Byme et al FU 38 17 37 28

Chomet SC 45 15 48 35

Engineer and Misra SC 71 10 306 87

Fletcher et al FU 4 36 5 0

Frisch et al SC 2 3 21 2

Giles et al SC 5 3 182 9
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Study Type* ni11 ni10 ni00 ni01

Giles et al FU 38 7 62 21

Gunderson et al SC 4 16 31 2

Haddad et al SC 87 12 9 13

Hellberg et al SC 15 65 15 3

Helmerhorst et al FU 41 61 29 1

Hirschowitz et al FU 76 11 12 12

Jones DED et al FU 10 48 174 4

Jones MH et al FU 28 28 77 11

Kashimura et al SC 3 5 1 0

Kealy FU 79 13 182 26

Koonlng-1 et al FU 61 27 35 20

Koonlng-2 et al FU 62 16 49 20

Kwikkel et al FU 284 68 68 31

Lozowski et al FU 66 20 44 25

Maggi et al FU 40 12 47 43

Morrison EAB et al FU 11 1 2 1

Morrison BW et al SC 23 10 44 50

Nyirjesy SC 65 42 13 13

Okagaki and Zelterman SC 1270 263 1085 927

Oyer and Hanjanl FU 223 74 83 22

Parker SC 154 20 237 30

Pearlstone et al FU 6 12 81 2

Ramlrez et al SC 7 3 4 4

Reld et al SC 12 11 60 5

Robertson et al FU 348 212 103 41

Schauberger et al SC 8 11 34 4

Shaw FU 12 6 0 2

Singh et al FU 95 2 1 9

Skehan et al FU 40 20 19 18

Smith et al FU 71 20 18 13

Soost et al SC 1205 454 241 186

Soutter-1 et al SC 5 52 27 20

Soutter-2 et al SC 35 12 12 9

Spitzer et al FU 10 5 32 31

Stafi SC 3 3 15 5

Syrjanen et al FU 118 44 183 40

Szarewski SC 13 82 17 3

Tait et al SC 38 13 62 14

Tawa et al SC 14 67 291 25

Tay et al FU 12 6 12 14

Upadhyay et al SC 238 2 16 52

Walker et al FU 111 20 39 44
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Study Type* ni11 ni10 ni00 ni01

Wetrich FU 491 250 702 164

Wheelock and Kamlnlski FU 49 39 31 16

*
type of the study denotes the usage of the test clinically, SC as screening and FU as follow up.

Appendix B. SAS codes for fitting models

B1. Unweighted summary ROC

data partial1;                                   | /*‘tp’ stands for true 

positive, ‘fp’ for

 set partial;                                    | false positive, ‘fn’ for 

false negative, ‘tn’

 if tp = 0 or fp = 0 or fn = 0 or tn = 0 then do;         | for true 

negative */

 tp=tp+0.5; fp=fp+0.5; fn=fn+ 0.5; tn=tn+ 0.5;        | /*continuity 

correction on zero cells*/

 n0=n0+1; n1=n1+1; end;

 se= tp/n1; sp=tn/n0;                             | /*calculate Se and Sp 

for each study*/

 logitse = log(se/(1-se)); var logitse=1/(se*(1-se)*n1);  | /* logit(Se) and 

logit(Sp) and their

 logitsp = log(sp/(1-sp)); var logitsp=1/(sp*(1 -sp)*n0); | variances*/

 D=logitse+logitsp; S=logitse-logitsp;                | /* D and S*/

proc reg data=partial1; model D=S; run;             | /*fit linear 

regression model D=a+bS*/

B2. Weighted summary ROC

data partial2; set partial1;

 w=1/(1/tp+1/fp+1/tn+1/fn);                        | /*calculate the weight 

for each study*/

proc reg data=partial2; model D=S; weight w; run;     | /*fit weighted 

regression using the created

                                               | weights*/

B3. SAS MIXED procedure to fit bivariate LMM

data partial3; set partial1; id= n_;          | /* make each study have two 

observations, one for

 dis=1; non dis=0; logit=logitse;          | sensitivity, the other for 
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specificity.*/

var logit=var logitse; rec+ 1; output;

 dis=0; non dis=1; logit=logitsp;

var logit=var_logitsp; rec+1 ; output; run;

data cov;                             | /* build the data containing 

variable ‘est’ with 3 starting

 if n eq 1 then do;                     | values for the covariance 

parameters of the random effects

  est=0; output; est=0; output; est=0 ; output; | and 60 within study arm 

variances.*/

 end;

 set partial3; est = var_logit; output;

 keep est; run;

proc mixed data=partial3 method=reml cl;   | /*choose the residual 

(restricted) method(reml), ‘cl’ asks

class id;                               | for confidence limits for 

covariance parameter estimates.*/

model logit= dis non_dis / noint s cl covb     | /*indicator variables ‘dis’ 

and ‘non_dis’ are explanatory

df=1000, 1000;                          | variables for logit(Se) and 

logit(Sp). ‘covb’ asks for

                                      | covariance matrix of fixed effects 

parameters. Large ‘df”

                                      | approximate a t distribution to a 

normal distribution.*/

random dis non_dis / subject=id type=un s;    | /* random effects 

corresponds to disease and non_disease

                                      | status. An unstructured working 

covariance structure is

                                      | stated to assume possible 

correlation of ‘dis’ and ‘non_dis’

                                      | within the same study.*/

repeated / group=rec;                     | /* ‘group=rec’ statement 

specifies the with-in study-arm

                                      | variance in each study.*/

parms / parmsdata=cov hold=4 to 63 ;        | /*‘parmsdata’ option reads in 

variable ‘est’ from the cov

run;                                   | data. 60 within study-arm variances 

are kept constant.*/

B4. SAS NLMIXED procedure to fit the hierarchical summary ROC Model

data partial4; set partial; id= n ;                        | /* make each 

study has two records */
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 dis=0.5; ny=tp; n=n1; se=1; output;                     | /*code ‘dis’ as 

0.5 and ‘se’=1 for disease

 dis=-0.5; ny=tn; n=n0; se=0 ; output;                    | patients, ‘dis’ 

as -0.5 and ‘se’=0 for non-

keep id ny n dis se; run;                               | disease subjects*/

proc nlmixed data=partial4;

parms theta=-1 alpha=4 beta=-0.6 sigtheta=0.7 sigalpha=1.7;  | /* assign 

starting values for parameters.*/

logitp=2*dis*((theta+ut)+(alpha+ua)*dis)*exp(-beta*dis);     | /* code 

‘logitp’ as logit(Se) and logit(Sp)

                                                   | */

p=exp(logitp)/(1+exp(logitp));                           | /*logit transform 

is applied to the

                                                   | probabilities*/

model ny~binomial(n,p);                               | /* number of tp and 

tn are Bin(n, p)

                                                   | distributed */

random ut ua ~                                       | /* ‘ut’ and ‘ua’ are 

random effects

normal([0,0],[exp(2*sigtheta),0,exp(2*sigalpha)]) subject=id;  | clustered 

within study. Independence is

                                                    | assumed between random 

effects.

                                                    | Exponential formed 

variance is to ensure

 estimate "se" 1/(1+exp(-((theta+0.5*alpha)*exp(-0.5*beta))));  | 

positivity.*/

 estimate "sp" 1/(1+exp((theta-0.5*alpha)*exp( 0.5*beta)));     | /*use 

estimate statement to get

 estimate "sigtheta" exp(sigtheta); estimate "sigalpha"         | estimates 

of desired indices with standard

exp(sigalpha); run;                                     | errors. */

B5. SAS NLMIXED procedure to fit bivariate GLMM with logit link

proc nlmixed data=partial4 fd cov corr df=1000 gtol=1e-11;  | /* ‘fd’ 

specifies that all derivatives be

parms mu0=1.5 nu0=-2.2 fz= 0.23 sigse=0.37 sigsp=-0.26;   | computed using 

finite difference

                                                  | approximations. /

rho= (exp(2*fz)-1)/(1+exp(2*fz));                       | /* use fisher’s z 

transformation instead of

                                                   | the correlation 

coefficient ρ directly to
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 if Se=1 then beta=mu0+mu; if Se=0 then beta=nu0+nv;      | ensure –1 ≤ ρ 1*/

 pred=exp(beta)/(1+exp(beta));

 model ny~binomial(n, pred);                           | /* ‘tp’ and ‘tn’ 

are binomially distributed

                                                   | condition on random 

effects ‘mu’ and

                                                   | ‘nv’.*/

random mu nv ~ normal([0, 0 ],                         | /*random effects 

‘mu’ and ‘nv’ are

              [exp(2*sigse), rho*exp(sigse)*exp(sigsp),   | bivariate 

normally distributed; ‘subject=id’

              exp(2*sigsp)]) subject=id;                | indicates possible 

correlation of random

estimate "Se" exp(mu0)/(1+exp(mu0));                   | effects within a 

study*/

estimate "Sp" exp(nu0)/(1+exp(nu0)); run;

B6. SAS NLMIXED procedure to fit trivariate GLMM

proc nlmixed data=partial fd df=1000 gtol=1e-10;           | /* model I is 

the best fitted model with

parms mu0=0 nv0=3 eta0=-1 sigse=0 sigsp=0 sigpi=-1 ;       | smallest AIC*/

logitsei = mu0 + mu; logitspi = nv0 + nv;

logitpi = eta0 + eta;                                     | /*model 

prevalence (‘pi’) together with

 Sei= 1 /(1+exp(-logitsei)); Spi=1/(1+exp(-logitspi));          | Se and Sp*/

 pi=1 /( 1+exp(-logitpi));

logL= tp * (log(pi) + log(Sei )) + fp * (log(1-pi) + log( 1-Spi))   | /*log-

likelihood for trivariate model*/

+ fn * (log(pi) + log(1-Sei)) + tn * (log(1-pi) + log(Spi ));       | /

*specify general log-likelihood

model Y ~ general(logL);                                 | function. Any 

variable can be used as the

                                                     | dependent variable in 

this situation.*/

random mu nv eta~normal([0, 0, 0],                         | /*‘mu’, ‘nv’ 

and ‘eta’ are the random

                    [exp(2*sigse),                      | effects 

corresponding to Se, Sp and

                    0, exp(2*sigsp),                     | prevalence. 

Possible correlation could

                    0, 0, exp(2*sigpi)])   subject=id;      | exist within 

studies. The best model is

estimate "sigse" exp(sigse);                                | achieved when 
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all the correlation

estimate "sigsp" exp(sigsp);                                | coefficients 

among the random effects

estimate "sigpi" exp(sigpi);                                | ‘mu’, ‘nv’, 

‘eta’ are zero.*/

estimate "Se" 1/(1+exp(-mu0));

estimate "Sp" 1/(1+exp(-nv0));   run;

B7. SAS NLMIXED procedure to fit the latent class random effect model IVe 

for Pap Smears test

proc nlmixed data=walter1999 cov fd;

 parms mua0=0.6 nva0=1.6 mub0=2 nvb0=4.5 eta0=0.6

       sigpi=0.4 sigmua=0.3 signva=0.2 sigmub=0 fz2=-0.5;         | /* five 

parameters are

                                                          | modeled: ‘SeA’ 

and ‘SpA’ for

       SeA=exp(mua0+mua)/(1+exp(mua0+mua));                | the Pap smear 

test, ‘SeB’ and

       SpA =exp(nva0+nva)/(1+exp(nva0+nva));                  | ‘SpB’ for 

the histology test

       SeB=exp(mub0)/(1+exp(mub0));                         | and ‘pi’ for 

disease

       SpB =exp(nvb0)/(1+exp(nvb0));                          | prevalence*/

       pi=exp(eta0+eta)/(1+exp(eta0+eta));                       | /

*fisher’s z transformation;

                                                           | model V with 

correlation only

       rho2=(exp(2*fz2)-1)/(exp(2*fz2)+1);                      | between Se 

and Sp of the Pap

                                                           | smear test*/

       p11=pi*SeA*SeB+(1-pi)*(1-SpA)*(1 -SpB);                | /*expected 

probabilities in 2*2

       p01=pi*SeA*(1-SeB)+(1-pi)*(1-SpA)*SpB;                 | table*/

       p10=pi*(1-SeA)*SeB+(1-pi)*SpA*(1-SpB);

       p00=pi*(1-SeA)*(1-SeB)+(1-pi)*SpA*SpB;

                                                           | /*log 

likelihood*/

       logl=n11*log(p11)+n01*log(p01)+n10*log(p10)+n00*log(p00);

model y ~ general(logl);                                        | /*the best 

model selected

random eta mua nva~normal([0,0,0],[exp(2 *sigpi),                  | evolves 

four random effects.
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             0, exp(2*sigmua),                                | model IVe 

assumes only

             0, rho2*exp(sigmua)*exp(signva),exp(2*signva)])       | 

correlation between ‘mua’ and

       subject=id;                                            | ‘nva’, i.e. 

sensitivity and

estimate       "SeA" exp(mua0)/(1+exp(mua0))                    | 

specificity of the Pap sme test

estimate       "SpA" exp(nva0)/(1+exp(nva0));                    | are 

correlated.*/

estimate       "pi" exp(eta0)/(1+exp(eta0));

estimate       "rhomuanva" (exp(2*fz2)-1)/(exp(2*fz2)+1);

estimate       "SeB" exp(mub0)/(1+exp(mub0));

estimate       "SpB" exp(nvb0)/(1+exp(nvb0));  run;
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Figure 1. 

Forest plot for sensitivity in rotator cuff tears study
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Figure 2. 

Forest plot for specificity in rotator cuff tears study
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Figure 3. 

Summary median estimates and ROC curves from some of the introduced models. Panel A 

presents summary median Se and Sp estimates with confidence and predictive regions and 

summary ROC curve from the bivariate GLMM using logit link. Panel B presents summary 

median Se and Sp estimates with confidence and predictive regions and summary ROC 

curve from the BLMM and the summary ROC curve from the unweighted summary ROC 

method.

Ma et al. Page 27

Stat Methods Med Res. Author manuscript; available in PMC 2014 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 28

Table 1

2 by 2 table for ith study

Reference test
total

Positive (+) Negative (−)

Diagnostic Test
Positive (+) ni11 ni01

Negative (−) ni10 ni00

Total ni1+ ni0+ ni++
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Table 2

2 by 2 table for ith study accounting for disease prevalence

Diagnostic Test
Reference Test

Total
Positive (+) Negative (−)

Positive (+)
ni11 ni01

πi Sei (1−πi)(1− Spi)

Negative (−)
ni10 ni00

πi (1−Sei) (1−πi)(Spi)

Total ni1+ ni0+ ni++

πi 1−πi 1
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Table 6

Pap test example – model selection procedure

Models Random effects -2logL AIC BIC

I NA 45277 45287 45297

IIa ε 41882 41894 41906

IIb μA 43329 43341 43353

IIc μB 43398 43410 43423

IId νA 43520 43532 43544

IIe νB 42838 42850 42863

IIIa ε & µA 40510 40524 40539

IIIb ε & μB 40888 40902 40917

IIIc ε & νA 40894 40908 40922

IIId ε & νB 40520 40534 40548

IVa ε, μA & μB 39777 39793 39810

IVb ε, μA & νA 39762 39778 39795

IVc ε, μA & νB 40506 40522 40539

IVd ε, μA, μB & ρμAμB 39777 39795 39814

IVe ε, µA, νA & ρµAµB
39752 39770 39789

IVf ε, μA, νB & ρμAνB 40503 40521 40540

Models in level I–IV include random effects and possible correlations denoted in the corresponding ‘random effects’ column. The procedure starts 

from the fixed effects model I. In Level 2, five possible random effects are added one at a time. Model IIa with random effect ε (prevalence) has 

smallest AIC, thus ε is carried to models in level 3. The same process continued until level IV because model fitting became unstable with more 

random effects than level IV and AIC was not significantly reduced anymore. The bold faced estimates represents the best model with smallest AIC 

in each level.
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Table 7

Pap test example—fitted estimates and standard errors

Model Parameter Estimates (standard error)

I IIa IIIa IVe

Se_pap test( Se^AM) 0.815(1.420) 0.750(0.006) 0.664(0.043) 0.655(0.042)

Sp_pap testa( Sp^AM) 0.810(1.531) 0.795(0.010) 0.822(0.010) 0.835(0.032)

Se_reference( Se^BM) 0.842(1.418) 0.858(0.010) 0.829(0.009) 0.903(0.013)

Sp_reference( Sp^BM) 0.803(1.629) 0.900(0.009) 0.977(0.012) 0.989(0.014)

Prevalence(π̂M) 0.527(1.708) 0.588(0.061) 0.712(0.050) 0.636(0.048)

 σε NA 1.819(0.195) 1.727(0.194) 1.467(0.164)

 σμA NA NA 1.367(0.147) 1.292(0.136)

 σνA NA NA NA 1.269(0.164)

 σμB NA NA NA NA

 σνB NA NA NA NA

 ρμAνA NA NA NA −0.509(0.136)

Model I, IIa, IIIa and IVe are the same models specified in Table 6.
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