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SUMMARY

Continuous-time, multistate processes can be used to represent a variety of biological processes in the
public health sciences; yet the analysis of such processes is complex when they are observed only at
a limited number of time points. Inference methods for such panel data have been developed for time
homogeneous Markov models, but there has been little research done for other classes of processes. We
develop likelihood-based methods for panel data from a semi-Markov process, where transition intensities
depend on the duration of time in the current state. The proposed methods account for possible misclas-
sification of states. To illustrate the methods, we investigate a three- and a four-state models in detail and
apply the results to model the natural history of oncogenic genital human papillomavirus infections in
women.

Keywords: Human papillomavirus; Misclassification; Multistate process; Natural history.

1. INTRODUCTION

Continuous-time, multistate stochastic processes provide a useful framework for many studies of event
history data (Commenges, 1999, 2002; Hougaard, 1999; Andersen and Keiding, 2002). Most research
in continuous-time, discrete-state processes has been probabilistic, and inference about processes using
independent realizations from a group of individuals has been based almost entirely on settings where
sample paths are continuously observed (cf. Andersen and Borgan, 1985).

However, in many instances, observations consist of the states of the individual processes at discrete
time points, with no information about the types and times of events between observation times. For
example, when state transitions of a process are silent events—such as the onset of an early stage of a
disease before symptoms—the sample paths are observed infrequently, often resulting from diagnostic
tests given during patient visits to their caregivers. Inference methods for such panel data from multistate
processes have been limited. Kalbfleisch and Lawless (1985) proposed methods for the analysis of panel
data for Markov models with time homogeneous transition intensities; Kay (1986), Andersen (1988), and
Gentleman and others (1994) have applied these methods to cancer, diabetes, and HIV. Inference based
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on Markov models in such settings is greatly simplified, because the discrete-time process observed at
prespecified time points forms a Markov process.

In many applications, however, the Markov assumption is not appropriate because the transition in-
tensities depend on the elapsed time in the current state. For instance, in modeling the natural history of
human papillomavirus (HPV), which is known to cause almost all cervical cancers, the Markov assump-
tion would not account for the strong association between infection duration and progression to cervical
abnormality (Stoler, 2000). Sexually acquired genital HPV infections in women are often transient and
recurring, and are usually resolved by the host prior to the onset of symptoms. However, epidemiology
studies show that when an infection by certain HPV types persists for a long period of time, it can even-
tually lead to clinical conditions such as high-grade cervical intraepithelial neoplasia (CIN 2 and 3) and,
ultimately, cervical cancer (Stoler, 2000). When the underlying process is not a time homogeneous Markov
process, the observed discrete-time process will in general have a complex structure. A further complica-
tion that can arise is that the observations of the states of the process are subject to misclassification.

Motivated by the HPV studies, this paper considers inference for continuous-time semi-Markov pro-
cesses in settings where sample paths of individuals are observed only at a finite number of prespecified
times, possibly with misclassification errors in the observed states. We show that evaluation of likelihood
functions can be greatly simplified when the transition intensity from at least one of the states of the un-
derlying process is time homogeneous. Section 2.1 introduces the underlying and the observed processes
and outlines the general approach to likelihood methods. Section 3 presents the likelihood contributions
in detail for a nonprogressive three-state process. Section 4 applies the proposed methods to a recent HPV
trial and a simulated study.

2. INFERENCE FOR A K -STATE SEMI-MARKOV PROCESS

2.1 Underlying process and observed data

Suppose that X (·) = {X (t), t � 0} denotes a continuous-time process with K states, denoted 1, . . . , K .
Let the random variables σ0, σ1, . . . denote the initial and subsequent consecutive states occupied by the
process, and let τn represent the sojourn time between the (n − 1)th and nth states, for n = 1, . . . . Thus,
X (·) is equivalent to

σ0, τ1, σ1, . . . , τn, σn, . . . .

The process is semi-Markov if the sequence {σ0, σ1, . . .} of consecutively occupied states forms a simple
Markov chain, and the sojourn times τn between consecutively occupied states are independent random
variables with distributions that depend only on the adjoining states (cf. Cox and Miller, 1977). The
probabilistic properties of a semi-Markov process can be characterized by the transition intensities, or
cause-specific hazard functions, among states. Suppose that the process enters state i at its nth transition.
Then the transition intensity functions out of state i , say λi j (·), are

λi j (t) = lim
h↓0

P[τn+1 < t + h, σn+1 = j | τn+1 � t, σn = i]

h
,

where t denotes the elapsed time from entrance into state i , for i, j = 1, . . . , K , i �= j , and n = 1, 2, . . . .
Such dependence on the duration (t) in the current state (σn) makes semi-Markov processes distinct from
Markov processes.

The probabilistic properties of semi-Markov processes have been studied extensively (Cox and Miller,
1977), and inferences for settings where sample paths are continuously observed or right censored can be
made by extensions of methods for ordinary failure time data (cf. Lagakos and others, 1978). Inferences
for unidirectional, or progressive, processes that lead to interval-censored data have also been developed
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(Sternberg and Satten, 1999). However, we consider settings where the independent realizations of the
process X (·) corresponding to different subjects are observed only at a finite number of prespecified
time points and the process may be bidirectional (nonprogressive). Consider the values of X (·) at the
fixed times 0 = v0 < v1 < v2 < · · · < vM , and let X = (X0, X1, . . . , XM ), where Xm = X (vm).
Despite the simple probabilistic form of the underlying semi-Markov process X (·), the joint distribution
of X0, X1, . . . , XM is in general complex because the time points v0, v1, . . . , vM do not correspond to
transition times between states of the process. If the process is not progressive, the states visited in the
sample path are not determined by the knowledge of the states occupied at visit times.

Inferences about the parameters λi j (·) are further complicated by misclassification errors. Rather than
X, suppose that the observation for a subject is given by Y = (Y0, Y1, . . . , YM ), where Ym ∈ {1, 2, . . . , K }
denotes Xm subject to misclassification error. We assume that the misclassification error probabilities
satisfy the conditional independence assumption

P(Y0, Y1, . . . , YM |X0, X1, . . . , X M ) =
M∏

i=0

P(Yi |Xi ). (2.1)

That is, conditional upon the true values of X (·) at the visit times, the distribution of Ym depends only on
the value of X (·) at vm . We denote these error probabilities by αik = P(Ym = k|Xm = i).

2.2 Likelihood function

The likelihood contribution for an individual can be written as

L = P(Y = y) =
∑

x

P(Y = y|X = x)P(X = x)

=
∑

x

P(Y0 = y0|X0 = x0)P(Y1 = y1|X1 = x1) · · · P(YM = yM |XM = xM )P(X = x)

=
∑

x

cxy P(X = x), (2.2)

where xm, ym ∈ {1, . . . , K }, cxy = ∏M
m=0 αxm ,ym , and the summation is over all possible state sequences.

If the transition intensities from at least one of the K states can be assumed to be time homogeneous—
that is, λi j (t) = λi j for j = 1, . . . , K if and only if i ∈ C, where C is a nonempty subset of {1, . . . , K }—
then P(X = x) in the evaluation of (2.2) is nicely simplified. A consequence of this assumption is that
for any times 0 � t0 < t1 < · · · (whether or not these correspond to visit times) and any xm ∈ C for
m = 0, 1, . . . ,

P[X (tm+1) = xm+1, X (tm+2) = xm+2, . . . | X (t), 0 � t � tm, X (tm) = xm]

= P[X (tm+1) = xm+1, X (tm+2) = xm+2, . . . |X (tm) = xm, φ(tm)]

= P[X (tm+1 − tm) = xm+1, X (tm+2 − tm) = xm+2, . . . |X (0) = xm], (2.3)

where φ(tm) denotes the time at which the process last entered state xm prior to tm . The semi-Markov
nature of X (·), which ensures that the future of the process for times greater than φ(tm) depends on the
history of the process only through φ(tm) and xm = X (φ(tm)), combined with the memoryless property
of sojourn times in state xm yields this stationarity property of the process at times when the process is in
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a state belonging to C. To illustrate how (2.3) can greatly simplify the evaluation of the finite-dimensional
distributions of X (·), suppose that C = {1}. Then, for example,

P[X (t0) = 1, X (t1) = 3, X (t2) = 1, X (t3) = 2, X (t4) = 1, X (t5) = 2, X (t6) = 4, X (t7) = 4]

= P[X (t5) = 2, X (t6) = 4, X (t7) = 4|X (t0) = 1, X (t1) = 3, . . . , X (t4) = 1]

× P[X (t3) = 2, X (t4) = 1|X (t0) = 1, X (t1) = 3, X (t2) = 1]

× P[X (t1) = 3, X (t2) = 1|X (t0) = 1] · P[X (t0) = 1]

= P[X (t5 − t4) = 2, X (t6 − t4) = 4, X (t7 − t4) = 4|X (0) = 1]

× P[X (t3 − t2) = 2, X (t4 − t2) = 1|X (0) = 1]

× P[X (t1 − t0) = 3, X (t2 − t0) = 1|X (0) = 1] · P[X (0) = 1].

Thus, instead of having to compute the joint probability of the 8-dimensional vector [X (t0), . . . , X (t7)],
the result in (2.3) reduces this to computing the distribution of one 3-dimensional vector and two
2-dimensional vectors. More generally, if we define,

mi = min{m|m > i and xm ∈ C, or m = M},
then for any positive integer L ,

P[X (t0) = x0, . . . , X (tL) = xL ]

= P[X (t0) = x0]
L∏

i=1,xi ∈C
P

[
X (ti+1) = xi+1, . . . , X

(
tmi

) = xmi

∣∣X (t0) = x0, . . . , X (ti ) = xi
]

= P[X (t0) = x0]
L∏

i=1,xi ∈C
P

[
X (ti+1 − ti ) = xi+1, X

(
tmi − ti

) = xmi

∣∣X (0) = xi
]

. (2.4)

By taking L = M and tm = vm , the result in (2.4) simplifies the calculation of the likelihood contribution
in (2.2) by allowing P(X = x) to be expressed as a product of one-step probabilities of the form

P[X (�1) = x1|X (0) = x0] (2.5)

and of multistep probabilities of the form

P[X (�1) = x1, . . . , X (�m) = xm |X (0) = x0], (2.6)

where 0 < �1 < �2 < · · · correspond to differences between the original visit times v0, . . . , vM .
Calculations of the conditional probabilities in (2.5) and (2.6) can be difficult because of the unknown

transitions in the underlying sample paths. However, they also can be simplified by applying the result in
(2.4) to the probabilities corresponding to the potential underlying sample paths that yield the observed
states in (2.5) and (2.6).

3. A THREE-STATE SEMI-MARKOV MODEL

Consider a three-state semi-Markov model (Figure 1) where states 1 and 2 are transient while state 3 is
absorbing and can be entered from either of the other states. As an example, suppose states 1, 2, and 3
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256 M. KANG AND S. W. LAGAKOS

Fig. 1. A three-state semi-Markov process. States 1 and 2 are transient and recurrent and the absorbing state 3 can be
entered from either state.

represent the infection-free, currently infected, and clinical disease statuses, respectively. Then a subject
who is initially uninfected can become infected for a period of time, after which the infection resolves
to the infection-free status (1–2–1), or the infection leads to clinical disease (1–2–3). Alternatively, the
subject could develop clinical disease from the infection-free state (1–3). For someone beginning in state
1, every sample path will consist of k visits (k � 0) to state 2, followed by a visit to state 1 or 3 (if k � 1).

Suppose that individuals begin in state 1 and C = {1}, so that λ1 j (·) = λ1 j for j = 2, 3. The
remaining transition intensities, λ2 j (·) for j = 1, 3, are arbitrary. Let fi j (·) denote the subdensity function
corresponding to λi j (·); that is,

fi j (t) = λi j (t) exp{−�i (t)},
for t � 0, where �i (t) = ∑K

j=1

∫ t
0 λi j (u)du, i �= j . The subdistribution function corresponding to fi j (·)

is denoted Fi j (·), where Fi j (t) = ∫ t
0 fi j (u)du.

From (2.3)–(2.6), calculation of the likelihood contribution of a subject requires consideration of at
most the conditional probabilities,

P[X (�1) = 1|X (0) = 1],

P[X (�1) = 2, X (�2) = 2, . . . , X (�m−1) = 2, X (�m) = j |X (0) = 1],
(3.1)

for j = 1, 2, 3, where �i > 0 and 0 < �1 < �2 < · · · denote the distinct values of v j − vi and
vi < v j are the visit times. When visit times are equally spaced, say every � time units, these conditional
probabilities simplify to

P[X (�) = 1|X (0) = 1],

P[X (�) = 2, X (2�) = 2, . . . , X ((m − 1)�) = 2, X (m�) = j |X (0) = 1],

for j = 1, 2, 3 and m = 1, 2, . . . .
Note that for each observed path, there may be infinitely many underlying sample paths. For example,

for the observed sequence 1 − 2 − 1 , the underlying sample path of the process can be of the form

1 − 2 − 1 − 2 − 1 ,

1 − 2 − 1 − 2 − 1 ,

1 − 2 − 1 − 2 − 1 − 2 − 1 − 2 − 1 ,

and so on, where the unboxed states denote the unobservable state changes of the process between visit
times. We now consider the probability elements for the one- and multistep conditional probabilities in
(3.1) in detail.
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3.1 Conditional probabilities

Let P1 j (k, t) denote the conditional probability that the process is in state j at time t0 + t after k visits
to state 2 in the interval (t0, t0 + t), given that the process is in state 1 at time t0, for j = 1, 2, 3 and
k = 0, 1, . . . . Due to stationarity in (2.3), we may set t0 = 0. Note that P12(k, t) = 0 for k = 0, since
there must be at least one visit to state 2. The case of j = 1 for k = 0, 1, 2 is depicted in Figure 2, where
u represents the unknown time of transition from state 1 to 2 and z denotes that from state 2 to 1. In this
notation,

P(X1 = 1|X0 = 1) =
∞∑

k=0

P11(k, t1). (3.2)

The sum will be finite if sojourn times from state 2 have a guarantee time; that is, support bounded away
from zero. For example, if λ2 j (t) = 0 for 0 � t � G, then the upper limit in the sum is the greatest
integer less than or equal to t/G.

For the calculation of P11(k, t), we have P11(0, t) = exp{−�1(t)} and

P11(1, t) =
∫ t

u

[∫ t

0
f12(u) f21(z − u)du

]
exp(−�1(t − z))dz.

For k > 1, the probability of k transitions to state 2 is given by a convolution of probability functions
P∗

11(1, x) and P11(k − 1, t − x), where

P∗
11(1, x) =

∫ x

0
f12(u) f21(x − u)du

differs from P11(k, x) in that its corresponding underlying process ends at the transition time (marked by
state 1∗ in Figure 2). Thus,

P11(k, t) =
∫ t

0
P∗

11(1, x)P11(k − 1, t − x)dx .

Fig. 2. Depiction of sample paths for P11(k, t), k = 1, 2, 3. The boxed states represent the states occupied by the
process at the visit time, the dots between the states indicate that the process has remained in the same state since
the previous transition, and the arrows indicate the unobservable transitions. The asterisk next to 1 indicates the path
segment that ends at transition to state 1.
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Fig. 3. Depiction of a sample path for P121(1, 0, t1, t2). The sample path observed to be in states 1, 2, and 1 at visit
times 0, t1, and t2, respectively, with one transition to state 2 in the visit interval (0, t1] is shown.

We can extend the definition of P∗
11(1, x) to P∗

11(k1, x), and generalize the convolution function to

P11(k, t) =
∫ t

0
P∗

11(k1, x)P11(k2, t − x)dx,

where k1 + k2 = k, for k1, k2 � 1.
Next, let P13(k, t) denote the probabilities contributing to the calculation of P[X (t) = 3 | X (0) = 1].

Since state 3 can be reached from state 1 or state 2, P13(k, t) can be expressed as the sum of P(1)
13 (k, t),

which denotes that state 1 immediately precedes state 3, and P(2)
13 (k, t), which denotes the other possibility

that transition to state 3 was made from state 2. Then (see Appendix as supplementary material available
at Biostatistics online)

P[X1 = 3|X0 = 1] =
∑

k

{P(1)
13 (k, t) + P(2)

13 (k, t)}.

Having computed P[X (t0 + t) = 1|X (t0) = 1] and P[X (t0 + t) = 3|X (t0) = 1], P[X (t0 + t) =
2|X (t0) = 1] is obtained as the complement of their sum.

The ideas in one-step conditional probability calculations can easily be extended to obtain the mul-
tistep conditional probabilities in (2.6). For example, consider P[X (t2) = 1, X (t1) = 2 | X (0) = 1].
Define P121(k1, k2, t1, t2) to be the conditional probability that X (t1) = 2 and X (t2) = 1, with k1 visits to
state 2 in (0, t1] and k2 visits to state 2 in (t1, t2], given that X (0) = 1. Note that P121(k1, k2, t1, t2) differs
from P11(k1 + k2, t) in that state 2 is known to be occupied in the process at time t1 in P121(k1, k2, t1, t2).
To illustrate, a sample path corresponding to P121(1, 0, t1, t2) is depicted in Figure 3. Details are presented
in the Appendix as supplementary material available at Biostatistics online.

3.2 Estimation and model assessment

The expressions developed above can be combined to obtain an expression for P(X = x) and then the
likelihood contribution for an individual from (2.2). The overall likelihood is obtained as the product of the
contributions of individual subjects and will be a function of {λ12, λ13, λ21(·), λ23(·)}. If parametric forms
are assumed for λ21(·) and λ23(·), the likelihood function will depend on a finite-dimensional parameter
vector and standard numerical methods can be used to obtain the maximum likelihood estimator. Under the
standard regularity conditions, the maximum likelihood estimators will be consistent and asymptotically
normal.

To examine the adequacy of model fit, the visit patterns can be partitioned into several categories, and
the observed frequencies of the categories can be compared with the estimated model-based frequencies.
An overall χ2 statistic would then have an approximate chi-square distribution with the degrees of freedom
equal to the number of independent cells minus the number of model parameters.
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4. ILLUSTRATIONS

4.1 HPV application

Data, model assumptions, and methods. We illustrate the proposed methods with the placebo data from
a completed pilot clinical trial of a candidate vaccine for HPV type 16 (Koutsky and others, 2002). There
were six scheduled visits at baseline (day 0), months 7, 12, 18, 24, and 30, at which times the presence or
absence of HPV type 16 (denoted HPV16) and CIN 2/3 (denoted CIN) was assessed. We considered the
699 placebo subjects, initially HPV 16 negative and free of CIN 2/3, who provided the data on the first five
(388) or full six visits (311). To facilitate the computations, we treated month 7 visit as if it occurred at
month 6, so that all visits would be equally spaced. The setting can be described by the four-state process
depicted in Figure 4, where state 3 (state 4) corresponds to diagnosis of CIN following a scheduled visit
where HPV16 was not (was) detected. This model can be viewed as an extension of the three-state model
in Figure 1 in which state 3 is divided into two states based on the presence of HPV16 when CIN was
diagnosed. In practice, these two CIN states would be interpreted as having been caused by HPV16 (state
4) or another type of HPV (state 3). Overall, 10 subjects were diagnosed with CIN during the study period,
five of whom were HPV16 positive at the time of diagnosis. The majority of subjects were observed to be
in state 1 at all six visit times (260/311) or at all five times (344/388).

We considered C = {1} and modeled the transition intensities for state 2 as step functions, in-
corporating the biological minimum time required for clearance of infection or progression to disease;
that is,

λ2 j (t) =
{

0, if t < G2 j ,

λ2 j , if t � G2 j ,

for j = 1, 4. Hence, λ2 j (t) is dependent on time due to the corresponding guarantee time, G2 j . We
considered guarantee times of G21 = 5 and G24 = 6 (in months) for the HPV study. We assumed that
the diagnostic tests for HPV and CIN have perfect sensitivity but may have imperfect specificity, and
reestimated model parameters assuming several assumed specificities.

Results. Estimates of λλλ assuming various misclassification errors are presented in Table 1. The max-
imized likelihood decreases sharply as either specificity declines below one and indicates that the as-
sumption of no misclassification errors provides the best model fit. The very small estimates of λ13 in the
presence of imperfect CIN diagnostic test would suggest that the observed prevalence of women in state
3 is almost fully explainable by misclassification, implying that HPV infections of types other than 16 do
not lead to CIN 2/3 during the 30-month period of follow-up. However, this would be inconsistent with the
literature which suggests that various HPV types are responsible for CIN outcomes. (cf. Liaw and others,
1999). Therefore, the model assuming no misclassification errors seems more reasonable for the data.

Fig. 4. A four-state semi-Markov process. A process describing the natural history of HPV16 is presented.
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Table 1. Estimates of λλλ under various specificities. The specificity for HPV detection is denoted by
P(PCR−| HPV−), where HPV detection is assessed by a polymerase chain reaction (PCR) assay, and the
specificity for CIN detection is denoted by P(Dx−|CIN−) to indicate correct negative diagnosis (Dx−)

P(Dx−|CIN−) λλλ P(PCR−|HPV−)

1 0.9975 0.9950

1 λ12 0.0051 0.0047 0.0045
λ13 0.0003 0.0005 0.0005
λ21 0.0882 0.0792 0.0724
λ24 0.0031 0.0031 0.0031

Log-likelihood −517.470 −568.651 −569.353

0.9975 λ12 0.0053 0.0049 0.0047
λ13 <1.0 × 10−10 <1.0 × 10−10 <1.0 × 10−10

λ21 0.0881 0.0794 0.0728
λ24 0.0023 0.0023 0.0023

Log-likelihood −557.970 −560.712 −564.054

0.9950 λ12 0.0053 0.0049 0.0047
λ13 <1.0 × 10−10 <1.0 × 10−10 2.8 × 10−10

λ21 0.0880 0.0793 0.0727
λ24 0.0015 0.0015 0.0015

Log-likelihood −560.934 −563.675 −567.017

We found the inverse sample information to be numerically unstable and relied on the bootstrap
method using 100 bootstrapped samples. The model assuming known G21 = 5, G24 = 6, and no
misclassification errors gives the following estimates of λλλ and standard errors, based on four unknown
parameters in the model: λ̂12 = 0.0051(0.00050), λ̂13 = 0.0003(0.00013), λ̂21 = 0.0882(0.014), and
λ̂24 = 0.0031(0.0037). Following the guarantee times, the estimated risk of clearance is about 28 times
higher than the risk of progression to CIN after 6 months. The conditional probabilities of HPV16 infec-
tion (entering state 2) and non-HPV16-related CIN development (entering state 3) are 0.944 and 0.056,
given that a woman leaves the uninfected state (state 1). Once a woman is infected with HPV16, the con-
ditional probabilities of clearing the HPV16 infection, P(σn+1 = 1|σn = 2), and progressing to CIN,
P(σn+1 = 4|σn = 2), are 0.969 and 0.031, respectively. The mean times to clearance and progression to
HPV, conditional on the next state, are about 16 and 17 months, respectively, consistent with commonly
used definitions of “persistent infection” (Ho and others, 1998; Koutsky and others, 2002; Moscicki and
others, 1998). The estimated cumulative probability that a woman develops CIN based on the model esti-
mates (Figure 5) shows a steady rise over time, with about one-third of the outcomes attributed to HPV16,
also consistent with the epidemiological literature (Liaw and others, 1999; Herrero and others, 2000).
HPV16 prevalence (Figure 5) stabilizes to 7–8% after about 3 years.

Model fit (Table 2) was assessed by comparing the observed frequencies with the expected frequencies
of the selected visit patterns. The chosen model (Model 1) appears to fit the data adequately (p = 0.65,
8d.f.), while the goodness-of-fit results for the same model but allowing a specificity of 0.99 for the
HPV16 assay (Model 2) indicate poorer fit (p = 0.04).

Fitting the standard Markov model (Kalbfleisch and Lawless, 1985) yielded constant transition inten-
sities (denoted by γi j ) of γ̂12 = 0.0062 (0.00067), γ̂13 = 0.0003 (0.00013), γ̂21 = 0.0551 (0.0089), and
γ̂24 = 0.0050 (0.0022). The estimated transition intensities from state 1 were very similar to those from
the semi-Markov methods. The resulting cumulative incidence and prevalence curves were also similar to
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Fig. 5. Model-based estimation of cumulative incidence of CIN 2/3 and prevalence of HPV16. The dotted, solid, and
dashed lines represent the prevalence of HPV16, the cumulative probability of overall CIN 2/3, and the cumulative
probability of CIN 2/3 caused by HPV16, respectively. The step functions portray the empirical estimates from the
30-month data, and the smooth curves represent the model-based estimates over a period of 10 years. The vertical
lines are the pointwise 95% confidence intervals for the predicted probabilities.

Table 2. Model fit. The dots refer to any remaining visit patterns

Visit pattern Observed frequencies Model 1 Model 2

1 − 2 − 1 · · · 7 5.6982 3.1728

1 − 2 − 2 · · · 22 14.9149 13.7062

1 − 2 − 3 · · · 0 0.0040 0.0039

1 − 2 − 4 · · · 0 0.1462 0.1894

1 − 1 − 2 − 1 · · · 3 5.5192 3.0857

1 − 1 − 2 − 2 · · · 14 14.4465 13.3298

1 − 1 − 2 − 3 · · · 0 0.0039 0.0038

1 − 1 − 2 − 4 · · · 0 0.1462 0.1842

1 − 1 − 1 − 2 − 1 · · · 7 5.3459 3.0009

1 − 1 − 1 − 2 − 2 · · · 15 13.9929 12.9637

1 − 1 − 1 − 2 − 3 · · · 0 0.0039 0.0037

1 − 1 − 1 − 2 − 4 · · · 0 0.1372 0.1791

Other 631 638.6411 649.1717

(Obs − Exp)2/Exp 5.9393 16.3933

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/2/252/230485 by guest on 21 August 2022



262 M. KANG AND S. W. LAGAKOS

Fig. 6. (a) Semi-Markov and (b) Markov model fits for the simulated data set. The solid symbols represent the true
curves and the unfilled symbols the estimates.

those from the semi-Markov model over the period of observation. The corresponding goodness-of-fit χ2

statistic was 6.93 ( p = 0.54) for the Markov model, somewhat worse than that of Model 1.

4.2 A simulated data example

To further illustrate the value of the methods, data were simulated from a four-state semi-Markov process
of Figure 4 with C = {1} and λ2 j (t) = a2 j b2 j (t − G2 j )

b2 j −1, j = 1, 4 (Weibull hazard function). For the
simulation, λ12 = 0.025, λ13 = 0.002, a21 = 0.2, a24 = 0.001, b21 = 0.5, b24 = 2, G21 = 4, G24 = 5,
visits are every 6 months for 30 months and N = 5000, a sample size typical of a moderately sized Phase
III vaccine trial. The simulated data produced 231 and 233 observations in states 3 and 4, respectively, by
the end of the observation period, with 2252 subjects observed to be in state 1 at each visit, and yielded
λ̂12 = 0.0263, λ̂13 = 0.00206, â21 = 0.209, â24 = 0.00158, b̂21 = 0.510, and b̂24 = 1.873, assuming
that G21 and G24 are known. Figure 6(a) shows that the estimated cumulative CIN incidence and HPV
prevalence are very close to the true probabilities. However, when a Markov model is incorrectly assumed,
the biases in such estimates increase with time (Figure 6(b)).

5. DISCUSSION

Panel data pose challenges for semi-Markov processes because missing information about an individual’s
process between the observations can contribute to the probability of being in the current state. Hence,
despite the wider applicability of semi-Markov processes compared to the Markov processes, research in
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this area has been slim. We showed that when the transition intensities from at least one of the states of
the process are time homogeneous, the expression for the joint probability in the likelihood function is
tractable. In our data applications, we considered a process that begins in a state in C, so that it is not
necessary to take account of the duration of time that individuals have been in this state prior to the start
of the study. If X (0) /∈ C, the proposed methods would still apply if either the subjects had just entered
this state or the durations of time in this state prior to entrance into the study were known. Otherwise, the
methods would need to be modified to account for the duration of time in the initial state prior to the start
of the study. Methods similar to those in the work by Satten and Sternberg (1999) might be useful for this
purpose.

In the HPV data example, the data came from a proof-of-principle study, thus smaller than a Phase
III vaccine trial, and the number of CIN 2/3 events was small (10 events). Several Phase III HPV vaccine
trials are currently underway, and are approximately five times the size of the pilot trial, and will be more
suitable for the methods developed here, as the simulated data example illustrates. Without data on sexual
activities and HPV types other than type 16, we assumed C = {1}, and exponential distributions with
guarantee times were chosen for state 2 for model simplicity. Whereas the guarantee times limited the
number of potential paths in our example, one can also limit the number of transitions that can occur in
a given time interval when enumerating the potential paths. The clinical estimates for guarantee times
were not clear, but we found that varying these times (from 4 to 8 months) did not change the likelihood
parameter estimates substantially in our data.

The methods in the paper can be extended to allow fixed covariates in the model, for instance, to
compare two treatments in a clinical trial. A one-sample model can be fit separately for each distinct co-
variate vector, and the overall likelihood is obtained by multiplying the likelihoods from the homogeneous
groups.
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