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Radiation hybrid mapping is a somatic cell technique for ordering genetic loci along a chromosome and 
estimating physical distances between adjacent loci. This paper presents a model of fragment generation and 
retention for data involving two or more copies of the chromosome of interest per clone. Such polyploid 
data can be generated by initially irradiating normal diploid cells or by pooling haploid or diploid clones. 
The current model assumes that fragments are generated in the ancestral cell of a clone according to an 
independent Poisson breakage process along each chromosome. Once generated, fragments are independently 
retained in the clone with a common retention probability. On the basis of this and less restrictive retention 
models, statistical criteria such as minimum obligate breaks, maximum likelihood ratios, and Bayesian 
posterior probabilities can be used to decide locus order. Distances can be estimated by maximum likelihood. 
Likelihood computation is particularly challenging, and computing techniques from the theory of hidden 
Markov chains prove crucial. Within this context it is possible to incorporate typing errors. The statistical 
tools discussed here are applied to 14 loci on the short arm of human chromosome 4. 

Radiation hybrids have proved to be a powerful 

and convenient  me thod  for rapidly mapping  

marker loci (Cox et al. 1990; Goss and Harris 

1975). To date, most radiation hybrid maps have 

been constructed using haploid hybrids, which 

are generated by irradiating rodent cells carrying 

a single copy of a unique human  chromosome. If 

the irradiated cells are fused with nonirradiated 

rodent cells, standard cell culture techniques per- 

mit selection for and eventual isolation of inde- 

pendent  clones of hybrid cells. Each hybrid clone 

retains mult iple  r andom fragments from the 

unique human  chromosome. One limitation of 

this experimental paradigm is that different hy- 

brid panels must be prepared for each chromo- 

some. In contrast, if human  diploid cells are irra- 

diated to generate diploid, "whole-genome" ra- 

diation hybrids as originally proposed by Goss 

and Harris (1977), then a single panel of hybrids 

can be used to map all human  chromosomes. 

In spite of the fact that multiple copies of a 

chromosome per clone obscures fragment reten- 

tion patterns, diploid and polyploid radiation hy- 

brids provide other advantages over haploid hy- 

brids besides ease of generation. For instance, the 
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mapping of closely spaced loci requires fragments 

of small average size. Such fragments may have 

low retention rates in cells. Using diploid clones 

or pooling haploid or diploid clones increases the 

effective retention rate per clone. 

Any strategy for ordering loci from radiation 

hybrid data is necessarily complex (Boehnke et 

al. 1991; Lange and Boehnke 1992). Our philos- 

ophy is to look at radiation hybrid data from a 

variety of perspectives. A fundamental  barrier is 

the shear number  of orders that must be consid- 

ered. For m loci, this number  is either m!/2 or m!, 

depending on the symmetry of the retention 

model employed. Methods such as min imum ob- 

ligate breaks involve simple criteria that  allow 

rapid screening of many orders. Other methods 

such as maximum likelihood and Bayesian pos- 

terior probabilities are more computationally in- 

tensive and involve more modeling assumptions 

but provide a more satisfactory basis for compar- 

ing locus orders and est imating distances be- 

tween loci. 

At first glance, polyploid data appear to be 

much more difficult to analyze than  haploid 

data. Fortunately, this is not  the case if one 

adopts the computational framework of hidden 

Markov chains (Baum 1972; Devijver 1985; Rab- 

iner 1989) for maximum likelihood estimation. 
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Even wi thin  this context,  Bayesian calculations 

still seem int imidat ing.  One remedy is to apply 

Laplace's approximat ion  (de Bruijn 1981; Tierney 

and Kadane 1986; Barndorff-Nielsen and Cox 

1989). This transforms the problem of comput-  

ing posterior probabilities by numerical  integra- 

t ion to one of f inding the posterior mode  by op- 

t imiza t ion .  The necessary ideas beh ind  these 

computa t ional  advances are developed fully in 

this paper. The corresponding software package, 

RHMAP version 2.01, is available free of charge 

from Michael Boehnke. 

Models for Polyploid Radiation Hybrid Mapping 

The rationale beh ind  radiation hybrid mapping  

is simple. The closer two loci are together on a 

h u m a n  chromosome,  the less likely it is that  ra- 

diat ion will cause a break between them. Thus, 

close loci will tend to be concordant ly  retained or 

lost, whereas distant loci will tend to be indepen- 

dent ly  retained or lost. To flesh out this intuit ive 

insight,  we make six reasonable model ing  as- 

sumptions.  

First, the loci to be mapped  are linearly ar- 

r anged  a long  a g iven  h u m a n  c h r o m o s o m e ,  

which we identify with a line segment.  Second, 

each clone contains  fragments derived from c 

copies of this chromosome.  The values c -- 1 and 

c = 2 correspond to haploid and diploid hybrids, 

respectively. The term polyploid hybrid covers an 

arbitrary number  of ch romosome  copies c ~> 2 

per clone. Unless aneuploid cells are irradiated, 

clones must  be pooled to attain a value of c > 2. 

For the sake of brevity, we will always refer to the 

sampling uni t  in a radiation hybrid exper iment  

as a clone, whe ther  it corresponds to a single 

clone or a pool of clones. Third, we assume that  

the breaks caused by radiat ion along any chro- 

mosome occur according to a Poisson process. 

These Poisson breakage processes are indepen-  

den t  f rom c h r o m o s o m e  to c h r o m o s o m e  and  

identically distributed on homologous  chromo- 

somes. Fourth, fragments within  a clone are re- 

tained and lost independent ly .  As noted below, 

different fragments can be retained with different 

rates, but  the re tent ion processes are again inde- 

penden t  and identically distributed from chro- 

mosome to chromosome.  Fifth, breakage and re- 

t en t ion  operate i n d e p e n d e n t l y  of each other.  

Sixth, only  the presence and not  the number  of 

markers in a clone can be detected at any locus. 

These  a s s u m p t i o n s  can  be m a n i p u l a t e d  

mathemat ica l ly  upon  adopt ing appropriate nota- 
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tion. Let the number  of loci to be ordered be rn 

and the number  of hybrid clones tested at these 

loci be h. Observations on the clones can be ar- 

ranged in an h x m matrix X = (Xjk) such that  Xjk 

takes the value 0 or 1, according as no markers or 

one or more markers are observed at the kth locus 

of the j th clone. If the typing results at this locus 

are missing or ambiguous,  we set Xjk = ?. The 

physical distance between loci k and k + 1 is de- 

noted ~k. If we assume that  the independent  Pois- 

son breakage process are h o m o g e n e o u s  wi th  

c o m m o n  intensi ty  X, then  dk = Xak is the expected 

number  of breaks between the two loci per chro- 

mosome copy. The probabil i ty  of at least one 

break occurring between the loci on a given chro- 

mosome is 

Ok = 1 - e -'~*. (1) 

The breakage probabilities Ok or the scaled dis- 

tances dk are more convenient  parameters than  

the physical distances 8k. For one thing, the in- 

tensi ty ~ and the physical distances 5k are con- 

founded; for another,  using the Ok or dk as param- 

eters relieves us of making the assumpt ion that  

the identically distributed Poisson breakage pro- 

cesses are homogeneous .  

One can pose a number  of re tent ion models 

incorpora t ing  i n d e p e n d e n t  r e t en t ion  of frag- 

ments.  The simplest postulates a c o m m o n  reten- 

t ion probabil i ty r for all fragments. Because there 

is abundan t  evidence (Cox et al. 1990; Ceccherini 

et al. 1992, Gorski et al. 1992) indicating that  

fragments bearing a centromere are preferentially 

retained, it is helpful to elaborate this model  

slightly (Boehnke et al. 1991). Suppose that  the m 

loci are arranged in numerical  order from left to 

right along a single chromosome arm with locus 

1 closest to the centromere.  It seems reasonable 

to postulate two distinct re tent ion probabilities, 

one for those fragments conta in ing locus 1 and 

one for those fragments not  conta ining locus 1. 

Sl ight ly more  general  t h a n  this  c en t romer i c  

model  is the model  assuming a distinct re tent ion 

probabil i ty rk for the class of fragments beginning 

to the left of locus k and to the right of locus k-1. 

This is the most  general model consistent  with 

rapid calculat ion of likelihoods. Unless stated 

otherwise,  we will e m p l o y  this l e f t - endpo in t  

model  with m retent ion probabilities rl, . . .  ,r,,. 

Pairwise Criteria for Deciding Order 

Comput ing  the number  of obligate breaks per or- 

der  a l lows c o m p a r i s o n s  of d i f f e r en t  orders  
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(Boehnke 1992; Boehnke et al. 1991; Bishop and 

Crockford 1992; Weeks et al. 1992). To illustrate 

t he  basic  idea, t he  c lone  (0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,  

0,?,0,0,1) from the ch romosome  21 haploid data 

of Cox et al. (1990) displays three obligate breaks. 

Here we assume that  the order of the loci along 

the ch romosome is the same as the  scoring order. 

Obligate breaks occur whenever  a run  of O's is 

ended by  a 1 or vice versa; un typed  loci are ig- 

nored in this accounting.  If the number  of obli- 

gate breaks per clone is summed  over all clones, 

then  the resulting sum serves as a criterion for 

compar ing  the  cur ren t  order  to o ther  orders. 

Among  the ra i l2  possible orders, a best order or 

orders can be identified by  min imiz ing  the obli- 

gate breaks criterion using a stepwise ordering al- 

gor i thm (Boehnke et al. 1991) or s tandard com- 

b i n a t o r i a l  o p t i m i z a t i o n  t e c h n i q u e s  such  as 

b r a n c h - a n d - b o u n d  (Nijenhuis  and  Wilf  1978) 

and simulated anneal ing  (Press et al. 1992). 

The advantage of the  m i n i m u m  breaks crite- 

r ion is tha t  it depends on almost  no assumptions 

about  how breaks occur and fragments  are re- 

tained. Under  our specific model  assumptions,  

the  criterion is also statistically consis tent  given a 

c o m m o n  re tent ion probability.  Building on pre- 

vious work of Barrett (1992) and Speed et al. 

(1992), we prove this claim in the  Appendix.  

Wi th  minor  nota t ional  changes, the proof  in the 

Appendix  shows tha t  min imiz ing  the  est imated 

total map  length  or the  est imated sum of adja- 

cent breakage probabilities be tween the  first and 

last loci of an order ~ also provides s t rongly con- 

sistent criteria for choosing the true order. If 0~k is 

any  s trongly consis tent  sequence of estimators of 

the breakage probabil i ty  Ojk between two loci j 

and k, t hen  these criteria can be expressed as 

m - 1  

ln[1 ^h 
- -  - -  Oo(k),o(k+ I)] (2) 

k = l  

and 

m - 1  

0o(k),o(k+,>, (3) 
k = l  

respectively. The two-locus m a x i m u m  likelihood 

e s t ima te s  p r o p o s e d  in t he  n e x t  s ec t ion  are 

s t rongly consistent.  Because the total map  length 

(equation 2) and the sum of adjacent  breakage 

probabilities (equation 3) are additive funct ions 

requir ing one term for each pair of adjacent  loci, 

a best order can be identif ied by the  same tech- 

niques employed  in min imiz ing  obligate breaks. 
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We tend  to prefer the m i n i m u m  of equat ion  3 to 

the m i n i m u m  of equat ion 2 as a criterion for de- 

ciding order because equat ion 3 is less sensitive 

to errors in es t imat ing large breakage probabili- 

ties (Olson and Boehnke 1990). 

Likelihoods for One- and Two-locus Models 

It is instructive to begin our discussion of maxi- 

m u m  likel ihood me thods  by  consider ing one- 

and two-locus data from a single, fully typed  

clone. To simplify nota t ion,  we drop row sub- 

scripts and let X -- (X1, •. • ,Xm)  denote  the obser- 

va t ion  vector  for the  clone. Recall tha t  if no  

markers are present  at locus k, then  X k = 0. If one 

or more markers are present, t hen  Xk-- 1. For a 

single locus, the only  parameter  of interest is the 

re tent ion probabil i ty  r, from which  the subscript 

can also be dropped.  Because (1 - r) c is the  prob- 

ability tha t  all c copies of a given marker are lost, 

the single-locus polyploid l ikelihood reduces in 

the absence of typing  errors to the Bernoulli dis- 

t r ibut ion 

qo = Pr(X1 = 0) = (1 - r) c 

ql = Pr(X1 = 1) = 1 - (1 - r) c. 

For two loci we again assume complete  data and 

a c o m m o n  re tent ion probabil i ty  r. Wi th  the  ab- 

breviat ions 0 = 01 and qkl = Pr(X1 = k, X 2  = 1), t w o -  

locus polyploid l ikelihoods can be wri t ten as 

qoo = [(1 - r)(1 - Or)] c 

qlo m qol 

= qo - qoo 

= (1 - r) c - [(1 - r)(1 - Or)] c 

ql 1 = 1 - qoo - qlo - qm 

= 1 - 2(1 - r) ~ + [(1 - 0(1 - Or)] ~. 

(4) 

The express ion for qoo = Pr(X1 = 0, X 2 = 0) in 

equat ion  4 is a direct consequence of the  inde- 

penden t  fate of the  c chromosomes  dur ing frag- 

m e n t a t i o n  and retent ion.  Consider ing a given 

chromosome,  the marker  at locus 1 is lost wi th  

probabil i ty  1 - r .  Condi t ional  on this event,  the 

marker at locus 2 is lost wi th  probabi l i ty  1 - O r  

because the complemen ta ry  event  occurs on ly  

when  there is a break between the  two loci and  

the  f r agmen t  bear ing  the  second  locus is re- 

tained. 

The parameters  r and 0 can be expressed in 

terms of the  two probabilities qoo and q11. The 



equa t ion  ql~ - qoo = 1 - 2(1 - r) C can be solved to 

give 

1 

[ 1 - q l l + q ° ° ]  c. (5) 
r = l -  2 

W h e n  c = 1, this  s impl i f ies  to r = q~l + qm- Once  

r is de te rmined ,  solving for 0 in  

qoo = [(1 - r)(1 - 0r)] c gives 

1 

1 - r -  [qoo]c 

0 = r(1 - r) (6) 

Again w h e n  c = 1, this  reduces to 0 

= ( q l o ) / [ r ( 1  - r)]. In general  the  t w o - d i m e n s i o n a l  

m a p  (0,r) ~ (q11,qoo) is one- to-one  f rom the  re- 

g ion  

{(0,r):0 ( [0,1l, r E(0,1)} 

on to  the  region 

R = {(qoo, q l l ) : q o o  ( (0 ,1 ) ,  q l l  ( (0 ,1 ) ,  

q o o q l l  >~ q~o}. 

Fur thermore ,  0 = 0 if and  o n l y  if qoo + q l l  = 1, and  

0 -- 1 if and  on ly  if q o o q l l  = q~o. The upper  b o u n d -  

ary of the  region R is fo rmed  by  the  l ine qoo + ql 

= 1 and  the  lower b o u n d a r y  by  the  curve qooql~ -- 

q~o, w h i c h  in  turn__jis genera ted  by the  func t ion  

q l l  -- 1 + qoo - 2~/qoo. 

The observed values of q l l  a n d  qoo are maxi-  

m u m  l i k e l i h o o d  e s t i m a t e s  for t he  s i m p l i f i e d  

m u l t i n o m i a l  m o d e l  in  w h i c h  t h e  o n l y  con-  

s t ra ints  on  the  four p robabi l i t i e s  qoo, qlo, qo~, 

and  ql l  are non-nega t iv i ty ,  the  s y m m e t r y  con- 

d i t i o n  q l o = q o l ,  a n d  t h e  s u m  r e q u i r e m e n t  

qoo + qlo + qol + q l l  = 1. This  s i m p l i f i e d  m o d e l  

has  in  effect two parameters ,  w h i c h  we can iden- 

t ify wi th  ql 1 a n d  qoo and  es t imate  by  thei r  empir-  

ical values.  These values are m a x i m u m  l ike l ihood  

es t imates  unde r  the  s impl i f ied  model .  If these es- 

t imates  satisfy the  i nequa l i t y  qooq11 ~> q12o, t h e n  

t hey  fu rn i sh  m a x i m u m  l ike l ihood  es t imates  for 

the  rad ia t ion  h y b r i d  m o d e l  as well. Because max-  

i m u m  l ike l ihood  es t imates  are preserved unde r  

reparameter iza t ion ,  the  m a x i m u m  l ike l ihood  es- 

t imates  of r and  0 are t h e n  avai lable  by  substi tut-  

i ng  e s t i m a t e d  va lues  for theore t i ca l  va lues  in 

equa t ions  5 a n d  6. In the  event  tha t  the  esti- 

m a t e d  q's do no t  satisfy qooqll > q12o, t h e n  it is 

p r u d e n t  to set 0 equal  to some n u m b e r  s l ight ly  

less t h a n  1. For more  t h a n  two loci, the  two-locus 

m a x i m u m  l i k e l i h o o d  e s t i m a t e s  f u r n i s h  good  

s tar t ing values  for the  breakage probabi l i t ies  in a 

full  m a x i m u m  l ike l ihood  analysis .  

The above analysis  depends  crucial ly on  the  
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a s s u m p t i o n  of a c o m m o n  re ten t ion  p robab i l i ty  r 

at the  two loci. A reasonable  d iagnos t ic  for this  

a s s u m p t i o n  is to test the  h y p o t h e s i s  qlo = qm. 

The s imples t  approach  is to use the  clones discor- 

dan t  at the  two loci and  test w h e t h e r  the  b ino-  

mia l  d i s t r ibu t ion  wi th  success p robab i l i ty  1/z fits 

the  co r re spond ing  observed numbers .  A poor  fit 

w o u l d  favor  a p p l i c a t i o n  of  t h e  l e f t - e n d p o i n t  

m o d e l  for f r agmen t  re tent ion .  In a n y  case, such  

explora tory  data s n o o p i n g  is a good p r e l i m i n a r y  

to more  c o m p l e x  mode l ing .  

T y p i n g  Errors 

O n e  m e t h o d  of con t ro l l ing  t yp ing  errors is to 

retest every c lone  at every locus. If the  two tests 

agree, t h e n  the  c lone  is ass igned the  c o m m o n  

result at the  locus. If the  tests differ, t h e n  the  

c lone is v iewed as u n t y p e d  at the  locus. This pro- 

cedure ensures  a very low error rate. Instead of 

re typing,  the  less expensive,  but  less rel iable op- 

t ion  of rescoring is available.  As an  a l ternat ive  to 

r e t y p i n g  a n d  rescor ing ,  one  can  c o n s t r u c t  a 

m o d e l  tha t  specif ical ly incorpora tes  the  possibil-  

i ty of t yp ing  error. Both false-negative and  false- 

posi t ive errors shou ld  be taken  in to  account .  

For loci typed by  the  po lymerase  c h a i n  reac- 

t ion,  false negat ives  arise f rom a failure of target 

DNA to a m p l i f y  suff icient ly.  False posit ives arise 

f rom nonspec i f i c  DNA ampl i f i ca t ion ,  w h i c h  we 

will  refer to as " c o n t a m i n a t i o n . "  Let ak be the  

ampl i f i ca t ion  rate a n d  13 k be the  c o n t a m i n a t i o n  

rate at locus k. Perfect ampl i f i ca t ion  corresponds  

to % = 1 a n d  no c o n t a m i n a t i o n  to ~k = 0. Bor- 

rowing  a t e rm f rom pedigree analysis ,  we incor- 

porate  these parameters  in to  the  pene t r ance  ex- 

press ion for the  c lone at locus k (Lazzeroni et al. 

1994). If Gk denotes  the  r a n d o m  n u m b e r  of mark- 

ers present  in the  c lone  at this  locus, t h e n  the  

pene t r ance  0k(Xk I gk) is the  cond i t i ona l  probabi l -  

i ty of the  observa t ion  X k = xk g iven Gk = gk. It is 

s imples t  to assume tha t  t yp ing  results are inde-  

p e n d e n t  f rom locus to locus g iven  the  G1, . . .  , 

Gin; in o ther  words, 

Pr(X1 =Xl,  • • •, Xm =xm I G1 =g l ,  • • •, Gm =gin) 
m 

= I I  0k(xk I g0 .  
k = l  

It is also reasonable  to assume i n d e p e n d e n c e  of 

ampl i f i ca t ion  and  c o n t a m i n a t i o n  events  w i t h i n  a 

locus. This a s s u m p t i o n  makes  it feasible to con- 

sider more  compl ica ted  t yp ing  schemes.  For in- 

stance, mul t i tes t  pene t rances  can be fo rmed  by  
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m u l t i p l y i n g  the  u n d e r l y i n g  s ingle- tes t  pene-  

trances. 

Two amplif icat ion models  are plausible. If 

each marker  copy at a locus amplifies indepen-  

dently,  t hen  

Ok(O I gk) = (1 - (zk)g*(1 - ]3k). (7) 

In contrast,  if amplif icat ion is an all-or-none phe- 

nomenon ,  then  

Ok(O I gk) = (1 - O ~ k ) m i n { g k ' l } ( 1  - -  [~k) -  ( 8 )  

Of course, 0k(1 t gk) is de te rmined  by the  relation 

0k(O I gk) + 0k(1 I gk) = 1. A necessary conven t ion  

for missing data is 0k(? I gk) = 1. 

Alternatively, one can model  typing  errors in 

a slightly less mechanis t ic  way by s imply postu- 

lat ing a false positive rate ~k = Ok( 1 I O) and a 

false-negative rate Vk = 0k(O I gk) for gk ~ 1. This is 

e q u i v a l e n t  to t he  a l l - o r - n o n e  a m p l i f i c a t i o n  

model  wi th  vk -- (1 - ~k)(1 -- ~k) except tha t  the 

implicit  constra int  vk ~< 1 - ~k no longer applies. 

The false-positive and false-negative parameter-  

ization is slightly less attractive for i ndependen t  

amplif icat ion as exemplified in equat ion 7. 

In practice, the parameters  c~ k and [3k (or v k 

and ~k) can be fixed at reasonable values or esti- 

mated  from the data. If t hey  are est imated from 

the data, there are two obvious possibilities. As 

implied by our notat ion,  c~ k and ~k can be locus 

specific. Another  possibili ty is to est imate a single 

amplif icat ion rate ~k = ~z and a single contamina-  

t ion rate ~k -= ~ c o m m o n  to all loci. In principle, 

making  error rates locus specific permits  identifi- 

cat ion of loci wi th  poor typing  results. One m a y  

want  to rescore, retype, or s imply discard such 

loci before forming a map.  

A Hidden Markov Chain for Likelihood 

Calculation 

M a x i m u m  likelihood est imat ion is considerably 

more difficult for mult iple  loci t h a n  for one or 

two loci. Nonetheless,  it is possible to design a 

fast a lgor i thm for l ikelihood calculation based on  

the theory  of h idden  Markov chains (Baum 1972; 

Devijver 1985; Rabiner 1989). This new algo- 

r i thm also handles  missing data and typ ing  errors 

gracefully. To derive the  algori thm, we posit a 

Markov chain for the current  clone whose state 

Gk at locus k is the number  of copies of marker  

k present  in the clone. As the chain progresses 

from locus k to locus k + 1, start ing at locus 1 and 
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ending at locus m, Gk is updated  to Gk + 1- The 

numbers  Gk are h idden  from view because only  

the presence or absence of markers are directly 

observable. Of fundamenta l  impor tance  in un- 

d e r s t a n d i n g  the  c h a i n  are t he  p robab i l i t i e s  

Pr(Gk+l = j lGk = i) = t,,k(i,j) of a t ransi t ion from 

state i at locus k to state j at locus k + 1. 

To compute  tc, k(i,j), consider first a haploid 

clone. In this s i tuat ion the ch romosome  copy 

number  c = 1, and it is clear from our earlier anal- 

ysis tha t  

tl,k(O,O ) = 1 - Okrk+ 1 

t l , k ( 0  , 1) = Okra+ 1 

tl,k(1,0) = 0k(1 -- rk+l) 

tl,k(1,1) = 1 -- 0k(1 -- rk+l). 

Employing these haploid t ransi t ion probabilities, 

we can write the  following general expression 

min{i,j} i 

tc, k(i,J) = Z ( l ) t l ,k ( l ' l ) l t l ,k (  1'0)i-I 
l=max{O,i+j-c} 

(9) 

x ( j i )  tl k(01,,,tlk(0 

for the  polyplo id  t rans i t ion  probabilit ies.  For- 

mula  9 can be deduced by lett ing I be the num-  

ber of markers retained at locus k tha t  lead via 

the same original chromosomes  to markers re- 

ta ined at locus k + 1. These l markers can be cho- 

sen in (~) ways. Among  the i markers retained at 

locus k, the  fate of the  I markers  re ta ined at 

locus k + 1 and the  remain ing  i - l markers no t  

retained at locus k + 1 is captured by the  prod- 

uct tl,k(1,1)ltl,k(1,0) i-t. For j total markers to be 

retained at locus k + 1, the  c - i markers no t  

retained at locus k must  lead to j - I markers re- 

ta ined at locus k + 1. These j - 1 markers can 

be  c h o s e n  i n  (~2~) w a y s .  T h e  p r o d u c t  

tl,k(O, 1)J-ttl,k(O,O) c-i-m captures the  fate of the  

c - i markers not  retained at locus k. Finally, the  

upper  and lower bounds  on the  index of summa-  

t ion 1 ensure tha t  n o n e  of the  powers of the  

tl,k(u,v) appearing in 9 are negative. 

T h e  l i k e l i h o o d  o f  t h e  o b s e r v a t i o n s  

(X1, . . . ,  Xm) from a clone can be wri t ten as 

P =  Pr(X1 = xl,  • • . ,  Xm = Xm) 

= Z ' ' "  Z (gC)rgl,(1 _rl)C_gl (10) 
g l  gm 

rn--1 m 

1-I tc, k(gk,gk+O I-I Ok(Xk I g 1,). 
k = l  k = l  



Expression 10 reflects the a s s u m p t i o n  tha t  

the observat ions  ( X 1 ,  . . .  , Xm) are indepen-  

d e n t  g iven the  u n d e r l y i n g  marke r  c o u n t s  

(G1, • . . ,  Gm). In the absence of typing errors, the 

range of summation for the index gk can be re- 

duced to gk ( {0} for xk = 0 and to gk ( {1, . . . , C} 

for Xk -- 1. For a single chromosome, this simpli- 

f icat ion impl ies  t ha t  the l ike l ihood factors 

(Boehnke et al. 1991). In the polyploid case, this 

advantage disappears, but fast evaluation of the 

multiple sum (expression 10) as an iterated sum 

is still possible based on Baum's algorithms from 

the theory of hidden Markov chains (Baum 1972; 

Devijver 1985; Rabiner 1989). 

Baum's forward algorithm recursively evalu- 

ates the joint probabilities 

fk(~k) = Pr(X1 = Xl ,  . . . , X k _  1 = X k _ I , G  k = gk) 

beginning with the initial condition 

( C )rg,(1-r,)C-g~ f,(gl) = Pr(G1 = gl) = gl 

at the first locus. The forward update is 

fk+ l (gk + l ) = E fk(gk)Ok (Xk J gk)tc, k(z~k,gk + l ) • 
gk 

The likelihood (expression 10) can be recovered 

by forming the sum 

P = E fm(gm)Om(Xm J Srn) 
e~m 

at the last locus. In the absence of typing errors, 

the various sums defining the forward algorithm 

range only over those marker counts consistent 

with the observed data. 

Baum's backward algorithm recursively eval- 

uates the conditional probabilities 

bk(gk)  = P r ( X k +  1 = Xk+l, . . . , X m = x m I G k = gk) 

starting by convention at bin(gin) = 1. The required 

update is 

bk- l ( '~k-1)  = E tc, k - l ( ~ k - l ' g k ) O k ( X k  l gk)bk(gk)" 
gk 

In this instance the likelihood can be recovered 

at the first locus by forming the sum 

P= Zglfl(gl)O(xl J gl)bl(gl). 

A quick search of the likelihood P can be 

achieved via the EM algorithm (Dempster et al. 

1977) if the partial derivatives of the likelihood 

can be computed analytically. Let us now indi- 

cate briefly how to do this based on the interme- 

diate results of Baum's forward and backward al- 

gorithms. Consider first the partial derivative 
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3 
- - p  
30k 

of P with respect to a breakage probability Ok. To 

isolate Ok, we rewrite the likelihood (expression 

10) as 

P= E E fk(gk)Ok(Xk I gk)tck(gk'gk+l) 
gk gk+, 

X Ok+l(Xk+l I gk+l)bk+l(gk+l). (11) 

Differentiating expression 11 with respect to Ok 

yields 

a a 

aO---k P = E E fk(,gk)Ok(Xk I gk) O-~k tc, k(gk,gk+l) 
gk gk+, 

x Ok+l(Xk+l I gk+l)bk+l(gk+l). (12) 

An analogous formula is valid for each rk except 

that 

0 0 
a f  U P =  E ~ f l~gl)~) l (X1 J s l ) b l ( g l  )" (13) 

g~ 

For an amplification or contaminat ion parameter 

Yk = ak or ~k, 

0 0 
-~k P= E fk(gk) ~ Ok(Xk I gk)bk(gk). (14) 

gk 

If several parameters are consolidated into a sin- 

gle parameter, then the chain rule must  be ap- 

plied. For instance, if a single retention probabil- 

ity r is assumed, then 

3 3 
a r e = ~  e. 

The partial derivatives appearing on the right 

hand sides of expressions 12, 13, and 14 are te- 

dious, but straightforward to evaluate. Efficient 

evaluation of P and its partial derivatives can be 

orchestrated by carrying out the backward algo- 

ri thm first, followed by the forward algorithm 

performed simultaneously with the computat ion 

of all partial derivatives. Given a partial deriva- 

tive 

3 
- - p  
07k 

of the likelihood P, one forms the corresponding 

entry 

0 
- - l n P  
&k 

in the score vector by taking the quotient 
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3 
- - p  
37k 

P 

Likelihood Maximization 

The EM algori thm provides an attractive avenue 

to m a x i m u m  likelihood est imation of the model  

parameters (Dempster et al. 1977). Suppose tha t  

we collect the  parameters into a vector 7 with 

typical en t ry  7k- Each of the Yk can be viewed as a 

success probabil i ty for a h idden  binomial  trial. As 

a consequence (Weeks and Lange 1989), the EM 

upda te  for a ny  pa ramete r  takes e i ther  of the  

equivalent  generic forms 

,Y~+l = 
E(#success I x ,?  n) 

E(#trials IX,7 n) 

=~,~ + 

~L(7 n) 

y~(1 - y~) 0?k 

E(#trials iX,? n) 

(15) 

where X denotes the observations over all clones, 

and L = In P is the log-likelihood function.  The 

second form of the update  requires less t hough t  

to implement ,  as we already know how to com- 

pute the partial derivatives (O)/(07k)L(Tn). Because 

the EM algor i thm will no t  budge from either 

7~ -- 0 or 7~ -- 1, these bounda ry  values should be 

avoided as initial points.  

If there are h clones and 7k is a breakage prob- 

abi l i ty  Ok, t h e n  the  c o n d i t i o n a l  e x p e c t a t i o n  

E(#trials I X ,~  n) appearing in expression 15 equals 

the constant  hc. For a con tamina t ion  rate [~k, we 

have E(#trials I X,,y n) = h. For a re tent ion  proba- 

bili ty rk, this condi t ional  expectat ion is more sub- 

tle to calculate. When  k > 1, the  number  of trials 

coincides with the r andom number  of breaks Wk 

between loci k - 1 and k among  all clones. The 

first form of the EM update  in expression 15 for 

0k-~ shows that  

E(Wk l X,~, n) 
0n+l 

k - 1  = h c  

It follows that  the  expected number  of fragments 

hc0 n+l The ex- with  re tent ion  probabil i ty rk is k-1. 

pected number  of fragments for re tent ion  prob- 

ability rl is again just the constant  hc. 

Calculation of E(#trials I X, y ~) for an amplifi- 

cat ion rate ~k can best be achieved by direct com- 

putat ion.  Under the independen t  amplif ication 
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model,  this condi t ional  expectat ion for a single 

clone can be expressed as 

Zg~gkfk(gk)Ok(xk l gk)bk~gk) 
(16) 

Under  the all-or-none amplif icat ion model,  ex- 

pression 16 should be modified by  substi tut ing 

min{gk,1} for the number  of marker copies gk at 

locus k. If several parameters  are consol idated 

into a single parameter,  then  E(#trials I X,'y n) can 

be calculated for the consolidated parameter  by 

summing  the corresponding condi t ional  expec- 

tat ions over the various contr ibut ing parameters.  

Once the m a x i m u m  likelihood estimate ~ is 

computed  under  the best order, one can compute  

parameter  asymptot ic  s tandard errors and corre- 

lat ions by inver t ing the observed in fo rmat ion  

matrix, that  is, the  matr ix  of negative second par- 

tial derivatives of L(~) evaluated at 7 = ~/. The ob- 

served informat ion  matr ix can be computed  by  

n u m e r i c a l l y  d i f f e ren t i a t ing  the  score vector .  

Based on m a x i m u m  likelihood estimates under  

the best identified order, one can test by s tandard 

likelihood ratio methods  hypotheses  imposed on  

the parameters.  For instance, it can be revealing 

to test whether  amplif icat ion or con tamina t ion  

rates differ significantly from locus to locus. 

Bayesian Methods 

Because Bayesian methods  directly yield poste- 

rior probabilities of locus order, they  offer an at- 

t r ac t ive  a l t e rna t i ve  to m a x i m u m  l ike l i hood  

methods.  To implemen t  a Bayesian analysis, two 

technical  hurdles must  be overcome. First, an ap- 

propriate  prior dis t r ibut ion for the  parameters  

must  be chosen. Once this choice is made, effi- 

cient numerical  schemes for est imating parame- 

ters and  poster ior  probabi l i t ies  mus t  be con- 

structed. 

It is more convenient  to put  a prior on  the 

distances between the adjacent  loci of an order 

than  on the breakage probabilities determined by 

these distances. To specify a prior, we assume 

that  the m loci to be mapped  are sampled uni- 

formly from a ch romosome interval of known 

physical length. One can exploit the outcome of 

a previous m a x i m u m  likelihood analysis of the 

hybrid  data to assign to the prior interval a dis- 

tance measured in expected number  of breaks per 

chromosome.  (The units  on  this distance are rays 

or centirays (cR) -- 100 × rays.) Suppose that  un- 

der the best m a x i m u m  likelihood order, we esti- 



mate a total of b expected breaks between the first 

and last locus. With m uniformly distributed loci, 

adjacent pairs of loci should be separated by an 

average distance of b / ( m -  1) expected breaks. 

This quanti ty should also approximate the aver- 

age distance from the left end of the interval to 

the first locus and from the right end of the in- 

terval to the last locus. These considerations sug- 

gest that  d = (m + 1)b/(rn - 1) would be a reason- 

able expected number  of breaks to assign to the 

prior interval. In practice, this value of d may be 

too confining, and it is probably prudent to in- 

flate it by 10%-20%. 

Given a prior interval of length d and a given 

locus order, let dk be the distance separating the 

adjacent loci k and k + 1. If the loci are uniformly 

and independently distributed on the interval, 

then standard arguments from geometric proba- 

b i l i ty  (Feller 1971) i m p l y  t h a t  the  vec to r  

( d l  . . . .  , d i n -  1) has prior density 

ml(d - d 1 . . . . .  d i n _ l )  

dm (17) 

on the set 

m-1  

{(dl,..., dm_l):O ~< dk, 1 ~< k ~< m -  1, ~ d k ~< d}. 
k=l 

Independent  beta priors 

r(a~ + bd 
F(ak)F(bk) y~ k-l(1 - 7k) bk-1 (18) 

can be reasonably assigned to the remaining re- 

tention, amplification, and contaminat ion pa- 

rameters. The beta family is flexible enough to 

include many  differently shaped densities on 

[0,1]. For instance, taking ak = bk = 1 gives a flat 

prior with mean 1/2. The general 13 density has 

mean aJ(ak + bk). 

With the resulting product prior now fixed 

for the full parameter vector 3,, we can estimate 

parameters  by maximiz ing  the log posterior 

L(?) + R(?), where L(?) is the log-likelihood and 

R(?) is the sum of the logarithms of the distance 

prior (expression 17) and of the retention, ampli- 

fication, and contaminat ion priors (expression 

18). This maximizat ion provides the posterior 

mode 9. Although the EM algorithm is again our 

preferred method of optimization, the M (maxi- 

mization) step is now only partially tractable. In 

the E step of the classical EM algorithm, one 

forms the conditional expectation Q(71 g") of the 

complete data loglikelihood with respect to the 

observed data; in the M step one then maximizes 
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Q(yI y") as a function of its left argument  7. In the 

Bayesian EM a lgo r i t hm one maximizes  the 

amended function Q(? I 2") + R(7). This surrogate 

function for the log posterior separates the reten- 

tion, amplification, and contaminat ion parame- 

ters, but the distance parameters are inextricably 

tied together through the prior density (expres- 

sion 17). By analogy to the classical EM updates 

(expression 15), the Bayesian EM updates for the 

retention, amplification, and contaminat ion pa- 

rameters all reduce to either of the two equiva- 

lent expressions: 

,y~+l _-- 
E(#successes I X,7") + ak - 1 

E(#trials IX,7 n) + ak + bk - 2 

~,F~L(?') ~R(?")] 

¢;tl- V )L-F7 +-W- / 

E(#trials I X,7 n) + a k + b k - 2 

(19) 

for hidden binomial trials, provided 

E(#successes I X,y") + ak - 1 and 

E(#trials I X ,y ' )  + ak + bk - 2 are both positive. 

These positivity constraints certainly hold under 

the reasonable assumptions that ak > 1 and bk > 1. 

The M step for the distance parameters can 

be well approximated by a modification of the 

EM algorithm known as the EM gradient algo- 

r i thm (Lange 1995). The full EM gradient algo- 

r i thm updates 7 via 

y,,+l = y,, _ [d2OQ(T,, I 7") + d2R(yn)] -1 

x [dL(y") + dR(?")l t, (20) 

where dL and dR denote the differentials of L and 

R, d2R is the second differential of R, d2°Q(? I 2") is 

the second differential of Q relative to its left ar- 

gument,  and the superscript t represents vector 

transpose. In essence, the EM gradient algorithm 

approximately maximizes y --+ Q(? I 7") + R(7) by 

one step of Newton's method. Maximizing this 

surrogate funct ion forces the desired increase 

L(7 n+a) + R(y n+l) > L(7 n) + R(7"). Note that the 

identity dl°Q(Tn I y n) = dE(y") is employed in writ- 

ing the Newton update as expression 20. 

In this particular problem, it is unnecessary 

to apply the EM gradient update (expression 20) 

to all of the parameters. The exact update (ex- 

pression 19) is applied where possible, and the 

EM gradient update is reserved for the distance 

parameters. Thus, we interpret the first differen- 

tials dL and dR appearing in expression 20 as 

(m - 1) x 1 row vectors pertaining only to the 

distance parameters.  The second differentials 
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d2°Q and d2R we likewise interpret as 

(m - 1) × ( m -  1) matrices. 

All of the terms appearing in expression 20 

are straightforward to evaluate. For instance, tak- 

ing into account relation 1, we have 

3 3 d0k 

3 
- 30k L(7)(1 - Ok). 

Differentiation of R(y) with respect to the inter- 

locus distances yields 

3 1 

" "~1~(3D = - d -  d 1 . . . . .  din_ 1 

3 2 1 

aa, ak "(v)° =-(a dl m-l) . . . . . .  d 2 "  

Clearly, the  matrix d2R(7) is rank one. 

The (m - 1) x (m - 1) Hessian matrix 

d2°Q(71 7) is diagonal. To calculate one of its typ- 

ical diagonal terms, again consider the random 

number  Wk+x of chromosomes in the sample 

with breaks between loci k and k + 1. As noted 

earlier, this random variable has a binomial dis- 

tribution with success probability Ok and hc trials. 

Now execution of the E step of the EM algorithm 

shows that up to an irrelevant constant, 

Q(71y ~) 

= E(Wk+ 1 I x,~n)ln(Ok) + E ( h c -  Wk+ 1 I X ~ / n ) l n ( i  - Ok). 

Repeated differentiation with respect to the left 

variable of Q(71 y ~) and then application of the 

chain rule yield 

~2 E(Wk+l i x ,  Tn)(l _ ok ) 
3d~ Q(71 ?n) = _ 02 

The value E(Wk+ 1 J X , ~  n) has already been speci- 

fied in our discussion of the EM algorithm in the 

absence of a prior. 

The fact that  the matrix 

-[d2°Q( 7" I ,yn) .~_ d2R(Tn)] is a rank-one perturba- 

tion of a diagonal matrix is helpful. For such ma- 

trices, matrix inversion is easy owing to the avail- 

ability of the Sherman-Morrison formula 

utA-1 v 

(A + uut)-lv = A- iv  1 + utA-lu A-au 

for an invertible matrix A and compatible vectors 

u and v (Miller 1987). 

Perhaps more important  from the Bayesian 

perspective than finding the posterior mode is 
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the possibility of computing posterior probabili- 

ties for the various locus orders. Under the natu- 

ral assumption that all orders are a priori equally 

likely, the posterior probability of a given order 

03 is  

f eL~(v)+R~(v)d~ (21) 

f eLv(v)+Rv(~)a~ ' 

where the sum in the denominator  ranges over 

all possible orders v and Lv and Rv denote the 

loglikelihood and log prior appropriate to order 

v. Two ugly issues rear their heads immediately at 

this point. First, unless the number  of loci m is 

small, the number  of possible orders ml or m!/2 

can be astronomical.  This problem can be fi- 

nessed if the leading orders can be identified, for 

example, by m i n i m u m  obligate breaks, and the 

sum truncated to include only these orders. In 

many  problems only a few orders contribute sub- 

stantially to the denominator  of the posterior 

probability (equation 21). 

The other issue is how to evaluate the inte- 

grals appearing in equation 21. Owing to the 

complexity of the integrands, there is no obvious 

analytic method of carrying out the integrations. 

For haploid data, Lange and Boehnke (1992) sug- 

gest two approximate methods.  Both of these 

methods have their drawbacks and can be com- 

putationally demanding.  Here we suggest an ap- 

proximation based on Laplace's method from as- 

ymptotic  analysis (de Bruijn 1981; Tierney and 

Kadane 1986; Barndorff-Nielsen and Cox 1989). 

The idea is to expand the logar i thm of the 

integrand e L ~ + ~  in a second-order Taylor's se- 

ries around the posterior mode ~/. Recalling the 

well-known normalized constant for the multi- 

variate normal density and defining 

F~0(7) = Lo~(7) + R,,(7), this approximation yields 

rn 1 

= eF~(~(2n)~ det(-dZFo,(~))-L (22) 

The accuracy of Laplace's approx imat ion  in- 

creases as the log posterior funct ion becomes 

more peaked around the posterior mode ¢/. The 

quadratic form dZFo~(~) measures the curvature of 

Fo~(7) at ¢/. 

Application to Chromosome 4 Data 

To illustrate some of the techniques introduced 

above, we now consider data on 14 sequence- 

tagged sites from the short arm of h u m a n  chro- 

mosome 4. These markers, which are listed in Ta- 

ble 1, constitute a small subset of a much  larger 



Table 1. Chromosome 4 
sequence-tagged site markers 

Marker Name Marker Name 

1 STS4-475 8 STS4-842 

2 STS4-163 9 STS4-161 

3 STS4-555 10 STS4-543 

4 STS4-5 11 STS4-879 

5 STS4-259 12 STS4-759 

6 STS4-246 1 3 STS4-476 

7 STS4-613 14 STS4-54 7 
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orders; these were found by the stepwise order- 

ing algorithm described in Boehnke et al. (1991). 

These data show clear but not  overwhelming 

support  for the first order. The next order is 

plausible, but after it there is a marked decline in 

support for the remaining orders. The max imum 

likelihood and min imum obligate breaks criteria 

rank the first three orders identically but dis- 

agree not iceably  for subsequent  orders. Fig- 

ure 1 depicts map distances and max imum like- 

lihood pairwise inversion ratios for the best order. 

If we adopt the criterion of max imum poste- 

set of markers typed on 83 radiation hybrids 

constructed at the Stanford University Hu- 

man Genome Center and distributed by Re- 

search Genetics (Cox, D.R., R.M. Myers, D. 

Vollrath, M. Boehnke, and K. Lange, in 

prep.). The duplicate typing of these whole- 

genome, diploid hybrids make them ideal 

for exploring the nature of typing errors. In 

analyzing the combined data, we allowed 

for typing errors by the simple device of 

treating discordant markers within a clone as un- 

typed. When analyzing the results of the two sep- 

arate typings--referred to as gels 1 and 2--we 

used the more elaborate models that explicitly 

take into account typing errors. 

The pa ramoun t  concerns in any analysis 

of radiation hybrids are to identify the correct 

locus order and to estimate distances between 

loci under the best order. Table 2 lists for the 

combined data the 10 best max imum likelihood 

3 . 6  x 1011 16  4 .9  x 10  s 8 . 7  x 10  8 6 .0  x l O  t 3 . 8  x 10  8 2 . 6  x 10  4 

1 - - 2 - - 3 ~ 4 - - 5 ~ 6 ~ 7 ~ 8  
5 1 . 3  6 .2  1 7 . 9  1 3 . 7  22 .1  4 5 . 7  3 4 . 2  

6 , 6  × 10  s 2 .2  x 10  5 5 , 3  x 10  s 1 .9  X 1013 1 .3  x 10  3 5 . 3  x 1 0  s 

8 ~ 9 ~  I 0 ~  1 1 ~ 1 2 - -  13 
2 5 . 8  1 1 . 4  1 4 . 0  2 9 . 6  11 .1  3 0 . 5  

Figure 1 Map of the best order showing maximum likeli- 

14 

hood ratios for pairwise inversions above and distance esti- 

mates in cR below. 

rior probability for ordering loci, then we need 

to be concerned whether we are approximating 

posterior probabilities well. The posterior proba- 

bilities presented in Table 3 were calculated un- 

der th ree  a p p r o x i m a t i o n s  to the  in tegra l s  

ScL~(~)+r~(~)d7 appearing in expression (21). The 

first approximation is 

f e L°~(Y)+r~(~) d7 ~ (23) 

Table 2. Best locus orders for the combined data 

Rank Orders Aloglo La Breaks 

95 

97 

99 

108 

108 

106 

101 

101 

102 

103 

1 1-2-3-4-5-6-7-8-9-10-11-12-1 3-14 0.000 

2 b 1-3-2-4-5-6-7-8-9-10-11-12-1 3-14 1.21 8 

3 1-2-3-4-5-6-7-8-9-10-11-13-12-14 3.120 

4 2-3-4-5-6-7-8-9-10-11-12-1 3-14-1 3.355 

5 3-2-4-5-6-7-8-9-10-11-12-1 3-14-1 3.795 

6 7-8-9-10-11-12-13-14-6-5-4-3-2-1 4.216 

7 1-3-2-4-5-6-7-8-9-10-11-13-12-14 4.339 

8 1-2-3-4-5-6-8-7-9-10-11-12-1 3-14 4.408 

9 6-5-41-3-2-1-7-8-9-1 0-11-1 2-1 3-14 5.076 

10 1-2-3-4-5-6-7-8-9-10-11-14-13-12 5.147 

aAIog 1 oL: The difference in maximum log-likelihoods between the current order 
and order 1. 
bRearrangements relative to order 1 are noted in boldface for orders 2-10. 

where ~ is the max imum likelihood es- 

timate, and where the logprior R0~(7) is 

taken as O. The second approximation 

employs equation 23 with a log prior 

R~(7) constructed from the interlocus 

distance prior (equation 17) and a flat 

prior on the common  retention prob- 

ability r. The posterior mode replaces 

the m a x i m u m  likel ihood estimate.  

The third approximation is just the 

second approximation modified by the 

Laplace correction factor as indicated in 

equation 22. For each of these approxi- 

mations, the normalizing sum in the 

denominator of the posterior probabil- 

ity was truncated to include only those 

17 orders whose maximum likelihoods 

were within a factor of 10 -6 of the max 

imum likelihood of the best order. 
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Table 3. Posterior probabilities for the 
combined data 

Posterior probabilities 
ML rank a 
of order Approx. 1 Approx. 2 Approx. 3 

1 0.94158 0.94795 0.94597 
2 0.05679 0.05116 0.05312 
3 0.00071 0.00062 0.00068 
4 0.00042 0.00011 0.00008 
5 0.00015 0.00004 0.00003 
6 0.00006 0.00003 0.00003 
7 0.00004 0.00003 0.00004 
8 0.00004 0.00003 0.00003 
9 0.00001 0.00000 0.00000 

10 0.00001 0.00000 0.00001 

aOrders ranked by maximum likelihood. 

The good agreement displayed in Table 3 be- 

tween the three methods of computing posterior 

probabilities seems to justify use of the simple 

m a x i m u m  likelihood approximat ion ,  and all 

posterior probabilities quoted below involve this 

approximation. 

Table 4 lists posterior probabilities for the 

same 10 orders based on analysis of gel 1 under 

six representative error models. (The results for 

gel 2 are similar.) These six models, labeled A-F, 

all invoke the all-or-none amplification mecha- 

nism indicated in equation 8. [Results for gel 1 

under  the independen t  amplif icat ion mecha-  

nism (equation 7) are very similar.] Model A as- 

sumes a sin- 

gle amplifica- 

tion rate and 

a single con- 

t a m i n a t i o n  

ra te  w i t h  a 

flat prior on 

each. Model  

B assumes lo- 

c u s - s p e c i f i c  

amplification 

and contami- 

n a t i o n  rates 

u n d e r  f l a t  

priors. Mod- 

els C and D 

d u p l i c a t e  

models A and 

B, r e s p e c -  

tively, except 

that nonflat priors are assumed. For amplifica- 

tion rates, models C and D assume 13 parameters 

of a = 19 and b-- 1, giving prior means of 0.95. 

For contaminat ion rates, models C and D assume 

13 parameters of a - - 1  and b- -99 ,  giving prior 

means of 0.01. Model E fixes all amplification 

rates at 0.995 and all con tamina t ion  rates at 

0.005. Finally, model  F ignores typing errors and 

provides posterior probabilities comparable to 

those displayed in Table 3 for the combined data. 

From the results in Table 4, it is clear that  

incorporating an explicit error model  can reduce 

the posterior odds for the best order when this 

order is strongly supported by the data (Lunetta 

et al. 1995). Taking into account typing errors 

evidently permits alternative explanations of the 

data to compete better. Even reasonably strong 

priors may not  counteract this tendency. Fixing 

error rates is probably a reasonable compromise 

between ignoring them and est imat ing them 

from the data. 

Gel 1 manifests many  more obligate breaks 

than the combined data (see the last columns of 

Tables 2 and 4). Most of this excess is doubtless a 

consequence of typing errors. Table 5 demon-  

strates how these typing errors, if uncorrected, 

lead to inflated estimates of breakage probabili- 

ties for the best order. The total map length for 

the combined data is 313 cR. Under the corre- 

sponding model F for gel 1, the total map length 

expands to 352 cR. If typing errors are permitted, 

then the total map length tends to contract. This 

is particularly evident under model  B. This model 

has so many  error parameters with no prior con- 

Table 4. Posterior Probabilities for the gel 1 data 

Model 
ML rank 
of order A B C D E F Breaks 

1 0.37336 0.16083 0.37337 0.16123 0.83293 0.94106 106 
2 0.33904 0.16659 0.33904 0.16633 0.16355 0.05607 108 
3 0.05563 0.08110 0.05563 0.08092 0.00235 0.00236 110 
4 0.00028 0.00234 0.00028 0.00232 0.00025 0.00021 120 
5 0.00028 0.00235 0.00028 0.00233 0.00012 0.00008 112 
6 0.00001 0.00000 0.00001 0.00000 0.00002 0.00002 120 
7 0.05485 0.08380 0.05485 0.08360 0.00046 0.00014 112 
8 0.02953 0.13404 0.02953 0.13454 0.00013 0.00004 118 
9 0.0000 0.00007 0.00000 0.00007 0.00001 0.00001 113 

10 0.00004 0.08389 0.00004 0.08352 0.00000 0.00000 112 

Models A-F are explained in the text. 
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Table 5. Estimated total  map length, retention probabil ity,  and error rates 
for  the gel 1 data under the best order 

Model 

Estimates A B C D E F 

Map length (cR) 249 190 249 190 314 352 

Retention 0.145 0.156 0.150 0.156 0.148 0.150 

Contamination 0.015 0.017 0.008 0.016 0.005 0.000 

Amplification 0.981 0.929 0.959 0.929 0.995 1.00 

Averages of the contamination and amplification parameters are given for models B and D. The total map 
length was estimated as 313 and the retention probability as 0.150 for the combined data. Models A-F are 
explained in the text. 

t h a n  t h o s e  

o b s e r v e d .  

E v e n  m o r e  

disturbing is 

t h e  a l m o s t  

total  lack of 

c o r r e l a t i o n  

be tween the 

observed and 

predicted dis- 

c o r d a n c y  

rates on a lo- 

cus-by- locus  

b a s i s .  T h e  

straint that  we witness a drop in the estimated 

breakage probability 09 from 0.108 for the com- 

bined data to 0.019 under model B. This anomaly 

suggests that  either fairly strong priors should be 

imposed on the error rates or that models with 

only a single amplification rate and a single con- 

tamination rate should be used. 

Finally, Table 6 compares the observed and 

predicted proportions of typing discordancies re- 

corded for each locus in the double  typ ing  

scheme. Averaged over all loci, the observed dis- 

cordancy rate is -1%. At locus k the predicted 

discordancy rate is the probability 

(g) r~( 1 -  r)C-g2Ok( 0 I g)0k( 1 I g) 
g=O 

that the two typings disagree, assuming a com- 

mon  retention probability r. Matching the ob- 

served average discordancy rate of 1% dictated 

our choice of the amplification rate of 0.995 and 

the contaminat ion rate of 0.005 used in model E. 

It is obvious 

from Table 6, 

first discrep- 

ancy can be 

explained if there is a strong correlation between 

the two typing results for each marker in each 

clone. The second discrepancy suggests tha t  

some qualitative feature of the error model is 

wrong. It is noteworthy that the estimation pro- 

cedures had no chance to account directly for the 

observed discordancies between the two gels be- 

cause the analyses were done one gel at a time or 

on the combined data ignoring typing errors. 

DISCUSSION 

Whole-genome, diploid radiation hybrids enjoy 

a decisive advantage over haploid radiation hy- 

brids since diploid hybrids rely on a single panel 

to map all human  chromosomes. Our theoretical 

development shows that diploid, and more gen- 

erally polyploid hybrids, create no insurmount-  

able computat ional  or statistical barriers. The 

methods applicable to haploid hybrids carry over 

without major distortion to polyploid hybrids. 

w h i c h  i s  

based on the 

model  B pa- 

ramete r  val- 

ues, that esti- 

m a t i o n  o f  

amplification 

and contami- 

na t i on  rates 

from the data 

yields m u c h  

h i g h e r  pre-  

dicted discor- 

d a n c y  ra tes  

Table 6. Marker  typing discordancy rates 

Observed Predicted Observed Predicted 
Marker rate rate Marker rate rate 

1 0.0 0.1 30 8 0.0 0.095 

2 0.0 0.027 9 0.012 0.071 

3 0.0 0.021 10 0.0 0.0 

4 0.024 0.0 11 0.024 0.061 

5 0.012 0.0 12 0.012 0.023 

6 0.0 0.043 1 3 0.048 0.104 

7 0.0 0.121 14 0.012 0.073 

Predicted discordancy rates are calculated under model B parameter estimates for gel 1. The average observed 
rate is 0.010 and the average predicted rate is 0.055. 
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Comput ing times for max imum likelihood esti- 

mat ion do increase but by a manageable factor of 

only two to five for diploid data versus haploid 

data. Our current optimization methods for com- 

puting posterior probabilities are faster by orders 

of magn i tude  than  the recursive and Monte  

Carlo methods introduced previously in Lange 

and Boehnke (1992). Furthermore, it is not en- 

tirely clear how to generalize the earlier haploid- 

specific techniques to polyploid hybrids. 

Our experience analyzing diploid data on 14 

chromosome 4 markers prompts us to draw sev- 

eral tentative conclusions. First, the three optimi- 

zation methods of approximating posterior prob- 

abilities for locus order appear to yield very sim- 

ilar answers. This suggests that  the well-known 

device of equating posterior odds to max imum 

likelihood ratios is probably adequate for practi- 

cal purposes (Rogatko and Zacks 1993). Second, it 

should come as no surprise that  uncorrected typ- 

ing errors cause an increase in apparent obligate 

breaks and a corresponding inflation of total map 

length. Estimating error rates has the opposite 

effect of deflating total map length because large 

error rates provide plausible alternative explana- 

tions for obligate breaks. However, there is a dan- 

ger of overparameter iza t ion .  Es t imat ing too 

many  error rates or imposing weak priors on 

them can degrade the posterior probability of the 

best order. Imposing small, but fixed error rates is 

probably a good compromise. Even better would 

be for geneticists to double type all clones. Al- 

though our analysis indicates that  the two out- 

comes of double typing are correlated, double 

typing is a good strategy for ensuring high qual- 

ity mapping. Lunetta et al. (this issue) compare 

this strategy to single typing twice as m a n y  

clones. In any case, good statistical methods can 

only partially compensate for bad data. 

Because of the limitations of space, we have 

not  dwelt on important  issues of experimental 

design or on strategies for locus ordering. Lange 

and Boehnke (1992), Chernoff (1993), and Lu- 

netta and Boehnke (1994) consider experimental 

design problems relevant to haploid hybrids. Our 

current companion paper (Lunetta et al., this is- 

sue) extends some of this work to polyploid hy- 

brids. Boehnke et al. (1991) outline several strat- 

egies for locus ordering. Prompted by the current 

plans for the construction of dense polyploid ra- 

d ia t ion hybr id  maps  invo lv ing  hundreds  of 

markers per chromosome, it is our intention to 

revisit these ordering questions. There also is the 

broader issue of integrat ing radiat ion hybrid 
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maps with other types of genetic and physical 

maps. As the number  of marker loci mapped by 

various methods increases exponentially, good 

software needs to be written to manage the enor- 

mous data processing load. Creating this software 

will take a careful dissection of the problems and 

close attention to algorithm development (Mat- 

ise et al. 1995). Exploiting the full potential of 

polyploid radiat ion hybrids should remain  a 

challenge for some time to come. 

APPENDIX 

Let us demonstra te  strong consistency of the 

m i n i m u m  obligate breaks criterion under a com- 

m o n  retent ion probabili ty r. Consider m loci 

taken in their natural order 1 , . . .  ,m along a 

chromosome, and imagine an infinite number  of 

independent,  fully typed radiation hybrid clones 

at these loci. Let Bi(o ) be the random number  of 

obligate breaks scored in the ith clone when the 

loci are ordered according to the permutat ion o. 

In general, a permutat ion can be represented as 

an m-vector [r~(1), . . .  ,r~(m)]. Ambiguity about 

the left-to-right orientation of the loci can be 

avoided by considering only those permutations 

c with o(1) < o(m). The correct order is given by 

the identity permutat ion id(k) = k. 

Given h clones, the best order is identified by 

the permutat ion giving the smallest sum 

h 

Sh(r~) = ~ ,  Bi(rO. 
i=1 

Consistency requires that  Sh(id) be the small- 

est sum for h large enough.  Now the strong 

law of large numbers guarantees that  

limh__,~ (1/h)Sh(O) = E[BI(o)] with probability 1. 

Thus to demonstrate consistency, it suffices to 

show t h a t  the  expec ted  n u m b e r  of breaks 

E[Bl(id)] under  the identi ty permuta t ion  id is 

strictly smaller than  the expected number  of 

breaks E[BI(o)] under any other permutat ion o. 

To compute E[Bl(id) ], note that  the interval 

separating the typed loci k and k + 1 manifests an 

obligate break if and only if all of the markers at 

locus k are lost and at least one of the markers at 

locus k + I is retained, or vice versa. Given a com- 

mon  retention probability r, these two events are 

equally likely and occur with total probability 

g(Ok) = 2(1 - r)C[1 - (1 - 0kr)~]. Since expectations 

add, 

m - 1  

E[Bl(id)] = Z g(Ok)- (24) 
k = l  



The c o r r e s p o n d i n g  express ion  for an  a rb i t ra ry  

p e r m u t a t i o n  o is 

m - 1  

E[BI(°)I = E g(Oo(k),o(k+l)), (25) 
k=l  

where  0cr(k),~(k+l) is the  breakage  probabi l i ty  for 

the  interval  I~(k),~k+l) def ined by the  pair  of loci 

{c~(k),o(k + 1)}. Obviously ,  I¢(k),~k+l) is a u n i o n  of 

ad jacen t  intervals  f rom the  correct  order  1, . . . ,  

m. It is plausible to conjec ture  t ha t  we can  m a t c h  

in a one- to -one  fash ion  each in terval  (k,k + 1) 

agains t  a u n i o n  Iou),ou+1 ~ c o n t a i n i n g  it. If this con-  

jecture is true, t h e n  ei ther  Ok = 0~j),~q+l) w h e n  the  

u n i o n  I~(/),~(/+1) c o n t a i n s  a s ingle  in te rva l ,  or  

O k < 0¢ffj),~(j+l ) w h e n  the  u n i o n  Iou),oq<) con ta ins  

several  in tervals .  If the  f o r m e r  case ho lds  for 

all intervals  (k,k + 1), t h e n  o = id. If o ,  id, the  

inequa l i ty  E[Bl(id)] < E[BI(O)] follows by  tak ing  

the  ind ica ted  sums (expressions 24 and  25) and  

no t ing  tha t  the funct ion  g(0) = 2(1 - r)C[1 - (1 - 0r)q 

is strictly increasing in 0 for 0 < r < 1 fixed. 

Thus,  the  crux of the  p roof  reduces to show- 

ing  t ha t  it is possible to m a t c h  one - to -one  each of 

the  intervals  (k,k + 1) against  a u n i o n  set Iou.),oU+l ) 

t ha t  con ta ins  or covers it. This asser t ion is a spe- 

cial case of Hal l ' s  m a r r i a g e  t h e o r e m  (Brualdi  

1977). A simple direct  p roof  avo id ing  appeal  to 

Hall 's  t h e o r e m  can be given by  induc t ion  on  m. 

The asser t ion is cer ta in ly  true for m = 2. Suppose 

it is t rue for m - 1 i> 2 and  a n y  p e r m u t a t i o n .  

There are two cases to consider .  

In the  first case, the  last locus m is in te rna l  to 

the  g iven  p e r m u t a t i o n  o in t he  sense t h a t  o 

equa ls  [ o ( 1 ) , . . . ,  i , m , f i . . . , o ( m ) ] .  O m i t t i n g  m 

f rom o gives a p e r m u t a t i o n  co of 1 , . . . ,  m - 1 for 

w h i c h  by  i nduc t i on  the  intervals  

( 1 , 2 ) , . . . ,  ( m -  2, m -  1) 

can  be m a t c h e d .  Assuming  j < i, the  pair  {i,j} in co 

covers one  of the  intervals  (j,j + 1 ) , . . . ,  (i - 1, i) 

in this  ma t ch ing .  In the  p e r m u t a t i o n  o, m a t c h  

the  pair  [j,m} to this covered interval .  This is pos- 

s ib le  b e c a u s e  j < i. To t h e  p a i r  {i,m} in  o 

m a t c h  the  in terval  (m - 1,m). The full m a t c h i n g  

for o is c o n s t r u c t e d  by  a p p e n d i n g  these  two  

ma tches  to the  ma tches  for co m i n u s  the  m a t c h  

for the  pair  {i,j}. The s i tua t ion  wi th  i < j is h a n d l e d  

similarly.  

In the  second  case, m is pos i t ioned  at the  

e n d  of  o. By o u r  c o n v e n t i o n  t h i s  m e a n s  

o =  [ o ( 1 ) , . . . , o ( m -  1) ,m] .  By i n d u c t i o n  a 

m a t c h i n g  c a n  b e  c o n s t r u c t e d  b e t w e e n  

co= [ o ( 1 ) , . . . , o ( m -  1)] a n d  t h e  i n t e r v a l s  

STATISTICAL METHODS FOR POLYPLOID RH MAPPING 

(1 ,2 ) , . . .  , ( m -  2 , m -  1). To this  m a t c h i n g  ap- 

p e n d  the  p e r m i t t e d  m a t c h  b e t w e e n  the  pa i r  

[ o ( r n -  1),m] a n d  ( m -  1,m). This comple tes  the  

proof.  
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