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Summary. Meteorological and environmental data that are collected at regular time intervals
on a fixed monitoring network can be usefully studied combining ideas from multiple time series
and spatial statistics, particularly when there are little or no missing data. This work investi-
gates methods for modelling such data and ways of approximating the associated likelihood
functions. Models for processes on the sphere crossed with time are emphasized, especially
models that are not fully symmetric in space–time. Two approaches to obtaining such models
are described. The first is to consider a rotated version of fully symmetric models for which we
have explicit expressions for the covariance function. The second is based on a representation
of space–time covariance functions that is spectral in just the time domain and is shown to lead
to natural partially nonparametric asymmetric models on the sphere crossed with time. Various
models are applied to a data set of daily winds at 11 sites in Ireland over 18 years. Spectral
and space–time domain diagnostic procedures are used to assess the quality of the fits. The
spectral-in-time modelling approach is shown to yield a good fit to many properties of the data
and can be applied in a routine fashion relative to finding elaborate parametric models that
describe the space–time dependences of the data about as well.

Keywords: Coherence spectra; Multiple time series; Phase spectra; Random processes on
the sphere; Space–time asymmetry; Spectral analysis

1. Introduction

It is common for meteorological and environmental data to be collected at regular intervals at
fixed monitoring sites. Specifically, suppose that a process is observed at .xj, t/ for locations
x1, . . . , xn and times t =1, . . . , T . We shall call such data regular monitoring data and focus on
this setting here. Although environmental data sets nearly always have missing observations,
meteorological data sets are occasionally complete and, much more frequently, the fraction
of missing observations is quite low. Thus, it is worthwhile to develop methods for the com-
plete-data case with the idea that these can be combined with missing data methods (the EM
algorithm, multiple imputations or Markov chain Monte Carlo methods) when the fraction of
missing observations is not too high.

Regular monitoring data can be viewed as multiple time series, so it is tempting to want to
use methods from this literature (Brillinger, 1981; Priestley, 1981; Reinsel, 1997) to analyse such
data. However, the time series perspective does not readily deal with the problem of prediction
at sites without a monitor, which is often of interest in meteorology and environmental moni-
toring. Furthermore, even if we were only interested in the process at the monitoring sites, when
there are more than a few of them, we would generally want to make use of their spatial locations
to model the dependences between the components of the time series, so that a purely time series
perspective may not be best. Bennett (1979), Bras and Rodríguez-Iturbe (1985), Kyriakidis and
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Journel (1999), de Luna and Genton (2005) and Sahu and Mardia (2005) considered various
approaches to making use of spatial information in adapting multiple time series models to
the space–time setting. Section 2 of this paper describes an approach to covariance modelling
that is closely related to that of Cressie and Huang (1999) that is spectral in time but not in
space and leads to models that naturally take account of spatial locations while automatically
yielding valid covariance functions over all of space–time. The model is described in terms of a
single spatial covariance function and three spectra: one describing the process at any single site,
another describing the coherence spectra at two sites as a function of distance between them and
a third describing the phase spectra between sites. The models are partially nonparametric in
that the three spectra are not constrained to finite dimensional spaces but are still parsimonious
relative to an unstructured multiple time series approach in which the spatial locations of the
monitoring sites are ignored. For regular monitoring data, the resulting models can be natu-
rally estimated in a relatively routine fashion by using series expansions for the three unknown
spectra and a spectral approximation to the likelihood.

A common feature in space–time processes is a lack of what Gneiting (2002) called full
symmetry in the covariance structure. Specifically, a space–time process Z has fully symmetric
covariance structure if

cov{Z.x, t/, Z.y, s/}= cov{Z.x, s/, Z.y, t/}
for all x, y, s and t. The spectral-in-time approach provides a simple and interpretable way of
capturing space–time asymmetries in covariance functions.

A further consideration which we may want to take into account when modelling a process on
the Earth is the spherical nature of its surface. Specifically, it would be desirable to use models
that are guaranteed to be valid over the whole sphere and all of time. Satisfying this constraint
as well as allowing for space–time asymmetry is essential to developing space–time models that
are suitable for all or a substantial fraction of the Earth. Section 3 describes two approaches
to this problem. The first is to consider a rotation about the Earth’s axis of a fully symmetric
process and the second is to extend the spectral-in-time approach in Section 2 to processes on
the sphere.

When regular monitoring data can be modelled as stationary in time, the resulting covariance
matrix for the observations has what is known as a block Toeplitz structure, which simplifies
the matrix computations that are needed for statistical analyses. For example, if the process is
Gaussian, using the Levinson–Wiggins–Whittle–Robinson algorithm (Caines, 1988) or meth-
ods for computing Cholesky decompositions of block Toeplitz matrices, the exact likelihood
function can be found in O.n3T 2/ floating point operations rather than the O.n3T 3/ operations
that are needed if this structure is ignored. However, for sufficiently large T , this computation
will still be infeasible and Section 4 describes a fast time domain approximation to the like-
lihood that is based on approximating the conditional density of each day given the past by
conditioning on a fixed number of past days.

Section 5 presents several analyses of the Irish wind data which were first studied in Haslett
and Raftery (1989). Two fairly elaborate parametric models (each with nine parameters) are
fitted to these data by maximizing an approximate likelihood and the results are compared with
that which is obtained by the spectral-in-time approach. The spectral-in-time approach is shown
to provide a slightly superior fit to the data in terms of likelihood, agreement with empirical
variograms and other diagnostic plots. Thus, this approach may be useful as a general tool
for analysing regular monitoring data, although a lack of an explicit form for the space–time
covariance function may be problematic when the goal is to predict the process at a large number
of unobserved locations.
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2. Models spectral in time

When we have long records of regular monitoring data at a modest number of scattered loca-
tions, it is convenient to consider models in the frequency domain in time but in the spatial
domain in space. Specifically, instead of modelling the space–time covariance function K.x, t/

directly, model the function h.ω, x/ for which

K.x, t/=
∫

R
h.ω, x/ exp.itω/dω:

A natural way to generate functions h for which K is a valid covariance function is to switch the
roles of space and time in the approach of Cressie and Huang (1999) and to consider

h.ω; x/=S.ω/ρ.ω; x/,

where S.ω/ is an even non-negative integrable function on R and, for each ω, ρ.ω; x/ is a (pos-
sibly complex-valued) correlation function on Rd . More specifically, the following form for ρ
may prove useful in practice:

ρ.ω; x/=C{|x|γ.ω/} exp{i θ.ω/u′x} .1/

with C a real-valued isotropic autocorrelation function on Rd , γ a non-negative even func-
tion on R, θ an odd function on R and u ∈ Rd a unit vector. The following is nearly a special
case of the generalized theorem 1 in Gneiting (2002), but here we do not require K to be
continuous.

Theorem 1. For C a measurable real-valued isotropic autocorrelation function on Rd , γ a
non-negative even measurable function on R, θ an odd measurable function on R and S an
even non-negative integrable function on R, the function

K.x, t/=
∫

R
S.ω/C{|x|γ.ω/} exp{i θ.ω/u′x + itω}dω .2/

is a real-valued positive definite function on Rd ×R.

Proof. To prove that K is positive definite, it suffices to show that, for any set of locations
x1, . . . , xN and any finite N, the matrix-valued function

Φ.ω/= .S.ω/C{|xj −xk|γ.ω/} exp{i θ.ω/u′.xj −xk/}/N
j,k=1

is non-negative definite for all ω and is componentwise integrable over R. Since S is integrable
and C{|x|γ.ω/} exp{iθ.ω/u′x} is bounded and measurable for all x, the integrability of Φ is
immediate. Furthermore, Φ.ω/ is a non-negative definite matrix for all ω, which follows from S

non-negative, C positive definite and

.exp{i θ.ω/u′.xj −xk/}/N
j,k=1 = .exp{i θ.ω/u′xj}/N

j=1..exp{−i θ.ω/u′xj}/N
j=1/′

non-negative definite, since a Hadamard (componentwise) product of non-negative definite
matrices is non-negative definite. Finally, K real follows from the fact that Φ.−ω/ = Φ.ω/,
where the complex conjugate is taken componentwise.

The functions S, C and θ all have natural interpretations. First, S is the temporal spectrum
for the process at any one location. Furthermore, if C is non-negative, then C {|x|γ.ω/} is the
coherence at frequency ω between the time series at two locations separated by x and θ.ω/u′x is
the phase (Priestley, 1981). One potentially undesirable feature of equation (2) is that the purely
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spatial covariance function is not generally isotropic unless θ.ω/=0 for all ω, in which case the
model is fully symmetric.

Stein (2005) considered a very simple translation-based approach to generating asymmetric
models on Rd ×R. Specifically, if Z is a stationary process on Rd ×R with covariance function
K.|x|, t/, then for any real " and any unit vector u the process Z.x − "tu, t/ has covariance func-
tion K.|x − "tu|, t/. To see the relationship between this translation approach and equation (2),
consider θ.ω/= "ω in equation (2). For Z a stationary process on Rd ×R with fully symmetric
covariance function

K0.x, t/=
∫

R
S.ω/C{|x|γ.ω/} exp.itω/dω,

equation (2) yields K.x, t/ = K0.x, t + "u′x/, the covariance function of Z.x, t + "u′x/. There
is no obvious reason to prefer translating time via Z.x, t + "u′x/ versus translating space via
Z.x − "tu, t/, but the fact that θ.ω/ need not be linear in equation (2) shows that theorem 1
allows a greater degree of flexibility in modelling asymmetries than translations of space or
time.

The behaviour of K.x, 0/ near x = 0 determines the smoothness in space of the correspond-
ing process (Stein, 1999). When C is continuous, its behaviour at the origin is generally closely
related to the smoothness of K.x, 0/ at x =0. For example, suppose that

C.r/=
m∑

j=0
αjr2j +βrν +o.rν/

as r ↓0. If γ is bounded, then it is easy to show that

K.x, 0/=
m∑

j=0
αj|x|2j

∫
R

S.ω/γ.ω/2j cos{θ.ω/u′x}dω

+β|x|ν
∫

R
S.ω/γ.ω/ν cos{θ.ω/u′x}dω +o.|x|ν/

as x →0. If θ is also bounded, then this implies that there is an analytic function A on Rd such
that

K.x, 0/=A.x/+β|x|ν
∫

R
S.ω/|γ.ω/|ν dω +o.|x|ν/

as x→0. Thus, K.x, 0/ has the same smoothness at the origin as C. If eitherγ or θ are unbounded,
then K.x, 0/ may be less smooth at the origin than C. Stein (2005) discusses the relevance of
the smoothness of a space–time covariance function away from the origin to the modelling of
processes in space–time. It is not easy in general to infer the smoothness of K away from the
origin from the representation (2). However, when γ is constant and θ is identically 0, K is
separable, in which case it is no smoother away from the origin than it is at the origin.

It is not necessary to assume that C in equation (2) is continuous. In particular, allowing C to
have a jump at 0 makes it possible to include a spatial nugget effect (Gneiting, 2002), although
the Irish wind data that are analysed in Section 5 appear to require a more elaborate form for
the spatial nugget. In contrast with this spectral-in-time approach, a representation of K.x, t/

that is spectral in both space and time will necessarily be continuous (if we exclude generalized
functions).

A version of theorem 1 holds for processes in discrete time by changing the domain of ω from
R to .−π, π]. This version of the theorem is especially useful in carrying out spectral analysis
of regular monitoring data for which we naturally obtain estimates of the discrete time rather
than the continuous time spectra.
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It is worthwhile to compare equation (2) with an ordinary spectral analysis from the multiple
time series perspective in which no use is made of the spatial information and no particular form
is assumed for the spectra or cross-spectra of the process at the N monitoring sites. In equa-
tion (2), once the function C has been chosen, we need to specify only the three functions S, γ and
θ. In contrast, an ordinary spectral analysis that made no use of the spatial information would
require N univariate spectra and 1

2 N.N −1/ coherence and phase spectra. Furthermore, whereas
equation (2) extends automatically to locations other than monitoring sites, the same cannot
be said of an ordinary spectral analysis. Thus, using equation (2) as a model for space–time
covariance functions in which C is specified parametrically and S, γ and θ are treated as smooth
but unspecified functions of temporal frequency may provide a practically useful compromise
between parametric and nonparametric approaches to space–time covariance modelling.

For processes in discrete time, a natural way to model the functions S, γ and θ on .−π, π]
is with trigonometric polynomials. For example, because γ must be even and non-negative, we
could let

log{γ.ω/}=
K∑

k=0
ak cos.kω/ .3/

and, because θ must be odd,

θ.ω/=
K∑

k=1
bk sin.kω/: .4/

Now S must also be even and positive, so we could let

log{S.ω/}=
K∑

k=0
ck cos.kω/,

but this may not be a good choice if the process exhibits long-range dependence in time, in
which case we would want S to be unbounded in a neighbourhood of 0. In this case, it might
be better to use

log{S.ω/}=−β log.sin| 1
2ω|/+

K∑
k=0

ck cos.kω/, .5/

where β < 1 ensures that S is integrable. We could of course replace ΣK
k=0 ck cos.kω/ in equa-

tion (5) by the log-spectral-density of an autoregressive AR.K/ process or other standard time
series model. For a given K, we can estimate the aks, bks, cks, β and any parameters of the
function C by maximizing a spectral approximation to the likelihood. Specifically, writing Zt

for the vector of observations at time t, for ωj =2πj=T and

Vj = .2πT/−1=2
T∑

t=1
Zt exp.iωjt/,

assume that V1, . . . , V�T=2� are independent complex multivariate normal random vectors with
mean 0 and covariance matrix Φ.ωj/. See Appendix A for further details. We could then choose
K subjectively or by some model selection criterion such as the Akaike information criterion
or Bayes information criterion. It is worth considering tapering and prewhitening as ways of
improving the quality of approximation using this spectral approach, but we shall not pursue
these possibilities here.

Although the spectral-in-time approach has several attractive features, the lack of an explicit
expression for the covariance function may prove computationally challenging when we are
interested in prediction at locations other than monitoring sites. The problem is that the calcu-
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lation of the space–time covariances between any new site and the monitoring sites would in
general require a numerical Fourier transform for every pair of an existing site and a predic-
tion site. This may not be an obstacle if we must do these calculations for only a single fitted
model, but it will become problematic if we are interested in a Bayesian predictive distribution
at even a moderately large number of unmonitored sites, which would require calculating the
space–time covariance function for many pairs of locations for many models. When modelling
the discrete time spectra, a further disadvantage is that the resulting models do not extend easily
to continuous time, unlike the intrinsically continuous time parametric models that are used in
Section 5.

3. Models on spheres

Weber and Talkner (1993) noted the need for explicit classes of covariance functions on the
sphere for applications in the atmospheric sciences. It is arguably at least as important to develop
covariance function models for processes on the sphere that also vary in time. This section
describes two simple ways of generating such models that include space–time asymmetry. Jun
and Stein (2004) developed a more flexible approach to generating asymmetric models when
the spatial domain is a sphere.

For a process on Sd−1
r , the sphere of radius r in d dimensions, a natural requirement is for

it to have an invariance property with respect to all rotations. A covariance function on the
sphere is said to be homogeneous if it depends only on the angular distance between points
on the sphere. Yadrenko (1983), Yaglom (1987), Weber and Talkner (1993), Gaspari and Cohn
(1999) and Gneiting (1999) discussed properties and specific examples of homogeneous covari-
ance functions on spheres. As noted by Yaglom (1987), page 389, an easy way to generate such
homogeneous covariance functions is to consider the restriction of an isotropic covariance func-
tion on Rd to Sd−1

r , i.e., if K.|x|/ is the covariance function of the process Z on Rd , then the
restriction of Z to Sd−1

r is homogeneous. We consider only d =3 subsequently. Then, for j =1, 2,
if θj = .Lj, lj/ are two points on S2

r in terms of latitude and longitude and A.θ1, θ2/ is the angle
between them,

cov{Z.θ1/, Z.θ2/}=K [2r sin{A.θ1, θ2/=2}]:

It is not so clear what kinds of homogeneity for processes on S2
r × R are most sensible. In

particular, a process may be fundamentally different at different latitudes, so we may not want to
assume homogeneity of a process with respect to latitude. In contrast, models that do not depend
on the choice of time origin nor on what longitude becomes assigned 0 may be quite natural in
many circumstances, so we shall restrict ourselves to models with this degree of homogeneity,
i.e. we shall require that cov{Z.L1, l1, s/, Z.L2, l2, t/} is of the form Q.L1, L2, l1 − l2, s − t/ for
some Q on [− 1

2π, 1
2π]2 ×T×R, where T is the real line mod.2π/.

In light of these considerations, define D to be the class of all real-valued functions Q on
[− 1

2π, 1
2π]2 × T × R that are symmetric and positive definite in the sense that Q.L1, L2, l, t/ =

Q.L2, L1, − l, − t/ and
n∑

j,k=1
ajak Q.Lj, Lk, lj − lk, tj − tk/�0

for all real a1, . . . , an, l1, . . . , ln and t1, . . . , tn, all L1, . . . , Ln ∈ [− 1
2π, 1

2π] and all positive inte-
gers n. If Q.L1, L2, l, t/ = Q.L1, L2, l, − t/ for all .L1, L2, l, t/ ∈ [− 1

2π, 1
2π]2 × T × R, then we

shall call Q fully symmetric.
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Now consider a process Z on R3 × R with covariance function K.|x|, |t|/. The restriction of
this process to S2

r ×R has covariance function

cov{Z.θ, s/, Z.φ, t/}=K[2r sin{A.θ, φ/=2}, |s− t|],
which is in D and is fully symmetric. Indeed, this restriction of Z to S2

r × R is invariant to all
rotations of the sphere and all translations in time.

We now consider two approaches to producing asymmetric covariance functions for processes
on S2

r × R that are homogeneous in longitude and time. The first is to replace the translations
in the translation-based approach that is described in Section 2 by rotations. Stein (2005) uses
the idea of rotating a fully symmetric model but does not apply it in a way that guarantees
that the resulting covariance function is in D. In many cases, it will be natural to rotate about
the north–south axis, but, in principle, any axis may be used. Denote by .L, l/ the latitude and
longitude of a point on the sphere with respect to this chosen axis. For definiteness, set l = 0
if L =± 1

2π, although any other choice for longitude at the poles is equally valid. Now define
Y.L, l, t/=Z.L, l− "t, t/ and

d.L1, L2, l/=2r

{
sin2

(
L1 −L2

2

)
+ cos.L1/ cos.L2/ sin2

(
l

2

)}1=2

,

which gives the chordal distance between points .L1, 0/ and .L2, l/ on S2
r . Then the covariance

function QY ∈D for Y is

QY .L1, L2, l, t/=K.2r sin[ 1
2 A{.L1, l− "t/, .L2, 0/}], |t|/

=K{d.L1, L2, l− "t/, |t|}: .6/

This covariance function has the property that, when t =0, the resulting purely spatial covariance
function is homogeneous on the sphere. Furthermore, if K is continuous, then Y is mean square
continuous, even at the poles, which follows from the fact that d. 1

2π, Ln, ln/→0 if Ln → 1
2π (or

− 1
2π) as n→∞, no matter how ln varies.
The fact that the asymmetry parameter " translates the longitude of Z by an amount that

is proportional to time means, roughly, that the speed (measured in distance per unit time) of
flow along a latitude decreases as we move polewards. This property may not always be desir-
able, especially if we are considering a region of S2

r with large latitudinal variations. Another
implication of equation (6) is that the temporal covariance function of the process at a single
site generally varies with latitude when " �=0, since

QY .L, L, 0, t/=K
{

2r cos.L/ sin| 1
2 "t|, |t|}:

The second approach to generating asymmetric space–time covariance functions on the sphere
is to adapt theorem 1 to the spherical setting. The following modification of theorem 1 holds.

Theorem 2. For C a measurable real-valued isotropic autocorrelation function on R3, γ a
non-negative even measurable function on R, θ an integer-valued odd measurable function
on R and S an even non-negative integrable function on R,

Q.L1, L2, l, t/=
∫

R
S.ω/C{d.L1, L2, l/γ.ω/} exp{i θ.ω/l+ itω}dω .7/

is in D.

If we only want the existence of a process Z on S2
r ×R for which

cov{Z.L1, l1, s/, Z.L2, l2, t/}=Q.L1, L2, l1 − l2, s− t/,
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then we can drop the requirement that θ be integer valued; the proof of this result is essentially
identical to that of theorem 1. However, taking θ to be integer valued is necessary to ensure that
Q depends on l1 and l2 only through .l1 − l2/mod.2π/, which is a requirement for Q to be in D.
Thus, although we do not need the integer-valued restriction to obtain a valid model, without
it the model depends on an arbitrary choice of definition for longitude. For example, if we say
that longitudes fall in the domain .−π, π], then the model depends on where we place longitude
0. Furthermore, the process will generally be discontinuous along the ‘International Date Line’
(i.e. where the longitudes −π and π meet). Thus, for global scale data, we shall generally want
to require that θ be integer valued. This restriction implies that θ has jumps unless it is identi-
cally 0. For the Irish wind data, in which the stations cover only a narrow range of longitudes,
results in Section 5 indicate that whether or not we enforce this constraint does not matter
much.

Because S in equation (7) is the temporal spectrum for the process at any one location, the
temporal covariance function is independent of location. This is in contrast with equation (6),
for which the temporal covariance function generally depends on latitude. However, whereas
models satisfying equation (6) have purely spatial covariances depending only on the angles
between points, this property is generally false for models of the form (7) unless θ is identically
0. Thus, we can show that a model of the form (6) and a model of the form (7) must differ unless
both are fully symmetric.

A somewhat troubling aspect of equation (7) is that, even when C is continuous, the resulting
process is generally not mean square continuous at the poles unless θ is identically 0. Models
for asymmetric processes on S2

r ×R in Jun and Stein (2004) sometimes have a similar problem.
Whether this feature is more of a practical problem than the property of equation (6) that speed
of flows tends towards 0 at the poles is unclear. Both equation (6) and equation (7) should be
used with caution when there are observations very near the poles.

4. Time domain likelihood approximation

Stein et al. (2004), following Vecchia (1988), considered approximating likelihoods for purely
spatial data, and their approach can be applied in the space–time setting. The basic idea is sim-
ple, but effective implementation is sometimes not. For a vector of observations Y partitioned
into subvectors Y1, . . . , Yb, called prediction vectors, we always have

p.Y;θ/=p.Y1;θ/
b∏

j=2
p.Yj|Y1, . . . , Yj−1;θ/, .8/

where p indicates a generic marginal or conditional density. Then, instead of calculating exact
conditional densities, replace p.Yj|Y1, . . . , Yj−1;θ/ by the conditional density of Yj given just
some subvector of Y1, . . . , Yj−1, called the conditioning vector. Stein et al. (2004) showed how
to extend this idea to approximating the restricted likelihood for Gaussian observations. I shall
call estimates that are based on this approximation to the full or restricted likelihoods MVLEs,
where the V is used in recognition of the work of Vecchia (1988). In the space–time context,
it is natural to order the observations partially by using the time index and then to take each
prediction vector Yj to be those observations in a sequence of consecutive days.

With regular monitoring data, if we assume that the process is stationary in time, there are
considerable efficiencies in picking the conditioning vectors to be all observations on a set of
t consecutive days. Specifically, the covariance matrix for the observations on any set of con-
secutive days will be block Toeplitz: define Ai = cov.Zt , Z′

t+i/ and, for t>s, Zs,t = .Z′
s, . . . , Z′

t/
′;

then Bt = cov.Z1,t , Z′
1,t/= .Aj−k/t

j,k=1. The block Toeplitz structure of covariance matrices for



Regular Monitoring Data 675

stationary vector-valued time series can be exploited to speed exact or approximate computa-
tions of the likelihood. Suppose, for simplicity, that Z has mean 0. Then, for j> 1,

E.Zj|Z1,j−1/=Cj−1Z1,j−1

and

cov.Zj, Z′
j|Z1,j−1/=Vj−1

for fixed matrices Cj−1 and Vj−1. The Levinson–Wiggins–Whittle–Robinson algorithm (Caines
(1988), page 182) provides an efficient recursive procedure for calculating Cj and Vj from Cj−1
and Vj−1. Furthermore, taking the prediction vectors to be the observations on a single day,

log{pθ.Z1,T /}= log{pθ.Z1/}+
T∑

j=2
log{pθ.Zj|Z1,j−1/}

=−NT

2
log.2π/− 1

2
log{det.A0/}− 1

2

T∑
j=2

[log{det.Vj/}

+ .Zj −Cj−1Z1,j−1/′V −1
j .Zj −Cj−1Z1,j−1/]:

Using the Levinson–Wiggins–Whittle–Robinson algorithm, this calculation requires O.N3T 2/

operations and may be feasible for modest N and even fairly large T . However, even when this
cannot be done, we may be able to approximate the likelihood well by

log{pθ.Z1,t/}+
T∑

j=t+1
log{pθ.Zj|Zj−t,j−1/}, .9/

i.e. by conditioning on the previous t days when calculating the conditional distribution of Zj

given the past. Defining Pt =−.C′
tI/

′, we then have

T∑
j=t+1

log{pθ.Zj|Zj−t,j−1/}=−N.T − t/

2
log.2π/− T − t

2
log{det.Vt/}

− 1
2

T∑
j=t+1

Z′
j−t,jP ′

t V
−1
t PtZj−t,j: .10/

Furthermore, writing GG′ and HH ′ for the Cholesky decompositions of ΣT
j=t+1Zj−t,jZ′

j−t,j
and Vt respectively,

T∑
j=t+1

Z′
j−t,jP ′

t V
−1
t PtZj−t,j = tr

(
P ′

t V
−1
t Pt

T∑
j=t+1

Zj−t,jZ′
j−t,j

)
=‖H−1PtG‖2,

where ‖M‖2 for a matrix M means the sum of squares of its elements. G does not depend on θ
and can be calculated once and for all. Furthermore, although computing ΣT

j=t+1 Zj−t,jZ′
j−t,j

looks like an O.Tt2N2/ calculation, it is easy to show that it can be done in O.TtN2/ operations
by using the fact that, except for minor ‘edge corrections’, the matrix is block Toeplitz.

By conditioning on the t most recent days, there are two reasons for the gains in efficiency
over the general setting that was treated by Stein et al. (2004) in which the covariance matri-
ces have no special structure that can be exploited. The first is that the resulting covariance
matrices are block Toeplitz. The second, and often more important reason, is that the covari-
ance matrices of the conditioning vectors are all the same, so the form of the conditional mean
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and covariance matrix of Zj given the conditioning vector Zj−t,j−1 needs to be calculated
only once for any given θ. Stein et al. (2004) recommended conditioning vectors that were
about twice as long as prediction vectors in the unstructured spatial setting that was considered
there. In the setting here, the lack of dependence on j of the form of the conditional distribu-
tions leads to no advantage in choosing the prediction vectors to be more than a single day of
observations.

In some circumstances, it may be worthwhile to abandon the exact block Toeplitz structure of
the covariance matrices of the conditioning vectors while keeping at least most of these covari-
ance matrices the same. In particular, if the process shows long-range dependence in time, add-
ing a relatively small number of observations from the distant past to the conditioning vectors
may improve the likelihood approximation substantially with little additional computational
cost.

Other ways to approximate the likelihood are worth investigating. In particular, the block
Toeplitz structure of BT implies that we can use iterative methods to calculate the quadratic form
Z′

1,T B−1
T Z1,T in O{N2T log.T/} operations per iteration (Chan and Olkin, 1994). Although

there does not appear to be an equally fast method for obtaining det.BT /, it may often be
possible to obtain an excellent approximation to this determinant by calculating det.Bs/ for
s=1, . . . , t for some moderate value of t and extrapolating the result to s=T in some manner.
We shall not pursue such possibilities here.

If the model that is under study yields covariance matrices with additional structure beyond
being block Toeplitz, then we should certainly make use of it as in, for example, Haslett and
Raftery (1989) and Ravishanker and Ray (2002). However, for irregularly sited monitors and the
non-separable models that are considered here and in, for example, Cressie and Huang (1999)
and Gneiting (2002), there does not appear to be any additional structure to exploit.

Another approach to approximating the likelihood is to work in the spectral domain and
to assume that the vector-valued discrete Fourier transform of the observations viewed as a
multiple time series is independent at each Fourier frequency. This approach is especially attrac-
tive when we have an explicit expression for the spectral density h of the multiple time series as,
for example, in the discrete time version of theorem 1. When such an expression is not available,
we could then approximate h by taking discrete Fourier transforms of the N.N + 1/=2 cross-
covariance functions or, perhaps better, compute the exact expected value of the vector-valued
discrete Fourier transform of the observations at the Fourier frequencies. In either case, the
computational efficiency of the spectral approach is not nearly as great as when h is known
explicitly.

5. Application

We consider here the Irish wind data that were described in Haslett and Raftery (1989) and
analysed in Gneiting (2002), de Luna and Genton (2005) and Stein (2005). This data set pro-
vides daily wind speeds over 18 years at 12 sites with no missing values and is available at
Statlib, http://lib.stat.cmu.edu/datasets/. As in Haslett and Raftery (1989) and
Stein (2005), we remove one of the sites, Rosslare, and analyse deseasonalized square-root wind
speeds at the other 11 sites.

We consider three models: two parametric models of the rotation form (6) and a partially
nonparametric model based on theorem 2. The first parametric model is

Q.L1, L2, l, t/= φ1 1{L1 =L2, l=0}
.1+α2

1t2/ν
+ φ2

.1+α2
2t2/3η=2

exp

{
−δd.L1, L2, l− "t/2γ

.1+α2
2t2/3η=2

}
.11/
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for α1, α2, φ1, φ2, δ and ν positive, " real and γ, η∈ .0, 1]. Writing Mν for the Matérn covariance
function with smoothness parameter ν (Stein, 1999), the second parametric model is

Q.L1, L2, l, t/= φ11{L1 =L2, l=0}Γ.β +|t|ν/

Γ.β +|t|ν + 3
2 /

+ φ2 Mµ+δ|t|γ {αd.L1, L2, l− "t/}
2µ+δ|t|γ Γ.µ+ δ|t|γ + 3

2 /
.12/

for α, φ1, φ2, δ, β and µ positive, " real and γ, ν ∈ .0, 2]. The terms multiplying 1{L1 =L2, l=0}
in models (11) and (12) are the spatial nugget effects and only contribute to the temporal covari-
ance of a site with itself. The models that were applied to these data in Stein (2005) differ from
models (11) and (12) in that Stein (2005) defined distances in a way that the resulting covariance
functions were not provably positive definite on S2

r × R, and they had a simpler parameteri-
zation for the spatial nugget effect. For convenience, we shall call equation (11) the Gneiting
model and equation (12) the Matérn model. We shall assume that the mean of Z.x, t/ depends
only on x. Define

∆Z.x, t/=Z.x, t +1/−Z.x, t/,

so that ∆Z has mean 0 at every site. The likelihood of these first differences in time is the same
as the restricted likelihood of the original observations. Models (11) and (12) were fitted via
the MVLE method using equation (10) applied to ∆Z for t = 180. Stein (2005) used a cruder
likelihood approximation for parameter estimation.

These parametric models have a degree of arbitrariness that is somewhat unsatisfying. Why
use these models rather than any of the other space–time models that have been suggested in
recent works such as Christakos (1992, 2000), Jones and Zhang (1997), Cressie and Huang
(1999), Brown et al. (2000), de Iaco et al. (2001, 2002, 2003), Gneiting (2002), Hartfield and
Gunst (2003), Ma (2003), Kolovos et al. (2004) and Stein (2005), or at least versions of these
models adapted to S2

r × R? The partially nonparametric spectral-in-time approach that was
described in Section 2 requires far less experimentation and ingenuity on the part of the data
analyst. As with models (11) and (12), allowing for a flexible spatial nugget term yields a better
fit to the observations, so we consider

Q.L1, L2, l, t/=
∫ π

−π
[S.ω/C{d.L1, L2, l/γ.ω/} exp{i θ.ω/l}

+φ.ω/ 1{L1 =L2, l=0}] exp.itω/dω, .13/

where, in addition to the models for γ, θ and S in equations (3)–(5), we model

log{φ.ω/}=−β′ log{sin| 1
2ω|}+

K∑
k=0

dk cos.kω/

with β′ < 1. In this formulation, θ and C{d.L1, L2, l1 − l2/γ.ω/} give the phase and coherence
spectra for the spatially continuous part of the model, i.e. excluding φ. By using equation (4) for
the phase, we are not constraining θ to be integer valued, so that, as pointed out in Section 3, the
resulting model would not be tenable on a global scale. However, as we shall see, enforcing this
constraint has little effect on the quality of the fit. We take C.r/=exp.−rp/ with 0<p�2, so that,
for a given K, equation (13) has 4K +6 parameters. We could also take C.r/=Mν.r/=Mν.0/,
but, at least for smaller K, the fit is not improved, and the number of Bessel function evalua-
tions that this choice requires leads to a substantial increase in computing time, at least when
using the Bessel function program that is available in R. Using this model, the Akaike infor-
mation criterion selects a value for K of 6 and the Bayes information criterion of 2. For K =2,
β̂ =0:208, β̂′ =0:881 and p̂=1:286. The fact that β̂′ > β̂ by a substantial margin indicates that
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the long-range dependence in the spatially continuous part in the model is considerably weaker
than in the temporal variations that are independent between sites. A possible explanation for
this finding is that local conditions around at least some of the sites were changing over long
timescales in a way that was independent of what was happening at other sites.

We next consider various diagnostic plots for assessing the fits of the two parametric models
and the spectral-in-time model. We begin by making the same comparisons between the fitted
models and the empirical variograms as in Stein (2005). Sections 5.1 and 5.2 describe some
further diagnostic plots. As in Stein (2005), we consider variograms of ∆Z to remove the effect
of differences in mean wind speeds between sites. For k �0, define

g.x, y; k/= 1
2.6573−k/

6573−k∑
j=1

{∆Z.x, j +k/−∆Z.y, j/}2 .14/

for k � 0. Then g.x, y; k/ − g.y, x; k/ provides a simple diagnostic for space–time asymmetry,
since its expected value is 0 for a fully symmetric model. Fig. 1 shows some systematic discrep-
ancies between the empirical variograms for ∆Z and the fitted parametric models, particularly
in the strength of the asymmetry. Plotting symbols are used to distinguish results for the four
most coastal sites from the other seven sites, since even on the square-root scale the coastal sites
show somewhat greater variation (Stein, 2005). The plots show the results when t = 180 in the
likelihood approximation, but nearly identical plots are obtained when using t = 60 or t = 21,
so the discrepancies are not apparently due to any defect in the approximation.

Fig. 2 shows the same variograms by using the spectral-in-time approach with K = 2 and
K =6. The fit with K =2 is fairly similar to that of the Gneiting model and the fit with K =6 is
slightly superior overall, doing a better job of fitting the temporal variogram in Fig. 2(b) and of
fitting the asymmetry with 2-day lag in Fig. 2(f). Fig. 2(b) shows the exact lack of dependence
on latitude of the temporal structure of the model, which, as can be seen in Fig. 1(b), is not
the case for the rotation-based models of the form (6). In addition, Figs 2(c) and 2(e) show
that these symmetrized statistics are more nearly a function of just intersite distance for the
spectral-in-time models than the rotation-based models.

For purely spatial data, empirical variograms can be highly unreliable (Stein, 1999) and, hence,
are of uncertain value as a diagnostic for model misspecification. However, for the Irish wind
data, each variogram value is an average over 18 years of daily data and is reasonably reliable.
For example, given sites x and y, assume that the nine different estimates of g.x, y; 2/−g.y, x; 2/

based on breaking the 18 years of data into nine 2-year periods are independent and identically
distributed normal. Calculating 95% confidence intervals for each pair of sites for which x is at
least 2◦ east of y, we find that the lower end points of the confidence intervals are positive in
all except one case and, furthermore, are greater than the fitted values by using MVLE and the
Matérn model in nine out of 15 cases. It is apparent that the asymmetry is stable across time
and that the discrepancy in asymmetry between the fitted and empirical variograms cannot be
blamed on the empirical variograms.

If the goal of the estimation procedure is to find a value for the parameters that visually mim-
ics the empirical variogram summaries in Fig. 1, then we can in fact do better with either
the Gneiting or Matérn model. Indeed, using either model and estimating the parameters by
weighted least squares to the six empirical variogram summaries in Figs 1 or 2 yields fitted
models that visually track the empirical variograms even better than the spectral-in-time fit
with K = 6 (the results are not shown). However, these weighted least squares fits have much
lower approximate likelihoods, particularly for the Matérn model, and also do poorly with some
of the diagnostics that are described later in this section.
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Fig. 1. Variograms for ∆Z.x, t/ for the Irish wind data and g defined by equation (14) (+, variogram value for
two coastal sites, Å, a coastal and an inland site; ı, two inland sites; �, fitted value under model (11); �, fitted
value under model (12); both models fit by MVLE using t D 180 in equation (10)): (a) spatial variograms;
(b) temporal variograms (horizontal offsets within each day are proportional to latitude, with more northerly
sites to the right; for improved legibility, the temporal variogram at lag 0 is omitted, which is 0 for both empir-
ical and fitted variograms); (c) 0:5{g.x, yI 1/Cg.y, xI 1/}; (d) g.x, yI 1/�g.y, xI 1/ (showing asymmetries for
all pairs of sites for which y is east of x); (e) 0:5{g.x, yI 2/ C g.y, xI 2/}; (f) g.x, yI 2/ � g.y, xI 2/ (showing
asymmetries for all pairs of sites for which y is east of x)

Although the value of t in the likelihood approximation does not affect Fig. 1 much, it does
have a substantial effect on the likelihoods of various estimates. Table 1 gives differences in
approximate log-likelihood between eight different estimates and likelihood approximations
based on conditioning on 21, 60 or 180 past days. The eight estimates are the MVLEs under the
Gneiting and Matérn models based on conditioning on 21, 60 or 180 past days, the spectral-
in-time model with K = 2 and a version of this model with the values of the estimated phase
function θ̂.ω/ rounded to the nearest integer for each ω. We see that, when conditioning on 21 or
60 days, MVLE under model (12) has a somewhat higher likelihood than MVLE under model
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Fig. 2. Same empirical variograms as in Fig. 1: fitted variograms based on the spectral-in-time approach
described in Section 5 (�, fitted value with K D2; �, fitted value with K D6)

(11), but the reverse is true when conditioning on 180 days. The approximate likelihoods for the
spectral-in-time fits were computed by taking the discrete Fourier transform of the estimated
spectra at each pair of sites to obtain an estimated space–time covariance matrix and then the
corresponding approximate likelihoods evaluated by using equation (10). Table 1 shows that,
for t =21, 60, 180, the spectral-in-time method has larger approximate log-likelihood than either
parametric model, and the advantage increases with t. Furthermore, forcing θ̂ to be integer val-
ued has a rather small effect on the approximate log-likelihoods, reducing them by about 2 units
for all values of t. Thus, at least for these data, requiring θ to be integer valued does not appear
to be a serious restriction.

5.1. Spectral domain diagnostics
The variograms in Figs 1 and 2 consider only a limited range of measures of spatial–tempo-
ral variation in the data. Specifically, they are based on variances of pairwise differences of
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Table 1. Comparison of approximate likelihoods for various estimates†

Criterion Estimate

MA21 MA60 MA180 GN21 GN60 GN180 SP2 SP2I

∆l21 0 −39 −127 −37 −60 −125 49 47
∆l60 −81 0 −77 −69 −15 −63 122 120
∆l180 −693 −184 0 −438 −88 17 203 201

†MAt and GNt are the MVLE models under results (12) and (11) when approximat-
ing the likelihood by conditioning on t past days. SPK is the spectral-in-time model
specified by equation (13) with upper limit K for the series expansions. The subscript
I indicates that the function θ was rounded to take on only integer values. ∆lt gives
the difference in approximate log-likelihood from MAt , so positive numbers indicate
a model with larger approximate log-likelihood than MAt .

observations (in this case of ∆Z). This section and the next consider some other measures of
variation based on variances of linear combinations of more than two observations that are
particularly suited for studying regular monitoring data. Spectral domain diagnostics are the
topic of this section and space–time domain diagnostics the topic of the next. These diagnostics
compare empirical measures of variation with the values that are implied by fitted models. The
fitted models that we consider here are the Matérn and Gneiting models and the spectral-in-time
approach with K =2.

For examining the purely temporal variation in the data, the marginal spectra at the 11 sites
is a natural measure. Fig. 3 compares fitted with empirical marginal spectra for Z averaged over
the 11 sites. All three fitted models track the marginal spectrum well, although the Matérn model
appears to underestimate the power somewhat at the lowest frequencies and to overestimate the
power slightly at middle frequencies.

Fig. 4 plots fitted and estimated phase spectra between Dublin and two sites to its west, Clare-
morris and Mullingar. The empirical phases were obtained by using the program spec.pgram
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Fig. 3. Empirical and fitted average marginal spectra at the 11 sites: , empirical result (from R pro-
gram spec.pgram with spans = 5); , MVLE result for the Gneiting model (11); - � - � - �, MVLE result for
the Matérn model (12); - - - - - - -, spectral-in-time approach described in Section 5 with K D2
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Fig. 4. Empirical and fitted phase spectra for Dublin and Claremorris (lower curves) and Dublin and Mullin-
gar (upper curves): , empirical results (from R program spec.pgram with spans = 399) for Dublin and
Claremorris; , empirical results for Dublin and Mullingar; , MVLE result for Gneiting model (11),
� - � - �, MVLE result for Matérn model (12); - - - - - - - , spectral-in-time approach described in Section 5 with
K = 2; — — —, spectral-in-time fit with θ̂-values rounded to the nearest integer

in R with the span set to 399 and no tapering. As expected, the phase is larger across the spec-
trum for the two sites that are farther apart in longitude. The Matérn model underestimates
the phase, which makes sense since this fitted model clearly underestimates the asymmetries in
Fig. 1. The other two models fit the phase spectra reasonably well. Fig. 4 also gives the fitted
phase spectra under the spectral-in-time model with θ̂ rounded to integer values. Although the
discontinuity in the fitted spectra is perhaps disconcerting, the agreement with the empirical
phase is still fairly good.

Fig. 5 compares empirical and fitted coherence spectra for the two closest (Birr and Mul-
lingar) and the two most distant sites (Valentia and Malin Head). The empirical coherences
were obtained by using spec.pgram in R with the span set to 55 and no tapering (keeping
in mind that spec.pgram provides squared coherences). The first 20 frequencies have been
omitted because the empirical coherences have severe bias problems at these frequencies due to
the long-range dependence. The Gneiting and Matérn fits have fairly similar coherence spectra.
Both substantially underestimate the coherence for the two most distant sites at high frequencies
and for the two nearest sites at low frequencies. The spectral-in-time fit appears to do better, if
still not perfect, in both regards.

5.2. Space–time domain diagnostics
The space–time variograms in Figs 1 and 2 are examples of diagnostic plots in the space–time
domain. Here we briefly describe some other space–time domain diagnostics that may be useful
for regular monitoring data. Specifically, we consider plotting properties of the temporal covari-
ance structure of various linear combinations of the sites. We shall normalize the sum of squared
coefficients of the linear combination to 1. One obvious choice for a linear combination is the
scaled sum over the sites. It is also valuable to consider differences across sites. Here, we look at
four relatively close sites (Birr, Dublin, Mullingar and Clones) and take the linear combination
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Fig. 5. Coherence spectra for the two nearest and two most distant sites (larger coherences correspond
to nearest sites) (the first 20 frequencies have been omitted for improved legibility and because of difficulty
in estimating coherence empirically at the lowest frequencies): , empirical spectrum (from R program
spec.pgram with spans = 55) for the two most distant sites; , empirical spectrum for the two near-
est sites; , MVLE result for Gneiting model (11); - � - � - �, MVLE result for Matérn model (12); - - - - - - -,
spectral-in-time approach described in Section 5 with K D2

of them that filters out a constant term, latitude and longitude, given by

0:40Birr+0:15Dublin−0:85Mullingar+0:30Clones:

We could look at the temporal covariance function or temporal variogram of these linear combi-
nations, but other possibilities may sometimes be more effective for highlighting the differences
between models. For example, for k> 0 and b ∈Rn, define

Dk.b/= 1
k.T −2k +1/

T−2k∑
j=0

{
k∑

l=1
.b′Zj+l −b′Zj+k+l/

}2

: .15/

If there were no temporal dependence, then the expected value of Dk.b/ would not depend on
k. As k increases, Dk.b/ puts a strong emphasis on long-term temporal correlations in b′Zj.

We compare this statistic with what the three fitted models we are considering imply for its
expected value. For the spatial average, Fig. 6 shows that the Matérn model slightly overes-
timates Dk.b/ throughout the range of k. The Gneiting and spectral-in-time models both do
reasonably well, with perhaps a slight advantage for the spectral-in-time model. For the spatial
difference filter, Fig. 7 shows that the two parametric fits give nearly identical results and are
too large for all k, sometimes by up to a factor of 2. The spectral-in-time fit is clearly superior
but it still is larger than the empirical values for all k displayed.

6. Discussion

Both the time domain and the spectral approximations to the likelihood that were used in the
application assumed that we have regular monitoring data and that the process is stationary
in time and Gaussian. Even with these strong assumptions, the results in Table 1 show that it
is not easy to obtain accurate likelihood approximations when the process shows long-range
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Fig. 7. Same as Fig. 6, but now b is a linear combination of four central Irish sites that filters out constants,
latitude and longitude

dependence in time. If monitoring locations change frequently, then spectral approximations
to the likelihood are no longer available, and, although we could still use equation (9), the
efficiencies are no longer nearly as great as with regular monitoring data. If the monitoring
network is fixed but there are missing observations, then some of the efficiencies of the regular
monitoring data case can be recovered through the use of missing data algorithms. For example,
Smith et al. (2003) showed how to apply the EM algorithm to such data in the case when the
temporal effects can be captured in the mean function for the process and there is no temporal
dependence in the observations. There is clearly scope for further development of missing data
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methods to environmental monitoring data. In particular, it is not obvious how the various
diagnostic plots that were used in Section 5 should be adapted when there are missing data.

The analysis of the Irish wind data demonstrates the feasibility of applying the partially non-
parametric spectral-in-time approach to regular monitoring data. Nevertheless, the resulting
fitted model shows some signs of misfit in the various diagnostic plots that were considered,
although overall less than the two proposed parametric models. Furthermore, there is clearly
scope for fitting these data better by allowing for spatial non-stationarity (de Luna and Genton,
2005; Stein, 2005).

For the Irish wind data, models on R2 ×R rather than on S2
r ×R would probably suffice and it

would be interesting to test out the models on S2
r ×R that were presented here on data sets with

greater spatial extent. Data sets that are collected via satellite would make obvious candidates,
but these generally have large numbers of observations each day, for which the approximate
likelihood methods that are used here would not be feasible even if there were no missing
observations. The development of models that provide a realistic description of the space–time
dependences in such processes and statistical methods for estimating these dependences present
clear challenges to the statistical profession.

A fundamental issue that this work largely ignores is the relationship between the analy-
sis and the objectives of a specific scientific study. Here we have taken as the goal accurately
describing the spatial–temporal variations for regular monitoring data on a broad range of
timescales using a model that extends naturally to a spherical spatial domain. To the extent
that a model succeeds in this goal, it might be hoped that it could provide good results for
many objectives. However, this might be too much to ask from one model, so there is certainly
scope for fitting models for specific purposes. Thus, for example, if we are modelling space–
time covariance structures as part of a data assimilation scheme (see, for example, Hamill et al.
(2001) or Houtekamer and Mitchell (2001)), then the emphases will be largely on computational
tractability and accurate modelling of dependence on shorter timescales. If, as in Gneiting et al.
(2004) or Sahu and Mardia (2005), short-term forecasting is the objective, accurate modelling
of long-range dependence is also unlikely to matter much. However, even when prediction is the
goal, whether or not long-range dependence is important depends on what we want to predict.
In Haslett and Raftery (1989), the goal was to estimate the average wind power that would be
available over long time spans, in which case, modelling the long-range dependence accurately
is critical.

Acknowledgements

Although the research that is described in this paper has been funded wholly or in part by the US
Environmental Protection Agency through ‘Science to achive results’ co-operative agreement
R-82940201-0 to the University of Chicago, it has not been subjected to the Agency’s required
peer and policy review and therefore does not necessarily reflect the views of the Agency and no
official endorsement should be inferred. The author thanks Ken Wilder for computing assistance
and two referees for valuable comments leading to numerous improvements in this paper.

Appendix A

Theorem 4.4.1 in Brillinger (1981) shows that, under suitable regularity conditions, at the Fourier frequen-
cies ωl =2πl=T for l=1, . . . , �T=2�,

F.ωl/= .2πT/−1=2
T∑

t=1
Xt exp.iωlt/
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are asymptotically independent complex Gaussian random vectors with mean 0 and covariance matrix
Φ.ωl/. Although this theorem assumes a summable covariance function, which is not so for the long-range
dependence models that are used in Section 5, we shall nevertheless proceed. We can then approximate
the log-likelihood by summing the log-likelihoods of the F.ωl/s for l=1, . . . , �T=2�. Because of the greater
availability of software for real positive definite matrices, it is convenient to rewrite this result in terms of
the 2n-vector of real and imaginary parts of F.ωl/. Write G.ωl/ for the real-valued 2n-vector that is made
up of the alternating real and imaginary components of F.ωl/. It then appears that we need to calculate
the Cholesky decomposition of G.ωl/ to obtain the approximate likelihood for frequency ωl. However,
when Φ.ω/ is of the form .Vjk exp{i.gj −gk/}/n

j,k=1 for Vjk and gj real, which holds, for example, under equa-
tions (1) or (13), a nice simplification occurs.

Let R.θ/ be the 2 × 2 matrix that rotates 2-vectors clockwise by the angle θ. Then the approximate
covariance matrix of G.ω/ is given by W = .VjkR.gj − gk//

n
j,k=1. Let V = .Vjk/

n
j,k=1 and write .V jk/n

j,k=1 for
its inverse. Using the fact that

R.gi −gj/R.gj −gk/=R.gi −gk/,

it is straightforward to show that the inverse of .Vjk R.gj−gk //n
j,k=1 is .V jk R.gj − gk//

n
j,k=1 Furthermore,

it is possible to show that the determinant of .Vjk R.gj −gk//
n
j,k=1 is det.V/2. Writing Xj and Yj for the vectors

of real and imaginary parts of F.ωj/, straightforward algebra yields that the approximate log-likelihood
contribution from ωj is (ignoring the additive constant)

−log{det.V/}− 1
2 .cos.gj/Xj − sin.gj/Yj/

′V −1.cos.gj/Xj − sin.gj/Yj/

− 1
2 .sin.gj/Xj + cos.gj/Yj/

′V −1.sin.gj/Xj + cos.gj/Yj/,

which can be found readily from the Cholesky decomposition of the n×n real-valued matrix V .
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