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Preface

The chapters of this volume represent the revised versions of the main pa-

pers given at the seventh Séminaire Européen de Statistique on “Statistics for

Stochastic Differential Equations Models”, held at La Manga del Mar Menor,

Cartagena, Spain, May 7th-12th, 2007. The aim of the Séminaire Européen

de Statistique is to provide talented young researchers with an opportunity to

get quickly to the forefront of knowledge and research in areas of statistical

science which are of major current interest. As a consequence, this volume is

tutorial, following the tradition of the books based on the previous seminars in

the series entitled:

• Networks and Chaos – Statistical and Probabilistic Aspects.

• Time Series Models in Econometrics, Finance and Other Fields.

• Stochastic Geometry: Likelihood and Computation.

• Complex Stochastic Systems.

• Extreme Values in Finance, Telecommunications and the Environment.

• Statistics of Spatio-temporal Systems.

About 40 young scientists from 15 different nationalities mainly from Euro-

pean countries participated. More than half presented their recent work in short

communications; an additional poster session was organized, all contributions

being of high quality.

The importance of stochastic differential equations as the modeling basis for

phenomena ranging from finance to neurosciences has increased dramatically

in recent years. Effective and well behaved statistical methods for these mod-

els are therefore of great interest. However the mathematical complexity of

the involved objects raise theoretical but also computational challenges. The

Séminaire and the present book present recent developments that address, on

one hand, properties of the statistical structure of the corresponding models

and, on the other hand, relevant implementation issues, thus providing a valu-

able and updated overview of the field.

The first chapter of the book, written by Michael Sørensen, describes the appli-

cation of estimating functions to diffusion type models. Estimating functions

are a comparatively recent tool to estimate parameters of discretely observed

xvii
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stochastic processes. They generalize the method of maximum likelihood esti-

mation by searching for the roots of a so-called estimating equation, but have

the advantage that these equations can typically be calculated and solved more

easily than the likelihood equations, which often require extensive calculations.

The idea is to approximate the likelihood equations, and in certain situations

estimating functions provide fully efficient estimators. Maximum likelihood

estimations is discussed as a particular case.

The second chapter, written by Per Mykland and Lan Zhang addresses the

modeling of high frequency data of financial prices. The considered model

is assumed to be a semimartingale plus an additive error, the so called mi-

crostructure noise. This noise causes difficulty in estimation, since its impact

on the estimators may be higher than that of the relevant model parameters. An

approach is presented to overcome these difficulties, using multiscale realized

volatility. It is in particular shown how statistical data can be used in a sensi-

ble way for the trading of options, hence combining the probabilistic part of

mathematical finance with statistical issues that may arise by misspecification

of the model or other errors.

In Chapter 3, Jean Jacod treats inference for general jump diffusion processes

based on high frequency data. This means that one observes a stochastic pro-

cess at equidistant time points between time 0 and time T, where the corre-

sponding interval between two consecutive observation times is small and in

the limit tends to zero. Such models have many applications, in particular in

finance, where one is interested in estimating the integrated volatility. A num-

ber of estimation techniques for such general processes are presented, mainly

based on variants of the quadratic variation, and the corresponding limit the-

orems are explained. This allows in particular to develop tests to distinguish

whether processes have jumps or not.

Chapter 4, written by Omiros Papaspiliopoulos and Gareth Roberts, focuses on

computational methods for the implementation of likelihood based inference

procedures for diffusion models. After a detailed overview on various simula-

tion techniques for diffusions, the exact simulation method is presented with

particular emphasis on the simulation of conditioned diffusions. Rather than

using an Euler approximation scheme, these simulation methods simulate the

path of a (conditioned) diffusion exactly, without any discretization error. The

exact simulation method can then be combined with Monte Carlo techniques

to compute efficiently maximum likelihood and Bayesian estimators for diffu-

sions.

The short chapter 5, written by Fabienne Comte, Valentine Genon-Catalot and

Yves Rozenholc, gives insight on non parametric methods for stochastic differ-

ential equations models, several methods being presented and the correspond-

ing convergence rates investigated. Several examples are used to illustrate the

behaviour of the suggested procedures.

In the short Chapter 6, Peter Brockwell and Alexander Lindner discuss some



PREFACE xix

recent stochastic volatility models where the driving process is a Lévy process

with jumps. After presenting the motivations for such models and their prop-

erties, estimation methods are described.

Finally in the short Chapter 7, written by Grigorios Pavliotis, Yvo Pokern

and Andrew Stuart, the modeling of the multiscale characteristic that may be

present in data is addressed and the procedures that can be used to find a use-

ful diffusion approximation are described. Some examples from physics and

molecular dynamics are presented.
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schweig University, Enno Mammen, University of Mannheim, Gesine Reinert,

University of Oxford, Michael Sørensen, University of Copenhagen and Aad

van der Vaart, University of Amsterdam. The seventh Séminaire was part of

the second series of the European Mathematical Society Summer Schools and

Conferences in pure and applied Mathematics and, as such, was funded by the

European Commission as a Marie Curie Conference and Training Course under

EU Contract MSCF-CT-2005-029473. The organization committee is grateful

to the Technical University of Cartagena and in particular to its Department of

Applied Mathematics and Statistics, for providing support to the Conference.


