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Statistical Methods for Testing Functional Divergence after Gene
Duplication

Xun Gu
Department of Zoology/Genetics, Iowa Computational Molecular Biology Laboratory, Iowa State University

Functional innovations after gene duplication may result in altered functional constraints between member gene
clusters of a gene family. This type (type I) of functional divergence is measured by the coefficient of functional
divergence (ul), which can be interpreted as the decrease in rate correlation between gene clusters, or the probability
that the evolutionary rate at a site is statistically independent between two gene clusters. A simple stochastic model
has been developed for estimating ul and testing its statistical significance. The current model includes the model
of rate variation among sites as a special case when ul 5 0. Moreover, we have developed a site-specific profile
based on the hidden Markov model to identify critical amino acid residues that are responsible for these functional
differences between two gene clusters, which may have great potential in functional genomics.

Introduction

An understanding of the functional diversity of a
gene family has been a major component in molecular
evolutionary study (Nei 1987; Li 1997). Recently, its
importance for functional genomics has been well rec-
ognized (Henikoff et al. 1997; Bork and Koonin 1998).
Indeed, many organisms have undergone genomewide
or local chromosome duplication events during their
evolution (Ohno 1970; Lundin 1993; Holland et al.
1994; Spring 1997). Moreover, new types of multiple-
domain proteins can be generated by the domain-shuf-
fling mechanism (Henikoff et al. 1997). As a conse-
quence of these gene/genome duplication and domain-
shuffling events, many genes are represented as several
paralogs in the genome with related but distinct func-
tions. These gene family proliferations are thought to
have provided the raw materials for functional innova-
tions (Li 1983; Nei 1987; Lundin 1993; Hughes 1994;
Henikoff et al. 1997). It has been widely accepted that
following gene duplication, one gene copy maintains the
original function, while the other copy is free to accu-
mulate amino acid changes as a result of functional re-
dundancy or positive selection (Li 1983). Unless this
type of functional divergence results in some new func-
tions, over time all but one gene copy will be silenced
by deleterious mutations.

Extensive studies have been reported on the un-
derlying mechanism of functional divergence after gene
duplication (e.g., Kimura and Ota 1974; Li 1983; Nei
1987; Zhang, Rosenberg, and Nei 1998). Hughes (1994)
speculated that the ancestral gene might already be bi-
functional and gene duplication simply allows each copy
to specialize for one of several functions. Having real-
ized the importance of coevolution between the inter-
acted molecules (e.g., ligand/receptor), Fryxell (1996)
argued that functional divergence may occur only when
all genes in a pathway are duplicated simultaneously,
e.g., by a genome duplication. Nevertheless, it becomes
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clear that some evolutionary changes in the coding and/
or regulatory regions after gene duplication must be re-
sponsible for the functional differences between mem-
bers of a gene family.

An interesting question is whether we can identify
these important amino acid (or nucleotide) sites; the
methods for doing so may have great potential for func-
tional genomics since they are extremely cost-effective,
and the predictions obtained can be further tested by
experimentation (Golding and Dean 1998). For example,
we may infer amino acid sites that have experienced
altered functional roles in a period of evolution. Since
amino acid differences between two gene family mem-
bers can be the result of either an ancient gene dupli-
cation or a more recent event that is subject to rapid
functional divergence, a homologous search based on
sequence similarity (score) may not be sufficient for our
purpose (Eisen 1998; Golding and Dean 1998). In fact,
a simple application of molecular phylogenetic analyses
cannot completely distinguish between these possibili-
ties. Moreover, many observed amino acid changes are
due to purifying selection and are not directly related to
functional innovations. This problem is serious in prac-
tice because experimental evidence from many case
studies has already shown that functional divergence af-
ter gene duplication can be generated by only a few
amino acid changes (for a review, see Golding and Dean
1998).

The purpose of this paper is to develop a novel
stochastic model for functional divergence after gene
duplication, to estimate the level of functional diver-
gence, and to predict important amino acid residues for
these functional differences between member genes of
a gene family. We shall develop a quantitative measure
for the functional difference that can be estimated from
sequence data and distinguish between these changes
related to functional divergence and the background
changes which mainly represent neutral evolution. The
present method is applied to the transferrin and myc
gene families to demonstrate its potential in functional
and comparative genomics.

Functional Divergence and Altered Functional
Constraint

A (homologous) gene cluster is defined as a mono-
phyletic group of sequences under a phylogenetic tree.
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FIG. 1.—A, Two gene clusters after gene duplication; E and L represent early and late stages of gene cluster 1, respectively. B, Type I and
type II functional divergences after gene duplication. In the early stage, the evolutionary rate (say, in cluster 1) may increase for functional-
divergence-related change, but in the late stage, it may be higher (or lower) than the original rate, resulting in altered functional constraints
between clusters 1 and 2 (type I functional divergence). If the rate in the late stage is the same as the original one again, no altered functional
constraints between clusters 1 and 2 can be observed (type II functional divergence).

For example, two gene clusters are generated by an
event of gene duplication, and each of them consists of
several orthologous sequences (fig. 1A). It is commonly
believed (Li 1983) that after gene duplication, the evo-
lutionary rate (l) at an amino acid site may increase and
functional divergence may occur in the early stage, fol-
lowed by the late stage, in which purifying selection
plays a major role in maintaining related but distinct
functions (fig. 1B). The underlying mechanism for this
type of accelerated evolution after gene duplication is
still in dispute (e.g., Li 1983; Nei, Gu, and Sitnikova
1997). If the early-stage functional divergence occurred
in one duplicate gene, changes of functional roles at the
sites involved can be observed in the late stage. As a
result, evolutionary rates at these sites are different be-
tween the two gene clusters. Such functional divergence,
resulting in altered functional constraint, is called type
I functional divergence.

The central tenet of our approach is that type I
functional divergence after gene duplication is highly
correlated with the change in evolutionary rate, which
is analogous to a fundamental rule in molecular evolu-
tion: functional importance is highly correlated with
evolutionary conservation (Kimura 1983). Alternatively,
type II functional divergence does not result in different
functional constraints between the two gene clusters, but
evolutionary rates can be different between early and
late stages (fig. 1B). For example, cluster-specific resi-
dues may be subject to this type of functional diver-
gence. In this paper, we deal mainly with type I func-
tional divergence; type II functional divergence will be
discussed elsewhere. The relationship between function-
al divergence, altered functional constraint, and evolu-
tionary rate provides a theoretical basis for modeling the
type I functional divergence during sequence evolution.

A Simple ‘‘Model-Free’’ Method
Rate Correlation Between Two Gene Clusters

If all sites have experienced no functional diver-
gence after gene duplication, the two duplicate genes
have no altered functional constraints, so the evolution-
ary rate of a site is always the same (or proportional)
between them, i.e., the coefficient of rate correlation
(over sites) is 1. Obviously, altered functional con-

straints caused by functional divergence will reduce the
rate correlation. Consider a multiple alignment of amino
acid sequences containing two gene family members
(fig. 1). If orthologous sequences are functionally equiv-
alent, the evolutionary rate (l) of a site remains constant
(or proportional) among branches within a gene cluster,
although it may vary among sites. Since a molecular
clock is not assumed, lineage-specific factors such as
generation time effect (Wu and Li 1985; Gu and Li
1992) will not affect our results. Hence, without loss of
generality, the evolutionary rates in gene cluster 1 and
gene cluster 2 are simply denoted by l1 and l2, respec-
tively. The altered functional constraints between two
gene clusters can be measured by the coefficient of rate
correlation between l1 and l2,

Cov(l , l )1 2r 5 , (1)l ÏVar(l )Var(l )1 2

where Var(l1), Var(l2), and Cov(l1, l2) are the varianc-
es and covariance of l1 and l2, respectively. If there is
no functional divergence after gene duplication, rl 5 1;
otherwise, rl , 1. Therefore, a convenient measure for
functional divergence can be simply defined as

ul 5 1 2 rl. (2)

As ul increases from 0 to 1, the functional divergence
increases from very weak to extremely strong. In this
sense, ul is called the coefficient of functional diver-
gence.

The Poisson Model for Amino Acid Substitutions

To avoid confusion, we mention that the term
‘‘model-free’’ means that there is no specific model for
rate variation among sites and rate correlation between
gene clusters; the method does require a model for ami-
no acid changes at a site. A simple model is the Poisson
process: at a given site, the number of amino acid
changes (Xi, i 5 1, 2 for gene clusters 1 and 2, respec-
tively) follows a Poisson distribution, i.e., the probabil-
ity of Xi 5 k is given by

k(l T )i i 2l Ti ip (k) 5 e , i 5 1, 2, (3)i k!

where T1 and T2 are the total evolutionary times of clus-
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1666 Gu

ters 1 and 2, respectively. In section A.1 of the appendix,
we show that the coefficient of functional divergence ul

5 1 2 rl is given by

s12u 5 1 2 , (4)l Ï(V 2 D )(V 2 D )1 1 2 2

where D1 and V1 (or D2 and V2) are the mean and var-
iance of the number of changes (over sites) in cluster 1
(or cluster 2), respectively, and s12 is the covariance
(over sites) between them.

To estimate ul for equation (4), we need to know
the number of changes at each site for each gene cluster
(i.e., X1 and X2). Since X1 and X2 cannot be directly
observed from the sequence data, a conventional solu-
tion is to use the minimum number of required changes
(m) as an approximation, which can be inferred by the
parsimony under a known phylogenetic tree (Fitch
1971). However, m is a biased ‘‘estimate’’ for the true
number of changes because it does not consider the pos-
sibility of multiple hits (Wakeley 1993). This problem
has been solved by using a combination of ancestral-
sequence inference and maximum-likelihood estimation
(Gu and Zhang 1997). Given a phylogeny, Gu and
Zhang (1997) have shown that the expected number of
changes (X) at a given site is the nonnegative solution
of the likelihood equation

M d bi i 5 1, (5)O ˆ2Xb /Bi1 2 ei51

where B is the total branch length of the gene cluster,
and bi is the ith branch length, i 5 1, . . . , M (M is the
total number of branches); di 5 1 if there is an amino
acid change in the ith branch, otherwise di 5 0. Exten-
sive computer simulation has shown that the estimate of
mean of expected number of changes, as well as that of
variance, is asymptotically unbiased and robust against
the accuracy of ancestral amino acid inference. Two in-
teresting special cases are (1) X̂ ø m for short branch
lengths, and (2) X̂ 5 2M ln(1 2 m/M) for equal branch
lengths.

Statistical Testing

When the numbers of changes at each site in both
clusters (X1 and X2) are obtained by Gu and Zhang’s
(1997) method, estimation of ul is simple according to
equation (4). Since ul . 0 provides evidence for func-
tional divergence after gene duplication, we have to test
for statistical significance. Let rX be the coefficient of
correlation between X1 and X2, which is defined by

s12r 5 . (6)X ÏV V1 2

Since rX reaches its maximum value rM when ul 5 0,
i.e.,

rX # rM 5 Ï(1 2 D1/V1)(1 2 D2/V2) (7)

(see eq. A.9 in the appendix), the null hypothesis H0: ul

5 0 is equivalent to rX 5 rM. As a standard coefficient
of correlation, Fisher’s transformation can be used to
compute the confidence level of rX:

1 1 r
z 5 0.5 ln .1 21 2 r

Let zX and zM, respectively, be the transforms of rX and
rM. The sampling variance of zX is approximately V(zX)
5 1/(N 2 3), where N is the sequence length. Under the
null hypothesis (rX 5 rM), the Z score (Z 5 (zX 2 zM)
ÏN 2 3) approximately follows a normal distribution.
For example, if the Z score is |Z| . 1.96, the null hy-
pothesis ul 5 0 can be rejected at the 5% significance
level. Besides, by the delta method, the approximate
sampling variance of can be computed asûl

221 1 2 rXVar(û ) ø . (8)l 1 2N 2 3 rM

We should note that although rX is negatively correlated
with ul and useful for constructing a statistical test, it is
not a good measure of the level of functional divergence
because it is evolutionarily time-dependent (see eq. A.14
in the appendix).

Examples

Transferrins are iron-binding transport proteins
which can bind two atoms of ferric iron Fe31. They are
responsible for the transport of iron from sites of ab-
sorption and heme degradation to those of storage and
utilization. There is only one transferrin-encoding gene
in nonmammalian vertebrates such as birds, frogs, and
fishes. In mammals, two closely linked tissue-specific
genes (3q21–23 in humans) are found which encode se-
rum transferrin (TF) and lactotransferrin (LTF), respec-
tively. Figure 2 shows the phylogenetic tree of the trans-
ferrin gene family by the neighbor-joining method (Sai-
tou and Nei 1987); parsimony and likelihood methods
give essentially the same topology (results not shown).
TF and LTF form separate gene clusters with a high
bootstrap (100%) value. Apparently, this gene duplica-
tion occurred before the radiation of mammals but after
the divergence between birds and mammals.

Based on the phylogenetic tree (fig. 2), all TF/LTF
sequences can be divided into three gene clusters: TF,
LTF, and genes from nonmammalian vertebrates (vTF).
The expected number of changes at each site in each
gene cluster was obtained by Gu and Zhang’s (1997)
method (fig. 3). Figure 4 shows the correlation between
the numbers of changes between TF (X1) and LTF (X2);
the coefficient of correlation is rX 5 0.37. The coeffi-
cient of functional divergence between each pair of gene
clusters is presented in table 1, e.g., ul 5 0.26 between
TF and LTF, which is significantly larger than 0 (P ,
1024). Interestingly, the coefficient of functional diver-
gence between TF and LTF is higher than that between
TF and vTF (ul 5 0.13) or between LTF and vTF (ul

5 0.07), although the average sequence similarity be-
tween vTF and TF (as well as between vTF and LTF)
is lower than that between TF and LTF. This result im-
plies that functional divergence had occurred after gene
duplication in the lineage leading to mammals, resulting
in altered functional constraints between the two tissue-
specific isoforms TF and LTF.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/16/12/1664/2925382 by guest on 21 August 2022



Functional Divergence After Gene Duplication 1667

FIG. 2.—The phylogenetic tree of the transferin gene family, which was inferred by the neighbor-joining method using amino acid sequences
with Poisson distance. Bootstrapping values .50% are presented.

Two-State Model for Functional Divergence

Although it is simple, the above method requires
that each gene cluster should have multiple (say, four)
sequences; otherwise, the estimate of ul may be subject
to large sampling variance. Therefore, maximum-like-
lihood (ML) approach is plausible in practice because it
has some nice statistical properties.

The Probabilistic Model

Consider an ideal case in which we already know
exactly which sites are related to functional divergence.
Hence, all sites can be classified into either of two cat-
egories, F0 (functional-divergence-unrelated) or F1
(functional-divergence-related). In the F0 category, the
evolutionary rate (l) of a site is the same between gene
clusters, indicating no change in functional constraints.
In contrast, the evolutionary rate of an F1 site may have
no correlation between gene clusters, because such sites
have experienced altered functional constraints. How-
ever, in practice, we do not know the category to which
each site belongs. This problem is solved by imple-
menting a (two-state) probabilistic model: a given site
can be in state F1 with a probability of P(F1) or in state
F0 with a probability of P(F0). Using the same notations
as in equation (1), we have Cov(l1, l2) 5
P(F0)ÏVar(l1)Var(l2), because Cov(l1, l2 | F0) 5
ÏVar(l1)Var(l2) (completely correlated), and
Cov(l1, l2 | F1) 5 0 (independent). Then, one can show
that

P(F1) 5 1 2 rl 5 ul, (9)

where rl is the rate correlation between two gene clus-
ters as defined by equation (1). That is, the coefficient
of functional divergence (ul) can be interpreted as the
probability of a site being in the state of functional di-
vergence (F1). Denoting the probability of functional di-
vergence at site k by dk, we mention that the current
two-state model assumes that dk 5 1 if it is F1; other-
wise, dk 5 0. Therefore, the proportion of sites expected
to be functional-divergence-related is given by P(F1) 3
1 1 P(F0) 3 0 5 ul. Furthermore, we assume that the
evolutionary rate varies among sites according to a gam-
ma distribution, i.e.,

ab
a21 2blf(l) 5 l e , (10)

G(a)

where l 5 l1 or l2, respectively (Uzzel and Corbin
1971). The shape parameter a describes the degree of
rate variation among sites, whereas b is only a scalar.
Since 1/Ïa is the coefficient of variation of l, the larger
the a value is, the weaker the rate variation is, and a 5
` means a uniform rate among sites.

The joint distribution of the number of changes,
P(X1, X2), can be derived as follows. For any F1 site,
the evolutionary rate is statistically independent between
two clusters, whereas it is completely correlated at an
F0 site. Thus, the probability of X1 5 i in cluster 1 and
X2 5 j in cluster 2 under state F0 or F1 is given by

P(X 5 i, X 5 j z F ) 5 Q (i)Q ( j),1 2 1 1 2

P(X 5 i, X 5 j z F ) 5 K (i, j), (11)1 2 0 12

respectively, where Q1(i) 5 P(X1 5 i | F1) 5
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FIG. 3.—The expected numbers of changes at each amino acid site in the TF, LTF, and vTF groups, obtained by Gu and Zhang’s (1997)
method based on the phylogeny given in figure 2.

FIG. 4.—The correlation of the numbers of changes between the
TF and LTF clusters.

# p1(i)f(l1) dl1, Q2( j) 5 P(X2 5 j | F1) 5 # p2( j)f(l2)
` `
0 0

dl2, and K12 5 # p1(i)p2( j)f(l) dl. It is known that`
0

Q1(i) and Q2( j) are negative binomial distributions, i.e.,

i a
G(i 1 a) D a1Q (i) 5 ,1 1 2 1 2i!G(a) D 1 a D 1 a1 1

j a
G( j 1 a) D a2Q ( j) 5 (12)2 1 2 1 2j!G(a) D 1 a D 1 a2 2

(Gu and Zhang 1997). After some mathematical simpli-
fications, one can show that K12(i, j) is given by

i j
G(i 1 j 1 a) D D1 2K (i, j) 512 1 2 1 2i! j!G(a) D 1 D 1 a D 1 D 1 a1 2 1 2

a
a

3 .1 2D 1 D 1 a1 2
(13)

Then, the joint distribution is given by P(X1, X2) 5
P(F0)P(X1, X2 | F0) 1 P(F1)P(X1, X2 | F1), which can be
expressed as

P(X1, X2) 5 (1 2 ul)K12 1 ulQ1Q2. (14)

One can verify that the joint distribution P(X1, X2) has
the following properties: (1) The marginal distribution
is a negative binomial distribution, i.e.,

P(X 5 i) 5 P(X 5 i, X 5 j) 5 Q (i),O1 1 2 1
j

P(X 5 j) 5 P(X 5 i, X 5 j) 5 Q ( j), (15)O2 1 2 2
i

and (2) the covariance between X1 and X2 is given by
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Table 1
Analysis of Functional Divergence Between the TF and
LTF Gene Families Based on Equation (4), the Model-
Free Estimate

Gene
Clusters

(1/2) TF/LTF TF/vTF LTF/vTF

D1. . . . . . . . 1.17 1.17 0.86
D2. . . . . . . . 0.86 2.20 2.20
V1 . . . . . . . . 2.87 2.87 1.49
V2 . . . . . . . . 1.49 4.24 4.24
s12 . . . . . . . 0.76 1.59 1.04
rX . . . . . . . . 0.37 0.46 0.42
rM . . . . . . . . 0.50 0.53 0.45
ul . . . . . . . . 0.26 6 0.08 0.13 6 0.06 0.07 6 0.08
P . . . . . . . . ,1023 ,0.05 .0.10

NOTE.—In the first case, TF represents cluster 1 and LTF represents cluster
2; in the second case, TF represents cluster 1 and vTF represents cluster 2; and
in the third case, LTF represents cluster 1 and vTF represents cluster 2. See
figure 2 for the definitions of these three clusters. D1 and V1 (D2 and V2) are the
mean and variance of the number of changes in cluster 1 (cluster 2), respectively.
s12 is the covariance and rX is the coefficient of correlation for the numbers of
changes between gene clusters 1 and 2. rM is the expected value of rX when the
evolutionary rate is completely correlated (i.e., rl 5 1). The coefficient of rate
correlation ul is estimated according to equation (4), and the standard error is
given by equation (8). The significance level (P value) is computed by the meth-
od of Fisher’s transformation.

Table 2
The Coefficients of Functional Divergence (ul) Between
Gene Clusters by the Model-Free Method (eq. 4) and the
Maximum-Likelihood Method Under the Two-State
Model (MLE)

Genes N Equation (4) MLE

TF/LTF . . . . . . . . . . . . 553 0.26 6 0.08 0.19 6 0.07
TF/vTF . . . . . . . . . . . . 553 0.13 6 0.06 0.07 6 0.03
LTF/vTF . . . . . . . . . . . 553 0.07 6 0.08 0.00 6 0.03
C-myc/N-myc. . . . . . . 276 0.52 6 0.10 0.39 6 0.08
C-myc/L-myc . . . . . . . 276 0.57 6 0.13 0.56 6 0.12
N-myc/L-myc . . . . . . . 276 0.39 6 0.12 0.40 6 0.12

NOTE.—N is the total number of amino acid sites. See figures 2 and 6 for
details on each gene cluster.

D D1 2s 5 (1 2 u ) . (16)12 l a

When One Gene Cluster Has a Single Sequence

If one cluster (say, cluster 2) has only one single
sequence, the joint distribution of X1 and X2 needs to be
modified, since X2 has only two states, X2 5 0 or 1, with
probabilities Pr(X2 5 0) 5 e and Pr(X2 5 1) 5 12l T2 2

2 e , respectively. In this case, the joint distribution2l T2 2

of X1 and X2 at an F0 site is P(X1 5 i, X2 5 0 | F0) 5
K12(i, 0) and P(X1 5 i, X2 5 1 | F1) 5 Q1(i) 2 K12(i, 0).
Similarly, the joint distribution of X1 and X2 at an F1
site is P(X1 5 i, X2 5 0 | F0) 5 Q1(i)Q2(0) and P(X1 5
i, X2 5 1 | F1) 5 Q1(i)[1 2 Q2(0)]. Then, one can show
the joint distribution of X1 and X2 as follows:

P(X 5 i, X 5 0) 5 (1 2 u )K (i, 0) 1 u Q (i)Q (0),1 2 l 12 l 1 1

P(X 5 i, X 5 1) 5 (1 2 u )[Q (i) 2 K (i, 0)]1 2 l 1 12

1 u Q (i)[1 2 Q (0)].l 1 2 (17)

Maximum-Likelihood Estimation

Let Pk(i, j) be the probability of X1 5 i and X2 5
j at site k. Thus, the likelihood function can be expressed
as

L(x z data) 5 P (X 5 i, X 5 j). (18)P k 1 2
k

The parameter set x has four parameters, D1, D2, a, and
ul, which can be numerically estimated by a standard
ML approach. Since each marginal distribution follows
a negative binomial distribution, we can first use Gu and
Zhang’s (1997) method for estimating the mean and
gamma shape parameter for each gene cluster, i.e., D̂1,

Then, the initial value for a can be sim-ˆâ , and D , â .1 2 2
ply computed by a0 5 Ïa1a2, and the initial value for
ul can be computed by the model-free estimate (eq. 4).
Using these initial values, the ML estimates of a and
ul, as well as approximate sampling variances, can be
obtained numerically (Press et al. 1992). A likelihood
ratio test (LRT) is constructed for testing the null hy-
pothesis H0: ul 5 0 versus HA: ul . 0. For the likelihood
ratio LR 5 max{L(H0 | data)}/max{L(HA | data)}, it is
known that d 5 22 ln(LR) asymptotically follows a
x . Some examples for ML estimation (MLE) are2

[1]
shown in table 2. Generally speaking, ML estimates are
slightly smaller than those of equation (4).

Predicting Critical Amino Acid Residues

Our results (see tables 1 and 2) have provided
strong statistical evidence for functional divergence after
gene duplication (i.e., ul . 0). Therefore, it is of great
interest to statistically predict which sites are likely to
be responsible for these type I functional differences.
Indeed, these sites can be further tested by using mo-
lecular, biochemical, or transgenic approaches. We shall
develop a site-specific profile for this purpose, which
can be achieved with a hidden Markov model (HMM),
which has been widely used in computational biology
from gene finding to pattern recognition (Durbin et al.
1998). Remember that in the two-state model, each site
has two possible states, F0 (functional constraint) and
F1 (functional divergence), with the (prior) probabilities
P(F1) 5 ul and P(F0) 5 1 2 ul, respectively. To provide
a statistical basis for predicting which state is more like-
ly at a given site, we need to compute the (posterior)
probability of state F1 at this site with X1 (and X2)
changes in cluster 1 (and 2), P(F1 | X1, X2). Obviously,
P(F0 | X1, X2) 5 1 2 P(F1 | X1, X2). According to the
Bayesian law and equations (11) and (14), we can show

P(F )P(X , X z F )1 1 2 1P(F z X , X ) 51 1 2 P(X , X )1 2

u Q Ql 1 25 . (19)
(1 2 u )K 1 u Q Ql 12 l 1 2

Then, given X1 5 i and X2 5 j, the posterior (probabil-
ity) ratio can be defined as follows:
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FIG. 5.—The site-specific profile for predicting critical amino acid sites responsible for the (type I) functional divergence between TF and
LTF, measured by the posterior probability ratio.

P(F z X 5 i, X 5 j) u Q (i)Q ( j)1 1 2 l 1 2R 5 5 , (20)ij P(F z X 5 i, X 5 j) 1 2 u K (i, j)0 1 2 l 12

which turns out to be

i
u G(i 1 a)G( j 1 a) Dl 2R 5 1 1ij 1 21 2 u G(i 1 j 1 a) D 1 al 1

j aD D D1 1 23 1 1 1 2 .1 2 1 2D 1 a (D 1 a)(D 1 a)2 1 2

(21)

We may use either equation (19) or equation (21) to
identify these amino acid sites that may be responsible
for functional divergence, given a cutoff value. In prac-
tice, the choice of a cutoff value is somewhat arbitrary,
from P(F1 | X1, X2) . 0.5 (Rij . 1) to P(F1 | X1, X2) .
0.95 (Rij . 20). As will be seen below, it may depend
on how much information we can obtain.

We have applied equation (21) to the transferrin
(TF/LTF) and Myc (N-myc/C-myc) gene families,
whose phylogenetic trees are presented in figures 2 and
6, respectively. For example, the site-specific profile Rij

for predicting critical amino acid sites responsible for
(type I) functional divergence between TF and LTF is
plotted against amino acid position (fig. 5). As expected,
most amino acid sites have low values, indicating no
change in their functional roles after gene duplication.
In other words, only a few sites are likely to be involved
in functional divergence. Indeed, eight amino acid res-
idues with the highest scores (Rij . 2) are apparently
considered candidates for type I functional divergence
between TF and LTF. Furthermore, after removing these
sites, the coefficient of functional divergence is reduced
to 0.09, which is not significant from 0. Figure 7 shows
the site-specific profile of N-myc/C-myc. The histogram
of these posterior ratio values (fig. 8) shows that func-
tional divergence between N-myc/C-myc is affected by
only a small number of amino acid residues. Once again,
after removing these sites, listed in table 3, the coeffi-
cient of functional divergence is reduced to 0.10 (not

significant). Indeed, these sites have much more differ-
ent X1 and X2 values, e.g., one of them has no change
at all, whereas another one has many changes (table 3),
indicating a change in the functional role between the
two gene clusters. These predicted residues can be used
as targets for further experimentation to determine their
functional roles.

Discussion

In this paper, we have studied type I functional di-
vergence after gene duplication, which can be charac-
terized by altered functional constraints between ho-
mologous member genes in a gene family. A funda-
mental measure is the coefficient of functional diver-
gence ul. It can be interpreted as the decrease in rate
correlation (rl) between two duplicate genes as a result
of functional divergence after gene duplication (i.e., ul

5 1 2 rl), or the (prior) probability that a site is in the
F1 state (functional-divergence-related), i.e., ul 5 P(F1).
Based on a simple model, we have developed statistical
methods for estimating ul and testing whether it is sig-
nificantly larger than 0, which provides statistical evi-
dence for type I functional divergence. Furthermore, we
have developed a site-specific profile (the posterior
probability ratio) to predict critical amino acid residues
that are responsible for these functional differences by
the HMM. Then, given a cutoff value, we can (statisti-
cally) identify a group of amino acid residues with the
highest scores. Examples involving TF and Myc gene
families have shown the potential of our methods in
comparative genomics and molecular evolution. For ex-
ample, these predicted sites can be mapped into the
three-dimensional structure of the protein if it is avail-
able, and then subsequent biological experimentation
can provide a structure-based insight into the underlying
mechanism of functional divergence. The current meth-
odology can be directly applied to the study of func-
tional divergence after an evolutionary event such as
speciation, domain shuffling, lateral gene transfer, or vi-
rus infection, which typically results in a bifurcation in
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FIG. 6.—The phylogenetic tree of the myc gene family, which was inferred by the neighbor-joining method using amino acid sequences
with Poisson distance. Bootstrapping values of .50% are presented.

FIG. 7.—The site-specific profile for predicting critical amino acid sites responsible for the (type I) functional divergence between N-myc
and C-myc, measured by the posterior probability ratio.

the phylogenetic tree. For example, the covarion theory
of molecular evolution (Fitch and Markowitz 1970) as-
sumes that after speciation, amino acid or nucleotide
sites that are invariable in one cluster can be variable in
another cluster. However, it is difficult to distinguish be-
tween the covarion model and the model of rate varia-
tion among sites (Miyamoto and Fitch 1995; Gu and Li
1996). We have recognized that the rate variation among
sites provides a background for potential covarion evo-
lution, and the change in functional constraint may oc-
cur at a few sites during a particular period of evolution.
Since the covarion theory can be treated as a special

case of functional divergence, the newly developed
method would be helpful in resolving this issue.

When ul 5 0, the new method is reduced to the
gamma distribution model of rate variation among sites.
The gamma shape parameter a characterizes the substi-
tution rate variation, which may include the mutation
rate variation and the variation in functional constraints
among sites (Deng and Fu 1998). Although there are
many studies on how to estimate a (e.g., Uzzel and Cor-
bin 1971; Yang 1993; Gu, Fu, and Li 1995; Gu and
Zhang 1997), the underlying assumption of no altered
functional constraint, which usually does not hold in
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FIG. 8.—The distribution of the posterior ratio over sites in the case of N-myc/C-myc.

Table 3
Amino Acid Sites with the Highest Posterior Ratio Values
(Rij . 2.5 in Fig. 7) for Type I Functional Divergence
Between C-myc and N-myc Genes

Position X1 X2 Rij

1 . . . . . 253 7.5 0 23.6
2 . . . . . 245 7.0 0 18.5
3 . . . . . 50 0 7.0 14.0
4 . . . . . 176 5.1 0 7.8
5 . . . . . 179 0 4.6 5.1
6 . . . . . 95 0 4.6 5.1
7 . . . . . 244 0 4.5 5.0
8 . . . . . 149 0 4.4 4.8
9 . . . . . 243 3.9 0 4.6

10 . . . . . 118 3.7 0 4.1
11 . . . . . 48 0 3.6 3.5
12 . . . . . 247 7.6 1.3 3.2
13 . . . . . 97 0 3.4 3.2
14 . . . . . 37 0 3.4 3.1
15 . . . . . 56 1.1 7.5 3.1
16 . . . . . 135 7.2 1.3 2.8
17 . . . . . 89 1.1 7.0 2.7

NOTE.—X1 and X2 are the expected numbers of changes at a site in gene
clusters 1 (C-myc) and 2 (N-myc), respectively, obtained by Gu and Zhang’s
(1997) method. Rij is the posterior (probability) ratio for the functional diver-
gence at a site with Xi 5 i and Xj 5 j.

gene family evolution (Gu and Li 1998), is not always
clearly stated in the literature. In section A.2 of the ap-
pendix, we show that when counts from both clusters
are simply lumped together, the estimate of parameter a
is biased (overestimated) if ul . 0 is neglected. Appar-
ently, the current method is more useful in exploring the
evolutionary pattern of gene family evolution.

Our theoretical framework can be extended to the
Markov chain model (Felsenstein 1981), but it may re-
quire a huge amount of computational time. Under the
assumption of site-independence, the likelihood function
is given by

L(u z data) 5 p (X), (22)Pl k
k

where pk(X) is the probability that an amino acid con-
figuration (X) will be observed at site k given the phy-

logenetic tree. Under the two-state model, pk(X) can be
expressed as

p (X) 5 (1 2 u ) f (X , X zF ) 1 u f (X , X zF ), (23)k l k 1 2 0 l k 1 2 1

where fk(X1, X2 | F0) and fk(X1, X2 | F1) can be computed
as in equation (11) except that the Poisson model is
replaced by a Markov chain model (e.g., Kishino, Mi-
yata, and Hasegawa 1990). The current method can be
simply called the generalized Gu-Zhang (gGZ) (1997)
method, which is a good approximation of the Markov
chain model but computationally very fast. Our prelim-
inary result has shown that the MLE of ul based on the
Markov chain model is fairly close to that based on the
gGZ method (unpublished data). Actually, this is not
very surprising, because computer simulation has al-
ready shown that the performance of Gu and Zhang’s
(1997) method (for ul 5 0) is almost as good as that of
the standard Markov chain approach (Gu and Zhang
1997). Indeed, our preliminary result from computer
simulation indicates that the current method is asymp-
totically unbiased and usually is robust if the phyloge-
netic tree is not accurate (unpublished data). Further
study will be focused on how to take the pattern of
amino acid changes into account (e.g., Gu, Hewett-Em-
mett, and Li 1998) and how to include insertions and
deletions (indels) in our model (Gu and Li 1995).

In conclusion, the methodology we have developed
in this paper provides a novel approach to exploring the
pattern of functional divergence after gene duplication
and/or speciation. Moreover, predictions based on the
HMM approach can be powerful and very cost-effective
in defining a group of amino acid residues that are re-
sponsible for these functional differences. If these com-
putational approaches are combined with biological in-
formation from functional and structural assays, our un-
derstanding about the origins of new functions can be
significantly improved.
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APPENDIX

A.1. Derivation of Equation (4)

First, we consider the Poisson process at a given
site, in which the first and second moments can be ex-
pressed as the following conditional expectations:

E[X z l ] 5 l T ,i i i i

2 2E[X z l ] 5 l T 1 (l T ) (A.1)i i i i i i

(i 5 1, 2). If there is no gene conversion or recombi-
nation between the two homologous genes, amino acid
substitutions at a site are independent between two
monophyletic gene clusters, and, therefore,

E[X1X2 | l1, l2] 5 E[X1 | l1] 3 E[X2 | l2]. (A.2)

The evolutionary rates (l1 and l2) are not only corre-
lated, but also different among sites, which, in principle,
can be described by a general joint distribution, F(l1, l2).
To compute the mean and variance over all sites (for
each cluster), let f(l1) and f(l2) be the marginal dis-
tributions of F(l1, l2) which describe the rate variation
among sites. By definition, they are given by f(l1) 5
# F(l1, l2) dl2 and f(l2) 5 # F(l1, l2) dl1, respec-` `
0 0

tively. According to the conditional probability theory,
one can show that

`

E[X ] 5 E[E[X z l ]] 5 l T f(l ) dli i i E i i i i
0

5 E[l ]T (A.3)i i

In(i 5 1, 2), where E[l ] 5 l̄ is the mean rate of l .i i i

the same manner, we have

E[X ] 5 E[li]Ti 1 E[l ]T2 2 2
i i i (A.4)

(i 5 1, 2), where E[l ] 5 # l f(li) dli. For simplicity,`2 2
i 0 i

let Di 5 E[Xi] and Vi 5 E[X ] 2 (E[Xi])2. From equation2
i

(A.4), the variance of li, Var(li) 5 E[l ] 2 (E[li])2, is2
i

given by

Var(li) 5 (Vi 2 Di)/T2
i (A.4)

(i 5 1, 2). Now consider the covariance between l1 and
l2. From equations (A.1) and (A.2), we have

`

E[X X ] 5 T T l l F(l l ) dl dl1 2 1 2 E 1 2 1 2 1 2
0

5 T T E[l l ], (A.6)1 2 1 2

and therefore the covariance between X1 and X2, s12, is
given by

s12 5 T1T2Cov(l1, l2). (A.7)

Then, from equations (A.5) and (A.7), one can easily

show that the coefficient of rate correlation rl defined
by equation (1) is given by

s12r 5 , (A.8)l Ï(V 2 D )(V 2 D )1 1 2 2

which directly leads to equation (4). Since rl # 1, we
have s12 # Ï(V1 2 D1)(V2 2 D2), which means

s12r 5 # r 5 Ï(1 2 D /V )(1 2 D /V ). (A.9)X M 1 1 2 2ÏV V1 2

A.2. A Short Note on Rate Variation Among Sites

The gamma distribution model for rate variation
among sites assumes no altered functional constraints
during evolution, i.e., ul 5 0. Here, we use a simple
case to show that the estimation of the shape parameter
a may be biased if the assumption of ul 5 0 is violated.

In the two-cluster case (fig. 1A), let X 5 X1 1 X2
be the (total) number of changes at a site. One can show
that X follows a negative binomial distribution if ul 5
0, i.e., there are no altered functional constraints (e.g.,
Gu and Zhang 1997). Under this model, the variance of
X is given by

2D
V 5 D 1 , (A.10)

a

a
a* 5 $ a, (A.12)

1 2 bul

where D is the mean of X. In the same manner for each
cluster, we have V1 5 D1 1 D /a and V2 5 D2 1 D /a2 2

1 2
On the other hand, we mention that X 5 X1 1 X2, such
that D 5 D1 1 D2 and V 5 V1 1 V2 1 2s12. Since s12
5 (1 2 ul)Ï(V1 2 D1)(V2 2 D2) (see eq. A.8), we have

V 5 V1 1 V2 1 2(1 2 ul)Ï(V1 2 D1)(V2 2 D2).

(A.11)

Therefore, if we define a* as D2/(V 2 D), one can easily
show

a
a* 5 $ a, (A.12)

1 2 bul

where b 5 2D1D2/(D1 1 D2)2; a* 5 a only when ul 5
0. If we use the method of moments to estimate a under
the assumption of no altered functional constraints be-
tween these two gene clusters, we obtain 2ˆ ˆâ 5 D /(V 2

According to equation (A.12), for a sufficiently largeD̂).
number of sites, the following relation holds:

E[â] ø a* $ a, (A.13)

that is, the estimate of a is biased.

A.3. Time-Dependence of rX

From equations (6) and (A.5), one can verify that

rlr 5 , (A.14)X Ï(1 1 a /T )(1 1 a /T )1 1 2 2

where a1 5 and a2 5l̄ /Var(l ) l̄ /Var(l ).1 1 2 2
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