4 )

STATISTICAL METHODS IN MARKOV CHAIKS*

P. Billingsley**
Consultant, Mathematics Division
The RAND Corporation

P=2092

Sertember 6, 1960

N\ /

**Professor, Department of Statistics
University of Chicago

¥Specizl invited paver read before
the Institute of Mathematical Statistics
at Stanford University, August 23, 1960.

Reproduced by

The RAND Corporation ® Santa Monica e California

The views expressed in this paper are not necessarily those of the Corporation






P—2092

SUMMARY

This paper is an expository survey of the mathematical
aspects of statistical inference as it applies to finite
Markov chains, the problem being to draw inferences about the
transition probabilities from one long, unbroken observation
{xl,  CYRERRY xn} on the chain. The topics covered include
Whittle's formula, chi-square and maximum—likelihood methods,
estimation of parameters, and multiple Markov chains. At the
end of the paper it 1s briefly indicated how these methods can
be applied to a process with an arbitrary state space or a
continuous time parameter.

Section 2 contains a simple proof of Whittle's formula;
Section 3 provides an elementary and self-contained development
of the 1limit theory required for the application of chi—-square
methods to finite chains. In the remainder of the paper, the
results are accompanied by references to the literature, rather
than by complete proofs.

As is usual in a review paper, the emphasis reflects the
author's interests. Other general accounts of statistical
inference on Markov processes will be faund in Grenander [53],
Bartlett [9] and [10], Fortet [35], and in my monograph [18].

I would like to thank Paul Meier for a number of very
helpful discussions on the topics treated in this paper,

particularly those of Section 3.
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1. INTRODUCTION

Let {xl,xz,...} be a stochastic process or sequence of
random variables taking values in some finite set. The
variable X is to be thought of as the state at time n of
some system the evolution of which is governed by a set of
probability laws. The finite set of values which the random
variables assume, called the state space of the process, may
be taken for notational convenience to consist of the first
s positive integers.

The process'{xn} is a Markov chain of order t if the
conditional probability

P{xn=an|lxm=am, m<n}

is independent of the values of a_ form < n — t. (A t—th

order Markov process should be carefully distinguished from

a t—dependent process, the defining property of the latter
being that (xl,xz, cen ,xm) and (xn,xm_l, - ’xn+r) are independent
if n-m > t. The terminology in the statistical literature is
sometimes confusing.) A Markov chain of order 1 is also called
a simple Markov chain. Throughout what follows it will be
assumed that the Markov chain has stationary transition proba—

bilities, that 1is,

(1.1) P'{xn =ac x, (=2, x4 = at} = Pa,...,a 80,

is independent of n. If t = 1, these quantities form an sxs

stochastic matrix (pij)’ the transition matrix of the process.
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If the transition probabilities are unknown, or else are
specified functions of an unknown parameter, there arises the
problem of making inferences about them from empirical data.

It is therefore supposed that n + 1 successive states have
been observed In an unbroken sequence; thus one has at hand

a realization {(or sample) {xl,xe,...,xn+l} of the first n + 1
random variables. (The use of n + 1 instead of n simplifies
later formulas.) The succeeding sections will deal with the
large—sample theory of drawing inferences 1n this situation.
The theory 1s based on chi-square methods, or the Neyman—
Pearson criterilon; any objections which can be made of these
methods in the independent case apply a fortoriori in the
present case (see Cochran [23]).

Since any probabilistic question about t—th order Markov
chains 1s reducible by a standard device to a corresponding
question about simple Markov chains, and since the same is
essentially true of statistical questions (see Section 6),
only simple chains will be considered in the next four sections.
The following definitlons and facts concerning such chains will
be needed; see Feller [33] for a systematic account. The chain
is said to be Iirreducible if for any pair i and J of states,

(n)

piJ > O for some n, where

o7~ # {pan = 31l 7y = 1]

are the n—th order transition probabilities. If the chain is

irreducible then there is a unique set of (positive) stationary
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probabilities, given by the solution of the system

2j PyPyy =1

2 Py = 1.

It P {xn = i} =Py holds for n = 1, then it holds for all n,
so that the chain is stationary. The chain is said to be
ergodic if it 1s irreducible and if its period (the greatest
common divisor of the set of integers n such that p§?)> 0)
is 1. In the ergodlic case there exist positive constants

v and P, P < 1, such that
(1.2) Ipff;)— pyl < vo"

holds for all i,J and n. An elementary proof of this last
fact will be found on p. 173 of Doob [32]. In most of what
follows it will be assumed that the chain is statlonary and

ergodic.

2. WHITTLE'S FORMULA

Let {xl,x2,...,xn+1} be a sample from a first order Markov
process with transition probabllities pij and initial proba-—
bilities Py« Ir {81’32""’an+1} is & sequence of n + 1 states,

then the probability that Xy9XoseeesX is this sequence is

n+1l

Just p. p I o) . For i,Jj=1,...8, let ¢ be the
ayvajdy  Tapdng re T 1

number of m, with 1 ¢ m ¢ n, for which a, = i and &y = J.

The sxs matrix F = {fij} will be called the transition count




P-2092

of the sequence. Since

(2.1) e
2.1 P. P R o =p_ I .p
a; aj8," " "Tapan ) Ta; 1471y

the transition count together with the initial state forms a
sufficient statistic. The distribution of this statistic,
which will now be derived, plays in the analysis of samples
from Markov chains a role analogous to that played by the
multinomial distribution in the analysis of independent
samples.

Since the probability of obtaining any particular sequence
which begins with a; and has translition count F is given by
(2.1), it is necessary only to count the number of such
sequences, in order to find the distribution of the suffi-
cient statistic. If f, = 5§f13 and f;J = gifij, then
{fi'} and {f,J} are the frequency counts of {al,...,an}

and {a2""’an+l} respectively, from which it follows that

Eijfij = Eifi. = §Jf.3 = n.

It is clear from the first of these relations that F and the
initial state completely determine the terminal state; similarly,
F and the terminal state determine the initial state. (However,
F alone does not determine both the initial and final states:
{1,2,1} and {2,1,2} have 1dentical transition counts, for
example.) The following answer to the combinatorial problem

posed above is due to Whittle.
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THEOREM 2.1: Let F be zn sxs matrix of nonnegative integers

such that EijfiJ = n and such that f, - ; =06, —58,,

i=1,...,s, for some pair u,v. If Ngg)(F) is the number of

sequences (al,ae,...,an+l) having transition count F and

satisfying a, =u and 8,1 = Vs then

(n) oy Tyf.!
(2.2) Moy (F) = 17T P

where F¥ is the (v,u)—th cofactor of the matrix F* = {f;J}

with components

6yg = fij/fi.

(2'3) fIJ =

6, 4 if £, =0

The proof goes by induction. The result belng easy to
establish 1if n = 1 (in which case both sides of (2.2) are 1),
assume it holds if n is replaced by n — 1. If Flu,w) is F

with its (u,w)—th entry diminished by 1, then clearly
(n) _ (n-1)
N (r) = s N0 (m(u,u)),

where the summation extends over those w for which fuw > 0.
Hence it suffices to show that the right—hand side of (2.2)

satisfies this same relation, or that

—1
(2.4%) Py = S&fuwfu‘st(u,w).



P-2092

Since F*(u,w) and F* agree outside the w~th column,
F;w(u,w) = F;w. From this fact together with the definition

{(2.3), it follows that (2.4) is equivalent to gwf;;wF;w

= 0,
where the summation now extends over all w. Since
* * - *
Squvaw = 6,, det F*, (2.4) follows immediately for the
case in which u # v and it is necessary only to show that
det F¥ = 0 1f u = v. Suppose for notational convenience that

f = f~i is positive for 1 < r and zero for 1 > r. Then F

i.
has the form

A O

o
"

0o 0,

where A is an rxr matrix. By the definition (2.3),

A* O
F* =
o Iy,
where the rows of A* sum to O. Thus det F*¥ = det A* = O.
(If u # v, it may happen that F* is nonsingular.)

Whittle's original proof of this theorem [78] involved
integration methods. Subsequent proofs were given by Dawson
and Good [30] and by Goodman [49], who derived the result
from known theorems (due to van Aarden—Ehrenfest and
de Bruijn [1] and to Smith and Tutte [76]) on the number
of unicursal paths 1n an oriented linear graph. The proof
given above 1s a corrected version of the one on p. 195 of
my rpaper [17]. It is possible to reverse the steps of the
proofs in [30] and [49] and deduce the graph—theoretic

result from (2.2). (It should be pointed out that Dawson
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and Good considered not the transition count F, but the

circularized transition count, which is obtained from F by
adding an extra tally in the (v,u)—th cell if 8,4 =V
and a; = u.)

From (2.1) and (2.2) it now follows that the probability

that {xl’x2""’xn+l} has F as its transition count and that

X, =u (and hence, Xppy = v) is Just
H f fij
(2.5) P Fa, ﬁ;}”;;‘ I 4Py 4,

which 1s Whittle's formula. Note that for the validity of
(2.5) it is not necessary to assume that the initial proba—
bilities are stationary, or even that the transition matrix
(pij) has any particular ergodic structure. Whittle's formula
can be made the starting point of a number of investigations;
I will indicate two of them.

Suppose that the process {xn} is actually independent
with P {xn = i} = p;- Then (2.5) reduces to

N, £, f
i 1. .
qusu n,.,f I

p .
13 1J J7J

Now the probability that {x2,...,xn+1} has {f,J} as its frequency

count and that X] = Uy, Xp.4 =V, is
f f
v -

py(n-1)! g—r Myp, I,

J -
by the multinomial formula. Therefore the conditional probability

of the transition count ¥, given the frequency count {f-j} and
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the fact that Xy = Uy X0 =V, is

%*
(2.6) nFe, Hifi.gﬂjf,jl
. (B3 ) L4
.y n.HiinJ.

a formula due to Dawson and Good [30] and to Goodman [49].
Note that (2.6) is independent of the Py - Now the second
factor in (2.6) 1is just the conditional probability of

obtaining cell frequencies f

i
table, given that the marginal frequencles are fi- and f.J.

j in an ordinary contingency

Further, it follows from the weak law of large numbers for

independent trials that the first factor in (2.6) goes in

~1

,  times the (v,u)~th

probability to a constant (namely, p
cofactor of the matrix (6iJ - pJ)). Since (2.6), as well

as (2.6) with the first factor removed, yields 1 when summed
over ¥, 1t is intuitively clear that this constant must be 1.
Let S be any statistic which would test the hypothesis of
independence in the contingency table {fij} if it really were

a contingency table instead of a transition count. If the

first factor in (2.6) goes to 1 in probability then it is also
intuitively clear that the asymptotic distribution of S is

the same in the present case, that 1s, if {fij} is the tran—
sition count of an independent sequence, as it would be in

the standard contingency case. These facts are proved rigor—
ously in Dawson and Good [30] and in Goodman [49]. For example,
the chi-square statistic

(£15753.%.4/0) ©
£ fi.f.J/n

(2.7)
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has asymptotically the chi-square distribution with (s—-l)2
degrees of freedom. Thus (2.7) can be used to test the
hypothesis that {xn} is independent (and stationary) within*
the hypothesls that {Xn} is a first—order Markov process.
This fact has been proved also by Hoel [55] and Good [44]
and willl be a corollary of the more general results of
Section 4 below.

A second application of Whittle's formula 1s to run
theory. Suppose once more that {xn} is a Markov process but

that s = 2. In this case the transition count

T f

11 12

f r

21 22

is determined by f12’ fl and f2 (dropping for the moment the

distinction between f, 6 and f-i)' But f,, is essentially the

i-
number r of runs of 1's in the sample. Thus (r,fl,fg) is
essentially a sufficlent statistlic and 1ts distribution is a
special case of Whittle's formula. This fact has been used
by Goodman [48] to derive the distributions of a number of
runs tests. Most of these runs tests turn out to be tests of

the Markov property. See [48] and its forerunners: David [29];
Barton and David {11], [12] and [13]; and Moore [69] and [70].

*
If H is a hypothesis contained in the larger hypothesis
H', I will, following Good [44], speak of testing H within H',

rather than of testing H against alternatives in H'-H.
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Whittle's formula can alsoc be used to derive the moments
and cumulants of various distributions; see Whittle E?SI,

Patankar [73], Good [45], Gabriel [38], and Krishna Iyer [60].

3. CHI-SQUARE METHODS

A more systematic way of attacking the problem of statis—
tical analysis of Markov chains is to carry over to the Markov
case the chi-square methods applicable in the multinomial case,
the methods treated for example in Chapter 30 of Cramer [26].
To s8implify the discussion it will be assumed at first that
the chain is stationary and ergodic; later it will be indicated
how these requirements can be relaxed.

Ignoring the factor qu;u in Whittle's formula (2.5), one

can say roughly that the probability of the transition count F is

£,! f
1 iJ
(3.1) “1[?1;@ T4P1y J :

(In this section f will be denoted by fi; this quantity is

i
still to be distinguished from f~i') Now (3.1) is formally the
same as the probability of obtaining the s frequency counts
(fil""’fis) in s independent samples of sizes fi respectively
from multinomial populations with cell probabilities

(pil""’pis)’ Let

(5-2) 5= (g~ ST -
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If this multinomial situation really d4id obtain, then the

s random vectors &i = (511""'€1s) would be independent of
each other, the covariance structure of &i would be

E{gijgil} = szpij - pijpiz’ and, if f; were large, Ei would
be approximately normally distributed. Now in the Markov case,

the £, will be large with high probability, provided n is large.

i
Hence it 1s reasonable to conjecture the following result.

THEOREM 3.1: 1In the stationary, ergodic case, the distribution

2--dimensional random vector £ = (eij) converges as

of the s

n —oe to the normal distribution* with covariance matrix

(xij,kz)’ where

(3.3) Mi,ke = %1kPygP1y — PysP1y) -

Assuming for the moment the truth of this theorem, it
follows from the ordinary chi—square theory that each of the
statistics

2
£,y — £;p
(3.4) = <i%p 1P19) , 1=1,...,s,
J 1713

has asymptotically the chi-square distribution. The summation
in (%.4) must be restricted to those indices J for which
piJ > 0; if the number of these 1is di’ then the number of

degrees of freedom in the limiting distribution is d.,-1.

i

*
All normal distributions consildered here are centered
at the origin.
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(The degenerate case di = 1 is possible.) Moreover, the

s statlistics are asymptotically independent, so that their sum

2
(f1y = £3049)
1 1713

has asymptotically a chi—-square distribution with d-s degrees

of freedom, where d = E&di i1s the number of positive entries

in the transition matrix (piJ). The statistic (3.5), first

considered by Bartlett [7], provides a measure of the goodness

of fit of the sample with the assumed transition probabilities pij'
A number of different proofs of Theorem 3.1 are possible

(see Bartlett [7] and Whittle ETSD; for example, it can be proved

via the central 1limit theorem for Markov chains. The following

proof, which was suggested to me by Paul Meler, simply makes

precise the heuristic arguments whilch preceded the statement of

the theorem. It is very simple, direct,and, from the statistical

point of view, natural. It has the further advantage that it can

be made the baslis of a new proof of the central limit theorem for

Markov chains. The following preliminary result 1is needed.

LEMMA 3.2: Assume that the chain is stationary and ergodic and

let § = (gl,...,cs) be the random vector with components

Then
Ed¢ =0
(3.7) {1}

E{z;igj} = a3y + 0(1/n),
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where

- & (,(m) E (.(m)

Moreover, the weak law of large numbers holds:

(3.9) p lim f,/n = p,.

In -—» co
To prove (3.7), define the random variable cm(i) to be
1 or O according as X equals i or not. Then f; = 2521 cm(i).
From the stationarity of the chain it follows that
E{cm(i)} = py, 50 that E{Ci} = 0. Now

eftyt} -t 3 S {ley(0) - p)eg) -5}

Again using the stationarity, one sees that (m—£)

pipij—pipJ 1if m>4

E{(cz(i)—pi)(cm(J)—pJ)} = P{Xfi, Jg;d}— PPy =1 P40y yPyPy if m={

£-m) .
pyp{é= £ mek.
! 3Fii pjpi i m<
Therefore,

(3.10) E{t;t5} = (p;054pypy) +

- n—1 . (m)_ -1 n—~1 (
n mgl(n J(pypyy'—>ypy) + 0 F (n-m)(pypj

m)
m=1 1

—pin) .

The first sum on the right-hand side of this equation differs

from the corresponding sum in the definition of aiJ by the amount
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-1 2 (m)_ -1 gt (m)
(3.11)  n" py m._S__{n(piJ py) + 0 py mgi m(pyy’= py)-

From (1.2) i1t follows that the series 2;21 (p§?)- py)

and Sgil m(p§?)— pJ) converge absolutely. Therefore, the
difference (3.11) is of the order 0(1/n). The second sum in
(3.10) is treated similarly and (3.7) is thus established.

(This sort of computation is standard; see p. 225 of Doob [32].)
And now (3.9) follows by Chebyshev's inequality.

The weak law of large numbers (3.9), the only part of
Lemma 3.2 needed for the proof of Theorem 3.1, follows also
from recurrent event theory; see p. 297 of Feller [33].
However, the computation (3.8) is needed for the central limit
theorem (Theorem 3.3 below).

Theorem 3.1 will now be proved. The process {xn} can be

viewed as having been generated in the following fashion.

Consider an independent collection of random variables Xy and
we (1=1,2,...,8; n=1,2,...) such that P{xl = 1} = p, and
P{win = j} = pyy. Imagine the variables w;, set out in the

following array:
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First, Xy is sampled. If X, = i, then the first varlable in
the i-th row of the array is sampled, the result being Xo by
definition. If X, = Js then the first variable in the j—th

row is sampled, unless J§ = 1, in which case the second variable
is sampled. In any case, the result of the sampling is by

definition x,. The next variable sampled is the first one in

3
row x3 which has not yet been sampled. The process continues
in the obvious way. More formally, X5 is defined to be Wy 99
1
is taken

and, if Xy9XoeeesXy have been defined, then Xn+l

to be wxn,m, where m — 1 is the number of £, 1 ¢ £ < n, such

that Xp = Xg. It is intultively clear that

..

(3.12) Pix, =a,, 1 <<kn+tl =p_ P . .
{ K jle } a,7ay3, 2,841

For a rigorous proof, note that by definition

{xk =2, 1<kg n+1} = {xl = 8y W, = ay, 2 <k n+1},

k-1"
where m. — 1 is the number of elements among {al”"’ak—l}
which are equal to a . Since the variables Iinvolved are all

distinct and independent,
P{x, =a,, 1 <<k g1m+%= P{x = a }P{w = a }... P{w = a }
{ k k? 1 1 a;m, 2 am .1 n+lf,

and (3.12) follows.
Since the process produced according to the above prescription
has, by (3.12), the proper joint distributions, it can be used to

compute the distributions of the f.,. Clearly (f,,,...,f..) is
iJ il is
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the frequency count of {wil,...,wif }. Since, by the weak law
i

of large numbers (3.9), fi is near np; with high probability,

it is natural to compare (fil,...,fis) with the frequency count

(gil,...,gis) of {wil""’wifhpi]}' From the independence of

the array {win} and the central 1limit theorem for multinomial

trials, it follows that the s° random variables

are asymptotically Jointly normally distributed with covarilance
matrix given by (3.3). Now it will follow by Section 20.6 of
Cramér [26] that the s®°_dimensional random vector N, with

components

(3-15) nij = (fij - fipij)/‘/npi ’

will have this same limiting distribution, if it is shown that

for each fixed 1 and J, the difference

gyg = [ppylPyy  fyy = fyPyy

.14
(5:24) /0 s

goes to O in probability. Since the ratio of gij (defined by
(3.2)) and nij goes to 1 in probability by (3.9), it will then
follow (by Section 20.6 of [26] again) that € has this limiting
distribution as well, which will complete the proof of Theorem 3.1.
To show that (3.14) goes to O in probability it will be con-—

venient to change the notation; let en be defined by
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1l - pij irf Wem = J

and put Sm = el+...+em. Then the e, are independent and
identically distributed with mean O and variance 02 = pij(l_pij)’

and the difference (3.14) becomes
.1 S - S .
(3.15) (S[p] = 52 AR

Given € > O, choose n, so that if n > n,s then

P{lfi - [npi]| > ne}} < €,

which is possible by (3.9). If n > n_, then
P !S - S ‘ n €

< P{‘fi - [npijl > ne3} + P{Im—[nr;ﬁl < ne? Is[npi] - sml > edﬁ}

< e+ 2 P{;Egznej lSm' > efﬁ/2}

L e+ 2 (u/egn)(neBOZ) = (1 + 8 02)6,

where the last inequality follows from that of Kolmogorov (see
p. 220 of Feller [33]). Since € was arbitrary, (3.15) goes to
O in probability. (This sort of argument is used in sequential
problems; see Anscombe [5].) This completes the proof of

Theorem 3.1.
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It is possible to show that the covariance matrix of T,
defined by (3.13), is exactly that of its limiting distrioution.
In fact, 1if

1l - piJ irf X i andg Xoe1 = J

d (1,3) = <= Py if x =1 and x .4 #J

0] if X £ 1

_ n
then fij - fipij = §%=l dm(i,J). A straightforward computation
shows that if m # r, then dm(i,J) and dr(k,,e) are uncorrelated.

From this fact together with stationarity it follows that

E{(f1J - fipij)(fu - fkpkz)} =n E{dl(i,J)dl(k,z)} .
The proof is completed by showling that
E{dl(ilj) dl(k)z)} = pi)\ij,kﬂ ’

which 1s again just a matter of computation.

Although Theorem 3.1 1s all that 1ls needed for the statis-—
tical analysis of Markov chains, 1t is interesting to see how
it leads to a simple proof of the asymptotic normality of the
random vector ¢ defined by (3.6).

THEOREM %.3: Under the assumptions of Lemma 3.2, the distribution

of the random vector { converges to the normal distribution with

covariance matrix (aij)‘

Now it has been shown that the distribution of the random

vector T, defined by (3.13), approaches the normal distribution
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with covariance matrix A = (xij kﬁ)' Moreover, the covariance
2

matrix of T} is exactly A for all n. Since fJ and f’,J differ

at most by 1, if

¢J = (fJ —Eifipij)//ﬁ

then
/2

1
Therefore the distribution of § = (¢J) approaches a normal
distribution with some covariance matrix M, and the covariance

matrix of ¢ itself has the form M + 0(1/n). But the relation

(3°16) (bj =Si(613 "PiJ)Cj_

is easy to verify. Thus ¢, known to be asymptotically normal,
is a linear transformation of . If this transformation were
invertible, the asymptotic normality of f would follow ilmme-~
diately. Actually, although the transformation (3.16) is
singular, { can be recovered in a linear fashion from { because
(3.16) 1is one—to—one on that (s—1)—dimensional subspace of Ry
in which £ and ¢ must lie, namely, the subspace

H = {zeRS: Eizi = Q}. Suppose in fact that z is a (nonrandom)
element of H such that

(3'17) Si(aij - plj)zi = O, i=1,...,8.

Since the transition matrix (pij) is ergodic, the solutions of
the system zJ = izipij form a one~dimensional subspace of RS,

that spanned by (pl""’ps)' Therefore (3.17) implies that



P-2092
20

z, = ap;, where a is a scalar. If 24 zy = 0, then a must be O.
Therefore the transformation (3.1€) is nonsingular when
restricted to H, so that ¢ is a linear function of §. This
implies, in the first place, that the distribution of { approaches
a normal distribution with some covariance matrix N, and, in the
second place, that the covariance matrix of { has the form
N + 0(1/n). But by Lemma 3.1, the covariance matrix of £ is
<aiJ) + 0(1/n). Therefore N = (aij) and the proof is complete.
The central 1limit theorem for Markov chains is usually
stated in a different form. Let ¥(1),...,¥(s) be s numbers
such that E{V(xn Ei piv(i) = 0. Then the distribution of

n_l/gs

~1/2 n .
n=n / S%=l V(xk) approaches a normal distribution

with mean O and variance

(3.18) o = B{w(x)?} + 23 5r(x) ()}

(In this form the theorem can be proved under much more general
conditions; see p. 228 of Doob [32].) This theorem 1is a conse—
quence of Theorem 3.3%, since n_l/gsn = 21 CiV(i) and since

(3.18) 1is just another way of writing
o = By, oY),

Note that if the vector (¥(i),...,¥(s)) is annihilated by the
matrix (aij) then 0° will be zero, so that n_l/esn will go to
zero in probability. This, the so—called degenerate case, can
arise in circumstances of which the following example is the

prototype. Consider a six—state chain represented by the
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following diagram.

+3 +2

+2
—h -5

Here the points represent the states, the arrows represent the
possible transitions and the numbers are the values of the ¥(i).
The chain is ergodic, but clearly 'Sn| < 5 for all n, since
the sum of the ¥(1i) around any circuit is O.

Now that Theorem 3.3 has been proved, the results stated
in the paragraph following 1t are established. The goodness of
fit statistic (3.5), which has now been proved to have asymp—
totically a chi—square distribution with d—s degrees of freedom,
can be shown to be equivalent to the appropriate Neyman-—Pearson
criterion as Bartlett [7] pointed out. In fact, using the
methods of Wilks [79] (see [18] for the detalls) it can be

shown that
2
(3.19) s (f15 = £3P4y) 2S£, 1g il
1J 4Py Ty 13 77 Lypyy

(Here and in what follows, the notation £ ~ T is used to indicate
that the difference £ — T goes to O in probability.) Now the

log—-likelihood of the sample {xl""’xn+l} is essentially

Eij fij 1g Pyy -

Here the term 1lg Py has been suppressed, since it 1s small
1
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compared wlth this sum. If this expression 1s maximized subject
to the constraints Eb pij = 1 by the method of Lagrange multi-—
pliers, it is found that the maximum occurs at ﬁij = fij/fi

and that the maximum value is

S1y Ty 18 (£54/14).

Thus the right—hand member of (3.16) is Just the Neyman—Pearson
criterion, that 1is, twice the difference of the maximum of the
log—likelihood and its actual value.

Throughout this section it has been assumed that the chain
is stationary and ergodic. If the assumption of stationarity
is removed, and any initial distribution allowed, then the
results still hold, since the initial effects wear off as n
become large. The only difference now is that the expected
values of the various random variables (3.6), etc., are
asymptotically O, rather than exactly O.

Suppose there is Just one ergodic class, say'{l,2,...,f},
but that there exist transient states {r+1,...,s} . The

transition matrix P then has the form

A 0
B C

The process very quickly leaves the transient set (the proba-—
bility of being in a transient state at time n goes to O
exponentially fast) and once the ergodic class is entered, it

is never left. Thus the large sample theory above makes 1t
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possible to do inference on the elements of the rxr stochastic
matrix A. Large sample theory ls not applicable to the
elements of B and C, however, since the process stays among
the transient states such a short time. A systematic analysis
of this situation would be interesting.

The assumption that the chain is aperiodic¢ can certainly
be removed; all that happens is that the formula (3.8) becomes
more complicated. The easiest way to see that the assumption
of aperiodicity 1s inessential is to consider, if the chain
has period A, a new cha1n~{(xn,xn+1,..., xn+x_l); n=1,2,..{}.
This new chain 1s aperiodic, and a knowledge of 1ts evolution
the equivalent to a knowledge of the evoluticn of the original
chain {x } .

The only assumption which cannot be relaxed is, of course,
that of irreducibility. However, if the chaln has more than
one ergodic class, it 1s still possible to derive the limiting
distributions of the various statistics considered here, con—
ditional on a knowledge of which ergodic class the initial state
lies in. This 1is all that is necessary for purposes of
inference.

This section has dealt with the problem of testing, within
the hypothesis that {xn} is a Markov chain, the hypothesis that
it has specified transition probabllities. It is possible also
to test one simple hypothesis against another. If (pij) and
(qu) are two ergodic stochastic matrices with stationary

distributions (p;) and (qi), then the logarithm of the likelihood
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ratio appropriate to the test is

n
18 (qxl/pxl) * kgl le (quxk+1/ pxkxk+1>
= 18 (qxl/pxl> + %J fiJ g (qij/pij>'

The limiting distribution of this statistic (properly normed)
is normal, but it 1is hard to get simple expressions for the
mean and variance; see Goodman [48].

Further papers related to the topics treated in this
section are Romanovskii [74]; Bartlett [8]; Smirnov [75];
Cox [24] and [25]; Mihoc [67]; Firescu [34]; Broadbent [21];
and Cane [22]. A few results on power will be found in my

monograph [18].

4, ESTIMATION OF PARAMETERS

In the preceding section 1t was shown that
- 2
(fy4 = £3P4y)
4P1y

(4.1)

13
is asymptotically chi-square in distribution. If all the pij
are positive, as will be assumed throughout this section to
simplify matters, then the number of degrees of freedom is
s(s-=1). This chi-square statistic is useful for testing
whether the transition probabilities of the process have
specified values pij‘ There arlises naturally the problem of

testing whether these transition probabilities have a specified
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form pij(e), where 6 1s an unknown parameter which must be
estimated from the sample. Now if the process 1s really
governed by the transition matrix (pij(e)), the log—1likelihood

of the observation {xl""’xn+1} is (essentially)

(4.2) §1J f35 1g pyy(6).

If the parameter is a vector 6 = (91""’9r) with r real

components, then the maximum likellhood equations are

£ ap, ,(9)
(4.3) ES 5;3%%7 ——%%;—— = 0, u=l,...,r.

If this system of equations has a solution é, then the
A
insertion of pij(e) into (4.1) yields a statistic appropriate

to the testing problem in question, namely,

(fiJ - fipiJ(é))z
A
T3 £;0,,(6) :

(4.4)

One expects this statistic to be arproximately chi—square with
s(s—1)-r degrees of freedom; the following theorem shows that

this 1s true under appropriate regularity conditions.

THEOREM 4.1: Suppose that for each € in an open subset ®

of r—dimensional Euclidean space, (pij(e)) is an sxs stochastic

matrix with positive entries. Suppose that each pii(e) has

continuous partial derivatives of first and second order in @

and that the saxr matrix D with entriles

(4'5) dij,u = apij(e)/aeu
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has rank r throughout ®. Suppose further that {xn} is a

Markov chain with transition probabilities pij(e) for some

A
€ € ®. Then there exists a random vector 6 in § such that

3 is, with probability going to 1, a solution of the system

(4.3) and such that 6 converges in probability to the true

value of 6. Finally, the statistic (4.4) has asymptotically

the chi-square distribution with s(s—1)-r degrees of freedom.

It should be pointed out that in this theorem certain
possible pathologies are ignored. There is only one consistent
solution to (4.3), but there may be others which are not con—
sistent; the theorem provides no means of selecting that
solution which is near the true value of 6. Further, while
it is true that if n is large, then @ is, with high probabllity,
a local maximum of (4.2), there is no assurance that it is an
abscolute maximum. These difficulties usually do not arise in
actual applications; see Kraft and LeCam [59].

The assumption that the matrix D has rank r is made to
ensure that there 1s no redundancy among the parameters 91...9r.
Since 55 pij(e) = 1 for all 6, Eaapij(e)/aeu = 0 for all i and u.
Thus there are s independent constraints on the rows of D, which
implies that r s®~ s.

Theorem 4.1 can be proved by the methods of Section 30.3
of Cramér [26]. In fact, by virtue of Theorem 3.1, the random
variables fij may as well (from the asymptotic point of view)

have arisen from s independent samples of sizes fi from

multinomial populations (pil”"’pis)‘ Thus Theorem 4.1
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reduces to the results of [26]. (Cramdr actually carries
through the proof only for the case of one multinomial sample,
but he indicates (and uses) the more general result.)

A somewhat simpler proof of Theorem 4.1, under the additiomal
assumption that the piJ(e) have continuous third order partial
derivatives, will be found in my monograph [18]. This proof
makes use of the methods of Section 7 below.

Just as 1In the case in which there are no parameters to
estimate, the chi-square statistic derived above can be trans—
formed into a Neyman—Pearson criterion. As was seen in
Section 3, the maximum of Eij fiJ 1g Pyys 85 (pij) ranges
over all stochastic matrices, 1is 513 fi5 18 (fij/fi). And the
maximum of Sij fi,j lg piJ(e), as 6 ranges over®, is
Eij fij 1g pij(éL (ignoring the difficulties mentioned above).
Therefore, 2 Eij fiJ 1lg (fij/fi piJ(a)) is the Neyman—Pearson
statistic for testing, within the hypothesis that {xn} is a
Markov process, the smaller hypothesis that the transition
probabilities are piJ(e) for some value of €. It can be shown
(see [18]) that

(f £,p, (9))2
1]~ "1h1g ~ 2 £, 18(8, /2,0, ,(6))
13 £p,4(8) 3 1 S

if the smaller (null) hypothesis is true.

As an example, suppose one wants to test whether piJ = pJ
is independent of 1i; that 1s, whether the Markov chain is
really an independent sequence. Let r = s-1, let ® consist of

the set of vectors 6 = (61,...,95_1) with positive components
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the sum of which is less than 1, put pij(e) = eJ for j < s
and put pis(e) =1 —-§k§:% 6,. Then the conditions of the
theorem can be verified and the equations (4.3) can be solved
explicitly. (It is of course actually easier to maximize

Sij fiJ 1g pJ by Lagrange multipliers.) The solution is

GJ = f,J/n, as could have been anticipated. In this case the

chi—-square and Neyman—Pearson statistics become

2
(fij —fif.J/n) by

i
~ f 1g
%,j fif,J/n %J iJj fif'j7 .

Each one has in the limit a chi—-square distribution with s(s-1) —

s(s—=1) — (s-1) = (s——l)2 degrees of freedom. This chi—squarc
statistic was derived from Whittle's formula in Section 1.

Tests of various other hypotheses can be derived in a
routine manner from Theorem 4.1. For instance, one can test
the hypothesis that the process has given stationary proba-—
bilities; that is, that the transition probabilities piJ
satisfy E{ipipi'j = pJ, where the p; are prescribed numbers.

A number of such examples will be found in [18]. Other papers
relevant in this connection are Bartlett [7], Patankar E72],
and Gani [39] and [40].

The theory of this and the preceding sections can be
extended to cover the case of two samples. Let {fij} and
{gij} be the transition counts of two samples, independent of
each other, from Markov chains with transition matrices (pij)
and (qu). The estimates of Pyy and of qyy are fij/fi and

gij/gi’ respectively, while if it is hypothesized that
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Pyy = 9y» then the common estimate is (fiJ + gij)/(fi + gi).

It is easily shown that the chi-square statistic for testing

the hypothesis that Pijy = 9y (homogeneity) is

2 -2
e _p hyte Lo fig Ty
1] 17T F ey iy T By T, s
Ty . f%; * 84y T3 . f15 * B4y
1 £y +8 15y +vgy
f.g f g 2
.S 183 ( 15 _ 81y
T3 f13 T 843 \f1 8/ -

The asymptotic distribution has s(s—1) degrees of freedom.
This sort of problem has been treated by Darwin [28] and by
me [16] and [18].

Results of this sort apply equally well, of course, if
the number of samples is three or more. It must be assumed,
however, that the number of samples is fixed, while the
sample sizes go to infinity. A different theory is needed
in the opposite case, that in which the samples are of fixed
length (say £), while the number n of them goes to infinity.
In principle, the standard multinomial theory applies in this
case. Suppose in fact that for k=1,...,n, (xkl,...,xkz} is
a sample from a Markov chain with transition probabilities
(pij)‘ (It is possible in this case to let the transition
probabilities vary from trial to trial.) The n samples
together can be regarded as one independent sample of size n

from a multinomial population with sz categories, the category
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(al,...,ag) having probability palpa a Various

182" Fay ey
special problems arise, however. If one has only partial
information, for example the frequency count of {xli"°"xni
for each i=1,...,£, then special methods are required. Papers
on the analysis of many short samples are Miller [68],

Goodman [47], Kao [56], Anderson [3], Anderson and Goodman [¥],

and Madansky [65].

5. PSI-SQUARE STATISTICS

The chi—square statistic (3.4) treated in Section 3 has
a direct appeal as a goodness of fit criterion, quite aside
froﬁ its connection with the Neyman—Pearson criterion.
A statistic which at first sight perhaps seems even more
natural from this point of view is
(£y4 - npipu)2

5.1) .
( %} NPiPyj

Aslde from the fact that this statistic has no simple inter—
pretation in terms of likelihood theory, it 1s not very useful
because its limiting distribution is not free of the parameters
(pij)‘ If Pyjy = Pys that is, if the process 1is independent,
then (5.1) reduces to

(fyy - npipJ)2

.2 S = ’
(5.2) 5,

a so-called psi-square statistic. Although (5.2) also lacks

a likelihood interpretation, at least its limiting distribution
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is free of the parameters (pi). This psi-square statistic

was first used by Kendall and Smith [57], [58] as a test for
serial correlation in their random number tables, but it was
incorrectly assumed by them to have asymptotically a chi-sguare
distribution. It 1is the purpose of this section to show that
the asymptotic distribution function of (5.2) is

(5.3) KS_I(X/2) * K(s—l)z(x)’

where Kd(x) is the chi-square distribution function for
d degrees of freedom.

Let H1 denote the hypothesis that-{xn} is an independent
process with specified probabilities py = P{xn=i}; let H2 be
the hypothesis that {xn} is an independent, stationary process
with the probabilities P{xn=i} unspecified; finally, 1let H5
be the hypothesis that {xn} is a Markov process. By the

results of Section 3 the statistic for testing H., within H. is

1 3
£, (£, - fipj)e
(5.4) 2, Ty le —-Lf S-~ 853 =2 5 .
iJ 1Y i3 17
By Section 4, the statistic for testing H, within H3 is

£ (£, - fif‘j/n)e

(5.5) f lg 1 ~ § = .
%J iJ fifj n 23 §J fifj/n

(Here the distinction between fi and f-i has been dropped.)
It is known from the ordinary multinomial theory that the

statistic for testing H, within H2 is

1
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2

(5.6) %fi 1gE 812-_-%_?1-—.

Since the left—hand members of (5.5) and (5.6) sum to the

left—hand member of (5.4), it follows that

(5.7) 337~ S35 + Sp3-

In fact, if the denominators in 812 and Sl3 are replaced by

f, and fifj/n respectively, which is legitimate (see Section 20.6

i
of Cramér [26]), then (5.7) becomes an equality. Since the
three hypotheses stand in the relation ch H2=:H3, the
statistics 812 and 823 are asymptotically independent.
(This phenomenon is familiar in analysis of variance; see
(18] for a proof.) That the limiting distributions of

812, 823 and 813, which are respectively chi-—square with
s—--l,(s—-l)2 and s(s—1) degrees of freedom, convolve properly

is a reflection of this fact together with (5.7).

Now S, defined by (5.2), is related to S, and 813 by

(5.8) S~ 8y, + 313_

This relation 1s proved by noting that if the denominator in

813 is changed to npyPy (use Section 20.6 of [26] again) then

the two members of the relation become algebraically identical.

From (5.7) and (5.8) 1t follows that

S

S~ 2812 + 23"
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Since 812 and 823 are asymptotically independent and
chi-square with s—=1 and (s—l)2 degrees of freedom, it follows
by an obvious generalization of the result of Section 24.5
of [26], that the limiting distribution of S is given by (5.3).
This theorem was first proved for the case in which Py = 1/s
and s is a prime number by Good [43], and in the general case
(by methods very different from the ones above) by me [15].
Various extensions are to be found in Stepanov [77];
Good [4€]; Basharin [14]; Goodman [50], [51] and [52]; and
in my papers [15], [16] and [18].

If L1J is the Neyman—Pearson statistic for testing the

hypothesis H, (above) within H,, then it is obvious that

3
S ~ 2L12 + L23.

It is thus hard to see what interpretation is to be put on S.

6. MULTIPLE MARKOV CHAINS

Let {xn} be a t—th order Markov chain (as defined in
Section 1) with transition probabilities
r . P{x = a Xy & T 8igeeeyX o = a-},
By eeeBpi8e 4 n t+1“ n-t 1 n—-1 t

assumed for simplicity to be positive. If t > 1, {xn} is

called a multiple Markov chain. Problems involving multiple
Markov chains are easily reduced f£o problems about simple
ones by the following device; see p. 89 and p. 185 of

Docb [32]. Consider the process {ym;m=l,2,..:}, where

Yy = (xm’xm+1""’xm+t—l)' Then {ym} is a first—order Markov
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t

chaln the state space of which consists of the s” different

t—tuples, the transition probabilities being

if by=a 1=1,...,t~1

by i+1°?
(6.1) p(al"'at)(bl"‘bt) =

0 otherwise.

A knowledge of the first nt+t steps of the original process
{xm} is obviously equivalent to a knowledge of the first n+l

steps of the new process {ym}. For example, let f, a,
1vee

be the number of m, with 1 < m < n, such that

(xm""’xm+V—1) = (al,...,av). Then the rdles played by

the fi and the fiJ in the paragraph following Theorem 3.1

are assumed here by the f and the f . Clearly
8y...3¢ @y c8pq

the s there is to be replaced by st here. Finally, the

number of positive entries in the st X st matrix defined by

(6.1) 1is st+1, a number which plays the role of the 4 of

Section 3. It follows that the statistic

2
f ~ £ p .
6 ( 8y eeeByq aye..ay al...at.at+1)
(6.2) > 7 5
Ayeec8p44 Bpeee8y T@yce08 18
. t+1 t
is asymptotically chi-square with s — 8~ degrees of

freedom. As in Section 3, it can be shown that this statistic
is asymptotically equivalent to the appropriate Neyman—Pearson
criterion.

The results of Section 4 can be carried over so as to take
into account fhe possibility of estimating parameters upon

which the pa
1

a. :a may depend. For example, if r < t,
TTTTE T+
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then the parameters may be so defined as to correspond to the
hypothesis that {xm} is a Markov chain of order r. In this

case the p_ in (6.2) are to be replaced by

.8, :8

1 t 7 t+1

A = f

. f

817 8¢i8g4 at—r+1"’at+1// Bg—r+1" B3¢

If this is done, the resulting statistic, appropriate for
testing the null nypothesis that {xm} is an r—~th order Markov
chain within the hypothesis that it 1is of t—th order, is

Tl sty _ (sTH §T) gegrees

asymptotically chi-square with (s
of freedom, provided the null hypothesis is true. Papers on
this subject are Bartlett [7]; Good [44]; Dawson and Good [30];
Goodman [49]; and my papers [16] and [18].

Generalized versions of the psi—square statistic (5.2)
can be treated by applylng the method of Section 5 to the
process {ym} defined above. It turns out, for example, that

ir {xm} is an independent process with P{xm=i} = p;, then

the asymptotic distribution function of

2
f — np_ ...p )
( 8y---2¢ a) 8¢

al..'

is given by

S Kgt—=1( o 1)2(x/k) » K, (x/%),

where the first * stands for iterated convolution. If t=2,

this result reduces to that of Section 5. If {xm} is a
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first—order Markov chaln then the distribution function of

£ - f_p R o e
(6.3) g al...at a;"aja, at—lat
.3 2 7

a.,...a a.Fa.a " ePy a

1 t 1 “1%2 t—-17¢
approaches

t-2 . 2

kzl Kst—'k 1(8—1) (X/k) * KS(S—l) (X/t—l).

If t=2, only the final factor remains and this result becomes

that of Section 3. If, however, the fv in (6.3) 1is replaced
1
by np, the statistic is no longer asymptotically distribution—
1

free. In this connection, see the references given at the end

of the preceding section.

7. EXTENSION TO GENERAL STATE SPACES

The problem of analyzing a simple from a first—order
Markov chain was approached in Section 2 through Whittle's
formula and in Sections 3 and 4 by extending the multinomial
chi—square methods. There is a third possibllity. Suppose the
transition probabilities are functions of 6, as in Section 4,

so that the log—likelihood function is
(7-1) L(Q) = Zij fi,j ig pij(e).

If the regularity conditions of Theorem 4.1 are satisfied,
there exists a consistent solutlon & = (él,...,@r) of the

maximum~—likelilhood equations
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(7.2) Eij £3 33@: ig pij(e) = 0, u=l,...,r.

It can be shown that if 8 1s the true value of the parameter
then the random vector "n (é — 8) is asymptotically normal.

In fact, if z = (zl,...,zr) is the "score", that is, if

(7.3) 2, = 213 f1y 3%; g py4(8),  usl,...,r,

then 1t can be shown that z//ﬁ converges in distribution to

)s

that normal distribution with covariance matrix o = (0

uv
where
%y = 5, Pa(OIpy;(0) [ae le P13<9)M 18 Py G)J
= {[ g p, 2(9)J [‘a%; lg pxlxz(e)]}'
Moreover,
(7.4) z/Aa ~ ofi (8 - 6),

and, since o 1s nonsingular, as follows from the assumption
that the matrix D defined by (4.5) has rank r, the vector
Ja (8 — 8) 1s itself normal in the 1imit, with covariance

matrix ¢ L. Finally, it can be shown that

(7.5) 2[L(8) - L(8)]~n 3, o, (8 —6)(8 -6,

from which it follows that the Neyman—Pearson statistic on the

left has asymptotically a chi-square distribution with r degrees
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of freedom. If the pij(e) are chosen in such a way that
(pij(e)) ranges over all stochastic matrices as 6 ranges over

®, then this statistic reduces to
(7.6) 2 g% fy52e(fy4/f1py4(6)).

Since (7.6) can be converted into the chi-square form, one
has a new derivation of the result of Section 3. This method
can be used to obtaln all the statistics of the preceding
sections.

This approach has the advantage that it admits of an
extension to the case in which the state space of the process
{xn} is no longer finite. This extenslon, carried through
in detail in my monograph [18], will be briefly sketched here.
Suppose that {xn} is a Markov process taking values 1in some
general space X. The structure of the process is then specified

by transition measures

p(&,8) = P{x,,; € Allx, = ¢},

where for each £€e¢X, p(€,.) is a probability measure on an
appropriate Borel field of subsets of X. Now suppose that these
transition measures have densities with respect to another
measure A, and that these densities depend on an unknown

parameter © = (Gl,...,er):

p(€,A) = gAf(e,n; 8) A(an).
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If X is finite and if A is taken to be counting measure, each
point of X having Mmeasure 1, then the densities f(£,T; ©)
reduce to the transition probabilities pij(e) of the preceding
sections. The cases of greatest interest other than the finite
one are those in which X is countable, A being counting measure
again, and in which X 1is Euclidean, A being Lebergue measure.
It is important, however, to admit more general spaces, as
will be seen in Section 8.

In this general situation, the log—likelihood (7.1) is to

be replaced by
n
L(G) = kgllg f(xk’xk+l; 9),

the maximum~likelihood system (7.2) becomes

n
S 3%— lg f(xk,xk+l; e) =0, u=l,...,r,
u

while the "score" (7.3) becomes

n

= -.-a__.‘ i *
(7.7) Z, = 2 55, 16 f{x, 5%, 15 ©).
It can be shown under suiftable regularity conditions that there
is a consistent solution e of the maximum—likelihood system,
that z/4n is asymptotically normal, and that {(7.%) holds, where
o, the covariance matrix of the limiting distribution of z/4n,

is given by

{[ lg f(x Xy 3%p3 e):l [ae 1g f(x Y e]}
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2
9]

If it is assumed that ¢ is nonsingular, then (7.5) holds a:
well.

What are the regularity conditions which lead to thess
results? In the first place, it must be assured that the
densities f(€,N; €), as functions of O, satisfy smoothness
conditions 1like those of Section 3%3.3 of Cramér [26]. In the
second place, it 1s necessary to impose some set of conditions
on the process {xn} which will ensure that the randomn variatles
zu/JH defined by (7.7) are asymptotically normal. Now while
the summands in (7.7) are functions of the successive states
of a Markov process, and while there exist central 1limit
theorems for sums of such functions, there is no single
theorem of this sort which covers all cases of interest.
Fortunately, however, the summands in (7.7) are not just
any functions of the states of the process; it can be shown
that their partial sums form (for each u) a martingale.

Lévy ([63] and pp. 237 £f. of [64]) has proved interesting
central limit theorems for martingales; a suitable modifi-—
cation of his results yields the asymptotic normality of
(7.7) for the case in which the summands have moments of
some order greater than 2. See [18] for the details.

The sets of conditions sketched in the preceding rvara-
graph cover many Markov processes (with stationary transition
measures) which are of interest, in addition to those with
finite state spaces. Suppose, for example, that {xn} is an

autoregressive process.



P-2092

(7% *n = kgo S
where Vi is an independent sequence of identically,
normally distributed random variables, the mean and the
variance of the y,, as well as a, where lal < 1, being
unknown parameters. This process satisfies the
conditions outlined above, so that the theory of this
section contalns the essentlals of the Mann~Wald theory [66].
(The Mann—-Wald theory is the intersection of time—series analysis
and likelihood theory for Markov processes, in the following
sense. In time series analysis, that 1s, in correlation and
spectral theory, only wide-sense properties of the process are
made use of. This reduces to likelihood theory only if the
second—order moments completely determine the structure of the
process; that is, if the process is Gaussian. But the most
general stationary, Gaussian Markov process is given by (7.8).)
In the theory outlined above, the state space X is arbi-
trary, but the parameter © 1s assumed to have only finitely
many components. If the state space is finite then finitely
many parameters suffice to describe any hypothesis on the
process. In the general case, however, infinitely many parameters
may be necessary; the complete structure of a Markov process on

the space of integers is specified by the infinite matrix (pij)’
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for example. This difficulty cannot be gotten around by
lumping the states into finitely many classes, since this
in general destroys the Markov property. (For the problem of
inference on grouped chains, see Blackwell and Koopmans [20]
and Gilbert [41].) While the infinite matrix (pi,j) has been
treated by Derman Bl___] (his proofs can be simplified by using
the methods of Section 3), no general attack on the problem of
infinitely many parameters 1is known to me.

For a very general approach to likelihood theory, see

LeCam [62].

8. PROCESSES CONTINUOUS IN TIME

Suppose {xt; t > O} is a time—continuous process, the
random variables Xy taking thelr values in a finite set

x ={1,2,...8}. 1r

Plxeyy = Il xp w gt} = M{xg g = Jlixg},  t>0,

then {xt} is a Markov process and its probability structure
is specified by the transition probabilities

pyy(e) = Plxg e = Jllxg = 1}, t >0,

which are assumed to be independent of t. Models in many

fields of application have this structure. If the pij(t)

depend on an unknown parameter 8, there arises the problem
of drawing statistical inferences about © from a sample

{x43 0T < t} from the process.
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If

t) =0
JAm pyy(t) = 04y,

then 1t can be shown that the limits

Qy = tl_i’mO piJ(t)/t (1 # 3)

exist; see Doob [32] The quantities qy and qu have the
following important probabilistic significance. Under a
suitable regularity condition on {xt}, namely that it 1is
separable [32], the process starts out in some state X, = i,
chosen according to an initial distribution Pys it stays in

the initial state 1 for a length of time(’l, where /01 is a
random varlable which is exponentially distributed with
parameter q, (P {fl > a_} = e—qia); at 'cimelo1 the process

Jumps instantaneously to a different state J, chosen according
to the distribution qu/q:L (3 # 1), where it stays a random
length of timelo2 which is exponentiszlly distributed with
parameter qJ; at time/ol +/02 the process Jjumps to a new state k
chosen according to the distribution q‘m/q‘j (k # 3); and so on.
Let ZysZos s be the succession of distinct states the process
passes through and letfl’f?'“ be the lengths of time the
process stays in these states. IfJ(t) is the number of jumps

wnhich have occurred up to time t, that is, if

(8.1) J(t) = max {n: /)l+...+'on < t},
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then clearly xt = zv(t). The important point is that the
process of pairs {(zn,fn); m=1,2,...}, which may be called the

imbedded process, 1s a time-discrete Markov process with state

space Xx (0,e0) and transition measures

(8.2) P{zml =3 oy 20llz =1, p = B} = (a;4/q;) e 4%

see Doob [32]. Particular processes are usually described by
specifying the q; and the qy 4s rather than the pij(t)‘

Thus the evolution of the time—continuous Markov process
[xt} i1s determined by that of the time—discrete imbedded
process {(zn,fn)}. If the quantities Qy and qj_'j depend on an
unknown parameter © and If one has at hand a sample
{(zl’fﬁ)""’(zn’fh)} from the imbedded process, then it is
prossible to draw inferences about 8 by apriying the methods
of the preceding section to the transition measures (8.2), which
also depend on 8. However, if it 1is supposed that one has a
sample {xt; 0t (L t} from the original process, rather than
one from the imbedded process, the situation is slightly
different. In this case the sample~{xt; 0<T < t} is
essentially equivalent to a sample {(Zl’fi)""’(Zv(t),fv(t))}
from the imbedded process, where w{(t) is the random variable
defined by (8.1). (These two samples give the same information
if one neglects the knowledge of what state the process is in
during the time interval from f1+"'+/$(t) to t; the error
committed is negligible if t is large.) Therefore a sequential

version of the theory of Section 7 will enable one to perform
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statistical inference on time-continuous processes with finite
state space. Such a theory is developed in my monograph [18].

Even if the state space X of the process {xt} ie finite,
as has been assumed above, the state space Xx (0,%@) of the
imbedded process is, while not pathological in any sense,
neither discrete nor Euclidean. In order to reduce the
problems of this section to those of the preceding one, it
is therefore essential there not to make restrictive assump—
tions about the state space. In view of the generality of
Section 7, one can treat, by the method of this section, time
continuous processes wlth infinite state spaces X; see [18].

It must be assumed, however, that {xt} is a process of the
completely discontinuous type, that is, that the sample paths
are step functions; this excliudes diffusion processes.

L. LeCam has pointed out (orally) that diffusion processes
involve, from the point of view of statistics, an excessive
amount of 1idealization. Suppose that Xy is a Brownian motion
with E{x.} = O and E{xz} = 6t. Then, no matter how small t is,
the measures on the space of paths {xt; oO«=T g_t} corresponding
to different values of © are mutually singular. It is therefore,
in principle, possible to determine 6 exactly from an observation
of arbitrarily short duration, which is nonsense from the
practical point of view. It should be pointed out that processes
of the completely discontinuous type, while they certainly
involve idealization, at least do not have this unfortunate

singularity property.
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Previous work on time—continuous chains has been done by
Lange [61]; Fortet [3€] and [37]; Hayward [54]; Bends [19];
and by Albert [2] Papers on the estimation of the parameters
of a birth-and—death process are: Anscombe [6], Moran [71]
and Darwin [27]. Birth—and-death processes differ from the
ones treated in the present paper in that they are either
transient or absorbing. A systematic investigation of

inference in such cases would be valuable.
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