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Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to

clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this

paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear recon-

struction method and identify its potential impact on the detectabilities and the associated radiation

dose levels for specific imaging tasks.

Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using

a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both

filtered backprojection (FBP) and MBIR (Veo R©, GE Healthcare, Waukesha, WI) were used for image

reconstruction and results were compared with one another. Eight test objects in the phantom with

contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial

resolution was quantified with the point spread function (PSF), while the z resolution was quantified

with the slice sensitivity profile. Both were measured locally on the test objects and in the image

domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also

features a systematic investigation of the potential trade-off between spatial resolution and locally

defined noise and their joint impact on the overall image quality, which was quantified by the image

domain-based channelized Hotelling observer (CHO) detectability index d′.

Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image

contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial

resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2)

The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast

level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the

value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be

approximated as Gaussian functions with reasonably good accuracy. (4) The z resolution of MBIR

showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of

objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution

and image noise were considered using the CHO analysis, MBIR led to significant improvement in

the overall CT image quality for both high and low contrast detection tasks at both standard and low

dose levels.

Conclusions: Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spa-

tial resolution and noise properties have been modified. In particular, dose dependence and contrast

dependence have been introduced to the spatial resolution of CT images by MBIR. The method

has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While

the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are sig-

nificant, the optimal use of this method in clinical practice demands a thorough understanding

of its unique physical characteristics. © 2014 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4884038]

Key words: CT, iterative reconstruction, spatial resolution, image quality, model observer

071911-1 Med. Phys. 41 (7), July 2014 © 2014 Am. Assoc. Phys. Med. 071911-10094-2405/2014/41(7)/071911/12/$30.00

http://dx.doi.org/10.1118/1.4884038
http://dx.doi.org/10.1118/1.4884038
http://dx.doi.org/10.1118/1.4884038
http://dx.doi.org/10.1118/1.4884038
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4884038&domain=pdf&date_stamp=2014-06-23


071911-2 Li et al.: Quantitative assessment of spatial resolution of MBIR method 071911-2

1. INTRODUCTION

The model-based iterative reconstruction (MBIR)

framework1–9 has been introduced to clinical CT sys-

tems to reduce patient exposure to ionizing radiation and

potentially improve the diagnostic performance of CT

scans.10–13 To maximize the potential clinical benefits of

MBIR at the lowest possible radiation dose, CT protocols

will have to be specifically optimized for MBIR. Due to

the intrinsic nonlinearity of MBIR methods, current CT

protocols that may have been optimized for filtered back-

projection (FBP) are not directly applicable to MBIR.14–17

However, the basic principle of CT protocol optimization

remains the same for both FBP and MBIR: First, the physical

characteristics (e.g., noise variance, noise power spectrum,

spatial resolution) of the CT systems need to be quantified

using physical phantoms; Second, the dependence of image

quality metrics on scanning parameters (e.g., kV, mAs, slice

thickness) needs to be understood both experimentally and

theoretically if possible; Third, clinical diagnostic imaging

tasks need to be identified and the relationship between

image quality metrics measured by physicists and diagnostic

quality as assessed by radiologists should be established. This

enables translation from image quality requirement for each

specific task to scanning parameters; Fourth, CT scanning

parameters are prescribed to generate images with desirable

qualities that meet the requirement of clinicians; Fifth, the

prescribed protocols need to be continuously reviewed and

refined by a joint group of clinicians, medical physicists,

and technologists to ensure they are repeatable, robust,

implementable, and relevant.

MBIR has posed some new challenges to the sec-

ond and the third steps in the aforementioned framework

due to its nonlinearity and related unique image quality

characteristics.14–17 For example, several studies have re-

ported significant reduction in noise magnitude when com-

pared to FBP.14, 16, 17 It has been found that with MBIR the

magnitude of noise reduction is related to the radiation dose

level through a power law.17 Further, these studies found that

the amount of spatial noise correlation increases in MBIR im-

ages, which was demonstrated in the spatial frequency do-

main as a shift of the peak of the noise power spectrum (NPS)

toward lower spatial frequencies with the amount of shift re-

lated to the radiation dose through a power law.17

The nonlinear nature of MBIR methods has introduced sig-

nificant challenges to the characterization of spatial resolution

performance. For example, conventional modulation transfer

function (MTF) measurements based on small high contrast

objects (typically a metal wire) are no longer applicable to

objects with low and intermediate contrast levels.15 Richard

et al. have developed a task-based framework to quantify the

spatial resolution of MBIR.15 In this framework, a concept of

task-specific MTF, MTFTask, was introduced to locally mea-

sure the MTF for a given feature of interest (FOI) at a given

radiation dose level. When the contrast of the FOI or the

radiation dose level are relatively low, the reduced contrast-

to-noise ratio (CNR) may prevent one from obtaining an ac-

curate and reliable extraction of the spatial resolution infor-

mation from the noisy background. Similar results were re-

ported in other work discussing other iterative reconstruction

(IR) algorithms.18

In this paper, we developed a different measurement

method to systematically study the spatial resolution perfor-

mance of MBIR. The method reduces the statistical uncer-

tainty of measurement by performing an ensemble averaging

of repeated CT scans, which allows the spatial resolution per-

formance at the edges of non-cylindrical and/or low contrast

objects to be reliably quantified even at low dose level. The

method operates locally near the FOI in the image domain,

thus it does not require the spatial resolution of the CT sys-

tem to be shift-invariant.

Using this method, we experimentally characterized the

spatial resolution performance of a commercially available

implementation of MBIR (Veo R©, GE Healthcare, Waukesha,

WI) that has been equipped on several state-of-the-art clini-

cal CT scanners at our institution. The characterization cov-

ered four exposure levels and eight contrast levels as low

as 13 HU. Since earlier studies have shown that phantoms

with relatively simple structures may not be representative of

the physical performance of IR methods,19 our study used

an anthropomorphic pediatric phantom containing inhomo-

geneous and irregular interfaces between anatomical struc-

tures. Further, it is worth emphasizing that the ultimate goal

of characterizing noise and spatial resolution is to understand

how they jointly impact performance for a diagnostic imag-

ing task. Therefore, systematic investigations were also per-

formed to study the tradeoff between spatial resolution and

noise in MBIR and their joint contributions to the overall im-

age quality, which was quantified by the image-domain chan-

nelized Hotelling observer (CHO) detectability index. Finally,

another novel contribution of this work is an experimental as-

sessment of the z resolution (i.e., slice sensitivity) of MBIR at

both low and high contrast levels. All of the characterizations

of MBIR were accompanied by the characterizations of FBP

under identical experimental conditions for comparison.

2. METHODS AND MATERIALS

2.A. Experimental phantom data acquisition

In this study, we used a 64-slice clinical diagnostic CT

scanner (Discovery CT750 HD, GE Healthcare, Waukesha,

WI) equipped with both the FBP and the Veo reconstruc-

tion engine to repeatedly scan the chest section of a pe-

diatric phantom (Section 16, ATOM 10-year-old pediatric

phantom, Model 706, CIRS Inc., Norfolk, VA). The physical

dimensions of cross-section of the phantom at this position

are approximately 20 cm (AP) × 17 cm (LR). To avoid mis-

registration caused by table motion between repeated scans,

the phantom was scanned in the axial scanning mode and

the scan range was set to be equal to the detector coverage

(20 mm). For the version of Veo installed at our institution,

only a Head (including pediatric and small head) scanning

field of view (SFOV) is compatible with the axial scanning

mode, and thus was chosen in this study. The gantry rota-

tion time was set to 0.5 s and the tube potential was set to
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FIG. 1. (a) The anthropomorphic phantom used in our study. (b) A section

(#16) of the phantom and two plug inserts. Iodine solution filled in one of the

plugs was dyed with a black ink for illustrative purposes.

120 kV. The scans were performed at four different mA lev-

els (40, 80, 120, 160), which correspond to CTDIvol levels of

3.99, 7.99, 11.98, 15.97 mGy, respectively (measured with the

16 cm CTDI phantom). These exposure levels will be re-

ferred to throughout this paper as 25%, 50%, 75%, and 100%

dose, respectively. The acquired data were reconstructed us-

ing both FBP and Veo. The reconstruction slice thickness was

0.625 mm. For FBP, the standard reconstruction kernel was

used and the image matrix size is 512 × 512. For the current

version of Veo, the reconstruction matrix size is 1024 × 1024

if the axial scanning mode is used.

The spatial resolution was evaluated locally at several rep-

resentative feature of interests (FOIs) in the phantom, includ-

ing a Nylon pin and the anatomical interfaces of lung tis-

sue/bone and lung tissue/soft tissue (Fig. 1). In addition, a

Ø = 37 mm factory QA insert that contains cylindrical targets

with two different contrasts values (13 and 33 HU) was used

(Soft tissue insert-cylindrical targets, Model 700-QA, CIRS

Inc., Norfolk, VA). Similarly, a Ø = 38 mm inhouse acrylic

phantom insert that contains Ø = 5.0 mm cylindrical cavity

was used. The cavity was filled with different dilutions of

VisipaqueTM–320 (GE Healthcare, Waukesha, WI) and deion-

ized water providing three different concentrations of iodine

TABLE I. List of measured CT contrast values of eight FOIs in the phantom.

Material Background Contrast (HU)

Object 1 +1% Soft tissue Soft tissue 13

Object 2 +2% Soft tissue Soft tissue 33

Object 3 Nylon Soft tissue 62

Object 4 Water PMMA 120

Object 5 11 mg/ml I PMMA 224

Object 6 16 mg/ml I PMMA 346

Object 7 Soft tissue Lung 814

Object 8 Bone Lung 1710

(0, 11.2, and 16 mg I/ml) to provide three additional contrasts.

The bottom of the cavity was machined flat to generate a sharp

step function along the z direction. This design allowed us to

quantify the z resolution for specific contrast levels. Overall,

the study covered FOIs with a total of eight contrast levels

to study the contrast dependence of the spatial resolution of

Veo. The experimentally measured contrast values of these

FOIs are listed in Table I.

When the factory QA inserts were used, the phantom was

repeated scanned 100 times at each dose level; when the in-

house iodine insert was used instead, the number of repeti-

tions was reduced to 50 due to its relatively high CNR. The

image ensembles produced by repeated scans were used for

spatial resolution, noise, and model observer analysis.

2.B. Axial spatial resolution measurement method

The classical definition of spatial resolution is the capacity

of an imaging system to distinguish two objects as they be-

come smaller and closer together.20 The spatial resolution of

an image can be quantified either by the point spread function

(PSF) in the spatial domain or by the MTF in the frequency

domain. The MTF is often considered a more convenient de-

scriptor of spatial resolution, because it can be represented

as the products of MTFs of subimaging stages15, 20–22 and is

easily translated to the practical concept of resolvable line-

pairs/cm (lp/cm) since the MTF10% ≈ resolvable lp/cm. For

nonlinear IR methods, such as Veo, however, the use of the

MTF as the description of spatial resolution has been chal-

lenged, as there is no guarantee of shift-invariance in images

generated with these methods. In this case, the frequency do-

main analysis method loses its advantage over the spatial do-

main analysis method. As a result, we chose to characterize

the spatial resolution of Veo reconstruction in the spatial do-

main using PSF. In addition, we chose to define the PSF lo-

cally in the CT image due to possible shift variance intro-

duced by the IR method. The PSF was measured for each FOI

at each dose level using the following definition:

PSF(x⊥) =
dI (x⊥)/dx⊥

∫

dx⊥ {dI (x⊥)/dx⊥}
, (1)

where x⊥ denotes the direction orthogonal to the edge of inter-

est, I denotes image pixel value with a unit of [HU]. Tradition-

ally, the PSF has often been measured using circular objects

so that any line going through the object center runs normal to
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FIG. 2. The work flow of spatial resolution measurements using irregularly shaped test objects.

the edge. In comparison, the extraction of I(x⊥) from irregu-

larly shaped objects is relatively more challenging. This work

developed the following method to measure the edge profile

of an arbitrarily shaped object (Fig. 2):

(i) Perform ensemble averaging for a single axial plane;

(ii) Take spatial derivative of the averaged low noise image

along both the x and y directions and form a gradient

image by calculating the amplitude of the gradient;

(iii) Identify the edge central line yc(x) by tracking the

maximum value in the gradient image;

(iv) Perform denoising/smoothing of the edge central line.

In this paper, a fifth degree polynomial was used to fit

the curve;

(v) Differentiate yc(x) with respect to x to get the tangent

direction at each point on the central line;

(vi) Calculate the angle θ of the normal line at each point

using tan[θ (x)] = −1/y ′
c(x);

(vii) Based on the angle θ and the edge central line [x,

yc(x)], extract line profiles running normal to the edge.

In our implementation, the line profiles were ±2.2 mm

across the center of the edge;

(viii) Average the edge profile from multiple points on the

edge to further reduce noise. The last step is optional

and can be used in the case of ultra-low CNR to im-

prove accuracy.

While the entire PSF curve is valuable in characterizing

spatial resolution, there is often a need to extract a single nu-

merical figure of merit (FOM) to quantify the spatial resolu-

tion. For example, the spatial frequencies corresponding to the

50% and 10% MTF values (i.e., f50 and f10, respectively) are

often used as the FOMs of spatial resolution.15 To enable the

use of a spatial domain FOM of spatial resolution, the PSFs

of Veo reconstructions were modeled as Gaussian functions,

the width of which was quantified with a parameter, w,

PSF′
w(x⊥) =

1
√

2πw
exp

(

−
x2

⊥
2w2

)

. (2)

In this work, w was used as the FOM of spatial resolu-

tion. It was determined from experimental PSF by solving the

following least squares problem:

ŵ = arg min
w

∥

∥PSF′
w(x⊥) − PSF(x⊥)

∥

∥

2

2
, (3)

where ‖ · ‖2 denotes the Euclidean norm. A smaller w value

represents a superior spatial resolution (e.g., sharper edge).

For the case of FBP (with standard reconstruction kernel), the

Gaussian model has been validated to be a good approxima-

tion of the PSF.23, 24 We revisited the feasibility and accuracy

of this model in Veo reconstructions by calculating the rela-

tive root mean square error (rRMSE),

rRMSE =
∥

∥PSF′
w − PSF

∥

∥

√
N [max(PSF) − min(PSF)]

× 100%, (4)

in which N is the total number of elements in a digitized PSF

curve.

2.C. Slice thickness (z resolution) measurement
method

The z resolution of CT systems can be quantified with the

slice sensitivity profile (SSP), which is often generated by

scanning high contrast metal beads, thin discs, or ramps. In

this work, we were interested in measuring the SSP of Veo

at relatively low contrast levels. To achieve this goal, the bot-

tom of the cavity in the inhouse acrylic phantom insert was

machined to be flat. This design allows the acrylic and the

liquid filled in the cavity to form a sharp step function along

the z direction. In our study, the cavity was filled with water

or iodine solution (13 mg/ml) to generate two contrast levels

(120 and 270 HU) inside the anthropomorphic phantom. Un-

der the guidance of the localizer radiographs (scout images),

the phantom was carefully positioned so that the edge was

perpendicular to the z axis of the CT system. At each con-

trast level, repeated scans were performed using the afore-

mentioned scanning protocols (50 repetitions × 4 dose lev-

els). Ensemble averaging was performed for each contrast and

dose level to reduce noise.

To increase the number of discrete sampling point along

the z direction, the 0.625 mm CT slices generated by the axial

scans was retrospectively resampled to a 0.1 mm slice inter-

val using linear interpolation. This is different from the helical

scan case, which enables finer slice sampling by performing

multiple reconstructions at arbitrary slice locations. The re-

sampled axial slices were reformatted to coronal slices before

the slice that cuts through the central axis of the cavity was

Medical Physics, Vol. 41, No. 7, July 2014
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FIG. 3. Work flow for task-based and local assessments of spatial resolution, noise, and model observer detectability from an ensemble of images. The so-called

“edge noise” was defined in the region bounded by the dashed circles.

identified. The line profile that ran across the edge, I(z), was

used to generate the SSP,

SSP(z) =
dI (z)/dz

∫

dz {dI (z)/dz}
. (5)

The full width at half maximum (FWHM) of the SSP was

used as the FOM to characterize slice thickness. The FWHM

of the SSP of FBP images was compared with the value pro-

vided by the CT manufacturer (0.69 at 20 mm detector col-

limation, 0.625 mm reconstruction slice thickness, axial scan

mode) to validate the measurement method.

2.D. The tradeoff of spatial resolution with edge noise

Spatial resolution of CT images cannot be measured and

meaningfully interpreted without specifying image noise, and

vice versa. A “soft” reconstruction kernel in FBP usually gen-

erates CT images with lower noise amplitude, but poorer spa-

tial resolution, whereas an “edge-enhancing” reconstruction

kernel usually leads to higher noise but sharper edges. The

linearity of FBP determines that the reconstruction/data pro-

cessing parameters will always influence signal and noise in

the same way. That said, when the CT system, reconstruction

kernel, and scanning parameters (other than exposure level)

are fixed, spatial resolution remains approximately constant,

while image noise depends strongly on exposure level and im-

age object. In this case, spatial resolution is generally consid-

ered to have no tradeoff with image noise, although the ac-

curacy of the spatial resolution measurement does depend on

the noise level.

For the highly nonlinear Veo method, however, it is pos-

sible that an additional tradeoff relationship between spatial

resolution and image noise has been introduced: higher dose

may simultaneously enhance spatial resolution15 and reduce

image noise.14–17 To investigate this potential interplay be-

tween noise and spatial resolution, we measured noise stan-

dard deviation value σ locally on the edges of FOIs where

spatial resolution was assessed with the help of the acquired

image ensembles:

σ (x, y) =

√

√

√

√

1

M − 1

M
∑

i=1

[Ii(x, y) − Ī (x, y)]2, (6)

in which M is the total number of scan repetition, and the

mean image pixel value Ī is given by

Ī (x, y) =
1

M

M
∑

i=1

Ii(x, y). (7)

This method enables the quantification of the expected σ

value at each point in the image, including those on the edges

of the FOIs. σ values in the vicinity (±2 pixels) of the central

line of the edge for each FOI were averaged to estimate the

“edge” noise (Fig. 3).

2.E. Channelized Hotelling observer method

Neither spatial resolution nor image noise provides a com-

plete description of image quality. A FOM for the overall im-

age quality that includes the joint contributions of spatial res-

olution and noise is needed. In this work, we employed the

channelized Hotelling observer (CHO) analysis method25–28

and used the CHO detectability index (a.k.a. CHO signal-to-

noise ratio)25, 26, 29 as the FOM to characterize the overall im-

age quality. The CHO method has been validated by human

observers to work with CT images generated by some specific

types of nonlinear iterative reconstruction method for a signal

known/location known detection task.30 In this work, we only

use the CHO detectability index as a metric to incorporate

both spatial resolution and noise into the analysis. The corre-

lation between the CHO model observer performance and the

human observer performance is interesting and important to

study, but is beyond the scope of this paper.

The CHO analysis method uses a set of channel basis func-

tions (ti, i ∈ [1, 2, . . . m]) to decompose images. As a result, the

Medical Physics, Vol. 41, No. 7, July 2014
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FIG. 4. Representative low-noise region-of-interest (ROI) images used to measure the spatial resolution of Veo and FBP. The images represent an ensemble

average of consecutive scans. The scale bar applies to each of the images above.

covariance matrix, K, as seen by the channel basis, is given

by25

Kc = TtKT, (8)

in which the columns of matrix T correspond to each of

the vectorized channel function ti. Similarly, the imaging

task vector, s, after seen through the channel basis, is given

by25

sc = Tts. (9)

The square of the detectability index (denoted by d′) is

given by25, 26, 29

(

d ′)2 = st
c K−1

c sc, (10)

The detectability index d′ incorporates the noise perfor-

mance of the image through the covariance matrix K and the

spatial resolution performance through the signal vector s. In

this work, the CHO method was implemented using the Ga-

bor channel basis, which has been previous validated to have

a close resemblance to human observer responses.30 Param-

eters of the channel basis functions (e.g., central frequency,

bandwidth, cutoff frequency, etc.) were chosen to be consis-

tent with Ref. 30.

The CHO analyses were performed for the first six FOIs in

Table I with low or intermediate contrast. The imaging task, s,

was defined statistically from the ensemble of repeated scans

as

s(x, y) = Īobject(x, y) − Ībkgd(x, y), (11)

where the mean signal-present image Īobject was measured in a

13 × 13 mm2 local region containing the object, and the mean

signal-absent image Ībkgd was measured in a 13 × 13 mm2

region immediately adjacent to, but not containing, each

object.

As a summary of the experimental method, CT image

ensembles generated from repeated data acquisitions were

used to perform task-based and locally-bounded measure-

ments of spatial resolution, edge noise, and CHO detectabil-

ity. All measurements were performed in the image domain.

Figure 3 summarizes the work flow for these measurements.

3. RESULTS

3.A. Validation of the Gaussian model

Figure 4 shows the mean images of three features of inter-

est. The noise level in these images was significantly reduced

by ensemble averaging to facilitate accurate spatial resolu-

tion measurements and to help directly visualize the sharpness

of the edges. The PSFs and the Gaussian fitting results mea-

sured at 25% dose level are presented in Fig. 5, which clearly

demonstrate the contrast-dependence of the PSF curves of

Veo reconstructions and also the good accuracy of the

Gaussian model. All rRMSE values listed in Table II are be-

low 3%. We did not perform Gaussian fitting to the FBP im-

ages of the ultra-low-contrast Object 1 because of the low

CNR [Fig. 5(a)]. However, the PSFs of FBP measured at all

other contrast levels in Fig. 5 demonstrated that they are inde-

pendent of contrast level.

3.B. Contrast dependence of spatial resolution

The contrast dependence of the spatial resolution of Veo

can be directly visualized from the averaged ROI images in

Fig. 4: For Object 2 with relatively low contrast, its edges ap-

pears to be more blurred in the Veo images than in the FBP

images; For Object 5 with intermediate contrast, the sharp-

ness of its edge is equivalent (e.g., at 25% dose) or slightly

better (e.g., at 100% dose) in Veo images than in FBP images;

For the interface between tissue and lung (Object 7) with rel-

atively high contrast, Veo led to better edge sharpness than

FBP.

The PSF curves shown in Fig. 5 also demonstrate the con-

trast dependence of spatial resolution of Veo reconstructions.

The spatial span (width) of the PSF measured with low con-

trast Object 1 is significantly wider than that measured with

Medical Physics, Vol. 41, No. 7, July 2014
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FIG. 5. Representative experimental PSFs measured at 25% dose level and the corresponding Gaussian fitting results for objects of increasing contrast levels.

The plot in (a) corresponds to the lowest contrast level, while the plot in (f) corresponds to the highest. The PSF of FBP measured with the ultra-low contrast

Object 1 in (a) was too noisy to enable the fitting.

the high contrast Object 7. The PSFs of Veo and FBP became

equivalent for Object 5 with a contrast of 224 HU. As shown

later in Sec. 3.C, this transitional contrast is highly dose

dependent.

3.C. Radiation dose dependence of spatial resolution

The low noise ROI images in Fig. 4 also demonstrate that

the spatial resolution of Veo is dose dependent. For exam-

ple, the Veo image of Object 1 measured at 100% dose looks

TABLE II. Relative root mean square error (rRMSE) of the Gaussian model

for the PSF of Veo reconstructions.

Dose (%)

Object # Contrast (HU) 25 50 75 100

1 13 2.2 1.1 1.5 0.9

2 33 1.3 0.9 0.9 0.7

3 62 0.9 0.5 0.6 0.6

4 120 1.1 0.9 0.9 1.0

5 224 0.8 0.6 0.6 0.6

6 346 0.5 0.4 0.4 0.3

7 814 0.4 0.3 0.2 0.3

8 1710 0.7 0.7 0.7 0.7

sharper than that measured at 25% dose. This visual observa-

tion was confirmed by the quantitative PSF results presented

in Fig. 6. The decrease in the w values of Veo reconstruc-

tions, when the dose was increased from 25% to 100%, was

0.11 mm for Object 4 and 0.10 mm for Object 6. In compari-

son, the spatial resolution of FBP reconstructions is indepen-

dent of radiation dose level [Fig. 6(c)]. The widths of the PSFs

(w) of Veo and FBP became equivalent at certain dose level;

w of Veo assessed using low contrast objects required higher

dose level to surpass the w of FBP.

Figure 7 summarizes the joint dependence of the spatial

resolution of Veo reconstructions on contrast and radiation

dose levels. The width of the PSF, w, increases monotonically

with decreasing contrast and decreasing dose; the w value at

100% dose and 1280 HU is 0.33 mm, which is only 37% of

the w value measured at 25% dose and 13 HU. In compari-

son, the spatial resolution of FBP is independent of radiation

dose and contrast level; the mean w value of FBP is 0.52 mm

and the 95% confidence interval (CI) of the mean is [0.49,

0.55] mm. By (linearly) interpolating data measured at the

eight contrast levels, the “crossover” contrast at which the

spatial resolutions of Veo and FBP became equivalent was

calculated. The crossover contrast is strongly dose dependent

and is 300 HU at 25% dose, 174 HU at 50% dose, 127 HU at

75% dose, or 78 HU at 100% dose.
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FIG. 6. (a) and (b) Representative PSFs of Veo measured at four different dose levels. The solid lines are Gaussian fits of the experimental data. (c) Plots of the

FOM of spatial resolution (w) as a function of dose.

3.D. Spatial resolution along z

Figure 8 shows SSP of Veo measured at two contrast lev-

els (120 and 270 HU) and four dose levels. The SSP of FBP

measured at the 100% dose level is also presented in the same

figure. The FWHMs of the SSPs are listed in Table III. For

FBP, the FWHM of the SSP is independent of the contrast or

dose levels, and its value (0.69 ± 0.01 mm) is consistent with

the number specified in the user manual of the CT system

(0.69 mm). This agreement also validates the proposed slice

FIG. 7. (a) Summary of the contrast- and dose-dependence of the FOM of

spatial resolution (w). The triangles represent the experimental data points,

from which other data points were estimated using two-dimensional linear

interpolation. (b) Dose dependence of the crossover contrast at which the

spatial resolutions of Veo and FBP were found to be equivalent.

thickness measurement method used in this work. In contrast,

for Veo, the SSP demonstrated a dependence on both con-

trast and dose levels: the SSPs assessed at contrast = 270 HU

are consistently sharper than those at 120 HU; this was con-

firmed by the FWHM values in Table III. The SSP of Veo also

exhibited a dependence on dose at the lower contrast level

(120 HU): its width increased monotonically with decreasing

dose level. At the higher contrast level (270 HU), the dose

dependence of the SSP was negligible.

FIG. 8. The SSP assessed at two contrast levels and four dose levels. The

legend in (a) also applies to (b).
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TABLE III. Slice thickness quantified by the FWHM (in mm) of the SSP.

The reconstruction slice thickness is 0.625 mm.

Dose (%)

Method Contrast (HU) 25 50 75 100

Veo 120 0.81 0.81 0.75 0.72

270 0.61 0.61 0.61 0.61

FBP 120 0.68 0.70 0.68 0.68

270 0.70 0.70 0.70 0.70

3.E. Spatial resolution-noise tradeoff

Noise standard deviation (σ ) maps measured locally in

three of the FOIs using Eq. (6) at the 25% dose level are

shown in Fig. 9. Note that the display level used for the

σ maps of Veo is only 31% of that of FBP, which indi-

cates that images generated by Veo have much smaller noise

magnitude than FBP. However, noise in Veo images demon-

strated a strong contrast dependence: for noise right on the

edge, it increased with an increasing contrast level; for noise

in other uniform regions, its value remained independent of

contrast level. This suggests that edge noise in Veo has a

strong contrast dependence even when the dose level is fixed.

Figure 10(a) summarizes this phenomenon by plotting σ as

a function of both contrast and dose level. This figure was

obtained by performing 2D interpolation from 32 experimen-

tal data points (4 dose levels × 8 contrast levels). It clearly

demonstrates that, in addition to the well-known dose depen-

dence, noise of Veo images measured locally at the edges of

objects increased with increasing contrast level at any dose

level. This is fundamentally different from the case of FBP

reconstruction, which usually demonstrates the same noise

magnitude for edge regions and uniform regions.

Previous studies have demonstrated that Veo leads to

significant noise reduction in uniform regions of test

objects.14, 16, 17 An immediate question based on the results

in Fig. 10(a) is, how does the noise magnitude of Veo re-

constructions compared with that of FBP reconstructions if

the noise was strictly measured on the edges of test objects?

FIG. 9. Noise standard deviation (σ ) maps measured at 25% dose in the

neighborhood of three representative objects. The noise magnitude on the

edges of these objects demonstrated a strong contrast dependence in Veo.

FIG. 10. Summary of the contrast- and dose-dependence of the noise stan-

dard deviation (σ ) measured locally at the edges of test objects. (a) Absolute

σ of Veo; (b) Ratio of σ between Veo and FBP.

To address this question, the noise standard deviation of Veo

images (σ Veo) was normalized by that of FBP images (σ FBP)

measured at each dose/contrast level and the results are shown

in Fig. 10(b). It demonstrates that, even when the noise was

assessed right on the edges of test objects, in most cases Veo

still led to significant reductions in noise. Only when the con-

trast level exceeded 1300 HU did Veo generate higher edge

noise than FBP. The crossover contrast increased slightly with

decreasing dose level.

Results in Figs. 10(b) and 7(a) demonstrate that spatial res-

olution and noise measured on the same location have certain

tradeoff in Veo. Low contrast/low dose conditions always led

to more aggressive noise reduction, but they also tended to

generate relatively inferior spatial resolution. Similarly, high

contrast/high dose conditions always led to a smaller reduc-

tion in noise (sometimes even resulting in a minor noise am-

plification) in order to achieve superior spatial resolution.

3.F. CHO detectability

The observed interplay between spatial resolution and

noise performances in Veo dictates that it would be incom-

plete for an objective image quality assessment of Veo recon-

structions to consider only a single aspect of the two types

of performance. The CHO analysis method used in this work
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FIG. 11. CHO detectability indices (d′) of the test objects. The ROI images were directly cropped from the original DICOM CT images. The scale bar applies

to all.

took both into account. Figure 11 shows the CHO detectabil-

ity indices d′ of the detection tasks of six FOIs. The original

noisy images are provided in the figure to help the readers

directly evaluate their image quality. For both FBP and Veo,

d′ increased with object contrast and radiation dose; at any

tested contrast/dose level, Veo always led to higher d′ values,

and therefore better overall CT image quality. The relative in-

crease in d′ varied between 33% and 114% depending on the

contrast and dose level. These results have two indications: (1)

For low contrast detection tasks, the influence of the aggres-

sive noise reduction outweighs spatial resolution degradation

in Veo; (2) For high contrast detection tasks, despite the rel-

ative increment in edge noise, the edge enhancement feature

and the denoising feature in the surrounding uniform regions

introduced by Veo can effectively improve the overall CT im-

age quality.

4. DISCUSSION AND SUMMARY

By studying a commercially available implementation of

MBIR, this work presented several key properties of the spa-

tial resolution of this IR method: (1) The axial and z spatial

resolution of MBIR improves with increasing radiation ex-

posure level and increasing CT contrast level; (2) The spa-

tial resolution of MBIR becomes equivalent to that of FBP at

some intermediate contrast level, above which MBIR leads to

superior spatial resolution (and vice versa). This “crossover”

contrast highly depends on the radiation exposure level; (3)

The PSFs of MBIR can be approximated as Gaussian func-

tions with reasonably good accuracy, thus their experimen-

tal measurement can be potentially simplified by perform-

ing Gaussian fitting with noisy data. This is of practical

value for quantifying the spatial resolution under low con-

trast and low dose conditions; (4) In MBIR, the trade-off be-

tween spatial resolution and noise is restricted to image pix-

els containing with steep contrast changes (i.e., at edges); (5)

When both resolution and noise are considered, MBIR sig-

nificantly improves the overall CT image quality. Some of

these properties have been previously reported in an earlier

work by Richard et al.,15 who used a cylindrical and relatively

uniform phantom to evaluate the axial spatial resolution of

MBIR in the frequency domain. Reference 15 also showed the
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dose-dependence of MBIR image noise measured in the uni-

form background region of the phantom. This work is ex-

pected to add further insight into the unique spatial resolu-

tion characteristics of MBIR. In addition, the experimental

methodology developed in this work may add value to the

practice of medical physics in the era of iterative CT recon-

struction.

Due to the nonlinearity of the MBIR method, there is no

closed-form formula to describe the experimental findings at

the moment; there is also no theoretical method to analytically

describe the contrast and dose dependence of spatial resolu-

tion either. However, it is feasible to qualitatively explain the

physical origins of some of the findings using the basic prin-

ciple and implementation method of MBIR reported in pub-

lished literature: First, the contrast and dose dependence of

the spatial resolution of MBIR can be primarily attributed to

the use of an adaptive regularization method in MBIR; it auto-

matically enforces stronger local smoothness (thus more blur-

ring) for regions with low CNR and enforces stronger local

sharpness for regions with high CNR. This explains why high

contrast/low dose condition always leads to relatively supe-

rior spatial resolution and why low contrast/high dose condi-

tion always leads to relatively inferior spatial resolution. Sec-

ond, the MBIR method, including the adaptive regularization,

is implemented in three dimensional (3D) space, so it is not

surprising that the z and axial spatial resolution demonstrated

similar properties. Third, the spatial resolution of MBIR may

also benefit from the improved modeling of system optics

(e.g., finite focal spot size and detector pixel size), although a

recent study showed that some implementations of ray model-

ing in IR may not play a signification role in improving spatial

resolution with clinical CT conditions.31

The dose and contrast dependence of spatial resolution and

its interplay with noise in MBIR suggests that there are signif-

icantly more challenges in optimizing CT protocols for this IR

method. In conventional FBP-based linear CT systems, only

a few scanning parameters (e.g., reconstruction kernel) influ-

ence spatial resolution, whereas in MBIR, spatial resolution is

expected to be dependent on other settings (e.g., mA, gantry

rotation time, helical pitch, contrast agent injective protocol)

that directly or indirectly influence the dose and contrast level.

The spatial resolution of MBIR also strongly depends on the

imaging task and the patient: larger patients tend to lower

detected x-ray signals and increase quantum noise, therefore

may lead to degraded spatial resolution if other scanning pa-

rameters are fixed. As a result, the scanning protocols for

MBIR must be further fine-tuned for each specific clinical ap-

plication. It is likely that a much richer database provided by

phantom studies and clinical validations would be necessary

to rigorously optimize these protocols.

There are several limitations of this study that should be

addressed: First, it only studied the axial scan mode and did

not cover the helical scan mode. Unlike axial scan, helical

scan may introduce misregistration between repeated scans

due to patient couch translation. This problem of repeatabil-

ity could potentially be addressed by performing image reg-

istration along the z direction. In future work, it would be

interesting to study how the axial resolution and slice thick-

ness of MBIR vary as a function of helical pitch and com-

pare this with the relationship of FBP. Next, the restriction

of our version of Veo to only allow a Head FOV with the

axial scan mode prohibited the use of adult-sized phantoms.

Once slice registration methods are developed, repeated he-

lical scans in the Body scan FOV could potentially be per-

formed to study the spatial resolution performance of MBIR

as a function of patient size. Third, the current study only

scanned the chest section of the phantom, and many of the

features of interest were located near the center of the chest.

As the statistical weighting factor in the data fidelity term

of the MBIR objective function may also have a significant

influence on the image quality, it would be interesting to

study how spatial resolution of MBIR varies as a function

of phantom shape, location of the feature, and local density

distribution of the phantom. Fourth, the experimental study

only covered a specific type of MBIR implemented by GE

Healthcare; the image quality of MBIR is likely to vary across

implementation methods. Even for a given CT vendor, the im-

plementation of MBIR will continuously evolve and be im-

proved upon, which may change the image properties such

as the trade-off relationship between noise and resolution.

Fifth, the noise standard deviation on the edges were calcu-

lated from repeated scans, which might also include inter-

scan variation in CT number in the vicinity of FOI due to the

nonlinear and statistical nature of the MBIR method. In addi-

tion, this measurement ignores noise spatial correlation. Due

to these limitations, the specific numerical values determined

to describe the spatial resolution properties of MBIR (e.g.,

the resolution crossover point between FBP and MBIR in

Fig. 7) should not be generalized; instead, one should focus on

the general characteristics of MBIR methods observed in this

work.

In summary, the spatial resolution performance of the sta-

tistical MBIR method was experimentally characterized us-

ing a clinical CT system. Due to the intrinsic nonlinearity

of the MBIR method, many well-known CT spatial resolu-

tion properties have been modified. In particular, dose de-

pendence and contrast dependence have been introduced to

the spatial resolution of CT images by MBIR. This method

has also introduced some novel noise-resolution trade-offs not

seen in traditional CT images. The benefits of MBIR are high-

lighted by the CHO study, which considered the joint contri-

butions of spatial resolution and noise to the overall CT image

quality.
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