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ABSTRACT

Motivation: In cancer genomes, chromosomal regions harboring

cancer genes are often subjected to genomic aberrations like copy

number alteration and loss of heterozygosity. Given this, finding

recurrent genomic aberrations is considered an apt approach for

screening cancer genes. Although several permutation-based tests

have been proposed for this purpose, none of them are designed

to find recurrent aberrations from the genomic dataset without

paired normal sample controls. Their application to unpaired genomic

data may lead to false discoveries, because they retrieve pseudo-

aberrations that exist in normal genomes as polymorphisms.

Results: We develop a new parametric method named parametric

aberration recurrence test (PART) to test for the recurrence

of genomic aberrations. The introduction of Poisson-binomial

statistics allow us to compute small P-values more efficiently and

precisely than the previously proposed permutation-based approach.

Moreover, we extended PART to cover unpaired data (PART-up) so

that there is a statistical basis for analyzing unpaired genomic data.

PART-up uses information from unpaired normal sample controls

to remove pseudo-aberrations in unpaired genomic data. Using

PART-up, we successfully predict recurrent genomic aberrations

in cancer cell line samples whose paired normal sample controls

are unavailable. This article thus proposes a powerful statistical

framework for the identification of driver aberrations, which would

be applicable to ever-increasing amounts of cancer genomic data

seen in the era of next generation sequencing.

Availability: Our implementations of PART and PART-up are available

from http://www.hgc.jp/∼niiyan/PART/manual.html.

Contact: aniida@ims.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Cancer genomes often exhibit chromosomal aberrations like copy

number alteration and loss of heterozygosity (LOH).Achromosomal

aberration potentially leads to the functional alteration of cancer

genes and could be a driver for oncogenesis. For example, if the copy

number of some locus is amplified, residing oncogenes would be

functionally activated. Conversely the presence of tumor suppressor

genes are associated with chromosomal deletion and LOH. However,

most aberrations are so-called passengers, which accompany driver

aberrations by chance and do not have any causal relationship with

oncogenesis. Therefore, it is important problem to discriminate

the driver aberrations from the passenger ones. Given that driver

aberrations recurrently occur around driver cancer genes whereas

∗To whom correspondence should be addressed.

passenger aberrations randomly exist across chromosomes, finding

recurrent chromosomal aberrations is deemed a powerful approach

for discovering driver aberrations and associated driver genes.

In the past decade, microarray technology has enabled genome-

wide profiling of copy number and homozygosity (Michels et al.,

2007). The application of microarrays to cancer genomes has

revealed prevalent aberrations in cancer cells, and produced a

large amount of genomic data, which are rich resources for the

identification of potential driver loci (Beroukhim et al., 2010).

By examining the presence of aberrations across all chromosomal

positions in multiple samples, we have a binary aberration profile

matrix whose rows and columns correspond to chromosomal

positions and samples, respectively. We wish to find chromosomal

positions where a significantly large fraction of samples are

subjected to aberration. There are a number of computational

methods to statistically screen for recurrent genomic aberrations,

most of which are based on permutation tests (Morganella et al.,

2011). For example, GISTIC calculates the value of statistic scoring

recurrence for each genomic position while the null distribution of

the statistic is obtained using null aberration profile matrices, which

are generated by permuting positions of the binary aberration profile

matrix for each sample. Finally, GISTIC reports the significance of

recurrence at each position and predicts driver loci by detecting the

peaks of the significance plot. (Beroukhim et al., 2007). Although

the permutation approach is successful in finding driver aberrations,

it is computationally intensive, especially when we need to calculate

small P-values precisely.

Usually, aberration profiling of a cancer genome is performed

by comparing a tumor sample with the paired normal sample. For

example, LOH is called for a position whose genotype changes from

a heterozygous state in a normal genome to a homozygous state in

the paired-tumor genome. When the paired normal sample is not

available, aberration profiling is also possible: LOH could be called

for a chromosomal segment that has successive homozygous state

in the tumor genome (Beroukhim et al., 2006). However, it has

been reported that we would confront false positive calls in such

unpaired experimental designs: an obtained LOH might be only a

polymorphic homozygous segment that exists in the paired normal

genome (Heinrichs et al., 2010).

To find recurrent aberrations, we developed a novel parametric

test, parametric aberration recurrence test (PART). Using Poisson-

binomial statistics (Wang, 1993), PART can be used for efficient

and precise calculation of small P-values, as compared with

the permutation approach. Moreover, we extend PART to cover

unpaired data (PART-up) to find recurrent aberrations in unpaired

experimental designs. PART-up computes the significance of

aberration recurrence by taking into consideration the false positive

rate, which is calculated from the unpaired normal sample data. By

applying PART-up to simulated and real data, we demonstrate that
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A.Niida et al.

our approach can identify recurrent genomic aberrations even in

unpaired datasets.

2 METHODS

2.1 PART

First, we introduce a simple parametric test to find the recurrence of genomic

aberrations (e.g. LOH) given an aberration profile matrix. Let R denote an

n×m input binary matrix, whose rows and columns index chromosomal n

positions and m samples. If the sample j has a genomic aberration at the

position i, we set Rij =1; otherwise, Rij =0. The problem to be addressed is

to statistically test whether a genomic aberration recurrently appears at each

position. Namely, we need to calculate a P-value for a test statistic, which

is defined as the count of aberrant samples in each position. For the position

i, it is given by

si =

m∑

j=1

Rij .

To calculate the P-value, we assume a null model where the aberration at

each position appears with an equal probability within each sample, Pr(Rij =

1)=pj , and the probability can be estimated by the aberration ratio of the

sample j:

p̂j =
1

n

n∑

i=1

Rij .

Note that this null model is equivalent to the one generated by position

permutation in each sample, which is the approach taken by GISTIC

(Beroukhim et al., 2007). Under the null model, if the aberration rate is

constant across samples, that is p1 =p2 = ...=pm, testing for aberration in

each sample can be done by using independent Bernoulli trials with the

equal success probability; in such a case, the test statistic si , which is the

sum of the independent Bernoulli trials, follows the binomial distribution.

However, in real data, the aberration varies across samples: some tumors have

more genomic aberrations during oncogenesis than others. Therefore, for

unequal pjs, testing for aberration at a position in each sample must consider

independent Bernoulli trials with unequal success probabilities. In this case,

the test statistic si follows a general case of the binomial distribution, the

Poisson-binomial distribution (Wang, 1993) with the probabilistic function

PB(k =si;p1,p2,...,pm)=
∑

G∈Fk

∏

j∈G

pj

∏

j∈Gc

(1−pj),

where Fk is the set of all subsets of k integers that can be selected

from 1,2,...,m. For example, for m=3 and k =2, we have F2 ={{1,2},

{1,3}, {2,3}}. Gc is the complement of G, that is Gc ={1,2,3,...,n}\G. Fk

will contain m!/(m−k)!k! elements, over which summation is infeasible

in practice unless m is small. However, efficient calculations using a

discrete Fourier transformation or recursive formulae have been proposed

(Hong, 2011). Using the Poisson-binomial distribution, the P-value p(si) is

calculated by

p(si)=1−

si∑

k=1

PB(k;p̂1,p̂2,...,p̂m).

To calculate the cumulative distribution function, we use the DFT-CF

(the Discrete Fourier Transform of the Characteristic Function) method

implemented in the R poibin package (Hong, 2011).

2.2 PART-up

In unpaired experimental designs, the aberration profile matrix of tumor

samples, R, may contain false aberration calls. Here, we address the problem

of how to test for the recurrence of genomic aberration in the presence of

false positive aberration calls. When the aberration profile matrix of unpaired

normal samples from the same cohort is available, the Poisson-binomial

approach enables us to test for the recurrence of aberration by denoising the

false positive aberration calls.

Let S and T denote n×l and n×m binary matrices, and be referred to

as the false aberration profile matrix and the true aberration profile matrix,

respectively. S was prepared for l unpaired normal samples with the same

procedure as that used for R, and T is unobserved data that we can obtain by

removing false positive calls from R. We define the probability of aberration

at the position i of the sample j as pij =Pr(Rij =1), and use {pi1,pi2,...,pim}

as the Poisson-binomial parameters. Note that we must compute the Poisson-

binomial parameters for each position by considering the existence of the

false positive aberration calls from normal samples.

Under the assumption that the false positive rate of aberration calls at

each position is constant across samples, the false positive rate pF
i can be

estimated from S: p̂F
i =

∑l
j=1 Sij/l. We also define the probability that the

aberration observed at the position i of the sample j is true: pT
ij =Pr(Tij =1).

As an observed aberration must be either a true aberration or a false positive

aberration call, the following equation holds among these probabilities:

pij =pT
ij +(1−pT

ij )·p
F
i . (1)

Under the null model, the probability of true aberrations should be constant

within each sample, that is, pT
ij =pT

j . By noting this, we can take the average

of Equation (1) over positions:

pj =pT
j +(1−pT

j )·pF, (2)

where pj =
1
n

∑n
i=1 pij and pF = 1

n

∑n
i=1 pF

i . As p̂j , p̂F and p̂F
i are available

from the data, we can calculate p̂T
ij from Equation (2):

p̂T
ij = p̂T

j =
p̂j − p̂F

1− p̂F
. (3)

By substituting Equation (3) for Equation (1), we obtain:

p̂ij =
p̂j ·(1− p̂F

i )− p̂F + p̂F
i

1− p̂F
.

Now, we have {p̂i1,p̂i2,...,p̂im}, which are Poisson-binomial parameter

estimates adjusted for each position. Using these parameter estimates, the

P-value p(sj) is calculated as described in the previous section.

2.3 Preparation of simulation data

Simulation data for benchmark tests were generated partially based on

a study by Guttman et al. (2007). Assuming unpaired experiments, we

simulate n×m and n×l binary matrices, R and S. In our simulation, we

assumed three types of aberrations: concordant true, non-concordant true

and concordant false positive aberrations. All types of aberrations exist in

R; therefore, we independently generated n×m binary matrices, Rc, Rn

and Rf . To obtain R, we combined them using Rij =max{Rc
ij,R

n
ij,R

f
ij}. These

matrices are illustrated in Figure 1. Only concordant false positive aberrations

exist in S.

• Concordant true aberrations. Rc contains concordant true aberrations

of width wc at row intervals specified by an integer set C, which

contains the row indices of aberration centers. For each interval,

aberrations recurrently appear in columns randomly sampled with

rate rc. Note that this type of aberrations should be a target of PART

and the positions in the specified concordant intervals are used as

actual positives in benchmark tests.

• Non-concordant true aberrations. Each column of Rn has k ′n
j non-

concordant true aberrations of length wn . For each aberration, we

sampled the interval length w′n ∼ Geometric (1/wn), and the interval

position randomly. The number of aberrations k ′n
j was sampled for

each column so that k ′n
j ∼Poisson(kn).

• Concordant false positive aberrations. Intervals of concordant false

positive aberrations have width wf and are specified by the concordant

row interval set of size kf . The kf elements were randomly sampled

from 1 to n. For each of the concordant intervals, Rf and S have

aberrations in columns randomly sampled with rate rf .
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Evaluate the recurrence of genomic aberrations

In our simulation, we fix the parameters as n=1000, m=100, l =300,

wc =wn =wf =5 and C ={200,400,600,800}. For the other parameters, kn ,

kf , rc and rf , several combinations of parameter values were examined, as

described later.

2.4 Preparation of real data

We obtain paired and unpaired LOH profile matrices for 294 pairs of

colorectal cancer and normal samples. As a data source, TCGA (The Cancer

Genome Atlas) Level 3 SNP data profiled by Affymetrix SNPArray 6.0 were

downloaded from the TCGA data portal site (http://tcga-data.nci.nih.gov/

tcga/tcgaHome2.jsp). To obtain a paired LOH profile matrix, we performed

LOH detection for each pair of the samples-based allelic imbalance (Staaf

et al., 2008). For SNPs whose genotypes are called heterozygous in the

normal genome, the ratio of allelic copy intensities was calculated as the

B allele frequency (BAF) score: B=b/(a+b), where a and b are the copy

number intensity for A and B alleles in the cancer genome. The BAF score

should be 0.5 if the position has no allelic imbalance. We then computed the

absolute deviation of the BAF score from 0.5 as the BAF′: B′ =|B−0.5|.

BAF′ was plotted along chromosomes and segmented using the circular

binary segmentation algorithm with parameter α=0.01 (Venkatraman and

Olshen, 2007). We assumed that chromosomal segments with B′ >0.1 are

subjected to LOH. To obtain the unpaired LOH profile matrices, we applied

the basic Hidden Markov Model method proposed by Beroukhim et al.

(2006) to the cancer genome data. His method uses a hidden Markov model to

detect successive LOH while taking into account SNP intermarker distances.

LOH in unpaired samples was also detected by the same procedure.

We also prepared the unpaired aberration profile matrices for the Sanger

cell line data. We obtained Affymetrix SNP Array 6.0 data containing 764

cell lines and 466 unpaired normal samples from the Cancer Genome Project

site (http://www.sanger.ac.uk/genetics/CGP/Archive/) (Bignell et al., 2010).

The unpaired LOH profile matrices were obtained in the same way as the

TCGA data. The copy number amplification and deletion profile matrices

were obtained by binarizing the copy number profiles predicted by PICNIC

(Greenman et al., 2010).

3 RESULTS

3.1 Simulation data test

First, we numerically show that our Poisson-binomial approach

is statistically equivalent to the permutation approach adopted by

other methods. We prepared an LOH profile matrix from the Sanger

cell line data, and compare PART P-values with those based on

10 000 permutations of chromosomal positions for each sample.

The minus log scale P-value plot in Figure 2 shows that they

correspond with each other, although the permutation approach

has a limitation for the calculation of small P-values. We also

permutated chromosomal positions for each sample, apply PART to

the permutated data and plot a histogram of P-values. Supplementary

Materials Figure S1 shows that the histogram is close to uniform

distributions, demonstrating that our method successfully controls

the rate of false positives.

Next, we numerically compare the performance of PART

and PART-up. We simulated aberration profile matrices; in each

simulation, we obtain a pair of true and false positive aberration

matrices. To generate matrices, we assumed three types of

aberrations: concordant true non-concordant true and concordant

false positive aberrations. In the true aberration matrix, concordant

true aberrations appear recurrently at specific positions whereas non-

concordant true aberrations appear randomly. Namely, concordant

true aberrations mimic drivers targeted by PART whereas non-

concordant true aberrations mimic passengers. As concordant false

positive aberrations mimic polymorphisms which exist in both

cancer and normal genomes, they appear recurrently at the same

position and frequency in both the true and false positive aberration

matrices. The simulation data were generated from a simulator

with four free parameters: kn for the number of non-concordant

true aberrations, kf for the number of concordant false positive

aberrations, rc for the rate of samples subjected to concordant true

aberration, and rf for the rate of samples subjected to concordant

false positive aberrations. A simulation instance is illustrated in

Figure 1.

We prepared 16 types of simulators with different parameter

settings and obtained 100 matrix pairs from 100 Monte Carlo trials

for each simulator. For each Monte Carlo matrix pair, we applied

PART to the true aberration matrices and PART-up to both the

matrices. The result for a Monte Carlo matrix pair is presented

in Figure 3. From the results pooled across the 100 Monte Carlo

trials, we calculated precision and recall for each method over the

whole range of significance cutoffs to depict precision-recall (PR)

curves. Precision is defined as the proportion of actual in predicted

positives, whereas recall is defined as the proportion of predicted in

actual positives. We assumed positions within concordant intervals

Fig. 1. Simulation of aberration matrices. In a Monte Carlo trial, three matrices, Rc, Rn and Rf , were simulated with kn =10, kf =10, rc =0.3 and rf =0.3.

Rc, Rn and Rf contain concordant true, non-concordant true, and concordant false positive aberrations, respectively. The aberration matrix R is obtained by

overlapping the three matrices. Although the false positive aberration matrix S is not shown here, its simulation is similar to that of Rf
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Fig. 2. Comparison of P-values between the Poisson-binomial and

permutation approaches. The P-values for recurrent genomic aberration were

obtained by the Poisson-binomial statistics and permutations, and plotted in

minus log scale

A

B

Fig. 3. An example of significance plots for simulation data. PART and

PART-up were applied to the simulated data presented in Figure 1. The P-

values from PART (A) and PART-up (B) were plotted in minus log scales

across chromosomal positions

as actual positives and positions determined by a significance cutoff

as predicted positives. The PR curve shows the discriminative ability

of each method to find positions associated with true concordant

aberrations. For this type of benchmark tests, the receiver operating

characteristic curve is also popular; however, we chose the PR

curve because it is preferred for our case where the number of

actual positives is relatively small (Davis and Goadrich, 2006).

The heatmap in Figure 4 shows the PR curves for the 16 different

parameter settings. PART-up performs better in the presence of

more concordant false positive aberrations (i.e. when the parameters

controlling the frequency of concordant false positive aberrations,

kf and rf , are larger), while the performance of both methods are

attenuated by the presence of non-concordant true aberrations (i.e.

when the parameter controlling the frequency of non-concordant

Fig. 4. PR curves of PART and PART-up. PR curves were obtained by

applying PART (blue lines) and PART-up (red lines) to simulation data from

16 different parameter settings. The horizontal axis indicates recall whereas

the vertical axis indicates precision

true aberrations, kn , is larger). These results demonstrate that PART-

up can successfully discriminate concordant true aberrations from

concordant false positive aberrations, suggesting its applicability to

genomic data obtained in unpaired experimental designs.

3.2 Real data test

In this section, we compare PART and PART-up using real

experimental data. First, we focus on TCGA colorectal cancer SNP

data that were obtained in a paired experimental design. To examine

the performance of PART-up, we prepared two types of LOH profile

matrices in two different ways: paired and unpaired LOH profile

matrices. The former was authentically obtained based on paired

genomes: LOHs were called by comparing genotypes between tumor

and paired normal genomes. The latter was approximately obtained

based only on tumor genomes: LOHs were calls for segments

that harbor successive homozygous calls in tumor genomes. An

unpaired LOH profile matrix for normal samples was also prepared

for PART-up input.

We applied PART to the paired and unpaired matrices, and plot

minus log P-value across chromosomes. The paired LOH profile

matrix produces a clear significance plot, whereas the unpaired

LOH profile matrix yields a noisy plot with many spikes, as shown

in Figure 5A and B. The spikes would reflect false positive LOH

calls for polymorphic homozygous segments that exist in normal

genomes. We also applied PART-up to the same unpaired LOH

profile matrix from tumor samples combined with that from normal

samples. Figure 5C shows that PART-up successfully removes most

of the spikes and the result corresponds well to that from PART

applied to the paired matrix. This observation demonstrates that, if

the aberration profiles for unpaired normal samples are available,

PART-up performs as well for unpaired data as PART does for

paired data.
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Evaluate the recurrence of genomic aberrations

A

B

C

Fig. 5. Significance plots for recurrent LOH in the TCGA colorectal cancer

data. Minus log scaled P-values for the recurrence of LOH were plotted

across chromosomes, each of which is indicated by vertical stripes. (A) PART

was applied to the paired LOH profile matrix. (B) PART was applied to the

unpaired LOH profile matrix from the tumor samples. (C) PART-up was

applied to the unpaired LOH profile matrices from the tumor and normal

samples

Next, we obtained unpaired LOH profile matrices from a cancer

cell line dataset published by the Sanger institute (Bignell et al.,

2010). As paired normal controls are usually unavailable for cell

lines, it has been difficult to find recurrent aberrations in cell line

data. However, as the Sanger dataset is accompanied by hundreds

of unpaired normal sample data items, it can be subject to PART-

up. We apply PART and PART-up to the unpaired LOH profile

matrices and the significance plots are shown in Figure 6A and B.

As in the TCGA case, although PART produces a noisy plot,

PART-up produces a much clearer plot, revealing recurrent LOH

region in the cancer cell lines. We also applied PART and PART-

up to the unpaired copy number amplification and deletion profile

matrices, and these results are shown in Supplementary Materials

Figures S2 and S3. The comparison between the significance plots

demonstrates that PART-up removes some spikes, which would

be from copy number polymorphisms in normal genomes. The

differences are less dramatic than in the LOH case, reflecting the low

rate of pseudoaberrations from normal genomes for copy number

aberrations as compared with LOH (see Supplementary Materials

Table S1).As such, we conclude that PART-up successfully identifies

recurrently aberrant regions from unpaired genomic data.

4 DISCUSSION

In this study, we presented a novel statistical method, PART,

to test the recurrence of genomic aberration. Although a

A

B

Fig. 6. Significance plots for recurrent LOH in the Sanger cell line cancer

data. Minus log scaled P-values for the recurrence of LOH were plotted

across chromosomes, each of which is indicated by vertical stripes. (A) PART

was applied to the unpaired LOH profile matrix from the tumor samples. (B)

PART-up was applied to the unpaired LOH profile matrices from the tumor

and unpaired normal samples

number of methods have been developed for similar purposes,

most of them take permutation approaches to assess statistical

significance. Conversely, our method takes a novel parametric

approach by employing Poisson-binomial statistics. There are

pros and cons between the two approaches. Our parametric

approach needs less computational time and can calculate small

P-values more accurately than the permutation approach. This

property is important for genomic analysis, because we usually

need to calculate small P-values to correct large-scale multiple

hypothesis testing. Conversely although our approach must take

the count of aberrant samples as a test statistic, the permutation

approach is flexible for the type of statistic and can enable

more biologically plausible tests. For example, the GISTIC

statistic takes into consideration aberration strength in addition

to recurrence (Beroukhim et al., 2007). However, in spite of

these differences, we found that PART and GISTIC produce

consistent results on the copy number data (See Supplementary

Note).

The most notable advantage of our parametric approach is

highlighted by the extension of PART to PART-up. Although it

is preferable that genomic aberration profilings are performed in

paired experimental designs, it is not always possible to obtain paired

normal samples. However, PART-up is applicable only if data are

accompanied with unpaired normal samples from the same cohort,

which are generally easier to obtain. Although previously proposed

methods are not able to deal with such unpaired data, the introduction

of Poisson-binomial statistics enables us to test recurrent aberrations

in unpaired data while considering the rate of pseudo-aberrations

that originate from normal genomes. Although a method has been

proposed to call aberrations in individual tumor samples using the

pooled unpaired normal sample as a reference (Yamamoto et al.,

2007), testing for the recurrence of aberrations in a group of unpaired

tumor samples is a novel approach. It is expected that combining

these complementary approaches will reduce false positives and lead

to higher performance.

i119

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/1

2
/i1

1
5
/2

6
7
5
1
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



A.Niida et al.

In this study, we applied our method to genomic aberration

profiles obtained by the microarray technology. The next-generation

sequence technology has result in a torrent of cancer genome

data (Meyerson et al., 2010). The current dataset is not only

large but also complex, in that the new technology can profile

various types of genomic aberrations that cannot be captured by

the old technology: point mutations, short indels, translocations,

and so forth. A population-scale sequencing project targeting

thousands of normal genomes is also ongoing (1000 Genomes

Project Consortium, 2010); data produced by the project would be

used as unpaired normal sample controls for PART-up. Based on this

study, future studies would address the application of our Poisson-

binomial approach to a wider spectrum of genomic aberrations

revealed by the next-generation sequence technology.
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