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2 Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS

Abstract. Quantitative properties of stochastic systems are usually spec-
ified in logics that allow one to compare the measure of executions sat-
isfying certain temporal properties with thresholds. The model checking
problem for stochastic systems with respect to such logics is typically
solved by a numerical approach [31, 8, 35, 22, 21, 5] that iteratively com-
putes (or approximates) the exact measure of paths satisfying relevant
subformulas; the algorithms themselves depend on the class of systems
being analyzed as well as the logic used for specifying the properties. An-
other approach to solve the model checking problem is to simulate the
system for finitely many executions, and use hypothesis testing to infer
whether the samples provide a statistical evidence for the satisfaction
or violation of the specification. In this tutorial, we survey the statis-
tical approach, and outline its main advantages in terms of efficiency,
uniformity, and simplicity.

1 Introduction and Context

Quantitative properties of stochastic systems are usually specified in logics that
allow one to compare the measure of executions satisfying certain temporal prop-
erties with thresholds. The model checking problem for stochastic systems with
respect to such logics is typically solved by a numerical approach that iteratively
computes (or approximates) the exact measure of paths satisfying relevant sub-
formulas. The algorithm for computing such measures depends on the class of
stochastic systems being considered as well as the logics used for specifying the
correctness properties. Model checking algorithms for a variety of contexts have
been discovered [2, 13, 8] and there are mature tools (see e.g. [25, 7]) that have
been used to analyze a variety of systems in practice.

Despite the great strides made by numerical model checking algorithms, there
are many challenges. Numerical algorithms work only for special systems that
have certain structural properties. Further the algorithms require a lot of time
and space, and thus scaling to large systems is a challenge. Finally, the logics
for which model checking algorithms exist are extensions of classical temporal
logics, which are often not the most popular among engineers.

Another way to verify quantitative properties is to use a simulation-based
approach. The key idea is to deduce whether or not the system satisfies the
property by observing some of its executions with a monitoring procedure [1,
19], and use hypothesis testing to infer whether the samples provide a statistical



evidence for the satisfaction or violation of the specification [42]. Of course, in
contrast to a numerical approach, a simulation-based solution does not guarantee
a correct result. However, it is possible to bound the probability of making an
error. Simulation-based methods are known to be far less memory and time
intensive than numerical ones, and are sometimes the only option [41].

The crux of the statistical model checking approach is that since sample
executions of a stochastic system are drawn according to the distribution defined
by the system, they can be used to get estimates of the probability measure
on executions. Starting from time-bounded Probabilistic Computational Tree
Logic properties [42], the technique has been extended to handle properties with
unbounded until operators [33], as well as to black-box systems [32, 37]. Tools
based on this idea have been built [34, 39], and they have been used to analyze
many systems.

This approach enjoys many advantages. First, these algorithms only require
that the system be executable (or rather, sample executions be drawn according
to the measure space defined by the system). Thus, it can be applied to larger
class of systems than numerical model checking algorithms including black-box
systems and infinite state systems. Second the approach can be generalized to a
larger class of properties, including Fourier transform based logics. Finally, the
algorithm is easily parallelizable, which can help scale to large systems. However,
the statistical approach also has some disadvantages when compared with the
numerical approach. First, it only provides probabilistic guarantees about the
correctness of the algorithms answer. Next, the sample size grows very large
if the model checker’s answer is required to be highly accurate. Finally, the
statistical approach only works for purely probabilistic systems, i.e., those that
do not have any nondeterminism. Furthermore, since statistical tests are used to
determine the correctness of a system, the approach only works for systems that
“robustly” satisfy a given property, i.e., the actual measure of paths satisfying a
given subformula, is bounded away from the thresholds to which it is compared
in the specification.

In this tutorial, we will overview existing statistical model checking algo-
rithms and discuss their efficiency. We will also overview existing tools and case
studies and discuss future work.

2 Our Objective

We consider a stochastic system S and a property φ. An execution of S is a
possibly infinite sequence of states of S. Our objective is to solve the probabilistic
model checking problem, i.e., to decide whether S satisfies φ with a probability
greater or equal to a certain threshold θ. The latter is denoted S |= P≥θ(φ),
where P is called a probabilistic operator. This paper will overview solutions to
this problem. These solutions depend on the nature of S and φ. We consider
three cases.

1. We first assume that S is a white-box system, i.e., that one can generate
as much executions of the system as we want. We also assume that φ does



not contain probabilistic operators. In Section 3, we recall basic statistical
algorithms that can be used to verify bounded properties (i.e., properties
that can be monitored on fixed-length execution) of white-box systems.

2. In Section 4, we discuss extensions to the full probabilistic computation tree
logic[8]. There, we consider the case where φ can also contain probabilistic
operators and the case where it has to be verified on infinite executions.

3. In Section 5, we briefly discuss the verification of black-box systems, i.e.
systems for which a part of the probability distribution is unknown.

In Section 6, we will present various experiments that show that (1) statistical
model checking algorithms can be more efficient than numerical ones, and (2)
statistical model checking algorithms can be applied to solve problems that are
beyond the scope of numerical methods. Finally, Section 7 discusses our vision
of the future of statistical model checking.

Remark 1. The objective of the tutorial is not to feed the reader with technical
details, but rather to introduce statistical model checking, and outline its main
advantages in terms of efficiency, uniformity, and simplicity.

Remark 2. There are other techniques that allow to estimate the probability for
S to satisfy φ. These approaches (that are based on Monte-Carlo techniques)
will not be covered in this paper. The interested reader is redirected to [17, 20,
26] for more details.

Remark 3. Statistical Model Checking also applies to non stochastic systems [17].
This topic will not be covered in this tutorial.

3 Statistical Model Checking : The Beginning

In this section, we overview several statistical model checking techniques. We
assume that S is a white-box system and that φ is a bounded property. By
bounded properties, we mean properties that can be defined on finite executions
of the system. In general, the length of such executions has to be precomputed.

Let Bi be a discrete random variable with a Bernoulli distribution of param-
eter p. Such a variable can only take two values 0 and 1 with Pr[Bi = 1] = p
and Pr[Bi = 0] = 1− p. In our context, each variable Bi is associated with one
simulation of the system. The outcome for Bi, denoted bi, is 1 if the simulation
satisfies φ and 0 otherwise. To make sure that the above approach works, one
has to make sure that one can get the result of any experiment in a finite amount
of time. In general, this means that we are considering bounded properties, i.e.,
properties that can be decided on finite executions.

Remark 4. All the results presented in this section are well-known mathemati-
cal results coming from the area of statistics. As we shall see, these results are
sufficient to verify bounded properties of a large class of systems. As those prop-
erties are enough in many practical applications, one could wonder whether the
contribution of the computer scientist should not be at the practical level rather
than at the theoretical one.



Before going further one should answer one last question: “What is the class
of models that can be considered?” In fact, statistical model checking can be
applied to any stochastic system and logic on which one can define a probabil-
ity space for the property under consideration. Hence, the approach provides a
uniform way for the verification of a wide range of temporal logic properties
over various stochastic models, including Markov Chains or Continuous Timed
Markov Chains [35, 3, 2]. In general, it is not necessary to make the hypothesis
that the system has the Markovian property3, except when working with nested
formulas (see Section 4). It is worth mentioning that the technique cannot be
applied to systems that combine both nondeterministic and stochastic aspects
(such as Markov Decision Processes). Indeed, the simulation-based approach
could not distinguish between the probability distributions that are sampled.

3.1 Qualitative Answer using Statistical Model Checking

The main approaches [38, 32] proposed to answer the qualitative question are
based on hypothesis testing. Let p = Pr(φ), to determine whether p ≥ θ, we
can test H : p ≥ θ against K : p < θ. A test-based solution does not guarantee
a correct result but it is possible to bound the probability of making an error.
The strength (α, β) of a test is determined by two parameters, α and β, such
that the probability of accepting K (respectively, H) when H (respectively, K)
holds, called a Type-I error (respectively, a Type-II error ) is less or equal to α
(respectively, β).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly α (respectively, β). However, these requirements
make it impossible to ensure a low probability for both types of errors simulta-
neously (see [38] for details). A solution to this problem is to relax the test by
working with an indifference region (p1, p0) with p0≥p1 (p0−p1 is the size of the
region). In this context, we test the hypothesis H0 : p≥ p0 against H1 : p≤ p1

instead of H against K. If the value of p is between p1 and p0 (the indifference
region), then we say that the probability is sufficiently close to θ so that we
are indifferent with respect to which of the two hypotheses K or H is accepted.
The thresholds p0 and p1 are generally defined in term of the single threshold
θ, e.g., p1 = θ − δ and p0 = θ + δ. We now need to provide a test procedure
that satisfies the requirements above. In the next two subsections, we recall two
solutions proposed by Younes in [38, 43].

Single Sampling Plan. To test H0 against H1, we specify a constant c. If
∑n
i=1 bi

is larger than c, then H0 is accepted, else H1 is accepted. The difficult part in this
approach is to find values for the pair (n, c), called a single sampling plan (SSP
in short), such that the two error bounds α and β are respected. In practice, one
tries to work with the smallest value of n possible so as to minimize the number
of simulations performed. Clearly, this number has to be greater if α and β are

3 The Markovian property ensures that the probability to go from a state s to a next
state only depends on s, not on the states that have been visited before reaching s.



smaller but also if the size of the indifference region is smaller. This results in
an optimization problem, which generally does not have a closed-form solution
except for a few special cases [38]. In his thesis [38], Younes proposes a binary
search based algorithm that, given p0, p1, α, β, computes an approximation of
the minimal value for c and n.

Remark 5. There are many variants of this algorithm. As an example, in [33],
Sen et al. proposes to accept H0 if (

Pn
i=1 bi)

n ≥p. Here, the difficulty is to find a
value for n such that the error bounds are valid.

Sequential probability ratio test. The sample size for a single sampling plan is
fixed in advance and independent of the observations that are made. However,
taking those observations into account can increase the performance of the test.
As an example, if we use a single plan (n, c) and the m > c first simulations
satisfy the property, then we could (depending on the error bounds) accept
H0 without observing the n −m other simulations. To overcome this problem,
one can use the sequential probability ratio test (SPRT in short) proposed by
Wald [36]. The approach is briefly described below.

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (1)

where dm =
∑m
i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A,

and H1 if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values

of m until either H0 or H1 is satisfied; the algorithm terminates with probabil-
ity 1[36]. This has the advantage of minimizing the number of simulations. In
his thesis [38], Younes proposed a logarithmic based algorithm SPRT that given
p0, p1, α and β implements the sequential ratio testing procedure.

Discussion. Computing ideal values Aid and Bid for A and B in order to make
sure that we are working with a test of strength (α, β) is a laborious procedure
(see Section 3.4 of [36]). In his seminal paper [36], Wald showed that if one de-
fines Aid≥A = (1−β)

α and Bid ≤ B = β
(1−α) , then we obtain a new test whose

strength is (α′, β′), but such that α′ + β′ ≤ α+ β, meaning that either α′≤α or
β′ ≤ β. In practice, we often find that both inequalities hold. This is illustrated
with the following example taken from [38].

Example 1. Let p0 = 0.5, p1 = 0.3, α = 0.2 and β = 0.1. If we use Aid≥A =
(1−β)
α andBid ≤ B = β

(1−α) , then we are guaranteed that α′≤0.222 and β′≤0.125.
Through computer simulation (reproducing the same experiments 10000 of time),
we observe that α′≤0.175 and β′≤0.082. So the strength of the test is in reality
better than the theoretical assumption.



3.2 Some Generalities Regarding Efficiency

The efficiency of the above algorithms is characterized by the number of sim-
ulations needed to obtain an answer as well as the time it costs to compute a
simulation. The latter often depends on the property under verification. Both
numbers are expected numbers as they change from executions to executions and
can only be estimated (see [38] for an explanation). However, some generalities
are known. For example, it is known that, except for some situations, SPRT is
always faster than SSP. When θ = 1 (resp. θ = 0) SPRT degenerates to SSP;
it is not a problem since SSP is known to be optimal for such values. Observe
that the time complexity of statistical model checking is independent from the
state-space and that the space complexity is of the order of the state space.
Also, the expected number of simulations for SSP is logarithmic with respect to
α and β and linear with respect to the indifference region; for SPRT, the number
depends on the probability distribution p.

Remark 6. A very relevant discussion on complexity of statistical model checking
can be found in Section 5.4 of [38].

4 Statistical Model Checking: Next Step

In the previous section, we have proposed statistical model checking algorithms
for verifying bounded properties of white-box systems. In this section, we go one
step further and consider three nontrivial extensions that are:

1. The nested case, i.e., the case where φ can also contain probabilistic opera-
tors. As an example, we can write the following property P≥θ1(q ⇒ P≥θ2(φ2))

2. The unbounded case, i.e., the case where φ cannot be decide on a finite
execution. Here we will restrict ourselves to the until property. Given two
formulas φ1 and φ2, the until operator ensures that φ1 is true until φ2 has
been seen.

3. Boolean combinations of formulae, i.e., formulae of the form: P≥θ1(φ1) ∧
P≥θ2(φ2).

We will only survey existing results and give pointers to the relevant papers.

4.1 The Unbounded Case: Until

We are now concerned with the verification of the until property. This property
requires that a property φ1 remains valid until a property φ2 has been seen.
The problem is that we do not know a priori the moment when φ2 will be
satisfied. Hence, one has to reason on infinite execution. There are two works
on this topics, one by Sen et al.[33] and one more recent work by Pekergin et
al. [30]. We will not give details on these works, but the reader should know
that Sen works by extending the model with extra probabilities, which makes
the solution extremely slow. Pekergin uses a new technique that is based on



perfect simulation. According to [30], this technique is not only faster than Sen’s
one, but also more general as it allows to study the steady-state operator for
continuous timed Markov Chains.

Remark 7. Contrary to the numerical results [35, 5] the above results are not
sufficient to verify properties of the form P≥θ(φ), where φ is a property expressed
in Linear Temporal Logic [29]. Incomplete results regarding the verification of
these properties with simulation-based techniques can be found in [20, 17].

4.2 Nested Probability Operators

We consider the problem of checking whether S satisfies φ with a probability
greater or equal to θ. However, contrary to what we have been doing so far, we
will now assume that φ cannot be decided on a single execution, i.e., we will
assume that φ is of the form P≥θ1φ1. So, where is the difficulty? The difficulty
is that φ cannot be model checked on a single execution, but rather depends on
another test. Hence, we have to provide a way to nest tests. In his thesis, Younes
proposed the following theorem.

Theorem 1. Let ψ = P≥θ(φ) be a property and assume that φ can be verified
with Type-I error α′ and Type-II error β′, then ψ can be verified with Type-I
error α and Type-II error β, assuming that the indifference region is of size at
least ((θ + δ)(1− α′), (1− (1− (θ − δ)))(1− β′).

Hence one has to find a compromise between the size of the indifference
region of the inner test and the outer one. There are two interesting facts to
know about nested operators:

1. Even for bounded properties, the above result (and in fact, any result in the
literature [33, 38, 37, 39]) only works for systems that have the Markovian
property.

2. In practice, the complexity (in term of number of sampling) becomes expo-
nential in the number of tests.

Remark 8. An interesting research direction would be to study the link with
probabilistic testing [27].

4.3 Boolean Combinations

We have to consider two operations, namely conjunction and negation (as it is
known that any Boolean combination reduces to combinations of these two op-
erators). We recall some results provided by Younes. We start with conjunction.

Theorem 2. Let ψ be the conjunction of n properties φ1, . . . , φ2. Assume that
each φi can be decided with Type-I error αi and Type-II error βI . Then φ can be
decided with Type-I error mini(αi) and Type-II error maxi(βi).

The idea behind the proof of the theorem is that



1. If we claim that the conjunction is not satisfied, this means that we have
deduced that one of the operands is not.

2. If we claim that the conjunction is satisfied, this means that we have con-
cluded that all the operands are satisfied. As we may have made mistakes in
each individual verification, we get maxi(βi).

For negation, the result is provided by the following theorem.

Theorem 3. To verify a formula ¬ψ with Type-I error α and Type-II error β,
it is sufficient to verify ψ with Type-I error β and Type-II error α.

5 Black-box Systems: a Note

Black-box Systems is an interesting class of stochastic systems whose treatment
is beyond the scope of numerical techniques. Roughly speaking, a black-box
systems is simply a system whose probability distribution (i.e., set of behaviors)
is not totally known and cannot be observed. Hence, one can view a black-box
system as a finite set of executions pre-computed and for which no information
is available.

In the context of such systems, Type errors and indifference region cannot
play a role. Indeed, those parameters influence the number of simulations that
can be computed, but here the simulations are given and you cannot compute
more!

A solution to this problem is to conduct a SSP test assuming that the pa-
rameter n is fixed to the number of simulations that are given in advance. The
difficulty is to chose the constant c in such a way that it becomes roughly equal
to accept H0 or H1 if θ = p. In his thesis [38] and in [40], Younes proposed a
solution to the problem. He also shown that a previous solution proposed by Sen
[32] is not correct.

There are techniques to verify nested formulas over black-box systems. How-
ever, a technique for the verification of unbounded properties is still needed.

6 Tools and Experiments

Any statistical model checking toolset is build by combining 1) a monitoring
procedure to decide whether a finite execution satisfies the property under con-
sideration, 2) a statistical model checking algorithm, and 3) a tool that allows
to describe a system and generate sets of executions.

The two firsts tools that implemented statistical model checking algorithms
are Ymer[39] and Vesta[34]. Vesta implements a variation of the single sampling
plan algorithm. The choice of implementing the SSP algorithm is motivated by
the fact that it is easier to parallelize as the number of simulations to perform is
known in advance. However, in his thesis, Younes showed that sequential algo-
rithms are also easily parallelizable. Ymer is limited to bounded properties while
Vesta also incorporate the unbounded until. In [22], the authors conducted sev-
eral experiments that tend to show that (1) Ymer is faster than Vesta and (2)



Vesta makes more false positive (selecting the bad hypothesis) than Ymer. Re-
garding the unbounded case, it seems that Vesta is not very efficient and can
make a lot of false positive. Both Vesta and Ymer have been applied to huge case
studies. A comparison of Ymer and Vesta to established tools such as PRISM [25]
can be found in [22].

Both Ymer and Vesta as well as their successors [23, 24] focus on the verification
of classical stochastic extension of temporal logics. In a series of recent work, we
have shown that statistical model checking can also be used in other contexts
that are clearly beyond the scope of existing tools. This topic is the subject of
the next subsections.

6.1 Verifying Circuits

In [9, 10], we applied SPRT to verifying properties of mixed-signal circuits, i.e.,
circuits for which there is an interaction between analog (continuous) and digital
(discrete) values. Our first contribution was to propose a version of stochastic
discrete-time event systems that fits into the framework introduced by Younes
with the additional advantage that it explicitly handles analog and digital sig-
nals. We also introduced probabilistic signal linear temporal logic, a logic adapted
to the specification of properties for mixed-signal circuits in the temporal domain
and in the frequency domain. Our second contribution was the analysis of a ∆−Σ
modulator. A ∆−Σ modulator is an efficient Analog-to-Digital Converter circuit,
i.e., a device that converts analog signals into digital signals. A common critical
issue in this domain is the analysis of the stability of the internal state variables of
the circuit. The concern is that the values that are stored by these variables can
grow out of control until reaching a maximum value, at which point we say that
the circuit saturates. Saturation is commonly assumed to compromise the qual-
ity of the analog-to-digital conversion. In [14] and [18] reachability techniques
developed in the area of hybrid systems are used to analyze the stability of a
third-order modulator. Their idea is to use such techniques to guarantee that for
every input signal in a given range, the states of the system remain stable. While
this reachability-based approach is sound, it has important drawbacks such as
(1) signals with long duration cannot be practically analyzed, and (2) properties
that are commonly specified in the frequency domain rather than in the time
domain cannot be checked. Our results show that a simulation-based approach
makes it possible to handle properties and signals that are beyond the scope of
the reachability-based approach. As an example, in our experiments, we analyze
discrete-time signals with 24000 sampling points in seconds, while the approach
in [14] takes hours to analyze signals with up to 31 sampling points. We are also
able to provide insight into a question left open in [14] by observing that satu-
ration does not always imply an improper signal conversion. This can be done
by comparing the Fourier transform of each of the input analog signals with
the Fourier transform of its corresponding digital signal. Such a property can
easily be expressed in our logic and Model Checked with our simulation-based
approach. We are unaware of other formal verification techniques that can solve



this problem. Indeed, numerical techniques cannot reason on an execution at a
time.

6.2 Systems Biology

In [11], we considered the verification of complex biological systems. we intro-
duced a new tool, called BioLab, for formally reasoning about the behavior of
stochastic dynamic models by integrating SPRT into the BioNetGen [15, 16]
framework for rule-based modeling. We then used BioLab to verify the stochas-
tic bistability of T-cell signalling. Our results have recently been extended to
take prior knowledge on the model into account [6].

Remark 9. Statistical model checking techniques recently received a lot of atten-
tion in the area of systems biology. As an example, Carnegie Mellon University
was awarded a $10.000.000 grant for applying such techniques in the medical
area [12].

6.3 Heterogeneous applications

In [4], we have proposed to apply statistical model checking techniques to the
verification of heterogeneous applications. Systems integrating multiple heteroge-
neous distributed applications communicating over a shared network are typical
in various sensitive domains such as aeronautic or automotive embedded sys-
tems. Verifying the correctness of a particular application inside such a system
is known to be a challenging task, which is often beyond the scope of existing
exhaustive validation techniques.

In our paper, we proposed to exploit the structure of the system in order to
increase the efficiency of the verification process. The idea is conceptually simple:
instead of performing an analysis of the entire system, we proposed to analyze
each application separately, but under some particular context/execution envi-
ronment. This context is a stochastic abstraction that represents the interactions
with other applications running within the system and sharing the computation
and communication resources. The idea is to build such a context automatically
by simulating the system and learning the probability distributions of key char-
acteristics impacting the functionality of the given application. The abstraction
can easily be analyzed with statistical model checking techniques.

The overall contribution of our study is an application of the above method
on an industrial case study, the heterogeneous communication system (HCS for
short) deployed for cabin communication in a civil airplane. HCS is an heteroge-
neous system providing entertainment services (ex : audio/video on passengers
demand) as well as administrative services (ex: cabin illumination, control, audio
announcements), which are implemented as distributed applications running in
parallel, across various devices within the plane and communicating through a
common Ethernet-based network. The HCS system has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and
synchronization constraints. An important requirement is the accuracy of clock



synchronization between different devices. This latter property states that the
difference between the clocks of any two devices should be bounded by a small
constant, which is provided by the user and depends on his needs (for example,
to guarantee the fiability of another service). Hence, one must be capable to
compute the smallest bound for which synchronization occurs and compare it
with the bound expected by the user. Unfortunately, due to the large number
of heterogeneous components that constitute the system, deriving such a bound
manually from the textual specification is an unfeasible task. In this paper, we
propose a formal approach that consists in building a formal model of the HCS,
then we apply simulation-based algorithms to this model in order to deduce the
smallest value of the bound for which synchronization occurs. We start with a
fixed value of the bound and check whether synchronization occurs. If yes, then
we make sure that this is the best one. If no, we restart the experiment with a
new value.

We have been able to derive precise bounds that guarantee proper synchro-
nization for all the devices of the system. We also computed the probability to
satisfy the property for smaller values of the bound, i.e., bounds that do not
satisfy the synchronization property with probability 1. Being able to provide
such an information is of clear importance, especially when the best bound is
too high with respect to user’s requirements. We have observed that the values
we obtained strongly depend on the position of the device in the network. We
also estimated the average and worst proportion of failures per simulation for
bounds that are smaller than the one that guarantees synchronization. Checking
this latter property has been made easy because statistical model checking al-
lows us to reason on one execution at a time. Finally, we have also considered the
influence of clock drift on the synchronisation results. The experiments highlight
the generality of our technique, which could be applied to other versions of the
HCS as well as to other heterogeneous applications.

7 The Future of Statistical Model Checking

There are various directions for future research in the statistical model checking
area. Here is a list of possible topics.

– Using efficient techniques for performing simulation is crucial to guarantee
good performances for any statistical model checking algorithm. Unfortu-
nately, the existing algorithms do not exploit efficient simulation techniques.
It would thus be worth combining statistical model checking algorithms with
such techniques (example : rare-event simulations, , ...). This is a huge im-
plementation effort which also requires to define a methodology to select the
good simulation technique to be applied.

– Statistical model checking algorithms have not yet been applied to the veri-
fication of multi-core systems, this area should be investigated.

– Statistical model checking algorithms do not apply to systems that com-
bine both stochastic and non deterministic aspects. Extending the results to



such systems is however crucial to perform verification of security protocols,
networking protocols, and performance protocols.

– Statistical model checking algorithms reduce to decide between two hypoth-
esis. In many areas, especially systems biology, we may have a prior knowl-
edge on the probability to satisfy each hypothesis. Incorporating this prior
knowledge in the verification process may considerably reduce the number
of simulations needed for the algorithm to terminate.

– Statistical model checking algorithms suppose that the property φ can be
checked on finite executions of the system. There are however many situ-
ations where φ cannot be checked in a finite amount of time. This is for
example the case when φ is a long-run average or a steady state property.
In systems biology, we are clearly interested in the study of such properties.

– Verifying applications running within a huge heterogeneous system without
is a challenging problem. In a recent work [4], the authors have proposed
a new simulation-based technique for solving such problem. The technique
starts by performing simulations of the system in order to learn the context
in where the application is used. Then, it creates a stochastic abstraction
for the application, which takes the context information into account. Up
to know, there is no automatic way to learn the context and derive the
stochastic context. However, what we have observed so far is that it often
takes the form of properties that cannot be expressed in classical temporal
logic. Hence, statistical model checking may be our last resort to analyze the
resulting abstraction.

– Statistical model checking may help testers. In [28], Cavalli et al. proposed
to use statistical techniques for conformance testing of timed stochastic sys-
tems. The technique should be automated. This could lead to new algorithms
for verifying the so-called black-box systems.
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