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Abstract

Recently, there has been considerable interest in the udeaé¢l Checking for Systems Biology.
Unfortunately, the state space of stochastic biological@is often too large for classical Model
Checking techniques. For these models, a statistical apprim Model Checking has been shown
to be an effective alternative. Extending our earlier wavk, present the first algorithm for per-
forming statistical Model Checking using Bayesian Seqgaéitypothesis Testing. We show that
our Bayesian approach outperforms current statisticalé@thecking techniques, which rely on
tests from Classical (aka Frequentist) statistics, by iregufewer system simulations. Another
advantage of our approach is the ability to incorporater@@iological knowledge about the model
being verified. We demonstrate our algorithm on a variety ofleils from the Systems Biology
literature and show that it enables faster verification state-of-the-art techniques, even when no
prior knowledge is available.






1 Introduction

Computational models are increasingly used in the field st&ys Biology to examine the dynam-
ics of biological processes (e.g., [1, 9, 11, 21, 30, 33,.38})‘computational’, we mean discrete-
variable and continuous or discrete-time models [5], wileeecomponents of the system interact
and evolve by obeying a set of instructions or rules. In @sttio differential equation-based mod-
els, which are also widely used in Systems Biology, compatat models can provide insights
into the role of stochastic effects over discrete-popategiof molecules or cells. Recently, there
has been considerable interest in the application of Motekt&ing [14] as a powerful tool fdor-
mally reasoning about the dynamic properties of such models (&,d., 10, 12, 16, 19, 25, 37]).
This paper presents a new Model Checking algorithm that iissuéed for verifying properties of

very large stochastic models, such as those created anduSgstems Biology.

The stochastic nature of most computational models fronte8ys Biology gives rise to an in-
stance of th@robabilistic Model Checkin@PMC) problem [15, 14, 31]. Suppo$¢ is a stochastic
model over a set of stat€} 5 is a starting statep is a dynamic property expressed as a formula
in temporal logic, and® € [0,1] is a probability threshold. The PMC problem is: given the 4-
tuple (M, %0, @,0), algorithmically decide whetheM ,sp = P>o(®). In this paper, property is
expressed in BLTL - Bounded Linear Temporal Logic [35, 34, Zhiven these, PMC algorithms
decide whether the model satisfies the property with at [gastability 6.

Existing algorithms for solving the PMC problem fall into e@wnf two categories. The first
category comprises numerical methods (e.g. [3, 4, 13, 1]y w8fich can compute the probability
with which the property holds with high precision. Numeticgethods are generally only suitable
for small systems~ 1P to 10’ states). In a Biological System, the number of states cailyeas
exceed this limit, which motivates the need for algorithros dolving the PMC problem in an
approximate fashion. Approximate methods (e.g., [24, B7,4%]) work by sampling a set of

tracesfrom the model. Each trace is then evaluated to determin¢hehé satisfies the property.



The number of satisfying traces is used to (approximatedg)ae whethefM , 5o = P-o(9).

Approximate PMC methods can be further divided into two sategories: (i) those that seek
to estimatethe probability that the property holds and then comparedkimate td® (e.g., [27,
38]), and (ii) those that reduce the PMC problem taypothesis testingroblem (e.g., [45, 46]).
That is, deciding between two hypothesesHg-: P-g(®) versusHs : P.g(@). Hypothesis-testing
based methods are more efficient than those based on estiméitend (which is specified by the
user) is significantly different than the true probabilitat the property holds (which is determined

by M andsp) [44].

Existing PMC methods based on hypothesis testing relglassical(akaFrequentis} statisti-
cal procedures, like Wald’s Sequential Probability Ra#és{l{SPRT) [41], to answer the decision
problem. Our algorithm performs hypothesis testing, besBayesiarstatistical procedures. This
distinction is not trivial, as Bayesian and Classical stais are two very different fields. We will
show that in practice, our Bayesian approach requires feaples than Wald's SPRT. Finally,
we note that because we adopt a Bayesian approach, ourtllgaan incorporate prior knowl-
edge, in the form of a probability distributioR(8), when available. This is relevant because in a

Biological setting, it is often the case that prior knowledg available.

The contributions of this paper are as follows:

The first application of Bayesian Sequential Hypothesisiigso statistical Model Checking,

The first hypothesis-testing based statistical Model Cimgcilgorithm designed for composite

hypotheses, which can in particular include prior knowked@ a mixture of prior distributions,

A theorem proving that our algorithm terminates with prabigbl,

Error bounds for our algorithm, and

A series of case studies using Systems Biology models ddnating that our method is empir-

ically more efficient than existing algorithms for statsti Model Checking.



2 Background and Related Work

Our algorithm can be applied to any stochastic matielwith a well-defined probability space
over traces. Several well-studied stochastic models tige(ete and continuous) Markov Chains
satisfy this property [46]. We assume that each executidhefystem can be represented by a
sequence of states and the time spent in these states. Tuenseg = (S, to), (S1,t1),... denotes

an execution of the system along stadgs;, . . . with durationdg, t1, ... € R. The system stays in
states for durationt; and makes a transition 8p,1. We require that the surfii’t; must diverge,

that is, the system can not make infinitely many state swatalménite time.

2.1 Specifying Properties in Temporal Logic

Our algorithm verifies properties o/ expressed as formulas Probabilistic Bounded Linear
Temporal LogiqPBLTL). We first define the syntax and semantic8olunded Linear Temporal
Logic (BLTL) [35, 34, 20] and then extend that logic to PBLTL.

For a stochastic modélf, let the set of state variabl& be a finite set of real-valued variables.
A Boolean predicate ove3V is a constraint of the form~v, wherex € SV, ~ € {>,<,=}, and
ve R. A BLTL property is built on a finite set of Boolean predica®ger SV using Boolean

connectives and temporal operators. The syntax of the Isgjiven by the following grammar:

Q=X V| (@LV @) | (P A@2) | —¢1 | (@1U'py),

where~ € {>,<,=}, xe SV, ve Q, andt € Q>o. We can define additional temporal operators

such aF!y = True Ut Y, or Gty = —F'— in terms of the bounded untilt.

We define the semantics of BLTL with respect to execution®8/fThe fact that an execution
o satisfies propertgis denoted by |~ ¢. Leto = (sp, o), (S1,t1), . .. be an execution of the model

along statesy, s1, . .. with durationstp,ts, ... € R. We denote the execution trace starting at state



i by ¢ (in particular,a® denotes the original executiar). The value of the state variabkein o
at the state is denoted by (0,i,x). The semantics of BLTL for a tracg" starting at the!" state

(k € N) is defined as follows:

o 0Xk=x~vifand onlyifV(a,k x) ~ v;

0" = @1V @ if and only if * |= @1 or 0¥ = @p;

o = @1 A @ if and only if o* |= @1 andd® = @;

0¥ = @y if and only if o |= @1 does not hold (writterm® (- @y);

0¥ = qU'q; if and only if there exists € N such that&) o< it <t, (b) 0" = @z and €)

for each 0< j < i, o1 = qy.

Statistical Model Checking is based on evaluating whettherg holds on sample simulatiomsof
the system. In practice, sample simulations only have afautation. The question is how long
these simulations have to be for the formyléo have a well-defined semantics such tbat @
can be checked. i is too short, say of duration 2, the semanticgdf®p, may be unclear. But
at what duration of the simulation can we stop because we khatthe truth-value foo = @will
never change by continuing the simulation? In Appendix A,ps@ve that finite simulations of

bounded duration are always sufficient for Model CheckingBhbn traces.

We can now define Probabilistic Bounded Linear Temporal togi

Definition 1 A Probabilistic Bounded LTL (PBLTL) formula is a formula detform Rg(¢),

where@is a BLTL formula and® € (0, 1).

We say thatM satisfies PBLTL propertyP-g(®), denoted byM = P.g(@), if and only if the
probability that an execution d¥ satisfies BLTL propertyp is greater than or equal t The
problem is well-defined [46] since one can always assigngueprobability measure to the set of
executions ofM that satisfy a formula in BLTL. Note that counterexampleth®BLTL property

@arenotcounterexamples to the PBLTL propeRyg(@), because the truth ¢.¢(¢) depends on
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the likelihood of all counterexamples @ This makes PMC more difficult than standard Model

Checking, because one counterexamplgi®not enough to answék.g(@).

2.2 Existing Statistical Probabilistic Model Checking Algorithms

As outlined in the introduction, Probabilistic Model Chealk algorithms can either be exact (e.qg.
[3, 4, 13, 17, 31]), or statistical in nature. In practicatistical methods (e.g., [24, 27, 38, 45]),
which iteratively draw sample traces from the model, areegaliy better suited to Model Checking
Biological systems because they scale better. Our methstgtistical, and so we will compare

and contrast our method to existing statistical methodsighdection.

Existing PMC methods based on hypothesis testing relZlassical(akaFrequentis} statis-
tical procedures, like Wald’s Sequential Probability Rafest (SPRT) [41], to answer the deci-
sion problem. Younes and Simmons introduced the first algaorfor statistical Model Checking
[44, 45, 46] for verifying probabilistic temporal propersi of stochastic systems. Their work uses
the SPRT, which is designed feimplehypothesis testing Specifically, the SPRT decides be-
tween the simple null hypothesks, : M, 9 = P_g,(¢) against the simple alternate hypothesis
Hi: M, s0 = P-g,(9), whereBp < 6;. It can be shown that the SPRT is optimal for simple hypoth-
esis testing, in the sense that it minimizes the expectedruof samples among all the tests satis-
fying the same Type | and Il errors [42], when eith#yor H; is true. The PMC problem is instead
a choice between twoompositénypothesesly : M, sp = P=p[@] versusHy : M, 5o = Pg[¢@]. The
SPRT is not defined unle®g £ 81, so Younes and Simmons overcome this problem by separating
the two hypotheses by andifference regior{ — 8,0+ 8), where 0< & < 1 is a user-specified pa-
rameter. It can be shown that the SPRT with indifferenceoregan be used for testing composite

hypotheses, while respecting the same Type | and Il erroasstdndard SPRT [22, Section 3.4].

A simple hypothesis completely specifies a distributionr &ample, a Bernoulli distribution of parameter
is fully specified by the hypothesig= 0.5 (or some other fixed value). A composite hypothesis hagausiree
parameterse.g.the hypothesip < 0.3, for a Bernoulli distribution.



However, in this case the test is no longer optimal, and theman expected sample size may
be much bigger than the optimal fixed sample size samplirig t&=e [8] and [22, Section 3.6].
We note that our algorithm solves the composite hypothesisng problem, but does so using

Bayesian statistics, and thus requires no indifferencieneg

The method of [27] uses a fixed number of samples and estirttegsobability the property
holds as the number of satisfying traces divided by the numbsampled traces. Their algorithm
guarantees the accuracy of the results using Chernofffiogfbounds. In particular, their al-
gorithm can guarantee that the difference in the estimatddfze true probability is less than
with probability p, wherep < 1 ande > 0 are user-specified parameters. Grosu and Smolka use
a similar technique for verifying formulas in LTL [24]. Thealgorithm randomly samples lassos

from a Buchi automaton in an on-the-fly fashion.

Finally, Senet al.[38, 39] used the-valuefor the null hypothesis as a statistic for hypothesis
testing. Thep-value is defined as the probability of obtaining observetiat least as extreme as
the one that was actually seen, given that the null hypathesiue. It is important to realize that
a p-value isnotthe probability that the null hypothesis is true. Sml’s method does not have a

way to control the Type | and Il errors.

3 Bayesian Statistical Model Checking

In this section, we first review some important concepts fepatistical Model Checking, and then
introduce theory and terminology from Bayesian statistie then present our algorithm in Sec.

3.2.

Recall that the PMC problem is to decide whethér= P-g(®), wheref € (0,1) and@is a
BLTL formula. Let p be the (unknown but fixed) probability of the model satisfy@ thus, the

PMC problem can now be stated as deciding between two hygpedhe



Ho:p>6 Hi:p<®.

For any traceo; of the system, we can deterministically decide whethesatisfiesp. Therefore,
we can define a Bernoulli random variat{edenoting the outcome af; = @. The probability

mass function associated withis thus:

f(x]u) = p§(1—p)*

wherex; = 1 iff o; = @, otherwisex; = 0. Note that theX; are independent and identically dis-
tributed. Sincep is unknown, we assume that it is given by a random variablesetdensity
g(-) is called theprior density. The prior is usually based on our previous expeegm@nd beliefs
about the system. A complete lack of information about thebability of the system satisfying

the formula is usually summarized byhan-informativeor objectiveprior probability.

3.1 Bayesian Statistics

Suppose we have a sequence of random varidfles., X, defined as above, and bt (X, ..., Xn)

denote a sample of those variables. Then Bayes’ theoreasdtait theposterior oddsare

P(d[Ho)P(Ho)
P(d)

P(d|H1)P(H1)

P(H1|d) =

whereP(d) = P(d|Ho)P(Ho) + P(d|H1)P(H1), which in our case is always non-zero. The ratio of

the posterior odds for hypothedds andH; given datad is
P(Hold) _ P(d[Ho) P(Ho)

P(Hald) ~ P(dHy) P(Hy) @)




Definition 2 The Bayes factoB of sample d and hypotheseg &hd H; is

P(d[Hy)
For fixed priors in a given example, the Bayes factor is diygmtoportional to the posterior odds
ratio by Equation (1). Thus, it may be used as a measure diveeleonfidence irHg vs. Hy, as
proposed by Jeffreys [29]. In particular, he suggestedahatiue of the Bayes factor greater than
100 provides decisive evidence in favorkj. To testHp vs. H; we compute the Bayes fact@
of the available data and then compare it against a fixedrbl@3 > 1. we shall accepit iff

B > T. Jeffreys interpretes the value of the Bayes factor as aumneas the evidence in favor of

Ho (dually,% is the evidence in favor dfi1).

We now show how to compute the Bayes factor. According to efin2, we have to cal-
culate the probability of the observed samgle- (x,...,X,) givenHp andH;. They are given
by integrating the joint densitig(d|-) with respect to the priog(-), and since we assume that the
sample is drawn from iid variables, we have théd|-) = f(xq|-)--- f(xn|-). Therefore, the Bayes

factor is the ratio:

1
_ P04, Xa[Ho) _ /eef(X1|U)"' f (Xn|u) - g(u) du. o
P(Xq,...,%n|H1) /O f(xg|u) - - f (xn|u) - g(u) du

We observe that the Bayes factor depends on thechaita on the priog, so it may be considered

a measure of confidenceliy vs. Hy provided by the data, .. ., x,, and “weighted” by the priog.
Hence, the choice of the threshold Bayes Facigriig Sec. 3.2 also indicates an objective degree
of confidence in the accepted hypothesis when the Bayesaistiial Model Checking algorithm

stops.



3.2 Algorithm:

Our algorithm is essentially a sequential version of Jgffréest. Remember we want to estab-
lish whetherM = P.g(9), where® € (0,1) and@is a BLTL formula. Like all statistical Model
Checking algorithms, we assume that it is possible to gémerzbiased samples from the model.
The algorithm iteratively draws independent and ideniycdistributed sample traces;, oo, ...,

and checks whether they satisfy As explained above, we can model this procedure as indepen-
dent sampling from a Bernoulli distributiof of unknown parametep - the actual probability of

the model satisfying. At stagen the algorithm has drawn samples ..., x, iid like X. It then
computes the Bayes factd, according to (2), and it stops iffB, > T VvV B, < %). When this

occurs, it will accepHy iff B, > T, and will accepHy iff B, < % The algorithm is shown below.

Algorithm 1 Bayesian Statistical Model Checking
Require: PBLTL PropertyP-g(@), ThresholdTl > 1, Prior densityg for unknown parametep

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfyingso far}
repeat

o :=draw a sample trace of the system (iid)

n:=n+1

if o=@ then

X:=x+1

end if

‘B, := BayesFactdn, x) {compute according to Equation (2)
until (B, >T V Ba< )
if (B,>T)then

return Hp accepted
else

return H; accepted
end if

From (2) we see that the algorithm can incorporate prior keadge througly, when computing

the Bayes factor. Our examples focus on Beta priors whichiefieed over thé€0, 1) interval by



the following probability density (for real parameterg3 > 0):

1
Yue (0,1 ua,B) = ———u*1(1—uP? 3
0.1 gu.ap)= g gt ia-u 3)
where the Beta functioB(a, B) is defined as:
B(a,B) = / t0-1(1 )P 1dt | 4)

By varying the parametersandf3, one can approximate other smooth unimodal densiti€®.dr)
by a Beta densityg.g.the uniform density ovef0,1) is a Beta witha = 3 = 1). We also define

the Beta distribution functioRq g (u):

_ 1 uafl _ +\B-1
VUE (0,1) Fip(u /g B) dt— (O(,B)/ot (1—t)P1dt 5)

which is just the usual distribution function for a Beta randvariable of parametets 3 (i.e., the

probability that it takes values less than or equal)to

The choice of the Beta density is not arbitrary. It is welblam that the Beta distribution
is the conjugate priorto the Bernoulli distributiod This relationship gives rise to closed-form
solutions to theposteriordensity ove® (i.e., P(6|d)), thus avoiding numerical integration when
calculating the Bayes factor. Our ddta,...,X,) are assumed to be iid samples drawn from a
Bernoulli distribution of unknown parametgr We writex = 31!, x; for the number of successes
in (Xa,...,%). The prior density(-) is assumed to be a Beta density with fixed parametgss-> 0.

In Appendix B we show that the Bayes factBy at stagen can be computed in terms of the Beta
distribution function:
1

Bn — -1.
" F(x+cx,nfx+[5) (9)

2A distribution P(8) is said to be a conjugate prior for a likelihood functi®id|6), if the posteriorP(8|d) is in
the same family of distributions.
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The Beta distribution function can be computed with highusacy by standard mathematical
libraries €.9.the GNU Scientific Library) or softwares(g.Matlab). Hence, the Beta distribution
is the appropriate choice for summarizing the prior proltghdistribution in Statistical Model

Checking. We present the following two Theorems:

Theorem 1 (Termination) The Bayesian Statistical Model Checking algorithm terrteésawith

probability one, for Beta priors and Bernoulli samples. é@gpendix C for a proof.)

Theorem 2 If the Bayesian Model Checking algorithm terminates afteseyving n sample traces,

an upper bound on the probability of the Type | error is

xil{@(mx) < 1/T}(X) <:]()tr);1ax(1—tmax)”x

where hax is the value of t that maximizes the expressig¢h+t)"' defined o0, 1], T is the
Bayes Factor threshold used in the Bayesian Model ChecKigrithm, and | is the indicator

function. (See Appendix D for a proof.)

3.3 \Verification Over General Priors

The use of conjugate priors does not pose restrictions, aatige. It is known that any prior
distribution (with or without a density) can be well appnaéted by dinite mixture of conjugate
priors [18]. Thus, we can approximate an arbitrary priorq@el) by constructing a densit(-)

of the form:
N

G(U) = ;ri ~gi(U,Gi,Bi)

whereN is a positive integer which depends on the level of accuraquired, thay’'s are Beta
densities (of possibly different parametesp;), and ther;’s are positive reals summingup to 1 -

this ensures thds is a proper density.

11



For such priors, the computation of the Bayes factor is figghore complicated. In Appendix

B we show that the Bayes factor at stagie given by:

B SN B(X+0j,n—x+p)
SR - BX+0i,n =X+ Bi) - Foeanxpy) (6)

Bn -1

wherer{ = m Again, we see that the Bayes factor can be computed by méatanalard,
well-known numerical methods, thereby simplifying the Ierpentation of the algorithm. Theo-

rem 1 can be extended to handle this case, too (See Apperix C.

4 Benchmarks

In this section, we analyze the performance of our algoritmfive benchmark models from the
Systems Biology literature. Three of the models are wriitethe PRISM Model Checking tool’s
specification language [28, 31], and the remaining two aigemrin SBML and were obtained
from the Matlab Systems Biology Toolbox. Tir&ism Model Checker tool is capable of both
symbolic (i.e., exact) Probabilistic Model Checking, anatistical Probabilistic Model Check-
ing. PRISM'S statistical Probabilistic Model Checking Algorithm itepnents the algorithm of [27]
which uses a fixed sized sampling approach and estimatesugh@iobability as the number of
satisfying traces over the number of sampled traces. Wethatdor each of the benchmark sets,

we consider models that are too large for symbolic modellahgc

Our experiments demonstrate two important properties oatgorithm: (i) we show that our
algorithm requires fewer traces than either the algoritfif2 ©] implemented irPrRISM or Wald’s
SPRT algorithm - while retaining the same bounds on the &atst Type-l and Type-Il error
probabilities. (ii) The performance of both the Wald’s aifun [41] and our Bayesian Model
Checking algorithm degrades as the threshold probabiliy, ) in the PBLTL temporal logic

formula gets close to the actual probability of the modek$zahg the BLTL formula. However,

12



the Bayesian algorithm shows a more graceful degradatimpaced to the Wald’s SPRT approach.

4.1 PRISM Benchmarks

We studied three large PRISM benchmarks which are not wiagtor numerical approaches to
Probabilistic Model Checking. In our experiments, the Bage Model Checking algorithm used
uniform priors, and accepted a hypothesis when it was 10D08stmore likely than the other
hypothesis (Bayes Factor threshdld= 10000). Our experiments with Wald's SPRT used Type
| and Il error bounds of @001. We chose an indifference regidiso as to make the Type | and
Type Il errors for both the Wald’s Test and the Bayes Factstréqual. The statistical estimation
engine of the PRISM model checker always needed 92042 sangpéstimate the probability of

the BLTL formulae being true.

The results of experiments with the Fibroblast Growth FaSignalling Model (see [25], [26]
for details) are presented. We checked the property whétieeprobability that Grb2 binds to

FRS2 within 20 time units excee@gfor several values d):

Ho: M = P.g[ F*° (FR®.GRB> 0)]

The power curves and the number of samples for this benchararglotted in Fig. 2(a) and
Fig. 2(b) respectively. A power curve indicates the proliginf accepting the null hypothesis for
various values of the threshold probabiléyn the PBLTL formula. We chose the Wald's Test so
that its power curve matched that of the Bayesian Test at.0@0Q and 0.9999 acceptance prob-
ability. The goal is to make sure that the two tests have esfaéiktical power. From Figure 2(b),
it is clear that both the power curves are almost on top of e#toér and hence, both the tests have
indeed been calibrated to be equally powerful. The Bayedgorithm needs fewer samples than

the Wald's SPRT test for this benchmark. This shows that #iyeBian Statistical Model Checking

13
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Figure 1:Fibroblast Growth Factor Signalling Model: The system satisfies the formula with probability
0.58. (Bayes Factor=10000)

performs better than an approach based on Wald's SPRT.

We also studied the continuous time Markov Chain model [§,fdOcircadian rhythm. We
checked the property that the probability of the number Gfated messenger RNAs exceeding 5

units within 0.25 time units is more th&h(for various values 08):

Ho: M = Psg[ FO% (ma> 5) |

The power curves and the number of samples for this benchamarglotted in Fig. 2(b) and
Fig. 2(a) respectively. We calibrated the Wald’s Test sbitegower curve closely matched that of
the Bayesian Test so as to make a fair comparison. From the figie observe that the Bayesian

algorithm always needs fewer samples than the Wald’s SP&RTaethis benchmark.

We also analyzed the model on Cell cycle control [32] andistlithe probability that Cyclin
gets bound within the first 0.5 time units. We check the priypat the probability of the number
of bound Cyclin molecules exceeds 3 units within 0.5 timdsiexceed$ (for various values of
0):

Ho : M |= P F%° (cyclinbound> 3) |

14
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thresholds in the formula. Wald’s approach.

Figure 2:Circadian Rythm: The system satisfies the formula with probability 0.93. (@salfactor=10000)

The results of our experiment are presented in Fig. 3(a) BHyesian Statistical Model Check-

ing algorithm usually required fewer samples than the agpgrdased on Wald’s SPRT.

4.2 SBML Experiments

We also studied SBML models using the implementation ofeSpie’s Stochastic Simulation Al-
gorithm in Matlab’s Systems Biology Toolbox. We analyzea targe models with over foand
1017 species. We used monitors written in Matlab to verify the Blffoperties on traces. Our
analysis of the experiments in this section is purely Baygsie., we have studied the performance
of the algorithm over only one run (using uniform priors).the previous sections, we had com-
pared the performance of our algorithm with Wald’s SPRT byiag the algorithm several times

on the same model - a frequentist approach.

We analyzed the Yeast Heterotrimeric G Protein Cycle bemchriv3]. We analyzed the

property that the G protein stays above the threshold of 6@@8 for 2 time units and falls below
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Figure 3: Cell Cycle Control: The system satisfies the formula with probability 0.34. @ayac-

tor=10000)

6000 before 20 time units.

Ho : M = P.g[ G?(GProtein< 6000 andF?°(GProtein> 6000)] .

We also ran experiments using the Lotka model [23] and vdrthie property that the number of

copies of thex species rises to a threshold level within 0.01 time units.

Ho: M = Psg[ FOOY(x > 1.4%10)]

The results of our experiments are shown in Table 1: both tingses are always accepted, al-

though the number of samples increases with the probatiligshold of the temporal formula.

d

Probability | # Samples Neede
0.2 3
0.6 8
0.8 14
0.9 23
0.9999 99

Probability | # Samples Neede(
0.1 2
0.5 6
0.7 10
0.9 23
0.99 69

Table 1:Performance on the G Protein (left) and Lotka Benchmarktyig Bayes Factor = 100)
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4.3 Experiment with Different Classes of Priors

We investigated the effect of priors on the performance®Bayesian Model Checking algorithm.
We used three different priors - non-informative prior, aformative prior and a misleading prior.
The priors, the number of samples needed by the Bayesiamitalgofor these priors, and the
power curve for each of these priors is also plotted in Fig),4ig. 4(b) and Fig. 4(c) respectively.
The priors used are Beta distributions with different shagemeters: (ix = 1/2,3 = 1/2: non-
informative prior, (ii)a = 1.4, 3 = 2 : informative prior with a peak around 0.34 (ia)= 2,3 = 2:

a misleading prior with peak around 0.5.

Fig. 4(b) shows that the number of samples needed by the Bayagorithm becomes smaller
when the prior probability distribution is informative asdpports the true hypothesis. Also, the
power curve (see Fig. 4(c)) becomes sharper when the Bayalkgjarithm is given a correct and
informative prior probability distribution. A completelyon-informative prior also performs well
both in the number of samples and the power of the test. Syromgleading priors make the power
curve less steep. However, the algorithm still performsequiell when the actual probability of

the system is away from the threshold probability in the fglam

5 Conclusions and Future Work

We have introduced the first algorithm for Probabilistic Mb@&hecking based on Bayesian Se-
guential Hypothesis Testing. Our algorithm terminatespitobability 1, and provides bounds on
the probability of returning an incorrect answer. Empilticave have shown that our algorithm re-
qguires fewer traces to terminate than techniques basedamsiCal Statistics. This is not surprising
as the Bayesian method comparing composite hypothesegagerchniques like Wald’'s SPRT
are comparing simple hypotheses. This advantage in effigisnmportant in the context of Sys-

tems Biology as the cost of generating traces is not negssagligible. Bayesian methods also
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afford a convenient means for incorporating domain knoggetthrough the prior distributions.

Our algorithm is presently limited to incorporating priaformation on the probability that the
property is true. A more fully Bayesian approach would ipayate prior information on not just
the property, but also the starting state and parametetseeahbdel. We are presently extending

our method to address this limitation.
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Appendices

A Bounded Sampling of Bounded LTL

For Statistical Model Checking, BLTL formulas need to beaktable on simulations after a finite
duration of the simulation, because the simulation caneatdntinued indefinitely. Like the se-
mantics of the unbounded linear temporal logic LTL [35], Hegnantics of BLTL in Section 2 is
defined on infinite traces with divergence of time. In pragtsimulations are only finite prefixes
of infinite traces and cannot be extended uniquely to an tefimace. In this section we prove the
following lemma, which shows well-definedness of the BLTImsatics on finite system simula-
tions and decidability of BLTL on simulation traces. Thessults are crucial to make sense of

BLTL properties on traces that can be obtained by simulaysgems in finite time.

Lemma 1 (Bounded sampling theorem)The problem & |= ¢’ is well-defined and can be checked

for BLTL formulasp and traceso based on only &nite prefix ofo of bounded duration.

For proving Lemma 1 we need to derive bounds on when to stoplatimn. The duration bound
for which we can show that the BLTL semantics is well-definad be read off easily from the

BLTL formula:

Definition 3 We define thesampling bound #p) € Q¢ of a BLTL formulag inductively as the

maximum nested sum of time bounds:

#(x~v) =0

#(-@) = #q)
#eLV @) 1= max#(@1), #(@z))
#QLA Q) 1= max#(q1), #(¢z))
#HU'gp) = t+max# (), #(g2))
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Unlike infinite traces, actual system simulations do notehiawinite length but need to be finite.
The following result shows for which duration the simulatican be stopped so that the BLTL
property has a well-defined semantics and will not changeute-value by continuing the simu-
lation. We prove that the semantics of BLTL formutais well-defined on finite prefixes of traces

with a duration that is bounded by@.

Lemma 2 (Well-definedness of BLTL on bounded simulation traes) Let@be a BLTL formula,

k € N. Then for any two infinite traces = (so,to), (S1,t1), ... andd = (%,10), ($1,11), . .. with

s =§ and{ =1 forall | € Nwith e < H) (6)

o<l«l
we have that

ocKEoiff =0 .

Proof 1 The proofis by induction on the structure of the BLTL formpl#H is short for induction
hypothesis.

1. If @is of the form x~ v, thenaX = x ~ v iff 8 = x ~ v, becauses= & by using(6) for

i=0.
2. If @is of the formg, Vv @, then
‘= @1V @
iff o = g or ¥ = @

iff 5% = ¢y or 65 = @y by IH as#(q V @) > #(¢1) and#(q1 V @) > #(q)

iff 5% = @1V @

The proof is similar for-¢@; and@; A @;.
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3. If @is of the formp, Ul @y, thenc® = @ Ut iff for some ic N the following conditions hold:

(@) Yoci<itks <t,
(b) 0"t = @, and
(c) foreach0 < j < i, okt |= q1.
These conditions (a),(b),(c) are equivalent, respegtjtelthe following conditions (B (K),(c):
@) Zo<|<ifk+l < t, because#(@U'q) >t such that the durations of trace and & are
ty,1 =tk for each index | withd <1 < i by assumptior(6).

(b") &% = @ by induction hypothesis as follows: We know that the tracasdd match at
k for duration#(@;Utq,) and need to show that the semanticedf'@, matches at k.
By IH we know thatp, has the same semantics atk(that is 6%t = @ iff okt = @)
provided that we can show that the trace®nd & match at k+ i for duration #(¢p).

For this, consider any £ N with 5 o< tktiy1 <#(@2). Then

(@
#@p) > tiyipl = Z tyl — Z tiyl > Z ti —t
o<l o<I<i+I o<l <i o<I<i—+I

Thus
Z tir < tH#(@2) <t+max#(gu), #(q2)) = #(@U'g)
o<I<i+I

As | € N was arbitrary, we conclude from this with assumpt{éhthat, indeed

s =§ and § =T forall | € N with i < H#H(@p)

o<l

Thus the IH forg, yields the equivalence okt = @, and %' = @, when using the

equivalence of (a) and (p

(¢) foreach0 < j < i, 6%) = @. The proof of equivalence to (c) is similar to that fof)(b
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using j<i.
The existence of and N for which these conditions hold is equivalentitol= ;U @,.

As a consequence, for checkiog= ¢ during Statistical Model Checking, we can stop simula-
tion of sampleo at duration #@). By divergence of time, this happens after a finite number of

simulation steps.

Now we prove that Lemma 1 holds using prefixes of traces atuptd the sampling bound#),
which guarantees that finite simulations are sufficient feciding @. In particular, checks for

“0 = @ terminate. We do not stop simulation prematurely, i.efpbe“o |= @’ can be checked.

Proof 2 (of Lemma 1) According to Lemma 2, the decisiorn ‘= ¢’ is uniquely determined
(and well-defined) by considering only a prefix @fof duration#(@) € Q-o. By divergence
of time, o reaches or exceeds this durati#ig) in some finite number of steps n. L&t=
(S0,t0), (St,t1),- -, (Sn,tn) denote a finite prefix af of length n such tha¥ o nti > #(@). Again
by Lemma 2, the semantics@f= @is well-defined because any extensidrof o’ satisfieo” = @
if and only ifo’ = @. Consequently the semanticsit= @ coincides with the semantics@f= .
On the finite tracey’, it is easy to see that BLTL is decidable by evaluating thenatdormulas

X ~ Vv at each state; of the system simulation.

B Bayes Factor for General Priors

We show how to compute the Bayes factor when the prior derssaymixture of Beta densities.
Most textbooks on Bayesian Statistics address the simptepmxture case, so here we report the

general case for completeness.
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Supposes is a density ove(0, 1) defined as

N

G(U) = .;ri . gi(u7ai7Bi)

whereN is a positive integer, thg’s are Beta densities (of possibly different parametgr§;),
and theri’s are positive reals summing up to 1. Our détg . ..,X,) are assumed to be iid samples
drawn from a Bernoulli distribution of unknown paramepgiso the probability of observing =
(X1,...,Xn) IS

f(dlp) = p*(1—p)"*

wherex = S ;X is the number of successes(iq,...,xn). Specializing (2) the Bayes factor at

stagenis:

Bn

/el (d|u)G(u) du
/Oe f(d|u)G(u) du

= definition of G

N

/el f(d]u) _Zfigi(u,ai,ﬁi) du

0 N
/Of(d|u)_zlrigi(U,0(i,Bi)dU

= linearity of integration

N
2" /elf<d|u)gi<u,ui,ﬁi) du

N 0
i;ri/o f(dju)gi(u,ai,B;) du
- definition of f andg;
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N 1
Z B(CX' B>/9 Ux(l_u)nfxudifl(l_u)gi,]_du
IE 1y Pl

0
/ (1—u)"u (1 —u)fi~t du
i) Jo

z .[M z
—_‘\
CD\I—\
c
<
—~
H
C
N—
>
<
C
2
BN
—~
H
c
N—
>
[ERN
o
[

introducer]

algebra and split integral at numerator

1 0
i </ T () Lt du—/ w1 — )R du)
0 0

N 8
erll/ ux+ai—1(1_u)n—x+Bi—1 du
i= 0

zlri//luxﬂxil(l_ u)nfx+[5i71 du
i= 0

N 9 -1
Z\rll/ ux+ai—1(1_u)n—x+[3i—l du
i= 0
N
r{B(X+aj,n—x+Bi)
= ~-1
N 0
rll/ ux+o(i—1(1_u)n—x+8i71 du
& Jo
N
eri’B(x+ai,n—x+[3i)
—= -1,

ZF{B(X—I— O, N — X+ Bi) Fxpai,n—x+p1) (8)
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wherer{ = m For the special cadé = 1 the Bayes factor at stagds simply

1
By = -1.
¥ F(x+a,n—x+B) (9)

C Termination of Bayesian Model Checking Algorithm

C.1 Termination for Beta priors

The Beta distribution of real parameters3 > 0 is defined or{0, 1) by the density

g(u,a,B) = ﬁual(l— u)P~*

whereB(a,B) = [5t9 1(1—t)P-1dt.

We shall later need the following facts about binomial e)xgpamns. For positive integer and

real8 it is well known that:

(1—9)“:ii (:‘)(—1)@ .

The above result can be generalized to an arbitraryrriald € (—1,1):

a-or=5 ;) -v'e @

where

<r) r(r—21)---(r—i+1)

For the special case> —1 andB = —1 we have that:
7oy <r) 8)
2\
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Since|(})@'| < (}) for 6 € (—1,1) and the series (8) converges, by Weierstrass’s criterion we
deduce uniform convergence of (7) ®e (—1,1). This implies that when integrating the binomial

series - as we shall later need - one can interchange thetiopenélimit sum and integration.

Proof 3 (Theorem 1) Suppose X is a Bernoulli random variable of (unknown) patamp. The
algorithm iteratively and independently draws samples ¢d&hoted by pfor i € N). The random
variables X corresponding to thejxare thus independent and identically distributed (iid) offr

Definition 2, the Bayes factdh, at stage n is:

5= P(X1, ..., %n|Ho)
" P(Xg, .., X H1)

Given an arbitrary threshold T 1, the algorithm stops at stage n {3, > T V By < %). We

show that this happens with probability one.

Our data x are assumed to be iid samples drawn from a Bernoulli distrdsuof unknown

parameter p, so the probability of observing=d(xy, ..., Xn) is

f(dlp) = p*(1—p)"*

where x is the number of successe$xn ..., xn). The hypotheses to testarg Hp > 0 vs. H; :
p < 6, wheref is a fixed real in(0, 1) from the PBLTL property. The prior density-gjis assumed
to be a Beta density with fixed parameter$ > 0. Specializing (2) the Bayes factor at stage n is

thus:
1

1
. /eef<d|u>g<u>du:B(%B>

/Of(d\u)g(u)du 5B
! X1 =X 0-19 \B-1
/eu(l u" U (1—u)P  du 18,1)

1
/e (1 —u)" w1 —u)Ptdu

/e (11— u)"ue (1 —u)P~1 du
° ©)

/0 UX(l_u)n—xua—l(l_u)B—l du 1(0,8)
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where I(a,b) is

b
I(a,b) = / WAL (L B gy
a
We now simplify the integral term, and have that

I (a,b)

= binomial expansion (7)

/abuxmlii (”—XT B-— 1) (1) du

uniform convergence

ol (n—xJ.rB—l) /b(_l)iui+x+cx1 du

solve integral

SN BoD) (Dt
i i+x+0a a

n—x-@-B—l) (-1)!

notation ¢ = (" ") 5

8

Ci ui+x+cx b
a

expand primitive

G (bi+x+cx _ ai+x+cx>

M

and we now introduce the notatioriegb) for the sum above

00

S(a, b) = .%Ci (bi+X+O( _ ai+X+O() _ |(a, b) (10)

where ¢ = ("B ii;]i; (we recall that n is the number of samples and x the number®f su

cesses). Since(Ry,.... Xpla< p<b)= SES’?), we have that &,b) must be strictly positive for
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any a< bin[0,1], that is:

[ee]

vn vx<n v0<a<b<1 Z)Ci (B _ gy 5 0, (11)
i=
Finally, our aim is to establish whether the algorithm st@isstage ni.e., whether for some n
it is true that(B, > T Vv B, < 1). A sufficient condition for termination is to show that the
algorithm accepts plwith probability one, unless it has already rejecteg (Where the algorithm
terminates anyhow, accepting H We therefore consider the likelihood thB{ > T becomes true

whens; > $ for0<i<n.

From the definition of S, we can see thga®) is an integral from a to b. By (9), we can

rewrite By:
7=500)"  S06 S0 (12)
We reason:
Ba>T

= (12) and %0, 6) positive
§0,1) - (T+1)S(0,6) >0

definition of S

8

G (1—(T+21)8+%) >0

algebra using T+1) >0

> a1 (T + 1)) %) > 0

Using (11) for b= 1 we know thaf > ;¢ (1—a ™) > 0for all 0< a < 1. Therefore, a sufficient

condition to makeB, > T true is to makeT + 1)ﬁ9 < 1. That amounts to find an x such that
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for all i

(T+1)mme0 < 1

= apply logarithm
5 10g(T+1) +logb < 0

= o > 0,x>0,i > 0and algebra
log(T +1) < —(i+x+0a)logd

= property of logarithm
log(T +1) < (i+x+a)logg

= 0<6<«1

log(T + 1)

< (i+x+a
log 3 ( )

which will be eventually true with probability one, as long the unknown probability of success
p is non-zero. (Note that it is sufficient to consider the dgasdé.) We thus have to prove that the
event J,_1(k < X p) has probability 1, where x is distributed as a binomial of gaeters n and
p> 0, and k= (% —a]. We reason:

P(Un=1(K < Xn,p))

= probability measures are continuous

liMmn—e P(K < Xn,p)

= complemented event

= disjoint events
1—limne ¥ o P(Xnp=1)
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= x distributed as binomial of parametersm

1-liMn e 3o (7) P'(1— )"

= continuity of finite sums (assurfie< p < 1)
1- 51 o(1%)' iMn-eo(1— )" (7)

= expand binomial coefficient
1- 5% o(25) 3 limpw(1—p)"n(N—1) - (n—i +1)

= 0< p<land limit
1-5K,0=1.

The case p= 1 follows directly from the third to last step. Fors 0, instead, we have x O for
any number of samples n, so that it is easy to see from (9)&hat O for n — o, and H, will be

accepted eventually. In fact:

1 1
/ (1—u)"u1—u)Ptdu / wWt(1—uPtdu
0 - 0

Bn = 0 X 0
/(1—u)”u“1(1—u)81du (1—9)”/ W11 —u)Ptdu
0 0

and sinced < 6 < 1 we therefore havé,, — 0for n — oo,

C.2 Termination for General Priors

Supposes is a density ove(0, 1) defined as

N
G(u) = Elr,--g,-(u,a,-,ﬁ,-)
=
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whereN is a positive integer, thg;'s are Beta densities (of possibly different parametgr§;),
and therj’s are positive reals summing up to 1. We want to show that tgordghm terminates
with probability one wher@ is used as a prior. We shall retain much of the notation andequts

already introduced.

From the derivation in Appendix B we have that the Bayes faBtpat stagen is

N 1 N
> r]/ W= — )" HRi—l gy > rilj(0,1)
j=1 /0 =1
By = - —1=1 ~1 (13)
Sr [wtata-gt B iae Y (0,)
=1 70 =1
wherer = m andl;(a,b) is a slight generalization dfa, b):

b
Ij(a,b)é/a W= — )R gy

In analogy to what we proved in Appendix C.1, we show that tlgoréghm acceptdHy with
probability one, unless it has already rejected it before tidis have to show th&, > T with
probability one, wherB; > % for i < n. The strategy we use is first to find an expressiijrsuch
that for alln B/ < B,. Then, we prove that with probability one there issuch that, > T, which

in turn impliesB, > T and termination of the algorithm (acceptiHg) with probability one.

We now reason from (13):

Bn
> R=maxr]
N
z I’/j |j(0,1)
=1
N -1
RZ 1;(0,8)
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= definition ofl;

= linearity of integration, laws of powers

N
z I’/j |j(0, 1)
=1

® 1 1 A -
R/ U (1—u)" i(1—u du

i | e
= A= min;a; andB = min; 3;, monotonicity of integration

N
!/
r |j(0, 1)

0 L -1
R/ UX+A*1(1_U)I’17X+571N du

0
= algebra
& RN / JHA- 1(1_u>nfx+Bfl du

0
and we have thus established that
N
1;(0,1
vn @522 i0.3) —1< By. (14)

/
_1
RN / FHA-L( — yn-xB-L gy
0

Now, to prove that eventuall3, > T we show thatB/ > T. In particular, we show that one
particular summand aB, can grow arbitrarily large (with probability one). Then, the fact that
the summands oB/, are positive and by (14), we shall conclugg > T and termination of the

algorithm (acceptingo).
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To proveB/ > T it is thus sufficient to show that, with probability one, teare naturals and

X < nsuch that
(0.3) >T (15)

/e WAL (1 )X+ BT gy
0

wherek is such thaflx = B. By the reasoning fok(a,b) set out in Appendix C.1, we can rewrite

(15):

x+A 11 un X+B— 1du

/ x+cxk 1 1 u)n X+B— 1du
/ >T
definition of S (10)

- (n—x+B—1) (—1)
i& i |+ X4 0 -
= (n—x+B-1) (1] ;ia
& [ i+Xx+A
= notationg; = (" *1®1) &ﬁa anday >0
2,
i >T
XA+ Ok pirxtA
¢——0
29T x T A
= introduceB®«
2,°
- = >T
|+X—|-Gk A—0y ai+Xx+0k
c——©0 0
S THX+A
positive denominator

I+ X+ akTeA—Gk ei—i—X—H]k

RPN
algebra
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i < LHXE S g 9'+X+ak)>o
T X+EA

laws of powers

1

o ) 1 i+x4-0
I+X+0
al1- (mTGA—Gk) ) >0
& I+X+A

Forb=1in (11) we get tha§* 5¢ (1 —a ™ %) > 0 for all 0< a < 1. Therefore, a sufficient

condition to make (15) true is to firdsuch that

(Ili);i%TeA—Gk)warake <1

= apply logarithm

Ea, Iog(':_f(i%TeA %) +logb <0

i+X+0K Ok ..
< A < &, log monotonicity

e 109(%TeA%) +log8 < 0

= algebra and+x+og > 0
log(SkTOA%) < —(i +x+a) logh

= law of logarithms

log(SETOA) < (i+x+ay)log3
= 0<0<1,thuslod@ <0

log( G T €A~ %)

log3

< (i +x+0)

which is true with probability one, as we have already proegrows arbitrarily large with proba-
bility one, whenp > 0). Again, for the casp =0 it is easy to see from (13) th&, — 0 asn — o,

so that the algorithm eventually terminates by rejectiag
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D Error Analysis

Proof 4 Suppose the algorithm terminates after observing n sampletsX be the random vari-
able denoting the number of observed traces satisfying tiid_Bormula. Also, the probability
with which traces from the model actually satisfy the BLTilmala is given by p, where p 6.
The notation x< D is used to indicate the event that x is drawn from the prolggidistribution

D.

Also, we know that the expressidfilt—t)"~' defined or{8, 1] assumes a maximum value as
it is a continuous function on a compact set. In particulag tmaximum value is obtained when

eithert=0ort = % We call this value of t agrbx

P(Type | error

= By Definition
P(H1 is choser} Hg is true)

= Since, H is chosen iffB(n,X) < 1

P <{Q3(n,X) < % and X Binomial(n, p)}| Ho is true)

= By Definition of Null Hypothesis and p
P ({@(n,X) < % and X Binomial(n,p)}| p > e)

= Definition of Conditional Probability

P ({iB(n,X) < % and X Binomial(n, p) and p> 9})
P(p > 8)

= By Definition (X can take values from O to n)

n
P (U {B(n,X =X) < % and x>a Binomial(n, p) and p> e}>
x=0

P(p>0)
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= Disjoint Events

n

Z)P <{$(n, X) < 1 and xe< Binomial(n, p) and p> 6})
X= T
P(p > 8)

= Independence of Events

n

Z)p <{g;(n, X) < %}) P ({x> Binomial(n, p) and p> 6})
= P(p>0)

= Algebraic Manipulation

iP({Qg(n,x) < %}) P({xp< Binor;éil(;,g)) and p> 6})

= Definition of Conditional Probability

n

Z)P({fB(n,x) < %}) P ({x> Binomial(n,p) | p > 6})

X=

= Conditional Probability
1 n X n—x

> PUBMY <3 () P(L=p)" where p> 6

= | is indicator functior?

Xil{fg(n,x) <173 (2) p*(1—p)"*, where p> 6

< Since, taxmaximizes f{1— p)"*

Xil{ﬂ%(n,x) < 1/T}(x) (z)tr)%ax(l—tmagn—x
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3. P(x € A) is usually rewritten ag(X) if x € Ais known with probability 1 whex andA are known.
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