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Abstract

Recently, there has been considerable interest in the use ofModel Checking for Systems Biology.
Unfortunately, the state space of stochastic biological models is often too large for classical Model
Checking techniques. For these models, a statistical approach to Model Checking has been shown
to be an effective alternative. Extending our earlier work,we present the first algorithm for per-
forming statistical Model Checking using Bayesian Sequential Hypothesis Testing. We show that
our Bayesian approach outperforms current statistical Model Checking techniques, which rely on
tests from Classical (aka Frequentist) statistics, by requiring fewer system simulations. Another
advantage of our approach is the ability to incorporate prior Biological knowledge about the model
being verified. We demonstrate our algorithm on a variety of models from the Systems Biology
literature and show that it enables faster verification thanstate-of-the-art techniques, even when no
prior knowledge is available.





1 Introduction

Computational models are increasingly used in the field of Systems Biology to examine the dynam-

ics of biological processes (e.g., [1, 9, 11, 21, 30, 33, 36]). By ‘computational’, we mean discrete-

variable and continuous or discrete-time models [5], wherethe components of the system interact

and evolve by obeying a set of instructions or rules. In contrast to differential equation-based mod-

els, which are also widely used in Systems Biology, computational models can provide insights

into the role of stochastic effects over discrete-populations of molecules or cells. Recently, there

has been considerable interest in the application of Model Checking [14] as a powerful tool forfor-

mally reasoning about the dynamic properties of such models (e.g., [2, 7, 10, 12, 16, 19, 25, 37]).

This paper presents a new Model Checking algorithm that is well-suited for verifying properties of

very large stochastic models, such as those created and usedin Systems Biology.

The stochastic nature of most computational models from Systems Biology gives rise to an in-

stance of theProbabilistic Model Checking(PMC) problem [15, 14, 31]. SupposeM is a stochastic

model over a set of statesS, s0 is a starting state,φ is a dynamic property expressed as a formula

in temporal logic, andθ ∈ [0,1] is a probability threshold. The PMC problem is: given the 4-

tuple (M ,s0,φ,θ), algorithmically decide whetherM ,s0 |= P>θ(φ). In this paper, propertyφ is

expressed in BLTL - Bounded Linear Temporal Logic [35, 34, 20]. Given these, PMC algorithms

decide whether the model satisfies the property with at leastprobabilityθ.

Existing algorithms for solving the PMC problem fall into one of two categories. The first

category comprises numerical methods (e.g. [3, 4, 13, 17, 31]) which can compute the probability

with which the property holds with high precision. Numerical methods are generally only suitable

for small systems (≈ 106 to 107 states). In a Biological System, the number of states can easily

exceed this limit, which motivates the need for algorithms for solving the PMC problem in an

approximate fashion. Approximate methods (e.g., [24, 27, 38, 45]) work by sampling a set of

tracesfrom the model. Each trace is then evaluated to determine whether it satisfies the property.
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The number of satisfying traces is used to (approximately) decide whetherM ,s0 |= P>θ(φ).

Approximate PMC methods can be further divided into two sub-categories: (i) those that seek

to estimatethe probability that the property holds and then compare that estimate toθ (e.g., [27,

38]), and (ii) those that reduce the PMC problem to ahypothesis testingproblem (e.g., [45, 46]).

That is, deciding between two hypotheses —H0 : P>θ(φ) versusH1 : P<θ(φ). Hypothesis-testing

based methods are more efficient than those based on estimation whenθ (which is specified by the

user) is significantly different than the true probability that the property holds (which is determined

by M ands0) [44].

Existing PMC methods based on hypothesis testing rely onClassical(akaFrequentist) statisti-

cal procedures, like Wald’s Sequential Probability Ratio Test (SPRT) [41], to answer the decision

problem. Our algorithm performs hypothesis testing, but usesBayesianstatistical procedures. This

distinction is not trivial, as Bayesian and Classical statistics are two very different fields. We will

show that in practice, our Bayesian approach requires fewersamples than Wald’s SPRT. Finally,

we note that because we adopt a Bayesian approach, our algorithm can incorporate prior knowl-

edge, in the form of a probability distribution,P(θ), when available. This is relevant because in a

Biological setting, it is often the case that prior knowledge is available.

The contributions of this paper are as follows:

• The first application of Bayesian Sequential Hypothesis Testing to statistical Model Checking,

• The first hypothesis-testing based statistical Model Checking algorithm designed for composite

hypotheses, which can in particular include prior knowledge via a mixture of prior distributions,

• A theorem proving that our algorithm terminates with probability 1,

• Error bounds for our algorithm, and

• A series of case studies using Systems Biology models demonstrating that our method is empir-

ically more efficient than existing algorithms for statistical Model Checking.
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2 Background and Related Work

Our algorithm can be applied to any stochastic modelM with a well-defined probability space

over traces. Several well-studied stochastic models like (discrete and continuous) Markov Chains

satisfy this property [46]. We assume that each execution ofthe system can be represented by a

sequence of states and the time spent in these states. The sequenceσ = (s0, t0),(s1, t1), . . . denotes

an execution of the system along statess0,s1, . . . with durationst0, t1, . . . ∈ R. The system stays in

statesi for durationti and makes a transition tosi+1. We require that the sum∑∞
i ti must diverge,

that is, the system can not make infinitely many state switches in finite time.

2.1 Specifying Properties in Temporal Logic

Our algorithm verifies properties ofM expressed as formulas inProbabilistic Bounded Linear

Temporal Logic(PBLTL). We first define the syntax and semantics ofBounded Linear Temporal

Logic (BLTL) [35, 34, 20] and then extend that logic to PBLTL.

For a stochastic modelM , let the set of state variablesSVbe a finite set of real-valued variables.

A Boolean predicate overSV is a constraint of the formx∼v, wherex∈ SV, ∼ ∈ {>,6,=}, and

v ∈ R. A BLTL property is built on a finite set of Boolean predicatesover SV using Boolean

connectives and temporal operators. The syntax of the logicis given by the following grammar:

φ ::= x∼v|(φ1∨φ2) |(φ1∧φ2) |¬φ1 |(φ1Utφ2),

where∼ ∈ {>,6,=}, x∈ SV, v∈ Q, andt ∈ Q>0. We can define additional temporal operators

such asFtψ = TrueUt ψ, or Gtψ = ¬Ft¬ψ in terms of the bounded untilUt.

We define the semantics of BLTL with respect to executions ofM . The fact that an execution

σ satisfies propertyφ is denoted byσ |= φ. Let σ = (s0, t0),(s1, t1), . . . be an execution of the model

along statess0,s1, . . . with durationst0, t1, . . . ∈ R. We denote the execution trace starting at state
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i by σi (in particular,σ0 denotes the original executionσ). The value of the state variablex in σ

at the statei is denoted byV(σ, i,x). The semantics of BLTL for a traceσk starting at thekth state

(k∈ N) is defined as follows:

• σk |= x∼ v if and only if V(σ,k,x) ∼ v;

• σk |= φ1∨φ2 if and only if σk |= φ1 or σk |= φ2;

• σk |= φ1∧φ2 if and only if σk |= φ1 andσk |= φ2;

• σk |= ¬φ1 if and only if σk |= φ1 does not hold (writtenσk 6|= φ1);

• σk |= φ1Utφ2 if and only if there existsi ∈ N such that (a) ∑06l<i tk+l 6 t, (b) σk+i |= φ2 and (c)

for each 06 j < i, σk+ j |= φ1.

Statistical Model Checking is based on evaluating whetherσ |= φ holds on sample simulationsσ of

the system. In practice, sample simulations only have a finite duration. The question is how long

these simulations have to be for the formulaφ to have a well-defined semantics such thatσ |= φ

can be checked. Ifσ is too short, say of duration 2, the semantics ofφ1U5φ2 may be unclear. But

at what duration of the simulation can we stop because we knowthat the truth-value forσ |= φ will

never change by continuing the simulation? In Appendix A, weprove that finite simulations of

bounded duration are always sufficient for Model Checking BLTL on traces.

We can now define Probabilistic Bounded Linear Temporal Logic.

Definition 1 A Probabilistic Bounded LTL (PBLTL) formula is a formula of the form P>θ(φ),

whereφ is a BLTL formula andθ ∈ (0,1).

We say thatM satisfies PBLTL propertyP>θ(φ), denoted byM |= P>θ(φ), if and only if the

probability that an execution ofM satisfies BLTL propertyφ is greater than or equal toθ. The

problem is well-defined [46] since one can always assign a unique probability measure to the set of

executions ofM that satisfy a formula in BLTL. Note that counterexamples tothe BLTL property

φ arenotcounterexamples to the PBLTL propertyP>θ(φ), because the truth ofP>θ(φ) depends on
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the likelihood of all counterexamples toφ. This makes PMC more difficult than standard Model

Checking, because one counterexample toφ is not enough to answerP>θ(φ).

2.2 Existing Statistical Probabilistic Model Checking Algorithms

As outlined in the introduction, Probabilistic Model Checking algorithms can either be exact (e.g.

[3, 4, 13, 17, 31]), or statistical in nature. In practice, statistical methods (e.g., [24, 27, 38, 45]),

which iteratively draw sample traces from the model, are generally better suited to Model Checking

Biological systems because they scale better. Our method isstatistical, and so we will compare

and contrast our method to existing statistical methods in this section.

Existing PMC methods based on hypothesis testing rely onClassical(akaFrequentist) statis-

tical procedures, like Wald’s Sequential Probability Ratio Test (SPRT) [41], to answer the deci-

sion problem. Younes and Simmons introduced the first algorithm for statistical Model Checking

[44, 45, 46] for verifying probabilistic temporal properties of stochastic systems. Their work uses

the SPRT, which is designed forsimplehypothesis testing1. Specifically, the SPRT decides be-

tween the simple null hypothesisH ′
0 : M ,s0 |= P=θ0(φ) against the simple alternate hypothesis

H ′
1 : M ,s0 |= P=θ1(φ), whereθ0 < θ1. It can be shown that the SPRT is optimal for simple hypoth-

esis testing, in the sense that it minimizes the expected number of samples among all the tests satis-

fying the same Type I and II errors [42], when eitherH ′
0 or H ′

1 is true. The PMC problem is instead

a choice between twocompositehypothesesH0 : M ,s0 |= P>θ[φ] versusH1 : M ,s0 |= P<θ[φ]. The

SPRT is not defined unlessθ0 6= θ1, so Younes and Simmons overcome this problem by separating

the two hypotheses by anindifference region(θ−δ,θ+δ), where 0< δ < 1 is a user-specified pa-

rameter. It can be shown that the SPRT with indifference region can be used for testing composite

hypotheses, while respecting the same Type I and II errors ofa standard SPRT [22, Section 3.4].

1A simple hypothesis completely specifies a distribution. For example, a Bernoulli distribution of parameterp
is fully specified by the hypothesisp = 0.5 (or some other fixed value). A composite hypothesis has instead free
parameters,e.g.the hypothesisp < 0.3, for a Bernoulli distribution.
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However, in this case the test is no longer optimal, and the maximum expected sample size may

be much bigger than the optimal fixed sample size sampling test - see [8] and [22, Section 3.6].

We note that our algorithm solves the composite hypothesis testing problem, but does so using

Bayesian statistics, and thus requires no indifference region.

The method of [27] uses a fixed number of samples and estimatesthe probability the property

holds as the number of satisfying traces divided by the number of sampled traces. Their algorithm

guarantees the accuracy of the results using Chernoff-Hoeffding bounds. In particular, their al-

gorithm can guarantee that the difference in the estimated and the true probability is less thanε,

with probabilityρ, whereρ < 1 andε > 0 are user-specified parameters. Grosu and Smolka use

a similar technique for verifying formulas in LTL [24]. Their algorithm randomly samples lassos

from a Büchi automaton in an on-the-fly fashion.

Finally, Senet al. [38, 39] used thep-valuefor the null hypothesis as a statistic for hypothesis

testing. Thep-value is defined as the probability of obtaining observations at least as extreme as

the one that was actually seen, given that the null hypothesis is true. It is important to realize that

a p-value isnot the probability that the null hypothesis is true. Senet al.’s method does not have a

way to control the Type I and II errors.

3 Bayesian Statistical Model Checking

In this section, we first review some important concepts fromstatistical Model Checking, and then

introduce theory and terminology from Bayesian statistics. We then present our algorithm in Sec.

3.2.

Recall that the PMC problem is to decide whetherM |= P>θ(φ), whereθ ∈ (0,1) andφ is a

BLTL formula. Let p be the (unknown but fixed) probability of the model satisfying φ: thus, the

PMC problem can now be stated as deciding between two hypotheses:

6



H0 : p > θ H1 : p < θ.

For any traceσi of the system, we can deterministically decide whetherσi satisfiesφ. Therefore,

we can define a Bernoulli random variableXi denoting the outcome ofσi |= φ. The probability

mass function associated withXi is thus:

f (xi |u) = pxi (1− p)1−xi

wherexi = 1 iff σi |= φ, otherwisexi = 0. Note that theXi are independent and identically dis-

tributed. Sincep is unknown, we assume that it is given by a random variable, whose density

g(·) is called theprior density. The prior is usually based on our previous experiences and beliefs

about the system. A complete lack of information about the probability of the system satisfying

the formula is usually summarized by anon-informativeor objectiveprior probability.

3.1 Bayesian Statistics

Suppose we have a sequence of random variablesX1, . . . ,Xn defined as above, and letd =(x1, . . . ,xn)

denote a sample of those variables. Then Bayes’ theorem states that theposterior oddsare

P(H0|d) =
P(d|H0)P(H0)

P(d)
P(H1|d) =

P(d|H1)P(H1)

P(d)

whereP(d) = P(d|H0)P(H0)+P(d|H1)P(H1), which in our case is always non-zero. The ratio of

the posterior odds for hypothesesH0 andH1 given datad is

P(H0|d)

P(H1|d)
=

P(d|H0)

P(d|H1)

P(H0)

P(H1)
. (1)
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Definition 2 The Bayes factorB of sample d and hypotheses H0 and H1 is

B =
P(d|H0)

P(d|H1)
.

For fixed priors in a given example, the Bayes factor is directly proportional to the posterior odds

ratio by Equation (1). Thus, it may be used as a measure of relative confidence inH0 vs. H1, as

proposed by Jeffreys [29]. In particular, he suggested thata value of the Bayes factor greater than

100 provides decisive evidence in favor ofH0. To testH0 vs. H1 we compute the Bayes factorB

of the available data and then compare it against a fixed threshold T > 1: we shall acceptH0 iff

B > T. Jeffreys interpretes the value of the Bayes factor as a measure of the evidence in favor of

H0 (dually, 1
B

is the evidence in favor ofH1).

We now show how to compute the Bayes factor. According to Definition 2, we have to cal-

culate the probability of the observed sampled = (x1, . . . ,xn) given H0 andH1. They are given

by integrating the joint densityh(d|·) with respect to the priorg(·), and since we assume that the

sample is drawn from iid variables, we have thath(d|·) = f (x1|·) · · · f (xn|·). Therefore, the Bayes

factor is the ratio:

B =
P(x1, . . . ,xn|H0)

P(x1, . . . ,xn|H1)
=

∫ 1

θ
f (x1|u) · · · f (xn|u) ·g(u) du

∫ θ

0
f (x1|u) · · · f (xn|u) ·g(u) du

. (2)

We observe that the Bayes factor depends on the datad and on the priorg, so it may be considered

a measure of confidence inH0 vs. H1 provided by the datax1, . . . ,xn, and “weighted” by the priorg.

Hence, the choice of the threshold Bayes Factor (T) in Sec. 3.2 also indicates an objective degree

of confidence in the accepted hypothesis when the Bayesian Statistical Model Checking algorithm

stops.
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3.2 Algorithm:

Our algorithm is essentially a sequential version of Jeffreys’ test. Remember we want to estab-

lish whetherM |= P>θ(φ), whereθ ∈ (0,1) andφ is a BLTL formula. Like all statistical Model

Checking algorithms, we assume that it is possible to generate unbiased samples from the model.

The algorithm iteratively draws independent and identically distributed sample tracesσ1,σ2, ...,

and checks whether they satisfyφ. As explained above, we can model this procedure as indepen-

dent sampling from a Bernoulli distributionX of unknown parameterp - the actual probability of

the model satisfyingφ. At stagen the algorithm has drawn samplesx1, . . . ,xn iid like X. It then

computes the Bayes factorBn according to (2), and it stops iff(Bn > T ∨ Bn < 1
T ). When this

occurs, it will acceptH0 iff Bn > T, and will acceptH1 iff Bn < 1
T . The algorithm is shown below.

Algorithm 1 Bayesian Statistical Model Checking
Require: PBLTL PropertyP>θ(φ), ThresholdT > 1, Prior densityg for unknown parameterp

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfyingφ so far}
repeat

σ := draw a sample trace of the system (iid)
n := n+1
if σ |= φ then

x := x+1
end if
Bn := BayesFactor(n,x) {compute according to Equation (2)}

until (Bn > T ∨ Bn < 1
T )

if (Bn > T) then
return H0 accepted

else
return H1 accepted

end if

From (2) we see that the algorithm can incorporate prior knowledge throughg, when computing

the Bayes factor. Our examples focus on Beta priors which aredefined over the(0,1) interval by
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the following probability density (for real parametersα,β > 0):

∀u∈ (0,1) g(u,α,β) =̂
1

B(α,β)
uα−1(1−u)β−1 (3)

where the Beta functionB(α,β) is defined as:

B(α,β) =̂

∫ 1

0
tα−1(1− t)β−1dt . (4)

By varying the parametersα andβ, one can approximate other smooth unimodal densities on(0,1)

by a Beta density (e.g.the uniform density over(0,1) is a Beta withα = β = 1). We also define

the Beta distribution functionF(α,β)(u):

∀u∈ (0,1) F(α,β)(u) =̂

∫ u

0
g(t,α,β) dt =

1
B(α,β)

∫ u

0
tα−1(1− t)β−1 dt (5)

which is just the usual distribution function for a Beta random variable of parametersα,β (i.e., the

probability that it takes values less than or equal tou).

The choice of the Beta density is not arbitrary. It is well-known that the Beta distribution

is theconjugate priorto the Bernoulli distribution2. This relationship gives rise to closed-form

solutions to theposteriordensity overθ (i.e., P(θ|d)), thus avoiding numerical integration when

calculating the Bayes factor. Our data(x1, . . . ,xn) are assumed to be iid samples drawn from a

Bernoulli distribution of unknown parameterp. We writex = ∑n
i=1xi for the number of successes

in (x1, . . . ,xn). The prior densityg(·) is assumed to be a Beta density with fixed parametersα,β > 0.

In Appendix B we show that the Bayes factorBn at stagen can be computed in terms of the Beta

distribution function:

Bn =
1

F(x+α,n−x+β)(θ)
−1 .

2A distributionP(θ) is said to be a conjugate prior for a likelihood function,P(d|θ), if the posterior,P(θ|d) is in
the same family of distributions.
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The Beta distribution function can be computed with high accuracy by standard mathematical

libraries (e.g.the GNU Scientific Library) or software (e.g.Matlab). Hence, the Beta distribution

is the appropriate choice for summarizing the prior probability distribution in Statistical Model

Checking. We present the following two Theorems:

Theorem 1 (Termination) The Bayesian Statistical Model Checking algorithm terminates with

probability one, for Beta priors and Bernoulli samples. (See Appendix C for a proof.)

Theorem 2 If the Bayesian Model Checking algorithm terminates after observing n sample traces,

an upper bound on the probability of the Type I error is

n

∑
x=0

I
{B(n,x) < 1/T}(x)

(
n
x

)
tx
max(1− tmax)

n−x

where tmax is the value of t that maximizes the expression ti(1− t)n−i defined on[θ,1], T is the

Bayes Factor threshold used in the Bayesian Model Checking algorithm, and I is the indicator

function. (See Appendix D for a proof.)

3.3 Verification Over General Priors

The use of conjugate priors does not pose restrictions, in practice. It is known that any prior

distribution (with or without a density) can be well approximated by afinite mixture of conjugate

priors [18]. Thus, we can approximate an arbitrary prior over (0,1) by constructing a densityG(·)

of the form:

G(u) =̂
N

∑
i=1

r i ·gi(u,αi,βi)

whereN is a positive integer which depends on the level of accuracy required, thegi ’s are Beta

densities (of possibly different parametersαi,βi), and ther i ’s are positive reals summing up to 1 -

this ensures thatG is a proper density.
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For such priors, the computation of the Bayes factor is slightly more complicated. In Appendix

B we show that the Bayes factor at stagen is given by:

Bn =
∑N

i=1 r ′i ·B(x+αi,n−x+βi)

∑N
i=1 r ′i ·B(x+αi ,n−x+βi) ·F(x+αi ,n−x+βi)(θ)

−1

wherer ′i = r i
B(αi ,βi)

. Again, we see that the Bayes factor can be computed by means of standard,

well-known numerical methods, thereby simplifying the implementation of the algorithm. Theo-

rem 1 can be extended to handle this case, too (See Appendix C.2).

4 Benchmarks

In this section, we analyze the performance of our algorithmon five benchmark models from the

Systems Biology literature. Three of the models are writtenin the PRISM Model Checking tool’s

specification language [28, 31], and the remaining two are written in SBML and were obtained

from the Matlab Systems Biology Toolbox. ThePRISM Model Checker tool is capable of both

symbolic (i.e., exact) Probabilistic Model Checking, and statistical Probabilistic Model Check-

ing. PRISM’s statistical Probabilistic Model Checking Algorithm implements the algorithm of [27]

which uses a fixed sized sampling approach and estimates the true probability as the number of

satisfying traces over the number of sampled traces. We notethat for each of the benchmark sets,

we consider models that are too large for symbolic model checking.

Our experiments demonstrate two important properties of our algorithm: (i) we show that our

algorithm requires fewer traces than either the algorithm of [27] implemented inPRISM or Wald’s

SPRT algorithm - while retaining the same bounds on the frequentist Type-I and Type-II error

probabilities. (ii) The performance of both the Wald’s algorithm [41] and our Bayesian Model

Checking algorithm degrades as the threshold probability (i.e., θ) in the PBLTL temporal logic

formula gets close to the actual probability of the model satisfying the BLTL formula. However,
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the Bayesian algorithm shows a more graceful degradation compared to the Wald’s SPRT approach.

4.1 PRISM Benchmarks

We studied three large PRISM benchmarks which are not well suited for numerical approaches to

Probabilistic Model Checking. In our experiments, the Bayesian Model Checking algorithm used

uniform priors, and accepted a hypothesis when it was 10000 times more likely than the other

hypothesis (Bayes Factor thresholdT = 10000). Our experiments with Wald’s SPRT used Type

I and II error bounds of 0.0001. We chose an indifference regionδ so as to make the Type I and

Type II errors for both the Wald’s Test and the Bayes Factor test equal. The statistical estimation

engine of the PRISM model checker always needed 92042 samples to estimate the probability of

the BLTL formulae being true.

The results of experiments with the Fibroblast Growth Factor Signalling Model (see [25], [26]

for details) are presented. We checked the property whetherthe probability that Grb2 binds to

FRS2 within 20 time units exceedsθ (for several values ofθ):

H0 : M |= P>θ[ F20 (FRS2 GRB> 0 )]

The power curves and the number of samples for this benchmarkare plotted in Fig. 2(a) and

Fig. 2(b) respectively. A power curve indicates the probability of accepting the null hypothesis for

various values of the threshold probabilityθ in the PBLTL formula. We chose the Wald’s Test so

that its power curve matched that of the Bayesian Test at the 0.0001 and 0.9999 acceptance prob-

ability. The goal is to make sure that the two tests have equalstatistical power. From Figure 2(b),

it is clear that both the power curves are almost on top of eachother and hence, both the tests have

indeed been calibrated to be equally powerful. The Bayesianalgorithm needs fewer samples than

the Wald’s SPRT test for this benchmark. This shows that the Bayesian Statistical Model Checking
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Figure 1:Fibroblast Growth Factor Signalling Model: The system satisfies the formula with probability
0.58. (Bayes Factor=10000)

performs better than an approach based on Wald’s SPRT.

We also studied the continuous time Markov Chain model [6, 40] for circadian rhythm. We

checked the property that the probability of the number of activated messenger RNAs exceeding 5

units within 0.25 time units is more thanθ (for various values ofθ):

H0 : M |= P>θ[ F0.25 (ma> 5) ]

The power curves and the number of samples for this benchmarkare plotted in Fig. 2(b) and

Fig. 2(a) respectively. We calibrated the Wald’s Test so that its power curve closely matched that of

the Bayesian Test so as to make a fair comparison. From the figure, we observe that the Bayesian

algorithm always needs fewer samples than the Wald’s SPRT test for this benchmark.

We also analyzed the model on Cell cycle control [32] and studied the probability that Cyclin

gets bound within the first 0.5 time units. We check the property that the probability of the number

of bound Cyclin molecules exceeds 3 units within 0.5 time units exceedsθ (for various values of

θ):

H0 : M |= P>θ[ F0.5 (cyclin bound> 3) ]
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Figure 2:Circadian Rythm: The system satisfies the formula with probability 0.93. (Bayes Factor=10000)

The results of our experiment are presented in Fig. 3(a). TheBayesian Statistical Model Check-

ing algorithm usually required fewer samples than the approach based on Wald’s SPRT.

4.2 SBML Experiments

We also studied SBML models using the implementation of Gillespie’s Stochastic Simulation Al-

gorithm in Matlab’s Systems Biology Toolbox. We analyzed two large models with over 108 and

1017 species. We used monitors written in Matlab to verify the BLTL properties on traces. Our

analysis of the experiments in this section is purely Bayesian, i.e., we have studied the performance

of the algorithm over only one run (using uniform priors). Inthe previous sections, we had com-

pared the performance of our algorithm with Wald’s SPRT by running the algorithm several times

on the same model - a frequentist approach.

We analyzed the Yeast Heterotrimeric G Protein Cycle benchmark [43]. We analyzed the

property that the G protein stays above the threshold of 6000units for 2 time units and falls below
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Figure 3: Cell Cycle Control: The system satisfies the formula with probability 0.34. (Bayes Fac-
tor=10000)

6000 before 20 time units.

H0 : M |= P>θ[ G2(GProtein< 6000) andF20(GProtein> 6000)] .

We also ran experiments using the Lotka model [23] and verified the property that the number of

copies of thex species rises to a threshold level within 0.01 time units.

H0 : M |= P>θ[ F0.01(x > 1.4∗107)]

The results of our experiments are shown in Table 1: both hypotheses are always accepted, al-

though the number of samples increases with the probabilitythreshold of the temporal formula.

Probability # Samples Needed
0.2 3
0.6 8
0.8 14
0.9 23

0.9999 99

Probability # Samples Needed
0.1 2
0.5 6
0.7 10
0.9 23
0.99 69

Table 1:Performance on the G Protein (left) and Lotka Benchmark (right). (Bayes Factor = 100)
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4.3 Experiment with Different Classes of Priors

We investigated the effect of priors on the performance of the Bayesian Model Checking algorithm.

We used three different priors - non-informative prior, an informative prior and a misleading prior.

The priors, the number of samples needed by the Bayesian algorithm for these priors, and the

power curve for each of these priors is also plotted in Fig. 4(a), Fig. 4(b) and Fig. 4(c) respectively.

The priors used are Beta distributions with different shapeparameters: (i)α = 1/2,β = 1/2: non-

informative prior, (ii)α = 1.4,β = 2 : informative prior with a peak around 0.34 (iii)α = 2,β = 2:

a misleading prior with peak around 0.5.

Fig. 4(b) shows that the number of samples needed by the Bayesian algorithm becomes smaller

when the prior probability distribution is informative andsupports the true hypothesis. Also, the

power curve (see Fig. 4(c)) becomes sharper when the Bayesian algorithm is given a correct and

informative prior probability distribution. A completelynon-informative prior also performs well

both in the number of samples and the power of the test. Strongly misleading priors make the power

curve less steep. However, the algorithm still performs quite well when the actual probability of

the system is away from the threshold probability in the formula.

5 Conclusions and Future Work

We have introduced the first algorithm for Probabilistic Model Checking based on Bayesian Se-

quential Hypothesis Testing. Our algorithm terminates with probability 1, and provides bounds on

the probability of returning an incorrect answer. Empirically, we have shown that our algorithm re-

quires fewer traces to terminate than techniques based on Classical Statistics. This is not surprising

as the Bayesian method comparing composite hypotheses whereas techniques like Wald’s SPRT

are comparing simple hypotheses. This advantage in efficiency is important in the context of Sys-

tems Biology as the cost of generating traces is not necessarily negligible. Bayesian methods also
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afford a convenient means for incorporating domain knowledge through the prior distributions.

Our algorithm is presently limited to incorporating prior information on the probability that the

property is true. A more fully Bayesian approach would incorporate prior information on not just

the property, but also the starting state and parameters of the model. We are presently extending

our method to address this limitation.
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Appendices

A Bounded Sampling of Bounded LTL

For Statistical Model Checking, BLTL formulas need to be checkable on simulations after a finite

duration of the simulation, because the simulation cannot be continued indefinitely. Like the se-

mantics of the unbounded linear temporal logic LTL [35], thesemantics of BLTL in Section 2 is

defined on infinite traces with divergence of time. In practice, simulations are only finite prefixes

of infinite traces and cannot be extended uniquely to an infinite trace. In this section we prove the

following lemma, which shows well-definedness of the BLTL semantics on finite system simula-

tions and decidability of BLTL on simulation traces. These results are crucial to make sense of

BLTL properties on traces that can be obtained by simulatingsystems in finite time.

Lemma 1 (Bounded sampling theorem)The problem “σ |= φ” is well-defined and can be checked

for BLTL formulasφ and tracesσ based on only afinite prefix ofσ of bounded duration.

For proving Lemma 1 we need to derive bounds on when to stop simulation. The duration bound

for which we can show that the BLTL semantics is well-defined can be read off easily from the

BLTL formula:

Definition 3 We define thesampling bound #(φ) ∈ Q>0 of a BLTL formulaφ inductively as the

maximum nested sum of time bounds:

#(x∼ v) := 0

#(¬φ1) := #(φ1)

#(φ1∨φ2) := max(#(φ1),#(φ2))

#(φ1∧φ2) := max(#(φ1),#(φ2))

#(φ1Utφ2) := t +max(#(φ1),#(φ2))
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Unlike infinite traces, actual system simulations do not have infinite length but need to be finite.

The following result shows for which duration the simulation can be stopped so that the BLTL

property has a well-defined semantics and will not change itstruth-value by continuing the simu-

lation. We prove that the semantics of BLTL formulasφ is well-defined on finite prefixes of traces

with a duration that is bounded by #(φ).

Lemma 2 (Well-definedness of BLTL on bounded simulation traces) Letφ be a BLTL formula,

k∈ N. Then for any two infinite tracesσ = (s0, t0),(s1, t1), . . . andσ̃ = (s̃0, t̃0),(s̃1, t̃1), . . . with

sI = s̃I and tI = t̃I for all I ∈ N with ∑
06l<I

tk+l 6 #(φ) (6)

we have that

σk |= φ iff σ̃k |= φ .

Proof 1 The proof is by induction on the structure of the BLTL formulaφ. IH is short for induction

hypothesis.

1. If φ is of the form x∼ v, thenσk |= x∼ v iff σ̃k |= x∼ v, because sk = s̃k by using(6) for

i = 0.

2. If φ is of the formφ1∨φ2, then

σk |= φ1∨φ2

iff σk |= φ1 or σk |= φ2

iff σ̃k |= φ1 or σ̃k |= φ2 by IH as#(φ1∨φ2) > #(φ1) and#(φ1∨φ2) > #(φ2)

iff σ̃k |= φ1∨φ2

The proof is similar for¬φ1 andφ1∧φ2.
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3. If φ is of the formφ1Utφ2, thenσk |= φ1Utφ2 iff for some i∈N the following conditions hold:

(a) ∑06l<i tk+l 6 t,

(b) σk+i |= φ2, and

(c) for each0 6 j < i, σk+ j |= φ1.

These conditions (a),(b),(c) are equivalent, respectively, to the following conditions (a′),(b′),(c′):

(a′) ∑06l<i t̃k+l 6 t, because#(φ1Utφ2) > t such that the durations of traceσ and σ̃ are

tk+l = t̃k+l for each index l with0 6 l < i by assumption(6).

(b′) σ̃k+i |= φ2 by induction hypothesis as follows: We know that the tracesσ andσ̃ match at

k for duration#(φ1Utφ2) and need to show that the semantics ofφ1Utφ2 matches at k.

By IH we know thatφ2 has the same semantics at k+ i (that is σ̃k+i |= φ2 iff σk+i |= φ2)

provided that we can show that the tracesσ and σ̃ match at k+ i for duration #(φ2).

For this, consider any I∈ N with ∑06l<I tk+i+l 6 #(φ2). Then

#(φ2) > ∑
06l<I

tk+i+l = ∑
06l<i+I

tk+l − ∑
06l<i

tk+l

(a)
> ∑

06l<i+I

tk+l − t

Thus

∑
06l<i+I

tk+l 6 t +#(φ2) 6 t +max(#(φ1),#(φ2)) = #(φ1Utφ2)

As I∈ N was arbitrary, we conclude from this with assumption(6) that, indeed

sI = s̃I and tI = t̃I for all I ∈ N with ∑
06l<I

tk+i+l 6 #(φ2)

Thus the IH forφ2 yields the equivalence ofσk+i |= φ2 and σ̃k+i |= φ2 when using the

equivalence of (a) and (a′).

(c′) for each0 6 j < i, σ̃k+ j |= φ1. The proof of equivalence to (c) is similar to that for (b′)
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using j< i.

The existence of an i∈ N for which these conditions hold is equivalent toσ̃k |= φ1Utφ2.

As a consequence, for checkingσ |= φ during Statistical Model Checking, we can stop simula-

tion of sampleσ at duration #(φ). By divergence of time, this happens after a finite number of

simulation steps.

Now we prove that Lemma 1 holds using prefixes of traces according to the sampling bound #(φ),

which guarantees that finite simulations are sufficient for deciding φ. In particular, checks for

“σ |= φ” terminate. We do not stop simulation prematurely, i.e., before “σ |= φ” can be checked.

Proof 2 (of Lemma 1) According to Lemma 2, the decision “σ |= φ” is uniquely determined

(and well-defined) by considering only a prefix ofσ of duration #(φ) ∈ Q>0. By divergence

of time, σ reaches or exceeds this duration#(φ) in some finite number of steps n. Letσ′ =

(s0, t0),(s1, t1), . . . ,(sn, tn) denote a finite prefix ofσ of length n such that∑06l<n tl > #(φ). Again

by Lemma 2, the semantics ofσ′ |= φ is well-defined because any extensionσ′′ of σ′ satisfiesσ′′ |= φ

if and only ifσ′ |= φ . Consequently the semantics ofσ′ |= φ coincides with the semantics ofσ |= φ.

On the finite traceσ′, it is easy to see that BLTL is decidable by evaluating the atomic formulas

x∼ v at each state si of the system simulation.

B Bayes Factor for General Priors

We show how to compute the Bayes factor when the prior densityis a mixture of Beta densities.

Most textbooks on Bayesian Statistics address the simple, non-mixture case, so here we report the

general case for completeness.
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SupposeG is a density over(0,1) defined as

G(u) =̂
N

∑
i=1

r i ·gi(u,αi,βi)

whereN is a positive integer, thegi ’s are Beta densities (of possibly different parametersαi ,βi),

and ther i ’s are positive reals summing up to 1. Our data(x1, . . . ,xn) are assumed to be iid samples

drawn from a Bernoulli distribution of unknown parameterp, so the probability of observingd =

(x1, . . . ,xn) is

f (d|p) = px(1− p)n−x

wherex = ∑n
i=1xi is the number of successes in(x1, . . . ,xn). Specializing (2) the Bayes factor at

stagen is:

Bn

=
∫ 1

θ
f (d|u)G(u) du

∫ θ

0
f (d|u)G(u) du

= definition ofG

∫ 1

θ
f (d|u)

N

∑
i=1

r igi(u,αi,βi) du

∫ θ

0
f (d|u)

N

∑
i=1

r igi(u,αi,βi) du

= linearity of integration

N

∑
i=1

r i

∫ 1

θ
f (d|u)gi(u,αi,βi) du

N

∑
i=1

r i

∫ θ

0
f (d|u)gi(u,αi,βi) du

= definition of f andgi
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N

∑
i=1

r i

B(αi ,βi)

∫ 1

θ
ux(1−u)n−xuαi−1(1−u)βi−1 du

N

∑
i=1

r i

B(αi ,βi)

∫ θ

0
ux(1−u)n−xuαi−1(1−u)βi−1 du

= introducer ′i

N

∑
i=1

r ′i

∫ 1

θ
ux(1−u)n−xuαi−1(1−u)βi−1 du

N

∑
i=1

r ′i

∫ θ

0
ux(1−u)n−xuαi−1(1−u)βi−1 du

= algebra and split integral at numerator

N

∑
i=1

r ′i

(∫ 1

0
ux+αi−1(1−u)n−x+βi−1 du−

∫ θ

0
ux+αi−1(1−u)n−x+βi−1 du

)

N

∑
i=1

r ′i

∫ θ

0
ux+αi−1(1−u)n−x+βi−1 du

= split fraction and simplify

N

∑
i=1

r ′i

∫ 1

0
ux+αi−1(1−u)n−x+βi−1 du

N

∑
i=1

r ′i

∫ θ

0
ux+αi−1(1−u)n−x+βi−1 du

−1

= definition of Beta function (4)

N

∑
i=1

r ′iB(x+αi,n−x+βi)

N

∑
i=1

r ′i

∫ θ

0
ux+αi−1(1−u)n−x+βi−1 du

−1

= definition of Beta distribution function (5)

N

∑
i=1

r ′iB(x+αi ,n−x+βi)

N

∑
i=1

r ′iB(x+αi ,n−x+βi)F(x+αi ,n−x+βi)(θ)

−1 .
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wherer ′i = r i
B(αi ,βi)

. For the special caseN = 1 the Bayes factor at stagen is simply

Bn =
1

F(x+α,n−x+β)(θ)
−1 .

C Termination of Bayesian Model Checking Algorithm

C.1 Termination for Beta priors

The Beta distribution of real parametersα,β > 0 is defined on(0,1) by the density

g(u,α,β) =̂
1

B(α,β)
uα−1(1−u)β−1

whereB(α,β) =̂
∫ 1

0 tα−1(1− t)β−1dt.

We shall later need the following facts about binomial expansions. For positive integern and

realθ it is well known that:

(1−θ)n =
n

∑
i=0

(
n
i

)
(−1)iθi .

The above result can be generalized to an arbitrary realr for θ ∈ (−1,1):

(1−θ)r =
∞

∑
i=0

(
r
i

)
(−1)iθi (7)

where (
r
i

)
=

r(r −1) · · ·(r − i +1)

i!
.

For the special caser > −1 andθ = −1 we have that:

2r =
∞

∑
i=0

(
r
i

)
. (8)
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Since
∣∣(r

i

)
θi
∣∣ 6

(r
i

)
for θ ∈ (−1,1) and the series (8) converges, by Weierstrass’s criterion we

deduce uniform convergence of (7) forθ∈ (−1,1). This implies that when integrating the binomial

series - as we shall later need - one can interchange the operation of limit sum and integration.

Proof 3 (Theorem 1) Suppose X is a Bernoulli random variable of (unknown) parameter p. The

algorithm iteratively and independently draws samples of X(denoted by xi for i ∈N). The random

variables Xi corresponding to the xi are thus independent and identically distributed (iid). From

Definition 2, the Bayes factorBn at stage n is:

Bn =̂
P(X1, . . . ,Xn|H0)

P(X1, . . . ,Xn|H1)
.

Given an arbitrary threshold T> 1, the algorithm stops at stage n iff(Bn > T ∨ Bn < 1
T ). We

show that this happens with probability one.

Our data xi are assumed to be iid samples drawn from a Bernoulli distribution of unknown

parameter p, so the probability of observing d= (x1, . . . ,xn) is

f (d|p) = px(1− p)n−x

where x is the number of successes in(x1, . . . ,xn). The hypotheses to test are H0 : p > θ vs. H1 :

p < θ, whereθ is a fixed real in(0,1) from the PBLTL property. The prior density g(·) is assumed

to be a Beta density with fixed parametersα,β > 0. Specializing (2) the Bayes factor at stage n is

thus:

Bn =

∫ 1

θ
f (d|u)g(u) du

∫ θ

0
f (d|u)g(u) du

=

1
B(α,β)

∫ 1

θ
ux(1−u)n−xuα−1(1−u)β−1 du

1
B(α,β)

∫ θ

0
ux(1−u)n−xuα−1(1−u)β−1 du

=

∫ 1

θ
ux(1−u)n−xuα−1(1−u)β−1 du

∫ θ

0
ux(1−u)n−xuα−1(1−u)β−1 du

=
I(θ,1)

I(0,θ)

(9)

32



where I(a,b) is

I(a,b) =̂

∫ b

a
ux+α−1(1−u)n−x+β−1 du .

We now simplify the integral term, and have that

I(a,b)

= binomial expansion (7)

∫ b

a
ux+α−1

∞

∑
i=0

(
n−x+β−1

i

)
(−1)iui du

= uniform convergence

∞

∑
i=0

(
n−x+β−1

i

)∫ b

a
(−1)iui+x+α−1 du

= solve integral

∞

∑
i=0

(
n−x+β−1

i

)
(−1)i

i +x+α
ui+x+α

∣∣∣
b

a

= notation ci =̂
(n−x+β−1

i

) (−1)i

i+x+α

∞

∑
i=0

ci ui+x+α
∣∣∣
b

a

= expand primitive

∞

∑
i=0

ci (bi+x+α−ai+x+α)

and we now introduce the notation S(a,b) for the sum above

S(a,b) =̂
∞

∑
i=0

ci (bi+x+α −ai+x+α) = I(a,b) (10)

where ci =̂
(n−x+β−1

i

) (−1)i

i+x+α (we recall that n is the number of samples and x the number of suc-

cesses). Since P(X1, . . . ,Xn |a < p < b) = S(a,b)
B(α,β) , we have that S(a,b) must be strictly positive for
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any a< b in [0,1], that is:

∀n ∀x 6 n ∀0 6 a < b 6 1
∞

∑
i=0

ci (bi+x+α −ai+x+α) > 0 . (11)

Finally, our aim is to establish whether the algorithm stopsat stage ni.e., whether for some n

it is true that (Bn > T ∨ Bn < 1
T ). A sufficient condition for termination is to show that the

algorithm accepts H0 with probability one, unless it has already rejected H0 (where the algorithm

terminates anyhow, accepting H1). We therefore consider the likelihood thatBn > T becomes true

whenBi >
1
T for 0 6 i < n.

From the definition of S, we can see that S(a,b) is an integral from a to b. By (9), we can

rewrite Bn:

Bn =
S(θ,1)

S(0,θ)
=

S(0,1)−S(0,θ)

S(0,θ)
=

S(0,1)

S(0,θ)
−1 . (12)

We reason:

Bn > T

≡ (12) and S(0,θ) positive

S(0,1)− (T +1)S(0,θ) > 0

≡ definition of S

∞

∑
i=0

ci (1− (T +1)θi+x+α) > 0

≡ algebra using(T +1) > 0

∞

∑
i=0

ci (1− ((T +1)
1

i+x+α θ)i+x+α) > 0

Using (11) for b= 1 we know that∑∞
i=0ci (1−ai+x+α) > 0 for all 06 a< 1. Therefore, a sufficient

condition to makeBn > T true is to make(T +1)
1

i+x+α θ < 1. That amounts to find an x such that
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for all i

(T +1)
1

i+x+α θ < 1

≡ apply logarithm

1
i+x+α log(T +1)+ logθ < 0

≡ α > 0,x > 0, i > 0 and algebra

log(T +1) < −(i +x+α) logθ

≡ property of logarithm

log(T +1) < (i +x+α) log 1
θ

≡ 0 < θ < 1

log(T +1)

log 1
θ

< (i +x+α)

which will be eventually true with probability one, as long as the unknown probability of success

p is non-zero. (Note that it is sufficient to consider the casei = 0.) We thus have to prove that the

event
⋃∞

n=1(k < xn,p) has probability 1, where x is distributed as a binomial of parameters n and

p > 0, and k= d
log(T+1)

log 1
θ

−αe. We reason:

P(
⋃∞

n=1(k < xn,p))

= probability measures are continuous

limn→∞ P(k < xn,p)

= complemented event

limn→∞ 1−P(xn,p 6 k)

= disjoint events

1− limn→∞ ∑k
i=0P(xn,p = i)
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= x distributed as binomial of parameters n, p

1− limn→∞ ∑k
i=0

(n
i

)
pi(1− p)n−i

= continuity of finite sums (assume0 < p < 1)

1−∑k
i=0(

p
1−p)

i limn→∞(1− p)n
(n

i

)

= expand binomial coefficient

1−∑k
i=0(

p
1−p)

i 1
i! limn→∞(1− p)nn(n−1) · · ·(n− i +1)

= 0 < p < 1 and limit

1−∑k
i=00 = 1 .

The case p= 1 follows directly from the third to last step. For p= 0, instead, we have x= 0 for

any number of samples n, so that it is easy to see from (9) thatBn → 0 for n→ ∞, and H1 will be

accepted eventually. In fact:

Bn =

∫ 1

θ
(1−u)nuα−1(1−u)β−1 du

∫ θ

0
(1−u)nuα−1(1−u)β−1 du

6

∫ 1

θ
uα−1(1−u)β−1 du

(1−θ)n
∫ θ

0
uα−1(1−u)β−1 du

and since0 < θ < 1 we therefore haveBn → 0 for n→ ∞.

C.2 Termination for General Priors

SupposeG is a density over(0,1) defined as

G(u) =̂
N

∑
j=1

r j ·g j(u,α j ,β j)
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whereN is a positive integer, theg j ’s are Beta densities (of possibly different parametersα j ,β j),

and ther j ’s are positive reals summing up to 1. We want to show that our algorithm terminates

with probability one whenG is used as a prior. We shall retain much of the notation and concepts

already introduced.

From the derivation in Appendix B we have that the Bayes factor Bn at stagen is

Bn =

N

∑
j=1

r ′j

∫ 1

0
ux+α j−1(1−u)n−x+β j−1 du

N

∑
j=1

r ′j

∫ θ

0
ux+α j−1(1−u)n−x+β j−1 du

−1 =

N

∑
j=1

r ′j I j(0,1)

N

∑
j=1

r ′j I j(0,θ)

−1 (13)

wherer ′j =
r j

B(αi ,βi)
andI j(a,b) is a slight generalization ofI(a,b):

I j(a,b) =̂
∫ b

a
ux+α j−1(1−u)n−x+β j−1 du .

In analogy to what we proved in Appendix C.1, we show that the algorithm acceptsH0 with

probability one, unless it has already rejected it before. We thus have to show thatBn > T with

probability one, whenBi >
1
T for i < n. The strategy we use is first to find an expressionB ′

n such

that for alln B ′
n 6 Bn. Then, we prove that with probability one there is azsuch thatB ′

z > T, which

in turn impliesBz > T and termination of the algorithm (acceptingH0) with probability one.

We now reason from (13):

Bn

> R= maxj r ′j

N

∑
j=1

r ′j I j(0,1)

R
N

∑
j=1

I j(0,θ)

−1
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= definition of I j

N

∑
j=1

r ′j I j(0,1)

R
N

∑
j=1

∫ θ

0
ux+α j−1(1−u)n−x+β j−1 du

−1

= linearity of integration, laws of powers

N

∑
j=1

r ′j I j(0,1)

R
∫ θ

0
ux−1(1−u)n−x−1

(
N

∑
j=1

uα j (1−u)β j

)

du

−1

> A = min j α j andB = min j β j , monotonicity of integration

N

∑
j=1

r ′j I j(0,1)

R
∫ θ

0
ux+A−1(1−u)n−x+B−1N du

−1

= algebra

N

∑
j=1

r ′j
RN

I j(0,1)
∫ θ

0
ux+A−1(1−u)n−x+B−1 du

−1

and we have thus established that

∀n B
′
n =̂

N

∑
j=1

r ′j
RN

I j(0,1)
∫ θ

0
ux+A−1(1−u)n−x+B−1 du

−1 6 Bn . (14)

Now, to prove that eventuallyBn > T we show thatB ′
n > T. In particular, we show that one

particular summand ofB ′
n can grow arbitrarily large (with probability one). Then, bythe fact that

the summands ofB ′
n are positive and by (14), we shall concludeBn > T and termination of the

algorithm (acceptingH0).
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To proveB ′
n > T it is thus sufficient to show that, with probability one, there are naturalsn and

x 6 n such that
Ik(0,1)

∫ θ

0
ux+A−1(1−u)n−x+B−1 du

> T (15)

wherek is such thatβk = B. By the reasoning forI(a,b) set out in Appendix C.1, we can rewrite

(15):

∫ 1

0
ux+αk−1(1−u)n−x+B−1 du

∫ θ

0
ux+A−1(1−u)n−x+B−1 du

> T

≡ definition ofS(10)

∞

∑
i=0

(
n−x+B−1

i

)
(−1)i

i +x+αk
∞

∑
i=0

(
n−x+B−1

i

)
(−1)i

i +x+A
θi+x+A

> T

≡ notationci =
(n−x+B−1

i

) (−1)i

i+x+αk
andαk > 0

∞

∑
i=0

ci

∞

∑
i=0

ci
i +x+αk

i +x+A
θi+x+A

> T

≡ introduceθαk

∞

∑
i=0

ci

∞

∑
i=0

ci
i +x+αk

i +x+A
θA−αk θi+x+αk

> T

≡ positive denominator

∞

∑
i=0

ci >
∞

∑
i=0

ci
i +x+αk

i +x+A
TθA−αk θi+x+αk

≡ algebra
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∞

∑
i=0

ci

(
1−

i +x+αk

i +x+A
TθA−αk θi+x+αk

)
> 0

≡ laws of powers

∞

∑
i=0

ci



1−

((
i +x+αk

i +x+A
TθA−αk

) 1
i+x+αk

θ

)i+x+αk


> 0

For b = 1 in (11) we get that∑∞
i=0ci (1−ai+x+αk) > 0 for all 06 a < 1. Therefore, a sufficient

condition to make (15) true is to findx such that

( i+x+αk
i+x+A TθA−αk)

1
i+x+αk θ < 1

≡ apply logarithm

1
i+x+αk

log( i+x+αk
i+x+A TθA−αk)+ logθ < 0

W
i+x+αk
i+x+A 6

αk
A , log monotonicity

1
i+x+αk

log(αk
A TθA−αk)+ logθ < 0

≡ algebra andi +x+ αk > 0

log(αk
A TθA−αk) < −(i +x+αk) logθ

≡ law of logarithms

log(αk
A TθA−αk) < (i +x+αk) log 1

θ

≡ 0 < θ < 1, thus logθ < 0

log(αk
A TθA−αk)

log 1
θ

< (i +x+αk)

which is true with probability one, as we have already proven(x grows arbitrarily large with proba-

bility one, whenp> 0). Again, for the casep = 0 it is easy to see from (13) thatBn → 0 asn→ ∞,

so that the algorithm eventually terminates by rejectingH0.
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D Error Analysis

Proof 4 Suppose the algorithm terminates after observing n samples. Let X be the random vari-

able denoting the number of observed traces satisfying the BLTL formula. Also, the probability

with which traces from the model actually satisfy the BLTL formula is given by p, where p> θ.

The notation x./ D is used to indicate the event that x is drawn from the probability distribution

D.

Also, we know that the expression ti(1− t)n−i defined on[θ,1] assumes a maximum value as

it is a continuous function on a compact set. In particular, the maximum value is obtained when

either t= θ or t = 2i
n . We call this value of t as tmax.

P(Type I error)

= By Definition

P(H1 is chosen| H0 is true)

= Since, H1 is chosen iffB(n,X) < 1
T

P

(
{B(n,X) <

1
T

and X./ Binomial(n, p)}| H0 is true

)

= By Definition of Null Hypothesis and p

P

(
{B(n,X) <

1
T

and X./ Binomial(n, p)}| p > θ
)

= Definition of Conditional Probability

P

(
{B(n,X) <

1
T

and X./ Binomial(n, p) and p> θ}
)

P(p > θ)

= By Definition (X can take values from 0 to n)

P

(
n⋃

x=0

{B(n,X = x) <
1
T

and x./ Binomial(n, p) and p> θ}

)

P(p > θ)
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= Disjoint Events

n

∑
x=0

P

(
{B(n,x) <

1
T

and x./ Binomial(n, p) and p> θ}
)

P(p > θ)

= Independence of Events

n

∑
x=0

P

(
{B(n,x) <

1
T
}

)
P({x ./ Binomial(n, p) and p> θ})

P(p > θ)

= Algebraic Manipulation

n

∑
x=0

P({B(n,x) <
1
T
})

P({x ./ Binomial(n, p) and p> θ})
P(p > θ)

= Definition of Conditional Probability

n

∑
x=0

P({B(n,x) <
1
T
}) P({x ./ Binomial(n, p) | p > θ})

= Conditional Probability

n

∑
x=0

P({ B(n,x) <
1
T
})

(
n
x

)
px(1− p)n−x, where p> θ

= I is indicator function3

n

∑
x=0

I
{B(n,x) < 1/T}(x)

(
n
x

)
px(1− p)n−x, where p> θ

6 Since, tmax maximizes px(1− p)n−x

n

∑
x=0

I
{B(n,x) < 1/T}(x)

(
n
x

)
tx
max(1− tmax)

n−x
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3. P(x∈ A) is usually rewritten asIA(x) if x∈ A is known with probability 1 whenx andA are known.
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