
Statistical Model Checking

for Cyber-Physical Systems�

Edmund M. Clarke and Paolo Zuliani

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA
{emc,pzuliani}@cs.cmu.edu

Abstract. Statistical Model Checking is useful in situations where it
is either inconvenient or impossible to build a concise representation
of the global transition relation. This happens frequently with cyber-
physical systems: Two examples are verifying Stateflow-Simulink models
and in reasoning about biochemical reactions in Systems Biology. The
main problem with Statistical Model Checking is caused by rare events.
We describe how Statistical Model Checking works and demonstrate the
problem with rare events. We then describe how Importance Sampling
with the Cross-Entropy Technique can be used to address this problem.

1 Introduction

Cyber-Physical Systems are characterized by the tight interaction between a
digital computing component (the Cyber part) and a continuous-time dynam-
ical system (the Physical part). The concept is better explained by examples.
A modern airliner governed by the autopilot is a typical Cyber-Physical System
(CPS). The autopilot is a software which provides inputs to the aircraft’s engines
and flight control surfaces (e.g., rudder, flaps, etc.) on the basis of various sensor
readings and an appropriate control law. The autopilot greatly reduces the pi-
lot’s workload and can improve the aircraft’s fuel economy. Another example of
CPS is a car equipped with an Anti-lock Braking System. The ABS modulates
braking power to avoid a complete lock-up of the car’s wheels in hard braking
or low adherence situations. In this way, the friction between the tires and the
road surface is maintained, thereby allowing the driver to keep control of the
vehicle and improving safety.

Cyber-Physical Systems enjoy wide adoption in our society, even in safety-
critical applications, but are difficult to reason about. In particular, to automat-
ically prove behavioral properties of a CPS is exceedingly difficult. One of the
� This research was sponsored by the National Science Foundation under contracts

no. CNS0926181 and no. CNS0931985, the SRC under contract no. 2005TJ1366,
General Motors under contract no. GMCMUCRLNV301, the Air Force (Van-
derbilt University) under contract no. 18727S3, the GSRC under contract
no. 1041377 (Princeton University), the Office of Naval Research under award
no. N000141010188, and DARPA under contract FA8650-10-C-7077.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 E.M. Clarke and P. Zuliani

obstacles is due to the fact that currently we do not know how to interface formal
verification techniques for the cyber part with the well-established engineering
techniques used to design the physical part of the system [12]. Another obstacle
is that most CPSs feature stochastic effects, because of uncertainties present in
the system components or the environment. For example, a flight control sys-
tem needs to be able to cope with (possibly) unreliable readings from sensors,
or to recognize and react appropriately when hit by “random” cosmic radiation
at high altitudes. As a result, fully formal verification of a CPS is currently
not possible, while validation boils down to extensive system simulations and
bench/live tests. However, in the past decade there has been progress towards
formal verification for CPSs.

In this paper we single out one particular verification technique that aims
at tackling both obstacles above: Statistical Model Checking [22,21,16,5]. This
technique addresses the verification problem for general stochastic systems, i.e.,
to compute the probability that a stochastic model satisfies a given temporal
logic property. For example, we would like to know the probability of a fuel-
control system failing to ensure an optimal air-fuel flow ratio, given unreliable
readings from the engine’s sensors. We express such properties in Bounded Linear
Temporal Logic (BLTL), a variant of LTL [13] in which the temporal operators
are equipped with time bounds. As CPS models, we use a stochastic version of
control systems modeled in Stateflow/Simulink - the de facto standard tool for
embedded system design.

Numerical methods [1,2,3,4,7] have been developed to compute with high pre-
cision the probability that a stochastic system satisfies a temporal logic formula,
but they are generally only feasible for systems with up to 108−109 states [10,18].
The state space of modern CPSs very often exceeds this limit (or is infinite),
hence the need for methods such as Statistical Model Checking, which solve the
verification problem for stochastic systems in a less precise, yet rigorous and
more efficient way.

Statistical model checking addresses the verification problem as a statisti-
cal inference problem: it samples behaviors (simulations) of the system model,
checks their conformance with respect to the temporal formula, and finally ap-
plies a statistical estimation technique to compute an approximate value for the
probability that the formula is satisfied. The returned value will be, with high
probability, close to the true probability that the formula holds. The key obser-
vation behind statistical model checking’s efficiency is that for large, complex
systems, simulation is generally easier and faster than building a concise repre-
sentation of the global transition relation of the system.

Statistical model checking was introduced by Younes [20], and phrased as a
hypothesis testing problem. In that setting, the task is to decide whether the
temporal formula is satisfied with a probability greater than a given threshold.
Later work [6,16] generalized statistical model checking using statistical estima-
tion techniques (e.g., the Chernoff bound). Hypothesis-testing methods are more
efficient than estimation techniques when the probability that the formula holds
is distant from the user-specified threshold [19]. Sequential Bayesian techniques

Statistical Model Checking for Cyber-Physical Systems 3

for both hypothesis testing and estimation were introduced in [8,23] and shown
to perform very well.

The main problem with statistical model checking is caused by rare events,
i.e., temporal formulae whose satisfaction probability is very small. When es-
timating the probability of such formulae, the number of simulations needed
to ensure a good estimate becomes unfeasible. In this paper we show that Im-
portance Sampling and the Cross-Entropy method can efficiently address this
problem.

2 Background

Statistical model checking is essentially a Monte Carlo technique, since it is based
on randomized sampling of simulations of a stochastic model. In this Section, we
first describe the temporal logic used to express properties and how statistical
model checking works. Next, we give a summary of the Monte Carlo method and
the rare-event problem.

2.1 Statistical Model Checking

We start by defining the Bounded Linear Temporal Logic (BLTL) [11,8]. For
a model M, we denote by SV the finite set of real-valued state variables. An
Atomic Proposition (AP) over SV is a Boolean predicate of the form y∼v,
where y ∈ SV , ∼ is one of {≥,≤, =}, and v ∈ R. A BLTL property is built on a
finite set of Boolean predicates over SV using Boolean connectives and temporal
operators. The syntax of the logic is given by the following grammar:

φ ::= y∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where ∼ ∈ {≥,≤, =}, y ∈ SV , v ∈ Q, and t ∈ Q≥0.
The formula φ1Utφ2 holds true if and only if, within time t, φ2 will be true

and φ1 will hold until then. Bounded versions of the usual F and G operators
are easily defined: Ftφ = true Utφ requires φ to hold true within time t; Gtφ =
¬Ft¬φ requires φ to hold true up to time t. Also, BLTL can be seen as a sublogic
of Metric Temporal Logic [9].

The semantics of BLTL is defined with respect to executions (traces) of M.
A trace σ is a sequence (s0, t0), (s1, t1), . . ., with the meaning that the system
moved to state si+1 after having sojourned for time ti in state si. We assume
non-Zeno behavior about M, i.e., for any trace σ it must be

∑∞
i=0 ti = ∞.

In other words, the system cannot make an infinite number of transitions in a
finite amount of time. This assumption is necessary for ensuring termination of
statistical model checking.

The fact that a trace σ satisfies the BLTL property φ is denoted by σ |= φ.
We denote the trace suffix starting at step i by σi, where σ0 denotes the full
trace σ.

Definition 1. The semantics of BLTL for a trace σk (k ∈ N) is:

4 E.M. Clarke and P. Zuliani

– σk |= AP iff AP holds true in state sk;
– σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2;
– σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2;
– σk |= ¬φ1 iff σk |= φ1 does not hold;
– σk |= φ1Utφ2 iff ∃i ≥ 0 such that

a)
∑i−1

l=0 tk+l ≤ t, and

b) σk+i |= φ2, and

c) ∀ 0 ≤ j < i, σk+j |= φ1.

Statistical model checking is based on checking system simulations, i.e., finite
traces (naturally, simulations need to be finite in length). Therefore, one has to
prove that σ |= φ has a well-defined semantics and will not change its truth-
value by continuing the simulation. In [23] we proved well-definedness and the
fact that a finite prefix of the trace is sufficient for BLTL model checking, which
is crucial for termination.

Definition 2. [11,23] The sampling bound #(φ) ∈ Q≥0 of a BLTL formula φ
is defined as:

#(y ∼ v) = 0
#(¬φ1) = #(φ1)

#(φ1 ∨ φ2) = max(#(φ1), #(φ2))
#(φ1 ∧ φ2) = max(#(φ1), #(φ2))
#(φ1Utφ2) = t + max(#(φ1), #(φ2))

Since we assumed non-zenoness, any trace will reach the sampling bound with a
finite prefix (not necessarily of the same length). We have the following lemma.

Lemma 1. [23] For any BLTL formula φ and trace σ, the relation σ |= φ is
well-defined and can be checked using only a finite prefix of σ of duration #(φ).

The verification problem for a stochastic system M and a BLTL formula φ is the
following: to compute the probability that M satisfies φ. We are in particular
interested in discrete-time stochastic systems, since statistical model checking
is based on simulation. The problem is well-posed, as it can be shown that the
set of traces of M satisfying φ is measurable, thereby defining the probability p
that M satisfies φ [22].

Suppose now that the stochastic system M satisfies the BLTL formula φ with
some (unknown) probability p = Prob{σ | σ |= φ}. The key idea behind statis-
tical model checking [22] is that the behavior of M (with respect to property
φ) can be modeled by a Bernoulli random variable with success parameter p.
This random variable can be repeatedly evaluated via system simulation in the
following way. Let σ be a trace of M, then one can define the Bernoulli ran-
dom variable B that returns 1 if σ |= φ and 0 otherwise. In other words, the
probability mass function of B is

Prob(B(σ) = 1) = p (σ |= φ) (1)

Prob(B(σ) = 0) = 1 − p (σ |= ¬φ)

Statistical Model Checking for Cyber-Physical Systems 5

Therefore, by running a simulation of M and by checking φ on the resulting
trace we can obtain a sample of B.

2.2 The Monte Carlo Method

We consider the problem of estimating the probability of rare events in a stochas-
tic CPS by means of randomized (i.e., Monte Carlo) techniques. An event is said
to be rare when its probability of occurrence is very low, say 10−8. The Monte
Carlo approach for estimating probabilities is by means of relative frequencies.
Let X be a random variable defined over a probability space (Ω,F , P). Suppose
we want to estimate p = P(X ∈ B), the probability that X belongs to a given
Borel set B. We first obtain a number of independent realizations of IB(X),
the indicator function of B — IB(x) is 1 if x ∈ B (“X ∈ B has occurred”), 0
otherwise — and then compute their average to estimate p.

The theoretical justification of the Monte Carlo method is the strong law of
large numbers. It states that if X1, X2, . . . is a sequence of independent and
identically distributed (iid) random variables with E[|X1|] < ∞, then

P
(

lim
n→∞

Sn

n
= μ

)

= 1

where Sn = X1 + · · · + Xn and μ = E[X1]. This means that the measure of
the set of sample points for which Sn

n converges to μ is 1. Therefore, we can
approximate μ by taking the average of a finite number of realizations (samples)
of X1, since we know that the average will not converge to μ only for a negligible
subset of realizations (a set of measure 0).

Returning to our problem of estimating P(X ∈ B) = p for a given random
variable X and Borel set B, note that the random variable IB(X) is a Bernoulli
of success parameter p, that is, P(IB(X) = 1) = p. Also, note that p = E[IB(X)].
Now, given a finite sequence X1, . . . , XN of random variables iid as X , the crude
Monte Carlo estimator p̂ = 1

N

∑N
i=1 IB(Xi) will converge to p as N → ∞ (with

probability 1) by the strong law of large numbers. The estimator p̂ is readily
shown to be unbiased (i.e., E[p̂] = p) and its variance is:

Var(p̂) =
Var(IB(X))

N
.

Also, from the central limit theorem it follows that for large N the distribution of
p̂ is approximately a normal distribution of mean p̂ and variance Var(IB(X))/N .
The variance of p̂ will thus tends to 0 as we increase the sample size N , leading
to more precise estimates. However, a small variance does not necessarily imply
a good estimate.

The relative error associated with the estimate p̂ is an important quantity for
assessing the quality of an estimator, especially in the rare-event case (p � 1).
It is defined as the ratio

RE(p̂) =

√
Var(p̂)
E[p̂]

6 E.M. Clarke and P. Zuliani

and intuitively it is a “measure” of the accuracy of the estimator p̂ with respect
to its standard deviation. Since the crude Monte Carlo estimator is unbiased,
the sample X1, . . . , XN is iid, and p � 1, it follows that

RE(p̂) =

√
Var(IB(X))/N

p
=

√
p(1 − p)
p
√

N
≈

√
1

Np
.

Now, if N is kept constant and p → 0, it follows that RE(p̂) → ∞. For exam-
ple, to estimate p = 10−8 with a relative error of 0.01 we would need about
N ≈ 1

pRE2(p̂)
= 1012 samples — an unfeasible quantity. Therefore, in order to

keep the relative error low as X ∈ B becomes rarer, we need to increase the sam-
ple size, thereby meaning that crude Monte Carlo is not an efficient technique
for estimating very low probabilities. Alternatively, one can try to find another
estimator whose variance is smaller than Var(p̂), for a given sample size. Impor-
tance sampling is a technique for devising estimators with reduced variance, and
thus with low relative error.

3 Importance Sampling

Importance Sampling is a variance-reduction technique for the Monte Carlo
method, developed in the late 1940s. Here we present a brief overview of Impor-
tance Sampling — more details and applications can be found, for example, in
Srinivasan’s book [17].

3.1 Basics

We consider the more general case of estimating c = E[g(X)] < ∞ for a random
variable X and a measurable function g:R → R

�0. (By defining g(X) = IB(X)
we recover the previous case.) We assume that the distribution of X is abso-
lutely continuous with respect to the Lebesgue measure, and denote by f the
corresponding density. The crude Monte Carlo (MC) estimator is

ĉ =
1
N

N∑

i=1

g(Xi)

where X1, . . . , XN be random variables iid with density f . By the strong law of
large numbers, ĉ converges to c with probability 1. Also, it is unbiased, and its
variance is

Var(ĉ) =
1
N

(E[g2(X)] − c2) . (2)

In our statistical model checking setting, we are interested in determining the
probability that a stochastic system satisfies a certain temporal logic formula
φ. In this setting, the random variables X1, . . . , XN are independent executions
(simulations) σ1, . . . , σN of the system, represented by time series of the system
variables (traces). The function g is just the model checker that verifies whether

Statistical Model Checking for Cyber-Physical Systems 7

a trace satisfies φ. Therefore, given a trace σ the random variable g(σ) is again
a Bernoulli — 1 if the trace σ satisfies φ, and 0 otherwise. Also, it is the random
variable previously defined in (1).

We now introduce Importance Sampling. Suppose we had another (absolutely
continuous) distribution for X , with corresponding density f∗, such that the
ratio f/f∗ is well-defined. The entire theory of importance sampling rests upon
the following fundamental identity:

c = E[g(X)]

=
∫

R

g(x)f(x) dx

=
∫

R

g(x)
f(x)
f∗(x)

f∗(x) dx

=
∫

R

g(x)W (x)f∗(x) dx

= E∗[g(X)W (X)] (3)

where E∗[·] denotes expectation with respect to the density f∗. The term W (x) =
f(x)
f∗(x) is the weighting function, or likelihood ratio. Naturally, for all x such that
g(x)f(x) > 0, it must be f∗(x) > 0. The density f∗ is known as the biasing (or
proposal) density.

The Importance Sampling (IS) estimator is

ĉIS =
1
N

N∑

i=1

g(Xi)W (Xi)

where W (x) = f(x)/f∗(x) is the likelihood ratio and X1, . . . , XN are random
variables iid with density f∗ (the biasing density). The IS estimator is unbiased
by (3), and its variance is:

Var(ĉIS) =
1
N

(E∗[g2(X)W 2(X)] − c2) . (4)

The crucial problem in importance sampling is to find a biasing density such
that the variance (4) of the IS estimator is smaller than the variance (2) of the
crude MC estimator.

It turns out that there exists a biasing density which can minimize the variance
(4) of the IS estimator. In particular, it is easy to verify that when the function
g is non-negative the following optimal biasing density actually results in a zero-
variance estimator:

f∗(x) =
g(x)f(x)

c
.

But in practice it is difficult to sample from f∗, since it depends on c = E[g(X)],
the (unknown) quantity we are trying to estimate. Therefore, instead of try-
ing to come up with the optimal density, it may be preferable to search in a
parametrized family of densities for a biasing density “close” to the optimal one.
This is exactly the approach taken by the cross-entropy method.

8 E.M. Clarke and P. Zuliani

4 The Cross-Entropy Method

The cross-entropy method was introduced in 1999 by Rubinstein [14]. Assume
that the original (or nominal) density f of X belongs to a parametric family
{f(·, u) |u ∈ U}, and in particular f(·) = f(·, v) for some fixed v ∈ U . (For ex-
ample, a common family is the natural exponential family.) The method chooses
the biasing density from the family such that the Kullback-Leibler divergence
between the optimal biasing density and the chosen density is minimal.

The cross-entropy method has two basic steps:

1. find a density with minimal Kullback-Leibler divergence with respect to the
optimal biasing density;

2. perform importance sampling with the biasing density computed in step 1
to estimate E[g(X)].

We will see that step 1 actually requires to sample X . In practice, the number
of samples generated for step 2 will be larger than for step 1.

Definition 3. The Kullback-Leibler divergence of two densities f, h is

D(f, h) =
∫

R

f(x) ln
f(x)
h(x)

dx.

The Kullback-Leibler divergence is also known as the cross-entropy (CE). For-
mally, D is not a distance, since it is not symmetric, i.e., D(f, h) �= D(h, f)
in general. However, it can be shown that D is always non-negative, and that
D(f, h) = 0 iff f = h. Therefore, the CE can be useful in assessing how close
two densities are.

We recall that our task is to estimate c = E[g(X)], where X is a random
variable with density f and g is a non-negative, measurable function. We want
to find a density in the parametric family such that the CE with the optimal
biasing density f∗ is minimal. Therefore, we need to solve the minimization
problem:

u∗ = argmin
u∈U

D(f∗(·), f(·, u))

where f∗(x) = g(x)f(x, v)/c is the optimal biasing density. This can be turned
into a maximization problem as follows:

argmin
u∈U

D(f∗(·), f(·, u)) = argmin
u∈U

E∗

[

ln
f∗(X)
f(X, u)

]

= argmin
u∈U

∫

R

f∗(x) ln f∗(x) dx −
∫

R

f∗(x) ln f(x, u) dx

= argmax
u∈U

∫

R

f∗(x) ln f(x, u) dx

= argmax
u∈U

∫

R

g(x)f(x, v) ln f(x, u) dx

= argmax
u∈U

E[g(X) ln f(X, u)]

Statistical Model Checking for Cyber-Physical Systems 9

where in the second step we used the fact is D is non-negative and that the first
integral does not depend on u. It turns out that for certain families of densities
the maximization problem can be solved analytically [15, Chapter 3].

We now assume that X is a random vector, i.e., X:Ω → R
n, which implies

that function g must be defined over R
n. Note that this does not change what

we obtained so far. The optimal parameter u∗ = argmaxu∈U E[g(X) ln f(X, u)]
when X is in an exponential family of distributions is:

u∗
j =

E[g(X)Xj]
E[g(X)]

where u∗ = (u∗
1, . . . , u

∗
n) and Xj is the j-th component of X.

The optimal parameter thus depends on the quantity we wish to estimate,
i.e., E[g(X)], and therefore u∗ needs itself to be estimated by MC simulation. In
the one-dimensional case we have that

u∗ =
E[g(X)X]
E[g(X)]

and u∗ may be estimated from a sample X1, . . . , XN iid with density f (the
nominal density) as:

û∗ =
∑N

i=1 g(Xi)Xi
∑N

i=1 g(Xi)
. (5)

However, in statistical model checking g(Xi) is either 1 or 0 — a sample trace
either satisfies a temporal logic property or it does not. Furthermore, in the
rare event case it will be very unlikely to “see” a sample trace that satisfies the
temporal logic property, which means that for reasonable sample sizes Eq.(5)
would just give 0

0 .
The problem can be circumvented by noting that

u∗ =
E[g(X)X]
E[g(X)]

=
Ew[g(X)W (X, w)X]
Ew[g(X)W (X, w)]

where W (x, w) = f(x)/f(x, w) and w ∈ U is an arbitrary parameter (recall
that f(x) = f(x, v) is the nominal density of X). Note that the expectation is
computed with respect to the biased density f(·, w). Again, u∗ can be estimated
by

û∗ =
∑N

i=1 g(Xi)W (Xi, w)Xi
∑N

i=1 g(Xi)W (Xi, w)
(6)

where each Xi is distributed as f(·, w). Basically, we use importance sampling
with a biasing density given by the parameter w. Intuitively, w would have to
be chosen in such a way that the estimator (6) is well-defined. This means that
w should substantially increase the probability of the event g(X) = 1. In the
literature w is know as the tilting parameter.

10 E.M. Clarke and P. Zuliani

In the random vector case, we have samples X1, . . . ,XN iid as f(·, w) and the
j-th component of the optimal parameter u∗ is estimated by

û∗
j =

∑N
i=1 g(Xi)W (Xi, w)Xij
∑N

i=1 g(Xi)W (Xi, w)

where Xij is the j-th component of Xi.

5 Experiments

We report preliminary results showing that our technique can be utilized to
efficiently address the rare-event problem in statistical model checking. We have
considered an example of CPS that is part of the Stateflow/Simulink package
demos. The model1 describes a fault-tolerant fuel control system for a gasoline
engine. It detects sensor failures, and dynamically adjusts the control law to
provide seamless operation. The system aims at keeping the air-fuel ratio close
to the stoichiometric ratio of 14.6. The “correct” fuel rate is estimated by taking
into account sensor readings for the amount of oxygen present in the exhaust gas
(EGO), for the engine speed, throttle command and manifold absolute pressure.
In the event of a single sensor fault, e.g., the EGO sensor, the system detects
the situation, computes an estimate for the sensor’s reading, and operates the
engine with a higher fuel flow rate. If two or more sensors fail, the engine is shut
down, since the system cannot reliably control the air-fuel ratio.

The Stateflow control logic of the system has a total of 24 locations, grouped
in 6 parallel states. The Simulink part of the system is described by several
nonlinear equations and a linear differential equation with a switching condition.
Overall, this model provides a representative summary of the important features
of a CPS.

Our stochastic system is obtained by introducing random faults in the EGO,
speed and manifold pressure sensors. We model the faults by three independent
Poisson processes with different arrival rates. When a fault occurs, it is “repaired”
with a fixed service time of one second (i.e., the sensor remains in fault condition
for one second, then it resumes normal operation). The model has no free inputs,
since the throttle command provides a periodic triangular input, and the nominal
speed is never changed. This ensures that, once we set the three fault rates, for any
given temporal logic property φ the probability that the model satisfies φ does not
change.

For our experiments we model checked the following BLTL formula φ:

φ = F100G1(FuelF lowRate = 0)).

Informally, we would like to estimate the probability that within 100 seconds
the fuel flow rate stays at zero for one second. The nominal fault rates for the
1 More information on the model is available at http://mathworks.com/products/

simulink/demos.html?file=/products/demos/shipping/simulink/sldemo

fuelsys.html

Statistical Model Checking for Cyber-Physical Systems 11

three sensors are all equal to 1/3600. Since engine shutdown occurs when two
or more sensors are faulty, the probability that the system satisfies φ is likely to
be very close to 0. To compute the optimal biasing density we used tilting rates
all equal to 1/10.

In the table below we report our preliminary results. We performed two ex-
periments, depending on the number of samples used to compute the optimal
CE rates (step 1) and in the importance sampling phase (step 2). In the table
we report the estimate for the probability that φ holds, the (approximate) rela-
tive error, and the total computation time (i.e., simulation, model checking, and
CE method). The experiments have been performed on a 2.2GHz Opteron 6174
computer running Matlab R2010b on Linux (64-bit).

Estimate RE Time (h)

Samples

step 1 : 1, 000
step 2 : 10, 000 5.1 × 10−15 0.47 1.7

step 1 : 10, 000
step 2 : 100, 000 2.17 × 10−14 0.13 17.8

From the magnitude of the probability estimates, we see that a crude Monte
Carlo estimation would require about 1014 samples just to obtain one “success”
sample. With feasible sample sizes of the order of 105, the Monte Carlo estimator
would most likely return 0, thus incurring in a high error. Techniques based on
confidence interval computation (e.g., Chernoff bound) would require even larger
sample sizes.

6 Conclusions

Statistical model checking efficiently addresses verification by combining the
Monte Carlo method with temporal logic model checking. The technique is es-
pecially useful for verifying systems with very large state spaces, such as cyber-
physical systems. The main problem with statistical model checking is caused by
rare events. We have showed that Importance Sampling and the Cross-Entropy
method can address this problem. In particular, we have successfully verified a
representative example of cyber-physical system coded as a Stateflow-Simulink
model, for which traditional verification techniques are not feasible.

References

1. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan,
M.: Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440.
Springer, Heidelberg (1997)

2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–
541 (2003)

12 E.M. Clarke and P. Zuliani

3. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

4. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

5. Grosu, R., Smolka, S.A.: Carlo Model Checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

6. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)

7. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

8. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to Model Checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

9. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
Systems 2(4), 255–299 (1990)

10. Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006)

11. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

12. Parnas, D.L.: Really rethinking ‘Formal Methods’. IEEE Computer 43(1), 28–34
(2010)

13. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE, Los Alami-
tos (1977)

14. Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous op-
timization. Methodology and Computing in Applied Probability 2, 127–190 (1999)

15. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer, Heidelberg
(2004)

16. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

17. Srinivasan, R.: Importance Sampling. Springer, Heidelberg (2002)
18. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic

properties with unbounded until. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527,
pp. 144–160. Springer, Heidelberg (2011)

19. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

20. Younes, H.L.S., Musliner, D.J.: Probabilistic plan verification through acceptance
sampling. In: AIPS Workshop on Planning via Model Checking, pp. 81–88 (2002)

21. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

22. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

23. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. In: HSCC, pp. 243–252 (2010)

	Statistical Model Checking for Cyber-Physical Systems
	Introduction
	Background
	Statistical Model Checking
	The Monte Carlo Method

	Importance Sampling
	Basics

	The Cross-Entropy Method
	Experiments
	Conclusions
	References

