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Abstract. We present an algorithm, called BioLab, for verifying tem-
poral properties of rule-based models of cellular signalling networks. Bi-
oLab models are encoded in the BioNetGen language, and proper-
ties are expressed as formulae in probabilistic bounded linear temporal
logic. Temporal logic is a formalism for representing and reasoning about
propositions qualified in terms of time. Properties are then verified using
sequential hypothesis testing on executions generated using stochastic
simulation. BioLab is optimal, in the sense that it generates the mini-
mum number of executions necessary to verify the given property. Bio-
Lab also provides guarantees on the probability of it generating Type-I
(i.e., false-positive) and Type-II (i.e., false-negative) errors. Moreover,
these error bounds are pre-specified by the user. We demonstrate Bio-
Lab by verifying stochastic effects and bistability in the dynamics of the
T-cell receptor signaling network.

1 Introduction

Computational modeling is an effective means for gaining insights into the dy-
namics of complex biological systems. However, there are times when the nature
of the model itself presents a barrier to such discovery. Models with stochastic
dynamics, for example, can be difficult to interpret because they are inherently
non-deterministic. In the presence of non-deterministic behavior, it becomes non-
trivial to determine whether a behavior observed in a simulation is typical, or
an anomaly. In this paper, we introduce a new tool, called BioLab, for for-
mally reasoning about the behavior of stochastic dynamic models by integrating
techniques from the field of Model Checking [8] into the BioNetGen [12, 13]
framework for rule-based modeling. We then use BioLab to verify the stochastic
bistability of T-cell signalling.
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of Energy Career Award (DE-FG02-05ER25696), a Pittsburgh Life-Sciences Green-
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The term “model checking” refers to a family of automated techniques for
formally verifying properties of complex systems. Since its inception in 1981,
the field of Model Checking has made substantial contributions in industrial set-
tings, where it is the preferred method for formal verification of circuit designs.
Briefly, the system is first encoded as a model in a formal description language.
Next, properties of interest (e.g., absence of deadlock) are expressed as formulae
in temporal logic. Temporal logic is a formalism for representing and reason-
ing about propositions qualified in terms of time. Given a model, M, a set of
initial states, S0, and a property, φ, a model checking algorithm automatically
determines whether the model satisfies the formula.

Historically, model checking has most often been applied to engineered sys-
tems, and thus the majority of Model Checking algorithms are designed for such
systems. Recently, however, there has been growing interest in the application
of model checking to biology (e.g.,[5, 6, 19, 21, 22]). Biological systems present
new challenges in the context of formal verification. In particular, biological sys-
tems tend to give rise to highly parameterized models with stochastic dynamics.
Biologists are generally interested in determining whether a given property is
(or is not) sensitive to a plausible set of initial conditions and parameter val-
ues. Model checking algorithms targeting biological applications must therefore
apply to stochastic, multi-parameter models.

BioLab models stochastic biochemical systems using the BioNetGen mod-
eling language. The set of initial states (i.e., S0) comprise a user-specified set of
initial conditions and parameter values. Properties are expressed in probabilistic
bounded linear temporal logic. BioLab then statistically verifies the property
using sequential hypothesis testing on executions sampled from the model. These
samples are generated using variants of Gillespie’s algorithm [15, 11, 31], which
ensures that the executions are drawn from the “correct” underlying probabil-
ity distribution. This, combined with the use of sequential hypothesis testing
provides several guarantees. First, BioLab can bound the probability of Type-I
(i.e., false-positive) and Type-II (i.e., false-negative) errors, with regard to the
predictions it makes. These error bounds are specified by the user. Second, Bio-
Lab is optimal in the sense that it generates the minimum number of executions
necessary to determine whether a given property is satisfied. The number of
required executions varies depending on the behavior of the model and is deter-
mined dynamically, as the program is running.

The contributions of this paper are as follows: (i) Our method is the first
application of statistical model checking to rule-based modeling of biochemical
systems. (ii) Our algorithm provides guarantees in terms of optimality, as well
as bounds on the probability of generating Type-I and Type-II errors. (iii) We
verify that a stochastic model of T-cell receptor signaling exhibits behaviors that
are qualitatively different from those seen in an ordinary differential equation
model of the same system [23]. In particular we verify that stochastic effects
induce switching between two stable steady states of the system.



2 BioNetGen

Proteins in cellular regulatory systems, because of their multicomponent com-
position, can interact in a combinatorial number of ways to generate myriad
protein complexes, which are highly dynamic [17]. Protein-protein interactions
and other types of interactions that occur in biochemical systems can be modeled
by formulating rules for each type of chemical transformation mediated by the
interactions [18]. The rules can be viewed as definitions of reaction classes and
used as generators of reactions, which describe the transformations of molecules
in the system possessing particular properties. The assumption underlying this
modeling approach, which is consistent with the modularity of regulatory pro-
teins [27], is that interactions are governed by local context that can be captured
in simple rules. Rules can be used to generate reaction networks that account
comprehensively for the consequences of protein-protein interactions. Examples
of rule-based models of specific systems can be found in [16, 3, 1, 26].

BioNetGen is a software package that provides tools and a language for
rule-based modeling of biochemical systems [2, 13]. A formal description of the
language and underlying graph theory is provided in [4]. BioNetGen is similar
to the κ-calculus, which has also been developed as a language for rule-based
modeling of biochemical systems [9]. Other tools for rule-based modeling are
reviewed in [18].

The syntax and semantics of BioNetGen have been thoroughly described in
[13]. Briefly, a BioNetGen model is comprised of six basic elements that are de-
fined in separate blocks in the input file: parameters, molecule types, seed species,
reaction rules, observables, and actions. Molecules are the basic building blocks
of a BioNetGen model, and are used to represent proteins and other structured
biological molecules, such as metabolites, genes, or lipids. The optional molecule
types block is used to defined the composition and allowable states of molecules.
Molecules may contain components, which represent the functional elements of
molecules, and may bind other components, either in the same molecule or an-
other molecule. Components may be associated with state variables, which take
on a finite set of possible values that may represent conformational or chemical
states of a component, e.g., tyrosine phosphorylation. An example of a molecule
type declaration is

TCR(ab,ITAM~U~P~PP,lck,shp)

which is used to define the structure of the T cell receptor in the model pre-
sented in Sec. 5.2. The name of the molecule type is given first, followed by a
comma-separated list of its components in parenthesis. Any declared component
may participate in a bond. In addition, the allowed values of the state variable
associated with a component are indicated with ∼ followed by a name. In the
above example, a molecule of type TCR has four components, three of which
(ab, lck, and shp) may be used only for binding and one of which (ITAM) has
an associated state variable that takes on the values U, P, or PP—representing
the unphosphorylated, phosphorylated, and doubly phosphorylated forms re-
spectively.



The seed species block defines the molecules and molecular complexes that
are initially present in the system with an optional quantifier. Depending on
the semantics used in the simulation of the model (see below) the value of the
quantifier may be either continuous or restricted to discrete values. For example,
the line

Lck(tcr,Y~U,S~U) LCK

in the seed species block specifies that the initial amount of the species comprised
of a molecule of Lck with both its Y (tyrosine residue 394) and S (serine residue
453) components in the U (unphosphorylated) state is given by the parameter
LCK, which is defined in the parameters block. Only species with a non-zero
initial amount as declared in the seed species block are present in the system at
the beginning of simulation.

The reaction rules block contains rules that define how molecules in the
system can interact. A rule is comprised, in order of appearance, of a set of
reactant patterns, a transformation arrow, a set of product patterns, and a rate
law. A pattern is a set of molecules that select a set of species through a mapping
operation [4]. The match of a molecule in a pattern to a molecule in a particular
species depends only on the components that are specified in the pattern (which
may include wildcards), so that one pattern may select many different species.
Three basic types of operations are carried out by the rules in the T cell model:
binding (unbinding) of two molecules through a specified pair of components
and changing the state variable of a component. An example of a binding rule is

TCR(ab,shp)+pMHC(p~ag) -> TCR(ab!1,shp).pMHC(p~ag!1) b1

which specifies that any TCR molecule containing unbound ab and shp com-
ponents may bind through its ab component to a p component in the ag state
of a pMHC molecule. In this example, the first reactant pattern, TCR(ab,shp),
matches any TCR-containing species with free ab and shp components, indepen-
dent of the state of the remaining two components. The + operator separates two
reactant patterns that must map to distinct species. The transformation arrow
may be either unidirectional (->), as in the above rule, or bidirectional (<->),
indicating that the rule is to be applied in both the forward and reverse direc-
tions (i.e., switching the reactant and product patterns). The product patterns
define the configuration of the selected reactant molecules following the applica-
tion of the rule. Here, the ab component of TCR is bound to the p component
of pMHC by the addition of an edge labeled 1, as indicated by the two bond
labels (!1) in the products. The parameter b1 specifies the rate constant to be
used in determining the rate of the reaction, which is computed as a product of
the rate constant and each of the reactant amounts.

The observables block contains definitions of model outputs, which are de-
fined as sums over the amounts of species matched by a set of patterns. The
output of the TCR model is the level of doubly-phosphorylated ERK, which is
specified by the following line in the BNGL file

Molecules ppERK ERK(S~PP)



where the first item is a keyword defining the type of observable, the second
item is the name of the observable, and the final item is a list of patterns that
determines the matching species.

The actions block specify the operations that are to be carried out either
to generate or simulate a network. As we now discuss, the choice of operations
to perform also defines the semantics under which the model elements are in-
terpreted. BioNetGen uses three basic methods to simulate the time course of
observables for a rule-based network: generate-first (GF), on-the-fly (OTF), and
network-free (NF). These methods are described in detail in [13]; we provide a
brief overview in this section. In GF, rules are iteratively applied to the initial
set of seed species until all reachable species and reactions are generated or some
other stopping criterion is satisfied. The resulting network can be simulated ei-
ther by solving a set of ODE’s for the average concentration of each species in the
system under the influence of the mass action reactions (GF-ODE) or by Gille-
spie’s stochastic simulation algorithm (SSA) [15] to sample the exact solution
to the chemical master equations governing the species probabilities (GF-SSA).
Both methods generate traces1 of the species concentrations as a function of
time, but the GF-ODE algorithm is deterministic for a given initial state and
set of system parameters, whereas each simulation run of GF-SSA from a given
initial state represents a stochastic process and may generate a different trace.
Like GF-SSA, OTF uses the Gillespie algorithm to generate traces but only gen-
erates species and reactions that are reachable within a small number of specified
time steps [24, 11]. OTF was originally proposed as a way to maintain compu-
tational efficiency for large reaction networks, but is not practical for rule-based
models that include oligomerization or attempt a comprehensive description of
reaction networks [18, 10]. The NF method [10, 31] avoids explicit generation of
species and reactions by simulating molecules as agents and has been shown to
have per event cost that is independent of the number of possible species or re-
actions [10]. NF also relies on the SSA to sample reaction events that govern the
evolution of the molecular agents. Because species are not explicitly tracked, the
NF method generates traces over observables rather than individual species. This
restriction is not an issue for applications to biology because the concentrations
of individual species are typically not observable in biological experiments.

3 Model Checking for Stochastic Systems

The following section introduces the concept of statistical model checking. We
assume the reader is familiar with basic concepts in probability theory.

3.1 The Problem
We use Pr(E) to denote the probability of the event E to occur. We consider a
system M whose executions (sequences of states of the system) are observable
and a property φ that is defined as a set of executions. We assume that one can
decide whether an execution trace of M satisfies φ, i.e. whether the execution
1 The term “trace” is equivalent to the term “execution”. From now, we will use

“trace” when we want to emphasize that we are talking about a BioNetGen Model



belongs to φ. In this paper, the probabilistic model checking problem consists
in deciding whether the executions of M satisfy φ with a probability greater
than or equal to a given threshold θ. The latter is denoted by M |= Pr≥θ(φ).
This statement only makes sense if one can define a probability space on the
executions of the system as well as on the set of executions that do satisfy φ.

The probabilistic model checking problem can be solved with a probabilistic
model checking algorithm. Such an algorithm is numerical in the sense that it
computes the exact probability for the system to satisfy φ and then compares
it with the value of θ. Successful probabilistic model checking algorithms [7,
20]) have been proposed for various classes of systems, including (continuous
time) Markov chains and Markov Decision Processes. The drawback with those
approaches is that they compute the probability for all the executions of the
system, which may not scale up for systems of large size.

Another way to solve the probabilistic model checking problem is to use a
statistical model checking algorithm. In the rest of this section, we recap the
statistical model checking algorithmic scheme proposed by Younes in [32].

3.2 Statistical Approach
The approach in [32] is based on hypothesis testing. The idea is to check the
property φ on a sample set of simulations and to decide whether the system sat-
isfies Pr≥θ(φ) based on the number of executions for which φ holds compared
to the total number of executions in the sample set. With such an approach, we
do not need to consider all the executions of the system. To determine whether
M satisfies φ with a probability p ≥ θ, we can test the hypothesis H : p ≥ θ
against K : p < θ. A test-based solution does not guarantee a correct result but
it is possible to bound the probability of making an error. The strength (α, β)
of a test is determined by two parameters, α and β, such that the probabil-
ity of accepting K (respectively, H) when H (respectively, K) holds, called a
Type-I error (respectively, a Type-II error ) is less or equal to α (respectively, β).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly α (respectively, β). However, these requirements
make it impossible to ensure a low probability for both types of errors simulta-
neously (see [32] for details). A solution to this problem is to relax the test by
working with an indifference region (p1, p0) with p0≥p1 (p0−p1 is the size of the
region). In this context, we test the hypothesis H0 : p≥ p0 against H1 : p≤ p1

instead of H against K. If both the values of p and θ are between p1 and p0 (the
indifference region), then we say that the probability is sufficiently close to θ so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted.

3.3 An Algorithmic Scheme
Younes proposed a procedure to test H0 : p≥ p0 against H1 : p≤ p1 that is based
on the sequential probability ratio test proposed by Wald [30]. The approach is
briefly described below.

Let Bi be a discrete random variable with a Bernoulli distribution. Such a
variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] =



1 − p. In our context, each variable Bi is associated with one simulation of the
system. The outcome for Bi, denoted bi, is 1 if the simulation satisfies φ and 0
otherwise. In the sequential probability ratio test, one has to choose two values
A and B, with A > B. These two values should be chosen to ensure that the
strength of the test is respected. Let m be the number of observations that have
been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A,

and H1 if p1m

p0m
≤ B. An algorithm for sequential ratio testing consists of com-

puting p1m

p0m
for successive values of m until either H0 or H1 is satisfied. This

has the advantage of minimizing the number of simulations. In each step i, the
algorithm has to check the property on a single execution of the system, which
is handled with a new Bernoulli variable Bi whose realization is bi. In his the-
sis [32], Younes proposed a logarithmic based algorithm (Algorithm 2.3 page 27)
SPRT that given p0, p1, α and β implements the sequential ratio testing proce-
dure. Computing ideal values Aid and Bid for A and B in order to make sure
that we are working with a test of strength (α, β) is a laborious procedure (see
Section 3.4 of [30]). In his seminal paper [30], Wald showed that if one defines
Aid≥A = (1−β)

α and Bid ≤ B = β
(1−α) , then we obtain a new test whose strength

is (α′, β′), but such that α′ + β′ ≤ α + β, meaning that either α′≤α or β′ ≤ β.
In practice, we often find that both inequalities hold.

The SPRT algorithm can be extended to handle Boolean combinations of proba-
bilistic properties as well as much more complicated probabilistic Model checking
problems than the one considered in this paper [32].

Statistical Model Checker The SPRT algorithm can be implemented in order
to solve the probabilistic model checking problem for a specific class of systems
and a specific class of properties. For this, we have to implement :

– A simulator that is able to simulate the system and produce observable
executions without necessarily constructing its entire state-space.

– An execution verifier that is a procedure to decide whether an execution
satisfies a given property.

In section 5, we propose BioLab, which is an implementation of the SPRT
algorithm for models encoded and simulated using BioNetGen.

4 Statistical Model Checking for Continuous-time
Markov Chains

A BioNetGen model can be interpreted as Continuous-time Markov Chain
(CTMC), which may be simulated using the stochastic simulation methods de-
scribed in Sec. 2. In this section, we review CTMCs and then introduce the



probabilistic bounded linear temporal logic, which will is used in BioLab to
define properties over CTMCs.

4.1 Continuous-time Markov Chains

Let R (resp. N) denote the set of real (resp. natural) numbers and let R≥0 and
R>0 denote the set of non-negative and strictly-positive real numbers, respec-
tively. N is the set of natural numbers, and N≥0 is the set of strictly positive
natural numbers. We now recall the definition of Structured Continuous-time
Markov Chains.

Definition 1. A Structured Continuous-time Markov Chain is a tuple M =
(S, S0, R, SV, V ), where

– S is a finite set of states;
– s0 ∈ S is the initial state;
– R : S × S → R≥0 is the rate matrix.
– SV is a finite set of state variables defined over R≥0. These variables repre-

sent the concentration of each molecular species in the model.
– V : S × SV → R≥0 is a value assignment function providing the value of

x ∈ SV in state s.

Let M = (S, S0, R) be a structured continuous-time Markov chain. Let t ∈ R>0

and s1, s2 ∈ S, the probability to go from s1 to s2 within t time unit is defined
as follows

P (s1, s2, t) =
R(s1, s2)

E(s1)
(1− eE(s1)t), (2)

where E(s1) =
∑

s′∈S R(s, s′).

An execution, also called trace, of M is a possibly infinite sequence σ = (s0, t0)
(s1, t1)(s2, t2) . . . such that for each i≥0, (1) p(si, si+1, ti) > 0, and (2) ti ∈ R>0.
Given (si, ti), ti is the time that is spent in state si. Given si,

∑
j<i tj is the

number of time units spent before reaching si. We use σ(i) (with i≥0) and σi to
reference the i−th state of the execution and the suffix of the execution starting
from the pair (si, ti), respectively. Given a set S′ ∈ S, we will use Path(S′) to
denote the set of all the executions whose initial states are in S′.

4.2 Probabilistic Bounded Linear Temporal Logic

BioLab is intended to be used as a tool for verifying properties of executions of
CTMCs. Users specify properties of interest in the probabilistic bounded linear
temporal logic. We now give the syntax and the semantics of bounded linear
temporal logic (BLTL).

Let SV be a set of non negative real variables and ∼ ∈ {≥,≤, = }. A Boolean
predicate over SV is a constraint of the form x∼v, where x ∈ SV and v ∈ R≥0.
A BLTL property is built on a finite set of Boolean predicates over SV using
Boolean connectives and temporal operators. The syntax of the logic is given by
the following grammar :



φ ::= x∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ |X(φ) | (φ1 ∨ φ2) | (φ1 ∧ φ2) | (φ1Utφ2) |
(φ1Ũtφ2) |Dt(φ).

The operators ¬, ∨, and ∧ are the normal logic operators, which are read
“not”, “or”, and “and”, respectively. The operators X, Ut, Ũ, and D are the
temporal operators. The operator X is read “next”, and corresponds to the no-
tion of “in the next state”. The operator Ut is read “until t time units have
passed”, and requires that its first argument be true until its second argument is
true, which is required to happen within t time units. The operator Ũ is read “re-
lease”, and requires that its second argument is true during the first t time units
unless this obligation has been released by its first argument becoming true. The
operator Dt is read “dwell”, and requires that each time the argument becomes
true, it is falsified in within t time units.

Two additional temporal operators are in very common use. The first of
them is Ft, where F is read “eventually”. The eventually operator requires that
its argument becomes true within t units of time. Formally, we have Ftψ =
TrueUt ψ. The second operator is Gt, where G is read “always”. This operator
requires that its argument stays true during at least t units of time. Formally,
we have Gtψ = False Ũt ψ.

The semantics of BLTL was informally described above. We now present its
formal semantics. The fact that the execution σ = (s0, t0)(s1, t1), . . . satisfies
the BLTL property φ is denoted by σ |= φ. We have the following:

– σ |= x ∼ v if and only if V (σ(0), x) ∼ v;
– σ |= φ1 ∨ φ2 if and only if σ |= φ1 or σ |= φ2;
– σ |= φ1 ∧ φ2 if and only if σ |= φ1 and σ |= φ2;
– σ |= ¬φ if and only if σ 6|= φ.
– σ |= Xφ if and only if σ1 |= φ.
– σ |= φ1Utφ2 if and only if there exists i ∈ N such that (1) σi |= φ2 and (2)∑

j<i tj≤t, and for each 0≤j < i σj |= φ1.
– σ |= φ1 Ũt φ2 if and only if for each i such that σi 6|= φ2 and

∑
m<i tm≤t,

there exists 0≤j < i such that σj |= φ1.
– σ |= Dt(φ) if and only if for each state σ(i) such that σ(i) |= φ, there exists

j > i such that σ(j) 6|= φ and
∑m=j−1

m=i tm≤t.

Remark 1. It should be noted that we can decide whether an infinite execution
satisfies a BLTL property by observing one of its finite prefixes.

We assume that properties of Structured Continuous-time Markov Chains
are specified with Probabilistic Bounded Linear Temporal Logic (BTL).

Definition 2. A BTL property is a property of the form ψ = Pr≥θ(φ), where
φ is a BLTL property.

We say that the Continuous-time Markov Chain M satisfies ψ, denoted by M |=
ψ, if and only if the probability for an execution of M to satisfy φ is greater than
θ. The problem is well-defined since, as it is shown with the following theorem,
one can always assign a unique probability measure to the set of executions that
satisfy an BLTL property.



Theorem 1. Let M be a Continuous-time Markov Chain and φ be a BLTL
formula. One can always associate a unique probability measure to the set of
executions of M that satisfy φ.

5 On the use of Statistical Model Checking to Analyze a
T Cell Model

5.1 The BioLab Algorithm

The BioLab algorithm is a statistical model checker that implements the SPRT
algorithm introduced in Section 3.3 for checking BTL properties against BioNet-
Gen models. BioLab uses the BioNetGen simulation engine described in Sec-
tion 2 to generate traces by randomly simulating biological models, and then
uses a Bounded Linear Temporal Logic trace verifier to validate the generated
traces against the BLTL part of the given BTL property. Depending on the re-
sult of the validation of the generated tracess, the BioLab tool decides whether
the BTL formula is satisfied/falsified or if more samples are needed in order to
make this decision. The structure of the BioLab algorithm is outlined in Figure
5.1. The BioNetGen simulator is used to generate stochastic traces and the
trace verifier verifies each of them against the BLTL property. Our trace verifier
is based on the translation from BLTL to alternating automata [29, 14]. The
statistical model checker continues to simulate the BioNetGen model until a
decision about the property has been made.

BioNetgen

Model

BioNetgen

Trace

 Simulation

Verifier

Trace

Verified / Failed

Property 

by Trace

Temporal Logic

Property

Sequential

Hypothesis

Testing

Algorithm

Fig. 1. Architecture of BioLab.



5.2 The T Cell Receptor Model

T lymphocytes, also known as T cells, play a central role in the immune system
by detecting foreign substances, known as antigens, and coordinating the im-
mune response. T cells detect the presence of antigen through surface receptors,
called T cell receptors (TCRs), which bind to specific polypeptide fragments that
are displayed on the surface of neighboring cells by a protein called the major his-
tocompatibility complex (MHC). Variable regions of the immunoglobulin chains
that comprise the TCR give rise to a broad range of TCR binding specificities.
Individual T cells (or clonal populations derived from the same precursor) ex-
press a unique form of TCR. Processes of positive and negative selection during
maturation of T cells in the thymus select T cells possessing TCRs with a weak
but nonzero affinity for binding MHC molecules carrying peptides derived from
host proteins. High-affinity binding between TCR and peptide-MHC (pMHC)
complexes induces a cascade of biochemical events that leads to activation of
the T cell and initiation of an immune response. To be effective in detecting
antigens while avoiding autoimmunity, T cells must generate strong responses to
the presence of minute quantities of antigen—as low as a few peptide fragments
per antigen-presenting cell—while not responding to the large quantities of en-
dogenous (host) pMHC expressed on all cells. The T cell appears to maintain
this delicate balancie between sensitivity and selectivity through a combination
of mechanisms that include kinetic proofreading, which discriminates against
pMHC-receptor interactions that are too short, positive feedback, which ampli-
fies the response and makes it more switch-like, and negative feedback, which
acts in concert with kinetic proofreading to dampen responses to weak stimula-
tion and with positive feedback to enhance the stability of the inactive state.

A computational model incorporating all three of these mechanisms has re-
cently been developed by Lipniacki et al. [23], and serves as the basis for the
experiments we conduct here using BioLab. This model extends previous sim-
plified models of kinetic proofreading [25] and feedback regulation [28] by in-
corporating mechanistic detail about the involvement of specific signaling mole-
cules. A schematic illustration of the model is presented in Fig. 5.2. Binding
of pMHC to the TCR initiates a series of binding and phosphorylation events
at the receptor that can lead either to activation or inhibition of the receptor
depending on the strength of the stimulus, which is indicated along the kinetic
proofreading axis. The rectangular box in the figure represents the TCR com-
plex, which requires three components to make its passage to the activated form.
These components are pMHC (P), doubly phosphorylated receptor (Tpp), and
singly-phosphorylated LCK (Lp). In its active form, the LCK kinase can phos-
phorylate SHP (S) to produce Sp, which acts as a negative feedback by reversing
TCR activation events and blocking TCR activation. LCK also acts through a
series of intermediate layers to activate the MAP kinase ERK, a potent acti-
vator of transcription, whose active form (Epp) is taken as the final readout of
T cell activation. As shown in the figure, activated ERK also provides positive
feedback by blocking the activity of Sp.



Fig. 2. Overview of the TCR signaling model of Ref. [23]. Lines terminated by flat
heads indicate an inhibitory interaction.

This model captures three important properties of T cell activation, which
are sensitivity to small numbers of pMHC with high binding affinity, high se-
lectivity between pMHCs of different affinity, and antagonism, the inhibition
of response by pMHC of intermediate affinity. Because only small numbers of
high-affinity pMHC ligands are displayed on cell surfaces, stochastic effects have
a major influence on the dynamics both of the model and of the initiation of
signaling through the TCR. The model also exhibits bistable ERK responses
over a broad range of pMHC number and binding affinity. This bistable regime
has the interesting property that stochastic trajectories may exhibit completely
different dynamics from the deterministic trajectory from the same initial state,
and even the average behavior of stochastic trajectories may differ qualitatively
from the deterministic behavior (see Fig. 7B of [23] for an example). This di-
vergence between the stochastic and deterministic dynamics was the motivation
for using this model of TCR as the basis for the current study, which aims to
show that formal verification methods can be useful for the characterization of
rule-based biochemical models.

The TCR model has been encoded in the BioNetGen language (available at
http://bionetgen.org/index.php/Tcr tomek) and serves as the basis for the
current experiments. The BioNetGen model is comprised of seven molecule
types and 30 rules, which generate a biochemical network of 37 species and
97 reactions. The main output of the model is fraction of ERK that is doubly
phosphorylated, denoted by the variable f , which is taken as a measure of T cell
activation. For f < 0.10 cell is considered inactive, for f > 0.5 cell is considered
active. The response is observed to be switch-like with respect to stimulation
strength, measured by the number of agonist (high affinity) pMHC per cell,
given by N1 (see Fig. 2 of [23]). The system also exhibits bistability with respect
to f over a wide range of N1 values (see Fig. 7A of [23]). As shown in Fig. 5.2,
under many input conditions traces from stochastic simulations may sample both
stable steady states and thus diverge from deterministic traces starting from the
same initial conditions, which sample only a single steady state.
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Fig. 3. Traces from deterministic (ODE) and stochastic simulation of the TCR signal-
ing model. N1 : 100, N2 : 3000.

5.3 Experiments

We performed several in-silico BioLab experiments on the T Cell Receptor
model. Each of our experiments was performed on a cluster of 40 3GHz compu-
tational nodes communicating using the Message Passing Interface.

Property 1 In our first experiment, we were interested in the truth of the hy-
pothesis that the fraction f of doubly phosphorylated ERK stays below a given
threshold value with a given probability during the first 300 seconds of simula-
tion. We verified the following property with various values of the probability p
and the threshold value γ.

Pr≥p ( G300( ppERK / totalERK < γ ) )

The first model we analyzed started with 100 molecules of agonist pMHC
(N1 = 100) while antagonist pMHC was absent (N2 = 0). We also set the
dissociation constant of agonist pMHC as 1/20 per second. The results of our
experiment are shown in Table 1.

In our second experimental setup, our system started with 100 molecules of
agonist pMHC while there were 3000 molecules of antagonist pMHC. We also
set the dissociation constant of agonist pMHC as 1/20 per second and that of
antagonist pMHC as 1/3. The results of our experiment are shown in Table 2.

In the third experiment, there were 100 molecules of agonist pMHC and
1000 molecules of antagonist pMHC. We set the dissociation constant of agonist



Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 0 232.73
2 0.90 0.95 0.5 No 40 0 221.38
3 0.90 0.95 0.7 No 40 2 221.41
4 0.90 0.95 0.9 No 40 2 233.45
5 0.90 0.95 0.95 Yes 240 236 1162.87

Table 1. N1 : 100, N2 : 0 , Type-I and Type II error : 0.001

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 24 54.25
2 0.90 0.95 0.5 Yes 120 97 168.22
3 0.90 0.95 0.7 Yes 240 237 320.30
4 0.90 0.95 0.9 Yes 200 199 263.87
4 0.90 0.95 0.95 Yes 400 385 533.39

Table 2. N1 : 100, N2 : 3000 , Type-I and Type II error : 0.001

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 4 41.56
2 0.90 0.95 0.5 No 40 14 67.40
3 0.90 0.95 0.7 Yes 200 199 317.90
4 0.90 0.95 0.9 Yes 200 200 278.08
5 0.90 0.95 0.95 Yes 480 459 777.17

Table 3. N1 : 100, N2 : 1000 , Type-I and Type II error : 0.001



pMHC as 1/20 per second and that of antagonist pMHC as 1/3. We summarize
the results in Table 3.

The fourth experiment started with 100 molecules of agonist pMHC and 300
molecules of antagonist pMHC. We used the same dissociation constants as in
previous experiment. The results are presented in Table 4.

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 0 96.02
2 0.90 0.95 0.5 No 40 4 108.65
3 0.90 0.95 0.7 No 40 13 89.89
4 0.90 0.95 0.9 No 160 130 322.50
5 0.90 0.95 0.95 Yes 320 312 866.65

Table 4. N1 : 100, N2 : 300 , Type-I and Type II error : 0.001

The fraction of phosphorylated ERK in the first and the fourth experiments
exceeded 0.9 within the first 300 seconds with at least 90% probability. This
phenomenon was not observed in the second and the third experiments.

Property 2 In our second experiment, we were interested in the truth of the
hypothesis that the system can go from the inactive state to the active state.
We verified the following property with various values of the probability p.

Pr≥p(F300(ppERK/totalERK<0.1∧F300 (ppERK/totalERK>0.5)))

Our first model started with 100 molecules of agonist pMHC (with disso-
ciation constant 1/20 per second) while antagonist pMHC was assumed to be
absent in the initial state. The results are presented in Table 5.

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 Yes 160 160 412.25
2 0.70 0.75 Yes 120 120 309.58
3 0.50 0.55 Yes 80 80 214.74
4 0.20 0.25 Yes 40 40 88.32
5 0.10 0.15 Yes 40 40 98.84

Table 5. N1 : 100, N2 : 0 , Type-I and Type II error : 0.001



We note that the number of samples needed to decide the property depends
both upon the fraction of samples that satisfied the property and the probability
with which we want the property to be satisfied.

In our second experimental setup, our system started with 100 molecules of
agonist pMHC while there were 3000 molecules of antagonist pMHC. We also
set the dissociation constant of agonist pMHC as 1/20 per second and that of
antagonist pMHC as 1/3. We present the results in Table 6.

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 40 0 24.92
2 0.70 0.75 No 40 0 27.05
3 0.50 0.55 No 80 0 52.19
4 0.20 0.25 No 120 0 86.30
5 0.10 0.15 No 160 0 108.25

Table 6. N1 : 100, N2 : 3000 , Type-I and Type II error : 0.001

In the third experiment, there were 100 molecules of agonist pMHC and 1000
molecules of antagonist pMHC. We also set the dissociation constant of agonist
pMHC as 1/20 per second and that of antagonist pMHC as 1/3. The results are
illustrated in Table 7.

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 40 27 35.16
2 0.70 0.75 Yes 40 34 34.34
3 0.50 0.55 Yes 120 109 111.30
4 0.20 0.25 Yes 40 37 44.57
5 0.10 0.15 Yes 40 36 45.54

Table 7. N1 : 100, N2 : 1000 , Type-I and Type II error : 0.001

The fourth experiment started with 100 molecules of agonist pMHC and 300
molecules of antagonist pMHC. We used the same dissociation constants as in
previous experiment. The outcome of the experiments are shown in Table 8.

The second model showed a qualitative difference in behavior from the other
three models while quantitative differences in behavior can be seen among all the
four models. We verified our hypothesis that the stochastic model of the T Cell



Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 Yes 160 160 346.92
2 0.70 0.75 Yes 120 116 226.08
3 0.50 0.55 Yes 80 80 168.87
4 0.20 0.25 Yes 40 40 81.10
5 0.10 0.15 Yes 40 40 73.11

Table 8. N1 : 100, N2 : 300 , Type-I and Type II error : 0.001

Receptor pathway can go from the inactive to the active state with a non-zero
probability.

Property 3 In our third set of experiments, we were interested in the truth of
the hypothesis that the system can go from the active state to the inactive state.
We verified the following property with various values of the probability p.

Pr≥p(F300(ppERK/totalERK>0.5∧ F300 (ppERK/totalERK<0.1)))

Our model started with 100 molecules of agonist pMHC (with dissociation
constant 1/20 per second) while there was no antagonist pMHC. The results of
our experiments are illustrated in Table 9.

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 40 0 107.25
2 0.70 0.75 No 40 0 106.95
3 0.50 0.55 No 80 0 218.42
4 0.20 0.25 No 120 0 168.98
5 0.10 0.15 No 160 0 330.80

Table 9. N1 : 100, N2 : 0 , Type-I and Type II error : 0.001

Our second model started with 100 molecules of agonist pMHC (with dis-
sociation constant 1/20 per second) while there were 1000 antagonist pMHC
(with dissociation constant 1/3 per second). The results of our experiments are
illustrated in Table 10.

Property 4 In our fourth set of experiments, we were interested in asking the
question if the system spent more than a certain threshold of time in a given
state before leaving that state. We verified the following property with various
values of the probability p.



Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 120 79 57.97
2 0.70 0.75 No 280 160 114.62
3 0.50 0.55 No 160 51 66.04
4 0.20 0.25 Yes 120 73 50.06
5 0.10 0.15 Yes 40 21 19.53

Table 10. N1 : 100, N2 : 1000 , Type-I and Type II error : 0.001

Pr≥p ( D100 ( ppERK / totalERK > 0.5 ) )

The model we analyzed started with 100 molecules of agonist pMHC (with
dissociation constant 1/20 per second) while antagonist pMHC was absent. The
results of our analysis are presented in Table 11.

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 Yes 160 160 216.21
2 0.70 0.75 Yes 120 120 160.32
3 0.50 0.55 Yes 80 80 109.11
4 0.20 0.25 Yes 40 40 54.33

Table 11. N1 : 100, N2 : 0 , Type-I and Type II error : 0.0001

6 Discussion and Conclusion

In this paper, we have introduced an algorithm, called BioLab, for formally
verifying properties of stochastic models of biochemical processes. BioLab rep-
resents the first application of statistical model checking to a rule-based model
of signaling, which is specified here using the BioNetGen modeling framework.
BioLab is (i) an optimal trace-based method for statistical model checking,
which generates the minimum number of traces necessary to verify a property
and (ii) BioLab provides user-specified bounds on Type-I and Type-II errors.

We demonstrated BioLab on a recently-developed BioNetGen model of
the T-cell receptor signaling pathway [23] with two stable states. We verified
that both steady states are reachable on a single stochastic trajectory, whereas
only a single steady state is reached on a deterministic ODE-based trajectory



starting from the same initial conditions. Moreover, we verified that the system
will alternate between these two states with high probability. These findings are
relevant for understanding the TCR signaling pathway, which, under physiologi-
cal conditions, must generate a robust response to a handful of stimulatory input
molecules.

There are a number of areas for future research in BioLab. First, the T-cell
receptor signaling model has a number of parameters. We verified properties of
the pathway over a range of possible parameter values. In some contexts, it may
be preferable to first (re)estimate parameter values for a given model. This can be
accomplished by using standard parameter estimation techniques from the fields
of Statistics and Machine Learning. One might even incorporate model checking
into the parameter estimation phase by formally verifying that the parameter
estimates reproduce known data, with high probability. Second, our method is
presently limited to probabilistic bounded linear temporal logic formulas; we do
not allow nested operators. This restriction can be relaxed through the use of
different model checking algorithms. Pursuit of these two goals is ongoing.
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