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Abstract—Extensive research has been conducted relating the natural

scene statistics of luminance and depth; however, very little work has

been done on analyzing the statistical relationships between depth and

chromatic information. In this paper, we examine and derive statistical

models between disparity and both luminance and chrominance informa-

tion by transforming natural images into the more perceptually relevant

CIELAB color space. To demonstrate the effectiveness of these models,

we further exploit them with application to Bayesian stereo algorithms.

The simulation results show that incorporating the derived statistical

models augments the performance of Bayesian stereo algorithms. In ad-

dition, these results also support psychophysical evidence that chromatic

information can improve binocular visual processing.
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I. INTRODUCTION

Natural scene statistics (NSS) are important factors both towards

understanding the evolution of the human vision system and for

designing image processing algorithms [1], [2]. Extensive research

has been conducted to explore the link between NSS and neural

processing of visual stimuli [3], [4]. With the increasing popularity of

3D image and video content, the statistics between 3D depth and 2D

color image data in natural scenes are of high interest. However, very

little work has been done due to the limited access to high quality

databases of color images and associated ground-truth range maps.

Potetz et al. [5] constructed a database of co-registered 2D color

images and range maps, and discovered that there is a correlation

between range and intensity of luminance in natural scenes. In [6],

Yang et al. explored the statistical relationships between luminance

and disparity in the wavelet domain, and applied the derived models

to a Bayesian stereo algorithm. In addition, it has been suggested

that the perception of color and depth are related [7], and chromatic

information can be useful in solving stereo correspondence problems

[8]. Su et al. [9] constructed a large co-registered database of high-

quality 2D color images and high-resolution ground-truth range maps

(1280x720), and explored the statistical relationships between the

band-pass responses of luminance/chrominance and range gradients

in natural scenes.

In this paper, we examine the statistical relationships between

disparity and luminance/chrominance information in natural scenes,

and derive statistical models for their joint distributions. We also

exploit the derived statistical descriptions of disparity and lumi-

nance/chrominance by applying them to the Bayesian stereo problem.

The simulation results show that the Bayesian stereo algorithm

incorporating the proposed NSS models can improve upon a previous

NSS-based stereo algorithm using only luminance information. The

results also suggest that the statistics between color and range in

natural environments could be helpful in binocular visual processing

and depth perception of human vision system.

The rest of the paper is organized as follows. Section II briefly

describes the acquisition and pre-processing of the image and

range data. Then, the analysis and derivation of statistical mod-

els of the marginal and conditional distributions between lumi-

nance/chrominance and disparity are included in Section III. Next,

Section IV explains how to apply the derived statistical models of lu-

minance/chrominance and disparity to the Bayesian stereo algorithm,

followed by simulation results in Section V. Finally, Section VI gives

the conclusion.

II. DATA ACQUISITION AND PRE-PROCESSING

We obtained a dataset of 2D color images and co-registered

ground-truth range maps, then converted the range maps into disparity

maps. The large co-registered database of range and color images

(dubbed LIVE Color+3D Database) consists of 12 sets of high-

resolution color images and co-registered range maps [9], [10]. The

image and range data in the LIVE Color+3D Database were collected

using an advanced range scanner, RIEGL VZ-400, with a Nikon

D700 digital camera mounted on top of it [11]. Calibration was

performed using the scanner operation software, RIEGL RiSCAN

PRO, to compensate for inevitable translational and rotational shifts

when mounting the camera onto the range scanner [12]. Then, to

obtain the aligned 2D range map with the 2D color image, the 3D

point clouds captured by the scanner were projected and transformed

into the 2D range map by applying the pinhole camera model with

lens distortion [13].

To convert ground-truth range maps into disparity maps, the

parallel-viewing model was used. Figure 1 shows the geometry of

the parallel-viewing model, where two scanners mounted with digital

cameras were set to capture the natural scene in parallel. Based on

this geometry, the disparity value is derived:

dp

fc
=

dio

R
⇒ dp = fc

dio

R
(1)

where dp is disparity, fc is the focal length of the camera, dio is the

inter-ocular distance, and R is the ground-truth range value.

Since we want to learn and explore the statistical relationships

between luminance/chrominance and disparity and how these statis-

tics might be implicated in visual processing, some pre-processing

was performed on both the 2D color images and the converted 2D

disparity maps. All color images were transformed into the more

perceptually relevant CIELAB color space with one luminance (L*)

and two chrominance (a* and b*) components. The images were

then passed through 2D Gabor filter bank with multi-scales and

orientations as a model of the reception fields of the simple cells

in V1 areas of human vision systems [14]. Both the luminance

and chrominance components of the transformed color images and

the converted disparity maps were filtered by the 2D Gabor filter

banks, and the analysis was performed on these filter responses. For

luminance and chrominance data, the 2D Gabor filter bank closely

models image decomposition in primary visual cortex, while for

disparity data, it can mimic the disparity modulation corresponding to
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Fig. 1. Geometry of the parallel-viewing model.

sensitivity to range in the human vision system [15], [16]. In general,

the complex 2D Gabor filters can be written in the form

G(x, y, σx,σy, ζx, ζy, θ)

=
1
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e
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where R1 = x cos θ + y sin θ and R2 = −x sin θ + y cos θ, σx

and σy are the standard deviations of an elliptical Gaussian envelope

along x and y axes, ζx and ζy are the spatial center frequencies of

the complex sinusoidal grating, and θ is the orientation.

III. DATA ANALYSIS AND MODELING

Since we want to derive statistical models between disparity and

color image data, and further apply them to Bayesian stereo algo-

rithms, both the marginal distribution of disparity and the conditional

distribution of luminance/chrominance given disparity in natural

scenes are of the most interest to us. To capture demodulated signal

information, analysis was performed on the magnitude of the Gabor

responses expressed as the square root of the sum of the squared

complex quadrature pair of sine and cosine responses [15].

A. Marginal Distribution of Disparity

To examine the marginal distribution of disparity at different sub-

bands, the disparity responses at each sub-band were first collected

across all scenes in the database. Then, the marginal distribution of

disparity at one particular sub-band was obtained as the histogram

computed by binning the magnitude of all disparity responses at that

sub-band. Figure 2 shows the marginal distribution of the magnitude

of disparity responses at one sub-band. The red-dotted line represents

a Weibull distribution fit of the marginal distribution of disparity. We

can see that the exponential-like distribution of disparity can be well

fitted by the very general Weibull distribution,

p(x) =

{

β

α
( x
α
)β−1e−( x

α
)β , x ≥ 0

0 , x < 0
(3)

where α and β represent the scale and shape parameters, respec-

tively, which includes the exponential distribution and the Rayleigh

distribution as special cases depending on the shape parameter. Note

that the marginal distribution of disparity at different sub-bands share

similar shapes, all well fitted by the Weibull distributions.

Fig. 2. The marginal distribution of disparity magnitude at one sub-band.

B. Conditional Distributions of Luminance/Chrominance given Dis-

parity

Similarly, the conditional distributions of luminance and chromi-

nance given disparity at different sub-bands are obtained by first

collecting both the luminance, chrominance, and disparity responses

at each sub-band across all scenes, then computing the histograms

for each sub-band. At one particular sub-band, the histograms for

the conditional distributions of luminance and chrominance given

disparity were computed by first binning the magnitude of disparity

responses, and then binning the magnitude of luminance/chrominance

responses within each bin of the disparity response. Figure 3 shows

the conditional distributions of all three luminance and chromi-

nance components, as well as their corresponding Weibull-fitted

distributions and parameters. Both the conditional distributions of

luminance and chrominance given disparity are well-fitted by the

Weibull distribution. For the conditional distribution of luminance

given disparity, the scale parameter of the fitted Weibull increases

monotonically and linearly as the magnitude of disparity response

increases, while the shape parameters remain constant across the

magnitudes of disparity responses. For the chrominance conditional

distribution, both the scale and shape parameters possess a nearly

linear relationship with the magnitude of disparity responses. These

Weibull models and their parameters can be applied to Bayesian

stereo algorithm, which is described in the next section.

IV. APPLICATION TO BAYESIAN STEREO ALGORITHMS

Given a pair of left and right images, a binocular stereo algorithm

is able to compute a disparity map from one image to the other.

The basic idea is to minimize some energy function which involves

the differences of several binocular cues between the left and right

images within an optimization framework [17]. The Bayesian stereo

algorithm adopts the likelihood (conditional distribution) and the prior

(marginal distribution) of natural scene statistics (NSS) within the

energy function to be minimized, thus forcing the solution towards

fitting the statistical relationships between luminance, chrominance,

and disparity data in natural scenes derived in Section III. Given a

pair of left and right images, Il and Ir , then to estimate the disparity

map, D, from the right to the left image, the canonical Bayesian

stereo formulation takes the form [18]

D = argmax
D′

P (D′|(Il, Ir))

= argmax
D′

P ((Il, Ir)|D
′)P (D′) (4)
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Fig. 3. The conditional distributions of luminance (L*) and chrominance (a* and b*) Gabor magnitudes given disparity Gabor magnitude at one sub-band,
and their corresponding Weibull-fitting parameters.

where P (D′|(Il, Ir)) is the posterior probability to be maximized,

and P ((Il, Ir)|D
′) and P (D′) are the likelihood and prior probabili-

ties, respectively. By taking logarithm of the product of the likelihood

and prior, the Bayesian formulation corresponds to minimization of

the energy function:

D = argmin
D′

Ep + λEs (5)

where Ep is the photometric energy derived from the likelihood

P ((Il, Ir)|D
′), Es is the smoothness term derived from the prior

P (D′), and λ is the weighting constant. Note that Ep can take all

three luminance and chrominance components, L∗, a∗, and b∗, into

consideration, and can be written as

Ep =
∑

i,j

∑

k∈{L∗,a∗,b∗}

|Ilk (i, (j −D
′(i, j)))− Irk (i, j)| (6)

To incorporate the derived NSS models of the marginal and

conditional distributions, the Bayesian stereo formulation can be re-

written as

D = argmax
D′

P (D̃′|(Il, Ir), Ĩl)

= argmax
D′

P ((Il, Ir)|D̃′, Ĩl)P (Ĩl|D̃′)P (D̃′) (7)

= argmin
D′

Ep + λ(ENSSc + ENSSm) (8)

by taking logarithm of (7), where Ĩl and D̃′ are the magnitudes of

Gabor responses of Il and D′, respectively, Ep is the photometric

energy derived from P ((Il, Ir)|D̃′, Ĩl), ENSSc and ENSSm are the

energy terms related to the conditional and marginal distributions

derived from natural scene statistics, respectively, and λ is the

weighting constant.

Finally, since both the marginal distribution of disparity and

the conditional distributions of luminance and chrominance given

disparity can be modeled by the Weibull distribution, the complete

formulation of the proposed Bayesian stereo algorithm incorporating

the NSS models can be written as

D = argmin
D′

∑

i,j





∑

k∈{L∗,a∗,b∗}

(

Ep,k + ENSSc,k

)

+ λENSSm





(9)

where

Ep,k = |Ilk (i, (j −D
′(i, j)))− Irk (i, j)| (10)

ENSSc,k
= (

Ĩlk (i, j)

αk

)βk (11)

ENSSm = (
D̃′(i, j)

α
D̃′

)β ˜D′ (12)

where αk and βk are the scale and shape parameters, respectively, of

the fitted Weibull distributions of luminance and chrominance Gabor

magnitudes conditioned on disparity Gabor magnitude, α
D̃′ and β

D̃′

are the scale and shape parameters of the fitted Weibull distribution

of disparity Gabor magnitude, respectively, and λ is the weighting

constant.

To solve the optimization of the proposed Bayesian stereo algo-

rithm, we use the simulated annealing algorithm utilizing the derived

energy function (9) [19].

V. SIMULATION RESULTS

To demonstrate the effectiveness of the derived statistical models

relating luminance/chrominance and disparity in natural scenes, we

compared the computed disparity maps using the Bayesian stereo

algorithm with different formulations and models, including the

canonical formulation using (5), the NSS model proposed in [6], and

the proposed Gabor-based NSS model using (9). In [6], the authors

derived the NSS model using only luminance information in the

wavelet domain, and incorporated only the conditional distribution of

luminance given disparity into the Bayesian stereo algorithm. Figure 4

shows the computed disparity maps of Tsukuba from the Middlebury

database [17]. We can see that the computed disparity map with

the proposed Gabor-based NSS model is very close to the ground-

truth disparity map, retaining more details than the one computed by

the canonical formulation, and better adherence to smooth regions

than the one computed by the previous NSS model. In addition,

Table I gives a numerical comparison in terms of bad-pixel rate

between the computed disparity maps and the ground-truth disparity

maps for all four test image pairs available from the Middlebury

database. The numerical results support the visual comparison, where

the Bayesian stereo algorithm with the proposed Gabor-based NSS

model outperforms the other two methods.
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Fig. 4. The simulation results of Tsukuba from the Middlebury database, including the original stereo image pair, the ground-truth disparity map, and the
computed disparity maps using the Bayesian stereo algorithm with different formulations and models.

TABLE I
BAD-PIXEL RATE (%)

Canonical NSS Model Proposed
Formulation in [6] Gabor-based NSS Model

Tsukuba 4.8 4.7 3.3

Venus 9.8 3.7 1.2

Cones 29.5 8.3 8.1

Teddy 43.5 12.7 12.3

VI. CONCLUSION

We examined the marginal distribution of disparity and the con-

ditional distributions of luminance/chrominance information given

disparity in natural scenes. We modeled both the marginal and

conditional distributions as Weibull probability density function.

To demonstrate the efficacy of the statistical models, we deployed

the probability distributions as energy priors in a Bayesian stereo

algorithm. The simulation results show that the Bayesian stereo

algorithm incorporating the proposed color+disparity NSS model

outperforms the canonical formulation and the previous NSS model.

The derived statistical models relating luminance/chrominance and

disparity information in natural scenes not only improve the accuracy

of the Bayesian stereo algorithm, but also yield insight into how 3D

structures in the environment might be recovered from color image

data. More importantly, these statistical models and simulation results

bolster the psychophysical evidence that chromatic information can

be useful in 3D visual processing. Future research in the stereo image

and video processing fields may also benefit from statistical models

relating color and disparity in natural scenes.
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