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This article is devoted to statistical modeling and analysis of electrocorticogram (ECoG) signals induced by painful cutaneous laser
stimuli, which were recorded from implanted electrodes in awake humans. Specifically, with statistical tools of factor analysis and
independent component analysis, the pain-induced laser-evoked potentials (LEPs) were extracted and investigated under different
controlled conditions. With the help of wavelet analysis, quantitative and qualitative analyses were conducted regarding the LEPs’
attributes of power, amplitude, and latency, in both averaging and single-trial experiments. Statistical hypothesis tests were also
applied in various experimental setups. Experimental results reported herein also confirm previous findings in the neurophysiology
literature. In addition, single-trial analysis has also revealed many new observations that might be interesting to the neuroscientists
or clinical neurophysiologists. These promising results show convincing validation that advanced signal processing and statistical
analysis may open new avenues for future studies of such ECoG or other relevant biomedical recordings.
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1. INTRODUCTION

Pain is an essential function for the organism to enable im-
mediate awareness of actual or threatening injury for further
adopting a self-protective behavior. Roughly speaking, pain
is a complex and subjective experience in the brain; it in-
volves sensory, affective, cognitive, and motivational compo-
nents and is associated with autonomous activity, nocifensive
reflexes and reactions. In clinical practice, neurophysiological
evaluation of pain in humans has been an important subject
of research in the last decade (Bromm and Lorenz [1]).

In the literature, there are many approaches for monitor-
ing and measuring the pain-related brain activities, includ-
ing electroencephalogram (EEG), magnetoencephalogram
(MEG), and fMRI. In particular, the electrocorticogram
(ECoG) records directly the cortical (electrical) activities
from subdural electrode grids that are implanted in the hu-
man subjects for collecting information for surgical treat-
ments of medically intractable epilepsy (i.e., patients in the
hospital upon approval). As an invasive recording tool, ECoG

offers some superior features that are unavailable for EEG
or MEG recordings. Specifically, unlike EEG that measures
the electrical potentials recorded from the scalp, ECoG di-
rectly records the potentials from the cortical surface, thereby
having a higher signal-to-noise ratio (SNR) and higher spa-
tial resolution (because of closer electrode spacing). Conse-
quently, activities in beta or gamma bands are better recorded
in ECoG due to less spatial summation and phase cancelation
(or high-cut filter effect) than in scalp EEG recordings.

Since the energy of the infrared laser can be used to
produce a brief thermal stimulus applied to the skin such
as to selectively activate the skin nociceptor, the recordings
of brain responses to short laser pulses (the so-called laser-
evoked potentials, or LEPs) have increasingly become a use-
ful method for evaluating the function of central nociceptive
pathways. The roles of LEPs for detecting abnormalities in
patients have been noted (Garcı́a-Larrea et al. [2]). Gener-
ally, there are two or three major peaks in the pain-evoked
LEPs, which may be generated in multiple regions. In the lit-
erature, most research efforts focused on two peaks of the
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LEPs, the so-called N2 and P2, which correspond to the ver-
tex negative-positive complex.1 The timing when the peak
of the LEP appears is referred to the latency of LEPs. Typ-
ically, N2 was found around 150–400 milliseconds, and P2
was found around 230–500 milliseconds, depending on the
laser pulse duration and intensity, as well as the stimulus site
or area (Bromm and Lorenz [1]). The difference in latency
is essentially related to the response differences in periph-
eral conduction distance. Specifically, LEP reflects an inte-
grative cortical response to the painful laser stimuli rather
than a simple reaction of the sensory cortex to it; thus, in
the healthy subject the amplitude of cortical LEPs correlates
with the subjective sensation of pain, rather than with the
physical stimulus intensity (Garcı́a-Larrea et al. [2]). For in-
stance, paying attention to the laser stimulus simultaneously
increases the subjective pain sensation and the LEP ampli-
tude, both of which decrease in turn when the subject is
distracted from the stimulus (Garcı́a-Larrea et al. [3]). In
addition to the amplitude, the latencies of the LEPs are of-
ten important for the neurophysiological evaluation of pain
(Bromm and Lorenz [1]). In a later section, we will analyze
the amplitudes and latencies of LEP components N2 and P2
in detail. As suggested in the literature, the negative compo-
nent (N2) seems to be induced mainly by the activation in
the bilateral operculoinsular cortices and contralateral pri-
mary somatosensory cortex (SI) (e.g., Tarkka and Treede [4],
Iannetti et al. [5]), and the positive component (P2) is mainly
generated by the cingulate gyrus (e.g., Tarkka and Treede [4],
Lenz et al. [6], Iannetti et al. [5]). However, it should also be
noted that both N2 and P2 could be recorded and observed
at multiple cortical regions simultaneously (e.g., Ohara et
al. [7–9]); therefore, although there may be some evidence
that one LEP is more related to a particular region than the
other, a full understanding of their underlying mechanisms
remains unclear.

In the previous studies (Ohara et al. [8]) of the ECoG
recordings from the awake humans, it was found that atten-
tion to painful cutaneous laser stimuli enhances pain-related
LEPs in cortical regions receiving nociceptive input, typically
at multiple cortical sites (Ohara et al. [9]). Specifically, it
was observed that at primary somatosensory (SI), parasyl-
vian (PS), and medial frontal (MF: anterior cingulate and
supplementary motor area) cortex areas, the amplitudes of
the negative (N2∗) and positive (P2∗∗) LEP components2

were enhanced by attention to (counting stimuli), in com-
parison with distraction from the stimuli (reading for com-
prehension). It was suggested therein that attention controls
both early (N2∗) and late (P2∗∗) pain-related input to SI
(and other) cortical regions, while the late positive deflec-
tions (that follow the P2∗∗ peak) are specifically related to

1 This is in contrast to the earliest component N1, which is a lateralized,
relatively small negative peak.

2 In the previous studies, the authors were not sure if the ECoG-LEPs cor-
respond to the scalp-recorded LEPs (N2 and P2), therefore they used the
nomenclatures N2∗ and P2∗∗. Here, for simplicity, we use N2 and P2 for
referring to these two LEPs. The LEPs can also be labeled by polarity and
latency; when the latency is known, we also use N150 or P200 for the same
reference purpose.

attention. It was also reported in other independent EEG
studies (e.g., Legrain et al. [10, 11]) that LEPs can be modu-
lated by selective spatial attention. In [7], Ohara et al. ob-
served that attention to painful stimuli leads to enhanced
event-related desynchronization (ERD) in cortical regions
receiving input from nociceptors, and the alpha ERD is more
widespread and more intense during attention to the laser
than distraction from the stimuli. This was also consistent
with the observations from other studies using EEG or MEG
recordings (Mouraux et al. [12], Ploner et al. [13]).

In recent years, many statistical tools, such as princi-
pal component analysis (PCA), independence component
analysis (ICA), parallel factor analysis (PARAFAC), common
spatial subspace decomposition (CSSD), statistical wavelet
thresholding (SWT), and Kalman filtering, have been used
for analyzing biological or biomedical data, including EEG,
MEG, and fMRI (e.g., Lee et al. [14], Cao et al. [15, 16],
Makeig et al. [17], Anemüller et al. [18], Miwakeichi et
al. [19], Browne and Cutmore [20], Wang et al. [21], Galka
et al. [22], Cichocki [23, 24]). The common goal of these
mathematical tools is to discover the hidden components
underlying the data and extract the markers for character-
izing specific events (e.g., event-related potentials). In addi-
tion, combing ICA or other statistical tools with advanced
time-frequency analysis methods has also been advocated in
cognitive neuroscience and neuroimaging (e.g., Makeig et
al. [25], Mørup et al. [26]).

In this paper, we conduct both quantitative and qualita-
tive analyses of ECoG data induced by pain stimuli controlled
by a laser pulse. The investigation is focused on two selected
human subjects under several different controlled stimuli
conditions: attention, distraction, as well as under different
laser intensity levels. Statistical analysis was conducted for
both averaging trials and single trials. The averaging-trial
study attempts to find out the dominant and common com-
ponents (especially LEPs) by averaging all trials (of one sub-
ject) under the same conditions. In contrast, the single-trial
study aims to search for instantaneous brain waves and to
analyze the corresponding LEP properties (such as the am-
plitude and latency). The signal-trial analysis is important
because the spontaneous brain activities that are regarded as
“noise” are often diminished by averaging. We believe that
the results obtained from the single trials, if analyzed appro-
priately, often offer extra information that is unavailable in
the averaging-trial study (e.g., Makeig et al. [25]).

To achieve our goal, we select proper processing proce-
dures and mathematical tools, including factor analysis (FA)
and ICA, to the experimental recordings. This builds on the
assumption that within a short timescale the ECoG record-
ings are approximated by an instantaneous linear generative
model that is corrupted by additive noise. The LEPs of in-
terest and other instantaneous brain activities are assumed
to be mutually independent. To blindly separate the sources
of interest (i.e., LEPs), we first resort on a dimensionality re-
duction procedure followed by an efficient and robust ICA
estimation method. In addition, with eigenvalue decompo-
sition, an energy ratio threshold is defined to reject non-
significant components, which are regarded as the interfering
noise from the raw ECoG recordings. The values of these two
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statistical analysis methods have been demonstrated in both
averaging and single trials (e.g., Cao et al. [15, 16]). In terms
of single-trial analysis, wavelet-based time-frequency analy-
sis is also used to assist the quantitative analysis of Z-score
transformed power across different frequency bands. Whilst
these statistical methods are not new the contribution of this
paper is to integrate these methods with careful computa-
tional procedures and present a systematic study of the ECoG
recordings for their LEP characterizations, which might offer
some insights for the neurophysiological or clinical practice.
To our best knowledge, we are in the first position or for the
first time, to employ the statistical ICA tools to pain-related
ECoG recordings. We describe the computational modeling
and analysis in detail and present some interpretations and
discussions from our experimental results. On the one hand,
we strive to relate the results to the reported neurophysiolog-
ical observations in the literature; on the other hand, we also
pinpoint several interesting findings and observations in our
single-trial data analysis.

2. DATA

2.1. Recordings

To obtain the ECoG recordings, special grid electrodes were
implanted on the cortical surface of the subjects (i.e., pa-
tients for surgical treatment of epilepsy). The grid consisted
of platinum-iridium circular electrodes (2.3 mm diameter)
with a center-to-center distance between electrodes of 1 cm
(Ad-Tech, Racine, Wis, USA). The LEPs were recorded with
the implanted grid electrodes over the SI, PS, and MF re-
gions; see Figure 1 for an illustration. During recordings, the
subjects wore goggles and reclined on a bed, quietly wake-
ful with eyes open. Painful heat stimulation was delivered to
the contralateral hand dorsum (contralateral to the grid) by
a Thulium YAG laser (Neurotest, Wavelight Inc., Starnberg,
Germany). The duration of each pulse was 1 millisecond and
the beam diameter was 6 mm. Laser energy level was deter-
mined to produce a painful sensation of 3-4/10 on a decimal
scale (with 0 denoting no pain, and 10 denoting the most
intense pain). The ECoG signals were recorded with sam-
pling frequency 1000 Hz. The recordings were carried out at
the Johns Hopkins Hospital between 1999 and 2003 (Ohara
et al. [7–9]). The protocol was reviewed and approved annu-
ally by the Institutional Review Board of the Johns Hopkins
Hospital and all subjects signed an informed consent for the
studies.

2.2. Subjects

For the purpose of presentation clarification and due to space
limit, we have chosen two human subjects in the current
study. The statistics of the recording setup regarding the se-
lected two subjects are listed in Table 1. Specifically, the first
subject was a 21-year old woman with medically intractable
seizures since age 10; her neurological examinations and
brain magnetic resonance images (MRIs) were normal. Sub-
dural electrode grids were planted over the frontal-central-
parasylvian cortex (no. 1–64 channels) and the medial wall of

the left hemisphere (no. 65–80 channels). The second subject
was a 21-year old man with complex partial seizures since age
4, whose MRI showed a small cavernoma in the right pari-
etal lobe (contralateral to the side of the implantation). The
ECoG signals were recorded from the left fronto-parietal lobe
(64 channels) and medial frontal lobe (16 channels). All the
signals were recorded with reference to one intracranial elec-
trode.

2.3. Experimental paradigm

There are two types of experimental protocols designed for
subjects: attention/distraction, and intensity. In the attention
condition, the subject was asked to count the number of
painful stimuli and to report both that number and the av-
erage pain intensity after each run of laser pulses; in the dis-
traction condition, the subject read a magazine article and
answered questions about it after the run. In these two con-
ditions, constant level of laser intensity was used for the sub-
ject, and 38 laser pulses were delivered with an interstimulus
interval that was randomly varied between 50 and 10 seconds
within each run. Additionally, in the intensity experiment,
varying levels of laser stimuli were delivered to the subject,
and the subject was asked to rate the subjective pain sensa-
tion according to the decimal scale.

2.4. Filtering

Upon loading the raw ECoG recordings to the computer,
the data were amplified and band-pass filtered at 0.1–300 Hz
(Astro-Med, Inc., West Warwick, RI, USA). Subsequently, we
conducted a simple notch filtering procedure to filter out the
AC components of power supply (60 Hz).

3. MATHEMATICAL MODELING AND ANALYSIS

3.1. Generative model

The experimental data are assumed to be generated by a
probabilistic generative model that is described by two equa-
tions as follows:

xt = µ + Bzt + ǫt, (1)

zt = Ast, (2)

where t denotes the time index. Equation (1) is essentially
a factor analysis (FA) model, where zt ∈ R

n is the hid-
den variable called “factor,” the m × n matrix B is called
the “loading matrix,” xt ∈ R

m denotes the observed multi-
channel signals measured in the electrodes, µ ∈ Rm denotes
the constant mean vector that is often assumed to be zero,
and ǫt ∈ R

m denotes the additive uncorrelated noise that
corrupts the measurements. Equation (2) describes a linear
mixture model that is related to the blind source separation
(BSS) problem of our interest, where st ∈ R

N denotes the
independent source signals originated from the brain, A de-
notes a linear mixing matrix that roughly models the mix-
ing process and the stationary propagation or scattering ef-
fect within a short timescale (say, 200 to 600 mesc); and the
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Figure 1: The implanted electrodes’ layout; the somatosensory cortex that is associated with the sensation of the pain is located in the
parietal lobe of the brain. (a) subject 1; (b) subject 2 (where CS and SF correspond to no. 8 and no. 64 channels, resp.); (c), (d) implanted
grids imposed on the reconstructed 3D magnetic resonance images of two subjects. Note that the number of implanted grids shown on the
3D images is more than the number of the available channels shown in Table 1; because of the limitation in data acquisition, only a subset
of the grids were selected (CS: central sulcus; SF: sylvian fissure; CiS: cingulate sulcus; MCiS: marginal CiS).

mixed signals consist of the hidden factor zt obtained in (1).
In the current setting of this paper, we assume m > n = N .

No doubt that the generative model described by (1) and
(2) is somewhat oversimplified for the ECoG data. How-
ever, we believe that the instantaneous linear mixing model
is rather reasonable at a short timescale and therefore can be
used in the first step. In addition, we assume that matrices A

and B are constant within the a short duration of measure-
ments. Now, the statistical estimation problem is to infer the
independent sources st given the observed xt . We will tackle
this problem via these two statistical tools as described below.
Notably, similar methodology has been applied to MEG or
EEG recordings with successes in some other real-life record-
ings (e.g., Cao et al. [15, 16]).

3.2. Factor analysis

Without loss of generality, we assume that µ = 0, and the fac-
tor variables satisfy E[zt] = 0 and E[ztz

T
t ] = Cz, where Cz is

the covariance matrix; and the noise is Gaussian distributed
with zero mean and covariance matrix Σ, which we denote
by ǫ ∼ N (0,Σ). In light of (1), we have

E
[

xt

]
= 0,

E
[

xtx
T
t

]
≡ Cx = BCzBT + Σ.

(3)

If zt is Gaussian distributed, then xt is also Gaussian dis-
tributed. If we further restrict that the factor zt is whitened,
then Cz = I (where I denotes the identity matrix); this
assumption is reasonable since we can always scale the load-
ing factors B to satisfy the original model equation. Typi-
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cally, dim(x) > dim(z), therefore FA is also a dimensionality-
reduction method. A close examination of our experimental
multielectrode recordings indicates that there are strong cor-
relations between adjacent electrodes, which therefore justi-
fies the necessity of dimensionality reduction.

From a probabilistic point of view, we can write p(zt) =
N (0, I), then p(xt) = N (0, BBT + Σ). Under the Gaussian
assumption of the factor analyzer, the posterior probability
p(zt | xt) is also Gaussian, with mean and covariance, re-
spectively, defined by

E
[

zt | xt

]
=
(

BT
Σ
−1B + I

)−1
BT

Σ
−1xt, (4)

Cov
[

zt | xt

]
=
(

BT
Σ
−1B + I

)−1
. (5)

Now the goal of FA is to estimate the unknown matrices
B and Σ, given the observed data {xt}. In the literature, two
types of estimation procedures can be employed.

•Maximum likelihood estimation

By deriving the log likelihood function (see the appendix)
with respect to the unknown variables, we can use itera-
tive optimization procedures, such as the gradient ascent or
expectation-maximization (EM) algorithm, to obtain the op-
timal solution. Upon obtaining the maximum likelihood es-
timates of B and Σ, we can further calculate the hidden factor
zt by (4).

• Least-squared estimation

Given observed samples {xt}Tt=1, we can calculate the sam-
ple covariance matrix (assuming zero mean) and conduct its
eigenvalue decomposition (EVD) as follows:

Ĉx =
1

T

T∑
t=1

xtx
T
t = UΛUT , (6)

where U is the m × m orthogonal matrix that consists of
eigenvectors as its column vectors, Λ is a diagonal matrix
that consists of the diagonal entries as eigenvalues. Note that
when the noise is zero or the noise is negligible and has a di-
agonal covariance matrix, then FA reduces to PCA as a spe-
cial case. Upon PCA, we can empirically estimate the noise
covariance. Let Un denote an m × n matrix that consists of
the first n dominant eigenvectors, then we can estimate the
noise covariance by

Σ̂ = Ĉx −UnΛnUT
n , (7)

and estimate the loading matrix by

B̂ = UnΛ
1/2
n . (8)

Finally, the factor variable zt is produced by a linear transfor-
mation:

zt = Qxt, (9)

where Q = (B̂T Σ̂
−1

B̂)−1B̂T Σ̂
−1

. Note that in this case, the
dimensionality of zt can be determined by PCA with dimen-
sionality reduction, whereas the remaining components are
considered to be “significant” in terms of variance or energy
contribution.

3.3. Independent component analysis

Upon performing the model reduction using FA, we further
aim to apply the blind source separation (BSS) approach, us-
ing the tool of ICA (e.g., Cichocki and Amari [27]), to re-
cover the hidden sources in (2). Roughly speaking, ICA is
built upon the assumption that the hidden sources in st are
mutually independent and subject to an instantaneous linear
mixing.

There are many ICA/BSS algorithms available in the liter-
ature. To our interest, two kinds of batch (i.e., noniterative)
ICA/BSS algorithms are considered.

Time-domain method

Specifically, we focus on the BSS algorithms based on gen-
eralized EVD of the time-delayed cross-correlation matrices
or cumulant statistics, such as the SOBI (second-order blind
identification) and JADE (joint approximate diagonalization
of eigen-matrices) algorithms. These methods are fast and
noniterative (thereby independent of the initial conditions).
In our experiments, we have tried and compared the SOBI
and JADE algorithms, and found that their results were qual-
itatively similar. However, JADE is more desirable and pre-
ferred since it incorporates higher-order statistics.

Time-frequency method

Specifically, the source separation criterion of this method is
conducted in time-frequency domain based on joint diago-
nalization of the spatial time-frequency distribution (TFD).
A representative example is the algorithm described by
Févotte and Doncarli [28]. This method is more intuitively
appealing (by taking into account of the information in both
time and frequency) and has been demonstrated to be robust
to noise.3

Notably, although the hidden factor z is whitened (with
zero mean and unit variance), it is still likely that the mix-
ing matrix is ill-conditioned, which thereby makes the esti-
mation of its inverse (or Moore-Penrose pseudoinverse), the
demixing matrix W = A−1 (or W = A† ≡ (ATA)−1AT),
rather difficult, especially in single-trial experiments. One
way to overcome this problem is to conduct a two-stage ICA
procedure. The essence of the two-stage ICA is as follows:
the role of the first-stage ICA is “rough tuning,” which pro-
duces a guess (or poor estimate) of the ill-conditioned mix-
ing matrix; and the final “fine tuning” job is accomplished by
the second-stage ICA routine. The trick of such a two-stage
ICA often helps to recover the hidden components in many
ill-conditioned scenarios—if it is not the case, the second-
stage ICA simply produce improved or similar results as in
the first-stage ICA.

The significance of the (uncorrelated or independent)
components is determined by their relative energy (or vari-

3 The Matlab code is available at http://www-sigproc.eng.cam.ac.uk/∼
cf269.

http://www-sigproc.eng.cam.ac.uk/~cf269
http://www-sigproc.eng.cam.ac.uk/~cf269
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Table 1: Summary of the experimental recordings of two human subjects.

Subject Condition Laser intensity No. of electrodes No. of runs No. of trials at each run

1 Attention 720 mJ 89 3 38, 38, 38

1 Distraction 720 mJ 89 3 38, 38, 38

2 Attention 720 mJ 80 2 38, 38

2 Distraction 720 mJ 80 2 38, 38

2 Intensity 480 mJ 80 4 8, 12, 10, 10

2 Intensity 640 mJ 80 4 11, 11, 12, 10

2 Intensity 800 mJ 80 4 10, 10, 10, 10

ance). Physiologically, we believe those sources that have rel-
ative great energy are more meaningful in terms of repeata-
bility. In practice, selecting the number of principal com-
ponents is done by EVD followed by a threshold selection.
In our experiments, five to eight principal components were
typically selected, which account for about 97–99% of the to-
tal energy. Specifically, let Λ = diag{λ1, λ2, . . . , λn} denote the
diagonal matrix that contains the nondecreasing eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, the number of significant compo-
nents, k, is chosen according to the following criterion:

k = arg min
i

Li s.t. Li =
∑i

j=1 λ j∑n
j=1 λ j

> Th, (10)

in which the threshold Th was empirically set as 0.97; the
nonnegative eigenvalue indicates the relative significance of
specific component in terms of its energy contribution.

3.4. Identification of interested source by deflation

Let y(1) = W(1)z and y = W(2)y(1) denote, respectively, the
first- and second-stage ICA unmixing equations, where W(1)

and W(2) denote the associated unmixing matrices; then the
final unmixed signals, yt, can be estimated as

yt = Wzt = W(2)W(1)zt, (11)

where W = W(2)W(1) denote the global (combined) unmix-
ing matrix.4 Notably, each column of W−1 contains the rela-
tive strengths of a source component at the individual scalp
electrodes, which can be used to identify the interested source
component.

Given the estimated yt = [y1(t), y2(t), . . . , yn(t)]T , we
can also reconstruct the partial hidden factor by projecting
the ith component of yt, denoted by yi(t), backward onto the
subspace5

ẑt = W†[0, . . . , 0, yi(t), 0, . . . , 0
]T ≡ [W†]

iyi(t), (12)

where [W†]i denotes the ith column vector of the matrix W†.
Furthermore, we can reconstruct the specific source of in-

4 If only one-stage ICA is used, then W(1) = I, y(1) = z, and W = W(2).
5 If the demixing matrix is square, then the matrix pseudoinverse W† will

reduce to the matrix inverse W−1.

terest in the observed data space (i.e., the scalp signals con-
tributed merely to the ith source)

x̂t = Q†ẑt = Q†W†[0, . . . , 0, yi(t), 0, . . . , 0
]T
. (13)

By projecting x̂t to the original channels’ positions (i.e., the
8 × 8 electrode layout), we essentially identify the source(s)
of interest. It should be noted that the “source identification”
here is only limited to the two-dimensional scalp surface, and
does not refer to localization of the three-dimensional spatial
position of the “voxel.”

In addition, in order to evaluate the relative contribution
of every electrode to the extracted independent component
(especially for the LEP), we need to consider the joint ef-
fect of x̂t and W. For this purpose, we may also calculate the
weighted estimate of the sensor space x̂t as follows:

x̃t = wT
i ⊙ x̂t =

[
wi1x̂1(t),wi2x̂2(t), . . . ,winx̂n(t)

]T
, (14)

where⊙ denotes the Hadamard (elementwise) product, wi =
[wi1,wi2, . . . ,win] denotes the ith row vector of the matrix W,
and x̂t = [x̂1(t), x̂2(t), . . . , x̂n(t)]T is the back-projected sen-
sor space from the ith independent source via (13). As a dis-
tinction, we call the reconstructed x̂t in the sensory space as
“unweighted map” and the reconstructed x̃t in the sensory
space as “weighted map.” Notably, because of the degeneracy
of W, the “weighted map” is subject to the scaling and alge-
braic sign uncertainties.

3.5. Time-frequency analysis

In addition to analyzing temporal signals, we also resort on
time-frequency analysis tools (such as the short-time Fourier
transform, or Wigner-Ville distribution, and wavelet trans-
form) to extract more information for quantitative compar-
isons. Specifically, wavelet analysis is appealing and consid-
ered superior to the short-time Fourier transform for non-
stationary signals, including EEG (e.g., Mallat [29]; Tallon-
Baudry et al. [30], Düzel et al. [31], Mouraux et al. [12],
Ohara et al. [7]). Here, we choose the continuous wavelet
transform for our purpose because of its adaptive time-
frequency analysis via multiscale decomposition. However,
because of the uncertainty principle, in order to obtain a good
frequency resolution, sufficient time samples are required. In
the experiments, we will use the Wigner-Ville distribution for
an illustration purpose, while in the quantitative analysis we
will use the continuous wavelet transform.
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For a temporal signal x(t) (i.e., the raw recordings from
one electrode channel), the power of its continuous-time
wavelet transform is described by

X
(
t,ω0

)
=
∣∣x(t)∗ ψ

(
t,ω0

)∣∣2
, (15)

where ∗ denotes convolution product between the signal
and the mother wavelet function, and ψ(t,ω0) is a complex-
valued Morlet mother function:

ψ
(
t,ω0

)
=
(
σ2π

)−1/4
exp

(−t2

2σ2

)
exp

(
j2πω0t

)
, (16)

where j =
√
−1, and σ is the bandwidth parameter. The

width of the Morlet wavelet, defined by 2πσω0, is set to 7 in
our study.6 The central frequency ω0 ranges from 1 to 60 Hz
in steps of 1 Hz. To analyze the specific temporal window of
interest, we select a 100-millisecond prestimulus period and
a 500-millisecond poststimulus period, with a total window
length 600 milliseconds.

To compare the power change between the prestimu-
lus and poststimulus periods, we need to introduce some
“relative” measures to obtain a baseline for the poststimu-
lus power. This is important because we are not interested
in the “absolute” power statistic per se, but interested in the
stimulus-induced relative power change. In the literature, the
measure of event-related band power change (ERBP) was de-
fined as (e.g., Ohara et al. [7])

ERBP
(
t,ω0

)
= 10 log

(
X
(
t,ω0

)

m
(
ω0

)
)

(dB), (17)

where m(ω0) denotes the median power envelope during the
prestimulus period. Alternatively, we can use another mea-
sure, which we refer to as “Z-score transformed poststimulus
power,” by using the Z-score transformation (e.g., Browne
and Cutmore [20]):

X̃
(
t,ω0

)
= X

(
t,ω0

)
− µ
(
ω0

)

σ
(
ω0

) , (18)

where µ(ω0) and σ(ω0) are, respectively, the mean and stan-
dard deviation of the power in a specific channel band (with
center frequencyω0) during the prestimulus period. The mo-
tivation of (18) is to introduce baseline power values across
different frequency bands for the poststimulus power statis-
tics, which are used for standardized comparisons. In do-
ing so, the low-amplitude component at high frequency will
be highlighted, which also makes the time-frequency atom
in the gamma (> 32 Hz) band more visible. See Figure 2
for an illustrative example. Note that the Z-score power
value can be negative; the positive values indicate the event-
related synchronization (ERS), and the negative values in-
dicate the event-related desynchronization (ERD), both be-
tween the prestimulus and poststimulus periods. Hence, the

6 Generally, the greater the width parameter is, the better frequency resolu-
tion we can obtain; nevertheless, this is at the cost of sacrificing temporal
resolution. The temporal resolution has a reciprocal relationship with re-
spect to the frequency resolution.
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Figure 2: The original (upper panel, unit µV2) versus Z-score trans-
formed (bottom panel, unitless) wavelet scalogram of one selected
channel in a single trial (subject 2, attention task, laser intensity
720 mJ). The white dash lines indicate the laser stimulus onset. As
seen, the ERS and ERD are highlighted more clearly by the Z-score
transformation given by (18).

Z-score transformation provides a clearer understanding of
the time-frequency map (in terms of relative power change).

In some cases, the resulted Z-score transformed post-
stimulus power will be converted to a two-dimensional time-
frequency distribution map, denoted by E(t,ω), and further
normalized to unity such that

∫∫
E(t,ω)dω dt = 1, which we

refer to as the normalized power. In doing so, each time-
frequency atom can be interpreted by a nonnegative prob-
ability in the time-frequency plane.

4. COMPARATIVE EXPERIMENTS FOR
AVERAGING TRIALS

We first apply the above described computational proce-
dure and statistical tools for averaging trials, the signal-trial
experiments will be treated later in more detail. The experi-
mental results reported in this section will be illustrated for
subject 1; two kinds of conditions, counting and reading, are
considered.

4.1. Extraction of laser-evoked potentials

First, we aim at extracting LEPs for the averaging-trial ex-
periments. Specifically, according to the laser onset tag, the
ECoG recordings (of all channels) were averaged upon the
total number of trials at each run. By doing so, the effect of
the visual or muscle artifacts may be greatly reduced. How-
ever, it is difficult to identify the LEPs from the averaging
ECoG waveforms of all channels (see Figure 3). Not only the
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Figure 3: The averaging waveforms (arbitrary scaling) from averaging trials for both subjects in two tasks. As seen, the averaging evoked
potentials are not clearly evident in these plots.

peaks of the LEPs are less evident, the averaging waveforms
still suffer from noise and artifact corruption.

To overcome these issues, we then apply the statistical
tools (FA and ICA) to further process these trial-averaging
signals. In the averaging-trial experiments for subject 1, we
selected five independent components for the purpose of ex-
tracting LEPs. These five independent components are con-
sidered to be “significant” because they contribute mostly to
the averaged ECoG data in terms of variance or energy.7 Due
to the averaging/smoothing effect, one-stage ICA procedure
(with the JADE algorithm) was found typically sufficient in
the experiments.8 The experimental results for the subject 1,
in the time domain as well as in the time-frequency domain,
are illustrated in Figures 4 and 5. As observed in the figures,

7 Specifically, the two LEP components are more significant and relatively
robust in that they remain approximately unchanged when we vary (in-
crease or decrease) the selected number of components by 1 or 2.

8 This is in contrast to the two-stage ICA procedure in single-trials; this is
often witnessed by the observation that the outcomes of the second-stage
ICA are not much different from the results of the first-stage ICA.

we can extract typical peaks around 150 milliseconds and 200
milliseconds, which might correspond to the hypothetic N2
and P2 peaks (or N2∗ and P2∗∗) of LEPs, which we also re-
fer to as N150 and P200, respectively; the other components
can be viewed as other significant independent spontaneous
brain activities. These findings were confirmed in both atten-
tion (counting) and distraction (reading) conditions.

Next, we conduct the task of LEP source identification.
This is done by back-projecting the ith independent com-
ponent (i.e., the estimated LEP) back to the observed sen-
sor space. Specifically, the power contour maps of N2 (N150)
and P2 (P200) under the attention and distraction conditions
are illustrated in Figures 6 and 8, respectively. The results are
qualitatively close (but not identical) to the previous study
(Ohara et al. [7, 8]), in which the LEP peak was found over
the interhemispheric (medial) surface. We also plot the com-
bined contributions of the power contour map for N150 and
P200, averaged from 120 milliseconds to 240 milliseconds, as
shown in Figure 7. As seen in the figure, in the LEP-N2 (i.e.,
N150), the greatest brain activities happen around the vertex
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Figure 4: Left panels: five estimated significant independent components (ICs) extracted from averaging-trial experiment of the counting
task (attention situation) for subject 1. Right panels: the associated time-frequency distribution (TFD) maps.
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Figure 5: Left panels: five estimated significant independent components (ICs) extracted from averaging-trial experiment of the reading task
(distraction situation) for subject 1. Right panels: the associated time-frequency distribution (TFD) maps.

(Cz)—the upper right corner of the 8×8 electrode layout (see
Figures 1, 6, and 7), these observations were consistent with
our early result (Ohara et al. [7, 8]), as well as other indepen-
dent findings using EEG and fMRI with a similar setup (e.g.,

see Figure 1 of Iannetti et al. [5]). Similarly, we also obtained
the LEPs’ mappings for subject 2 (see Figure 9).
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Figure 6: Source identification in the averaging trial of subject 1: the back-projected 8 × 8 (first 64 channels) scaled amplitude contour
map of the LEP peak at N150 (the 5th independent source at 150 milliseconds, left panel) and P200 (the 4th independent source at 200
milliseconds, right panel) in the counting task (attention condition).
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Figure 7: Left panel: the “weighted” map of LEP-N150 (compared to the “unweighted” map the left panel of Figure 5) from (14). Right panel:
the back-projected 8-by-8 (first 64 channels) power (i.e., the absolute value of the amplitude) contour map of the two LEPs, N150 and P200,
averaged between 120 milliseconds to 240 milliseconds (subject 1, attention condition).
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Figure 8: Source identification in the averaging trial of subject 1: the back-projected 8-by-8 (first 64 channels) scaled amplitude contour
map of the LEP peak at N150 (the 3rd independent source at 150 milliseconds, left panel) and P200 (the 4th independent source at 200
milliseconds, right panel) in the reading task (distraction condition).
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Figure 9: Source identification in the averaging trial of subject 2: the back-projected 8-by-8 (first 64 channels) scaled amplitude contour
map of the LEP peak at N2 and P2 in the counting (top 2 panels) and reading (bottom 2 panels) tasks.

Table 2: The relative power comparisons between prestimulus period (100 milliseconds) and poststimulus period (500 milliseconds) in the
averaging-trials. The statistics are averaged over the total number of channels (namely, divided by 89 and 80 for subjects 1 and 2, resp.) and
the relative time period. The values are unitless, reflecting the ratio among the normalized energy of the time-frequency map.

Subject 1 Subject 1 Subject 2 Subject 2

(counting) (reading) (counting) (reading)

Ave. prestimulus total power 0.0667 0.0796 0.0748 0.0969

Ave. prestimulus θ power 0.0160 0.0265 0.0175 0.0333

Ave. prestimulus α power 0.0048 0.0105 0.0112 0.0102

Ave. prestimulus β power 0.0047 0.0078 0.0136 0.0087

Ave. prestimulus γ power 0.0021 0.0019 0.0026 0.0025

Ave. poststimulus total power 0.1867 0.1841 0.1850 0.1806

Ave. poststimulus θ power 0.0486 0.0617 0.0539 0.0502

Ave. poststimulus α power 0.0074 0.0124 0.0154 0.0160

Ave. poststimulus β power 0.0051 0.0073 0.0134 0.0104

Ave. poststimulus γ power 0.0024 0.0024 0.0033 0.0023

4.2. Relative power

We compare the time-frequency distribution (TFD) power
between the prestimulus and poststimulus periods. The av-
eraged total power (per channel) and the averaged power

(per channel) of specific frequency bands, including theta
(4–7.5 Hz), alpha (8–12 Hz), beta (12.5–32 Hz), and gamma
(32–60 Hz), are all calculated. In Table 2, we summarize the
statistics of two subjects under the attention (counting) and
distraction (reading) conditions. The corresponding scatter
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Figure 10: The scatter plots of prestimulus and poststimulus power comparisons in averaging trials for 89 channels (subject 1, left: counting
task, right: reading task).

plots of prestimulus and poststimulus power (of selected fre-
quency bands) of all channels are shown in Figures 10 and
11.

From Table 2, several observations are noteworthy.

(i) The power in the poststimulus period is generally
greater than that in the prestimulus period, which is
obviously evidenced in terms of total power, θ and α
power.

(ii) The θ power increase (or ERS) is relatively more pro-
nounced in the attention condition than in the distrac-
tion condition.

(iii) The β power remains roughly the same level after the
laser stimulus, regardless of the undertaken tasks.

(iv) The γ power is typically small in all conditions, with
slightly greater value in the attention condition than
in the distraction condition.

It is noteworthy that the above observations are consistent
with the findings reported in neuroscience and neurophysi-
ology (to name a few, Bromm and Lorenz [1], Garcı́a-Larrea
et al. [2], Ohara et al. [7]). Although the statistics summa-
rized in Table 2 are calculated based on the averaging trials,
statistical test (see the next subsection) on single trials also
reveals statistical significance.

4.3. Statistical hypothesis testing

In order to evaluate the results of the averaging trials, we con-
duct some statistical hypothesis tests in order to confirm the
“statistical meaning” of the extracted LEPs. This procedure is
necessary because the result of the extracted LEPs in the av-
eraging trials does not tell anything in statistical sense about
each single trial; namely, we need to be sure if the results we
are tempted to interpret are due to random effects from av-
eraging, or due to the consistent causality in all or most of
individual single trials.

Two popular hypothesis testing methods we consider
here are the ANOVA (analysis of variance, or F-test) and
Mann-Whitney test (or U-test). In our experiments, we first
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Table 3: Statistical hypothesis testing statistics of various extracted
LEPs in averaging trials for subject 1. The Mann-Whitney U-test
was applied to the “absolute value” of the raw samples, and the
ANOVA F-test was applied to the logarithm transformation of the
absolute value of the raw samples. The N/A implies that the sam-
ples are neither normally nor log-normally distributed and there-
fore cannot be used for ANOVA.

P-value
Counting Counting Reading Reading

(N150) (P200) (N150) (P200)

U-test .0029 .0013 7× 10−5 .0269

F-test .0003 N/A 6× 10−5 .0183

use the Mann-Whiteny test to calculate the so-called P-value.
Second, we also apply a logarithm transformation of the
raw samples in attempt to obtain the Gaussianity (i.e., the
raw samples are lognormal distributed, as confirmed by the
Shapiro-Wilk test), and then apply the ANOVA to calculate
the P-values.9

To conduct the statistical tests, we apply the estimated
unmixing matrix W from the averaged trial to each single
trial; then we obtain the surrogate “single-trial LEP”10 for in-
dividual single trials, for either LEP-N150 or LEP-P200. For a
specific LEP component, we expect that there is a consistent

9 It should be noteworthy that it is also possible to apply the logarithm
transformation to the samples before the Mann-Whitney test; in this case,
the P-values will remain unchanged, except that the standard deviation
will become smaller after the logarithm transformation.

10 We call it surrogate single-trial LEP because the LEP is not estimated di-
rectly from individual single trial alone; instead, its recovery arises from
the unmixing matrix that is estimated based on averaging all single trials.

and significant difference between the prestimulus and post-
stimulus periods in terms of their absolute values. In our
case, the statistical test was conducted in the time-frequency
domain. For instance, for the LEP-N150 (or LEP-P200), ac-
cording to its time-frequency map, we empirically choose a
window around the maximum power value (i.e., the magni-
tude) in the time-frequency map,11 and further conducted
the Mann-Whitney test for each extracted LEP component
in all single trials, in which the comparison was done in the
time-frequency domain. Specifically, we compared the aver-
age mean of the power value inside the time-frequency win-
dow centered around the maximum point (which in the time
domain corresponds to the extracted LEP peak) with that of
the prestimulus period (with the same time-frequency win-
dow size), both averaged across all frequency bins. Conse-
quently, we may expect that the signal amplitude in the re-
gion of interest is significantly greater than that of the base-
line. The statistical hypothesis testing results are summa-
rized in Table 3, and the corresponding boxplots are shown

11 Typically, the window of temporal axis is centered at 150 milliseconds
(or 200 milliseconds) with width 30 milliseconds, and the window of fre-
quency axis covers from 4.5 to 6.5 Hz (with the resolution of 0.25 Hz for
each frequency bin).
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Figure 11: The scatter plots of prestimulus and poststimulus power comparisons in averaging trials for 80 channels (subject 2, left: counting
task, right: reading task).

in Figure 12. As seen in the table, the P-values of U-test are
all smaller than .05, and three of them are much smaller than
.01, consequentially, they are statistically significant. For the
sake of completeness and sanity check, we also calculated
the P-values that are not associated with the LEPs, (i.e., the
other independent components extracted from the averaged-
trials), we have consistently observed that their P-values are
greater than .2 (around .2 ∼ .6); hence, we can conclude that
these non-LEP components obtained in the averaged trials
are ascribed by the random effect that is not consistent in
each single trial.

5. QUALITATIVE AND QUANTITATIVE ANALYSES
OF SINGLE-TRIAL RECORDINGS

The averaging-trial experiments and statistical tests de-
scribed above present an informative baseline and guideline
for further single-trial experiments. As we mentioned ear-
lier, it is well known that by averaging the ECoG recordings,
we might lose some valuable information due to cancelation.
For this reason, single-trial experimental findings would be
also interesting. Nevertheless, single-trial analysis is more
challenging because of the random background activities and
artifacts; hence, obtaining consistent yet interpretable results
is quite difficult. To succeed, we may require additional care
or more sophisticated processing. Table 4 lists the operation
comparisons between the averaging and single-trial analyses
at each stage of procedure.

Notably, in contrast to the averaging-trial experiments
in which the artifact effects are greatly reduced, strong ar-
tifacts may exist in the single-trial experiments. In practice,
artifacts (often with low-frequency components) are some-
times observed by visual inspection. In this case, we will be
cautioned about using these “bad” channels. A simple so-
lution is to discard them or average with their neighbor-
ing channels. Selection of bad channels is often assisted with
the reference of averaging trials. For instance, channels with
extremely high amplitude and low frequency are generally

regarded as eye movement artifacts. Since the FA/ICA sta-
tistical methods described above can somehow reduce these
effects, hence only those channels with obvious artifacts were
removed in the experimental procedure.

In the sequel, we will conduct qualitative and quantitative
comparisons of single-trial recordings for different measure-
ments listed in Table 1.

5.1. Setup

In single-trial experiments, the number of independent com-
ponents usually varies from trial to trial (for the purpose of
extracting LEPs), and we typically choose the number be-
tween 5 and 8. This is because in individual single trials, some
small-amplitude but potentially important components at
high frequency may play a crucial role, which is also inter-
esting to observe. For the same purpose, we will use the two-
stage ICA procedure (JADE algorithm followed by TFD joint
diagonalization) described earlier in Section 3.

Upon extracting the LEP of interest, we further identify
the LEP localization in the sensor space and focus on the
analysis on one specific channel (in contrast to the analy-
sis of all channels in the averaging trials). Specifically, we
will examine the single-trial recordings under attention and
distraction conditions, as well as the statistics of the LEP
attributes (latency and amplitude) with varying pain levels
(i.e., given different laser intensities).

5.2. Single trials versus averaging trials

In the single-trial experiments, we apply the above-described
procedure with the goal of extracting the LEPs under differ-
ent conditions, and the results obtained in the averaging tri-
als are considered to be the baselines for qualitative compar-
ison.

Typically, not all single trials have good quality record-
ings compared with the averaging trials. Here we show a few
successful examples that are capable of identifying the mark-
ers of the LEPs. Notably, in our experiments, it was observed
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Figure 12: Boxplots of the absolute value of raw samples, together with their Mann-Whitney test P-values on the counting (left panel) and
reading (right panel) tasks (subject 1, laser intensity 720 mJ).

Table 4: A comparison of main operations between the averaging and single-trial analyses.

Routine Averaging trials Single trials Purpose

Averaging Yes No Smoothing

FA+PCA Yes Yes Noise and dimensionality reduction

first-stage ICA Yes Yes Extracting independent sources

second-stage ICA No Optional Fine tuning of the sources

Source identification Yes Yes Locating the LEPs of interest

WVD Optional Optional Visualization

Wavelet transform Yes Optional Z-score transform

Statistical test Optional Optional Testing hypothesis

that the LEP-N2 can be easily identified, while the LEP-P2 is
more difficult to separate. See Figure 13 for two illustrations
under different setting conditions.

In order to evaluate the variability between different sin-
gle trials, we apply the estimated demixing matrix W ob-
tained from averaging trials to all individual single trials,
by which we obtain a set of LEP components for N150
and P200 (one pair for each single trial). Furthermore,
we may use the available tools of the EEGLAB tool-
box (http://www.sccn.ucsd.edu/eeglab; Delorme and Makeig
[32], Delorme et al. [33], Makeig et al. [25]) to visualize the
event-related spectral perturbation (ERSP) and the intertrial
coherence (ITL) for the specific LEP components, as well as
the cross-coherence between the independent LEP compo-
nents. Specifically, the ERSP shows the spectral power change
from prestimulus baseline (in dB) relative to the stimulus on-
set; and the ITL measures the consistency or reproducibil-
ity of the phase of stimulus-locked trial activity in the se-
lected independent components. For instance, see Figure 14
for an illustrative example of two LEP components obtained
from the attention task (recalling Figure 4). As seen in the fig-
ure, the cross-coherence magnitude (from 0 and 1) indicates
the degree of synchronization between two independent LEP
components, and the cross-coherence phase (from −180 to

180 degree) indicates that the LEP-N150 component is lead-
ing ahead of the LEP-P200 component.

5.3. Attention versus distraction

For subjects 1 and 2, consistent alpha waves were found
among many (but not all) single trials in the reading task
(i.e., distraction condition); whereas in the counting task
(i.e., attention condition), the significant alpha component
was not observed in most of single trials. In some reading
tasks, no obvious LEP was identified, while the dominant al-
pha waves can be observed. See Figure 15 for an illustration.
In such cases, since there are no clear LEP peaks being ob-
served, it remains an open question that whether this phe-
nomenon is ascribed to “habituation to the pain” or “loss of
attention.” The reason that alpha rhythms appear frequently
in the reading task might be due to the fact that the subject
was in a relatively relaxed mood (especially compared with
the counting task).

In addition, we also measure the coherence of signal-trial
ECoG data under different conditions. In Figure 16, the co-
herency of alpha (8–12 Hz) and beta (12.5–32 Hz) bands be-
tween pairwise channels during the poststimulus period is
illustrated. In order to visualize the coherency, putting all

http://www.sccn.ucsd.edu/eeglab
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Figure 13: The extracted independent components (including LEPs) in signal-trials experiments for counting (left) and reading (right) tasks
(subject 1, laser intensity 720 mJ).
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Figure 14: Left and middle panels: event-related (log) power spectral perturbation (ERSP, in dB, top row) and inter-trial coherence (ITC,
from 0 to 1, bottom row) changes time locked to the LEP components in single trials (subject 1, attention task). Right panel: cross-coherence
between LEP N150 and P200, with magnitude plot (from 0 to 1; top row) and phase plot (from −180 to 180 degree; bottom row).

connections in one plot will be informative. Specifically, the
complete 8-by-8 layout illustrates the first 64 electrodes’ po-
sitions; at each electrode’s position, we also plot aN 8-by-
8 contour plot that represents the pairwise coherence be-
tween a specific electrode and the other electrodes, in which
the specific electrode is marked by a relatively big filled
circle. As seen, typically there is strong coherence in the
range of neighboring electrodes. Comparing Figure 16(a)
with Figure 16(b), and Figure 16(c) with Figure 16(d), we
can observe that there is stronger coherence in the alpha and
beta bands in the distraction condition than in the attention
condition.

5.4. LEP-component power versus laser intensity

For the same human subject in a series of single trials, it is ex-
pected that varying the level of stimuli (by changing the laser
intensity), the amplitude and latency of the LEPs will conse-
quently vary, so does the power of the LEP components in the
time-frequency map. For this purpose of analyzing the power
of LEP components at difference frequency bands, we have
conducted quantitative and comparative analysis for subject
2 under varying controlled conditions.

The power statistics are summarized in Table 5. It should
be noted that the power values in Table 5 refer to the “Z-
score transformed” poststimulus power according to (18),
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Figure 15: Left panels: the 5 estimated sources extracted from a single-trial experiment of the reading task (subject 2). The 5th independent
source contains typical alpha waves. Right panels: the corresponding time-frequency representation.

Table 5: Comparative statistics of the relative power of the normalized wavelet scalogram followed by Z-score transformation (for subject
2, no. 14 electrode) in single-trial analysis. The mean and standard deviation (mean± SD) statistics are calculated by averaging the number
of trials in each run.

Run No. of trials Intensity θ power α power β power γ power

1a 8 480 mJ 0.10± 0.76 0.24± 0.76 0.33± 0.70 0.27± 0.62

1a 11 640 mJ 0.22± 0.83 0.09± 0.48 0.03± 0.30 0.10± 0.49

1a 10 800 mJ 0.57± 2.92 0.09± 0.72 −0.03± 0.39 0.14± 0.67

1b 12 480 mJ 0.38± 1.63 0.19± 0.73 0.25± 0.44 0.22± 0.40

1b 11 640 mJ 0.58± 0.91 0.22± 0.57 0.08± 0.58 0.05± 0.48

1b 10 800 mJ 0.66± 1.23 0.59± 0.79 0.47± 1.39 0.41± 0.92

2a 10 480 mJ 0.29± 0.61 0.40± 0.57 0.53± 1.26 0.43± 0.66

2a 12 640 mJ 0.76± 1.62 0.35± 0.93 0.21± 0.66 0.11± 0.61

2a 10 800 mJ 0.77± 2.11 0.24± 0.69 0.12± 0.33 0.36± 0.51

2b 10 480 mJ −0.16± 0.30 −0.04± 0.31 0.17± 0.28 0.31± 0.38

2b 10 640 mJ 0.30± 0.93 0.34± 0.85 0.28± 0.84 0.05± 0.44

2b 10 800 mJ 0.64± 1.56 0.21± 0.59 0.10± 0.27 0.20± 0.33

and all the values are averaged over the total number of tri-
als in each run. The statistics are calculated for the first 64
channels including the one that has the highest power con-
tribution (no. 14 channel) at each trial. The scatter plots of
the Z-score transformed power for theta, alpha, beta, and
gamma bands are shown in Figure 17. In the off-diagonal
subplots, the scatter plots of cross-band power are shown;
whereas the diagonal subplots show the histograms of the
power distribution in the relative frequency bands. In each
subplot, the correlation coefficient between the power across
different frequency bands is also calculated (stored in matrix

C), as well as the associated P-values for the student’s t-test
(stored in matrix P). As seen, with different levels of laser
intensities, the Z-score transformed power across different
bands is correlated to certain degree: as the laser intensity in-
creases, the degree of correlation at certain frequency bands
(e.g., between theta and alpha) tends to decrease. A cut-off

correlation coefficient of 0.7 was considered as a sign of sig-
nificance. Each P-value indicates the probability of testing
the hypothesis of no correlation, or the probability of get-
ting a correlation as large as the observed value by random
chance, when the true correlation is zero. If P(i, j) is small
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Figure 16: Pairwise coherence maps between the first 64 channels (subject 1, laser intensity 720 mJ) averaged over all single trials within
a duration of 800 milliseconds in poststimulus period. (a) alpha-range coherence in the counting task; (b) alpha-range coherence in the
reading task. (c) beta-range coherence in the counting task; (d) beta-range coherence in the reading task.

(say, less than 0.05), then the correlation C(i, j) is statistically
significant.

From our data analysis, several observations are notewor-
thy.

(i) Compared to the prestimulus period, the power across
different frequency bands in the poststimulus period
mostly (or in majority) increases, as evidenced by
the positive mean values of the Z-score transformed
(relative) power, although their standard deviations
are relative large.

(ii) In one specific run, the general trend is that the
Z-score transformed θ power increases as the laser
intensity increases; it seems that no general rule can be
found for α, β, and γ power among our experiments.

(iii) In different runs (i.e., 1a, 1b, 2a, 2b), the mean power
statistics with the same laser intensity often vary.
This is not unreasonable because in each run the
conditions of the subject may be different; in addition,
the (random) order for presenting the laser stimuli is
also different in each run (see Figure 18), their overall
effects (say, e.g., between 480 → 640 → 800 and
640 → 800 → 480) would be certainly distinct. Such a
“hysteresis” phenomenon is well known in psychology
and psychophysics. In an effort to investigate this
phenomenon, we take the 800 mJ intensity level as an
example. According to Figure 18, the total numbers
of 480 mJ, 640 mJ, and 800 mJ preceding 800 mJ are
10, 16, and 14, respectively. In order to compare



Zhe Chen et al. 19

50−550−550−5100−10

−2
0
2
4
−2

0
2
4
−2

0
2
4

−10
0

10
20

C =

⎛
⎜⎜⎜⎝

1 0.909 0.591 0.837
0.909 1 0.734 0.843
0.591 0.734 1 0.772
0.837 0.843 0.772 1

⎞
⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎝

0 0 .0303 0
0 0 0 0

.0303 .0003 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

(a)

50−550−550−550−5

−1
0
1
2
−2

0
2
4
−5

0

5
−10

0
10
20

C =

⎛
⎜⎜⎜⎝

1 0.868 0.563 0.732
0.868 1 0.814 0.704
0.563 0.814 1 0.721
0.732 0.704 0.721 1

⎞
⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎝

0 0 .0559 .0003
0 0 0 .0009

.0559 0 0 .0005

.0003 .0009 .0005 0

⎞
⎟⎟⎟⎠

(b)

50−550−550−5100−10

−2
0
2
4
−5

0

5
−1

0
1
2
−5

0
5

10

C =

⎛
⎜⎜⎜⎝

1 0.841 0.866 0.801
0.841 1 0.691 0.694
0.866 0.691 1 0.660
0.801 0.694 0.660 1

⎞
⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎝

0 0 .0269 0
0 0 .0016 .0014

.0265 .0016 0 .0047
0 .0014 .0047 0

⎞
⎟⎟⎟⎠

(c)

Figure 17: The scatter plots (using the MATLAB function “plotmatrix”) of the Z-score transformed power for the theta, alpha, beta, and
gamma bands: (a) 480 mJ, (b) 640 mJ, (c) 800 mJ, each based upon 40, 44, and 40 single trials, respectively. At each panel, the diagonal plots
show the histograms of Z-score power of the associated frequency bands (from left to right, theta, alpha, beta, and gamma); the off-diagonal
plots show the scatter plots of Z-score power across different frequency bands. Matrix C contains the correlation coefficients, and matrix P

contains the associated P-values from the student’s t-test.
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Figure 18: The graphical illustration of the laser intensity presentation orders at different runs (1a, 1b, 2a, and 2b). Note that the combined
62 trial sequences of “1a + 1b” and “2a + 2b” are of identical order.
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Figure 19: The Z-score power comparison of three different hysteresis effects. (a) theta band, (b) alpha band, (c) beta band, (d) gamma
band.

their effects on the Z-score power, we calculate the
means and standard deviations of different frequency
bands under these three different conditions (namely,
480 → 800, 640 → 800, 800 → 800), and the results
are shown in Figure 19. It is interesting to observe
from the figure that their Z-score power statistics are
quite different especially at the low-frequency (theta
and alpha) bands. Generally, the Z-score power are
highest for 480 → 800, followed by 640 → 800, and
then lowest for 800 → 800—this is not surprising
considering the sensation habituation effect. Statistical
tests show at the theta and alpha bands, the pairwise
comparison of Z-scored power among three condi-
tions is statistically significant (ANOVA, P < .01).

5.5. LEP amplitude and latency versus laser intensity

Consistent with the previous studies (Ohara et al. [7, 8]),
the peak amplitudes were measured from the baseline value,
which was defined as the averaged value during the pres-
timulus period. Latencies were measured as the time of the
peak amplitude (except for the artifact) for each component;
and peak was regarded as significant when the peak am-
plitude was above the mean ± SD prestimulus level. How-
ever, in the previous studies, peak amplitudes and latencies
were both measured from reproducible, averaged waveforms;
here, we attempt to measure the latencies from single trials,

while the amplitude will still be measured from averaging
(over the trials at each run) because of its strong random-
ness; and the standard deviation of the amplitude estimate is
calculated based on 4 independent runs among the record-
ings. In the meantime, we will focus the measurements on
the first 64 electrodes (channels) for the primary somatosen-
sory (SI) region, while the analyses for the parasylvian and
medial frontal (MF) regions are ignored here. As observed
in our experiments (Table 6), the averaged amplitudes of the
LEPs (for both N2 and P2) increase as increasing laser inten-
sity, except for one case of P2 under the 800 mJ condition;
however, the mean statistic is also accompanied with a rel-
atively large standard deviation, which reflects the random
variations of measurement and/or subject conditions.

In our single-trial experiments, it was found that the la-
tencies of the LEPs vary from trials to trials, evidenced by
a large standard deviations (see Figure 20). In addition, by
varying the laser intensity, the LEP-N2 and LEP-P2 also ex-
hibit different attributes in terms of latency and amplitude.
The corresponding statistics are summarized in Table 6 and
Figure 20. Specifically, several observations are noteworthy.

(i) As seen in Table 6, the stronger is the laser intensity,
the sooner the LEP appears; namely, the value of the
LEP latency is smaller. See Figure 21 for two illustrative
results.
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Table 6: Comparative results of the estimated amplitudes and latencies of the LEPs (subject 2, under rating condition) from single and
averaging trials. The last row indicate the selected number of single trials (by excluding some bad trials) used to evaluate the latencies.

N2 (SI region) P2 (SI region)

Intensity (mJ) 480 640 800 480 640 800

Latency (milliseconds) 260 178 122 300 248 171

Amplitude (µV) −121± 18 −125± 23 −150± 41 112± 31 126± 55 98± 20

No. of trials 28 36 34 22 26 26

(ii) When the laser intensity is small (e.g., 480 mJ), it is
quite difficult to extract the LEP (either one or two)
with the available ICA technique. This is partly because
the LEP is so weak that it is overwhelmed in the back-
ground “noise” (brain activities). Indeed, it is even dif-
ficult to identify the peaks via visual inspection from
the averaging recordings.

Generally, the amplitude of the LEP is a reflection of the
sensation of the pain. Although it seems difficult to dis-
cover quantitative relationship between the intensity of
the laser beam and the amplitude/latency of the LEPs, it
is qualitatively clear that there exists correlation between
them, especially when the intensity difference is large. This
phenomenon might serve as a useful evaluation tool in the
clinical practice.

To evaluate the statistical significance of the LEP peak
amplitude and latency, we also conduct statistical tests
based on their single-trial measurements. We first conduct
a robust linear regression fit (using the MATLAB function
“robustfit”) between the laser intensity value (regression
variable) and the measure of interest (amplitude or latency
of the LEP), and then obtain Pearson’s correlation statistic r.
Next, we calculate the t statistic as follows:

t = r
√
ℓ − 2√

1− r2
, (19)

where ℓ denotes the number of regression sample pairs.
From the t-statistic, we can further evaluate the statistical
significance (i.e., P-value) from the t-table. In our case, we
found the linear fit for LEP’s latency is significant (r = 0.87,
P < .05); however, the linear fit for LEP’s amplitude is not
significant.

5.6. Subjective sensation versus laser intensity

Finally, we follow the procedure of Ohara et al. [34] to an-
alyze the relationship between the subjective sensation (in
terms of pain rating) and the laser intensity. Specifically, the
subject was asked to rate the pain level in decimal scale (0
no pain, 10 the most intense pain sensation). The mean and
standard deviation statistics are calculated based on all sin-
gle trials given three different laser intensities, as shown in
Figure 22. Generally, it is seen that the average subjective
pain sensation increases as the level of the laser intensity
increases. Statistical tests show significant sensation differ-
ences between different levels of laser intensities (ANOVA,
P < .001 between 480 mJ and 800 mJ; P < .05 between

640 mJ and 800 mJ). Moreover, we also evaluate the correla-
tion between subjective sensation and LEP amplitude; how-
ever, no significant correlation was observed between the
pain sensation rating and LEP amplitude for subject 2. We
suspect this is partially due to the large variations among
the subjective pain rating, even with the same laser intensity
(specifically, the mean ± SD of the pain rating value for
laser intensities 480 mJ, 640 mJ, and 800 mJ are 0.15 ± 0.70,
1.05 ± 1.49, and 2.10 ± 2.47, resp.). Although our data here
seem to suggest that the subjective pain sensation and the
objective LEP attribute observation might not be necessarily
correlated, we should also be cautioned that the pain is a very
complex sensation and is susceptible to many human factors
and experimental conditions. Verification of any claim in this
matter require more data and careful analysis.

6. DISCUSSION AND CONCLUSION

In this paper, we have used the statistical tools of FA/ICA for
extracting and analyzing the LEPs. To our best knowledge,
the statistical analysis and quantitative results reported here
are among the new (if not the first) reports that apply sophis-
ticated and systematic statistical analyses to the laser-induced
pain data in the literature. In both averaging and single trials,
we have demonstrated that the pain-evoked event potentials
can be extracted and further analyzed with careful design of
statistical procedure, and that the ICA/BSS approaches show
a promising role in analyzing the multichannel ECoG data
recorded from the awake human subjects. Our results here
have also validated our previous findings in the early investi-
gations and the reported neurophysiological observations in
the literature. This is encouraging in that it justifies the mer-
its of blind signal processing for neurobiological or physi-
ological data analysis. The next challenge of this line of re-
search is to extract consistently less-dominant (in terms of
power) and potentially important pain-related components
that are beyond the LEPs from single trials, which will be the
subject of future study.

We have focused on one particular type of blind sig-
nal processing tool (namely, ICA) in this paper. However,
we make no claim that the choice is unique or optimal. In-
deed, we have been aware of the strengthes and weaknesses of
the ICA during the experimental investigations (e.g., Makeig
et al. [25]), although other improved ICA models, such as the
spatially constrained ICA (Ille et al. [35], Hesse and James
[36]) or the temporally constrained ICA (James and Gibson
[37]), can be considered. It is also noteworthy to point out
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Figure 20: The error bars (mean ± SD) of the estimated latencies (from single trials) for LEP-N2 (left panel) and LEP-P2 (right panel) with
varying laser intensities. The dotted lines indicate the estimated latencies from the averaging trials.
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Figure 21: The 6 estimated sources extracted from averaged trials (subject 2) with different laser intensities (left panel: 640 mJ, right panel:
800 mJ).

several other powerful blind signal processing tools and sta-
tistical algorithms, which might be valuable for the future in-
vestigation:

(i) nonnegative matrix factorization (NMF) (e.g., Lee
and Seung [38]), which is an approximate matrix

factorization method for nonnegative data (e.g.,
spectra, or time-frequency map). Unlike ICA, the
independence assumption is relaxed or unnecessary
in NMF, on the other hand, extra constraints (such as
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Figure 22: Pain sensation rating at different levels of laser intensity (left panel, averaged over all 124 single trials for subject 2). This is
compared with another subject (right panel, averaged over 124 single trials, data from Ohara et al. [34]).

the smoothness or sparsity) can be imposed for this

statistical model.12

(ii) parallel factor analysis (PARAFAC) (e.g., Bro [39]),
which is a well-suited method for analyzing high-
dimensional tensorial data; PARAFAC can be viewed
as a generalization of higher-order FA or high-
dimensional NMF (if additional nonnegativity
constraint is imposed).

(iii) common spatial subspace decomposition (CSSD)
(Wang et al. [21]), which is a spatial filtering method
for extracting signal components specific to one
condition from multichannel electrode recordings
given multiple task conditions. This kind of common
spatial pattern algorithm may be used for evaluating
the ECoG recordings under different task conditions;
however, unlike the ICA method, it is a supervised
algorithm that uses labeled data for classification.

In addition to the above-mentioned statistical tools, it would
be also interesting to investigate the instantaneous brain
activities and dynamics (Makeig et al. [25]), which may pro-
vide useful information of interactions inside the brain for
specific patients with ECoG recordings. Finally, we believe
what we reported here is only the first step towards a com-
plete “statistical” understanding of the pain-evoked ECoG
data, the substantiation of our observations, claims, and con-
clusion made in this article would require more experimental
verification of ECoG recordings in the future.

12 For various implementation, see online resources and MATLAB tool-
boxes developed in our lab: http://www.bsp.brain.riken.jp/ICALAB/
nmflab.html.

APPENDIX

MAXIMUM LIKELIHOOD ESTIMATION OF
FACTOR ANALYSIS

Let us consider a general factor analysis (FA) model as fol-
lows:

xt = µ + Bzt + ǫt, (A.1)

where xt ∈ Rm denotes the observed variable, µ denotes the
mean vector, zt ∈ Rn denotes the hidden variable called “fac-
tor,” and B is an m × n “loading matrix.” With the proba-
bilistic assumptions that zt ∼ N (0, I), ǫt ∼ N (0,Σ), and
E[ztǫt] = 0, then we may derive that

E
[

xt

]
= µ, E

[
xt | zt

]
= µ + Bzt ,

Var
[

xt

]
= BBT + Σ, Cov

[
xt, zt

]
= B.

(A.2)

Let θ = (µ, B,Σ) denote the unknown parameters, then
the log likelihood of the FA model is written as

L(θ) =
T∑
t=1

ln p
(

xt | θ
)

= −T

2
ln |Σ| − 1

2

T∑
t=1

xT
t xt

− 1

2

T∑
t=1

{(
xt − Bzt

)T
Σ
−1
(

xt − Bzt
)}

= −T

2
ln |Σ| − 1

2

T∑
t=1

tr
[

xtx
T
t

]

− 1

2

T∑
t=1

tr
[(

xt − Bzt
)(

xt − Bzt
)T
Σ
−1
]
,

(A.3)

where tr[·] denotes the trace operator, and |Σ| denotes the
determinant of Σ. Maximizing L(θ) with respect to the un-
known parameters yields the maximum likelihood estimate.

http://www.bsp.brain.riken.jp/ICALAB/nmflab.html
http://www.bsp.brain.riken.jp/ICALAB/nmflab.html
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An elegant solution can be obtained by using the iterative EM
algorithm.

ACKNOWLEDGMENTS

The authors thank two anonymous reviewers for their crit-
ical and valuable comments. This project was done in col-
laboration between the Laboratory for Advanced Brain Sig-
nal Processing at RIKEN Brain Science Institute and the De-
partment of Neurosurgery and Neurology at Johns Hop-
kins University. The experimental data reported in this ar-
ticle were recorded in the Johns Hopkins Hospital. We
thank Liangyu Zhao for assistance during the early in-
vestigation. The ICA software—“ICALAB” based on MAT-
LAB platform is available for download in our website
http://www.bsp.brain.riken.jp/ICALAB.

REFERENCES

[1] B. Bromm and J. Lorenz, “Neurophysiological evaluation of
pain,” Electroencephalography and Clinical Neurophysiology,
vol. 107, no. 4, pp. 227–253, 1998.

[2] L. Garcı́a-Larrea, P. Convers, M. Magnin, et al., “Laser-evoked
potential abnormalities in central pain patients: the influence
of spontaneous and provoked pain,” Brain, vol. 125, no. 12, pp.
2766–2781, 2002.

[3] L. Garcı́a-Larrea, R. Peyron, B. Laurent, and F. Mauguière,
“Association and dissociation between laser-evoked potentials
and pain perception,” NeuroReport, vol. 8, no. 17, pp. 3785–
3789, 1997.

[4] I. M. Tarkka and R.-D. Treede, “Equivalent electrical source
analysis of pain-related somatosensory evoked potentials
elicited by a CO2 laser,” Journal of Clinical Neurophysiology,
vol. 10, no. 4, pp. 513–519, 1993.

[5] G. D. Iannetti, R. K. Niazy, R. G. Wise, et al., “Simultane-
ous recording of laser-evoked brain potentials and continu-
ous, high-field functional magnetic resonance imaging in hu-
mans,” NeuroImage, vol. 28, no. 3, pp. 708–719, 2005.

[6] F. A. Lenz, M. Rios, A. Zirh, D. Chau, G. Krauss, and R.
P. Lesser, “Painful stimuli evoke potentials recorded over the
human anterior cingulate gyrus,” Journal of Neurophysiology,
vol. 79, no. 4, pp. 2231–2234, 1998.

[7] S. Ohara, N. E. Crone, N. Weiss, and F. A. Lenz, “Attention to
a painful cutaneous laser stimulus modulates electrocortico-
graphic event-related desynchronization in humans,” Clinical
Neurophysiology, vol. 115, no. 7, pp. 1641–1652, 2004.

[8] S. Ohara, N. E. Crone, N. Weiss, R.-D. Treede, and F. A. Lenz,
“Cutaneous painful laser stimuli evoke responses recorded di-
rectly from primary somatosensory cortex in awake humans,”
Journal of Neurophysiology, vol. 91, no. 6, pp. 2734–2746, 2004.

[9] S. Ohara, N. E. Crone, N. Weiss, H. Vogel, R.-D. Treede, and
F. A. Lenz, “Attention to pain is processed at multiple cortical
sites in man,” Experimental Brain Research, vol. 156, no. 4, pp.
513–517, 2004.
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[12] A. Mouraux, J. M. Guérit, and L. Plaghki, “Non-phase locked
electroencephalogram (EEG) responses to CO2 laser skin
stimulations may reflect central interactions between A∂- and
C-fibre afferent volleys,” Clinical Neurophysiology, vol. 114,
no. 4, pp. 710–722, 2003.

[13] M. Ploner, J. Gross, L. Timmermann, B. Pollok, and A. Schnit-
zler, “Pain suppresses spontaneous brain rhythms,” Cerebral
Cortex, vol. 16, no. 4, pp. 537–540, 2006.

[14] T.-W. Lee, M. Girolami, and T. J. Sejnowski, “Independent
component analysis using an extended infomax algorithm for
mixed subgaussian and supergaussian sources,” Neural Com-
putation, vol. 11, no. 2, pp. 417–441, 1999.

[15] J. Cao, N. Murata, S.-I. Amari, A. Cichocki, and T. Takeda,
“Independent component analysis for unaveraged single-trial
MEG data decomposition and single-dipole source localiza-
tion,” Neurocomputing, vol. 49, no. 1–4, pp. 255–277, 2002.

[16] J. Cao, N. Murata, S.-I. Amari, A. Cichocki, and T. Takeda, “A
robust approach to independent component analysis of sig-
nals with high-level noise measurements,” IEEE Transactions
on Neural Networks, vol. 14, no. 3, pp. 631–645, 2003.

[17] S. Makeig, M. Westerfield, T.-P. Jung, et al., “Dynamic brain
sources of visual evoked responses,” Science, vol. 295, no. 5555,
pp. 690–694, 2002.

[18] J. Anemüller, T. J. Sejnowski, and S. Makeig, “Complex inde-
pendent component analysis of frequency-domain electroen-
cephalographic data,” Neural Networks, vol. 16, no. 9, pp.
1311–1323, 2003.

[19] F. Miwakeichi, E. Martı́nez-Montes, P. A. Valdés-Sosa, N.
Nishiyama, H. Mizuhara, and Y. Yamaguchi, “Decomposing
EEG data into space-time-frequency components using paral-
lel factor analysis,” NeuroImage, vol. 22, no. 3, pp. 1035–1045,
2004.

[20] M. Browne and T. R. H. Cutmore, “Low-probability event-
detection and separation via statistical wavelet threshold-
ing: an application to psychophysiological denoising,” Clinical
Neurophysiology, vol. 113, no. 9, pp. 1403–1411, 2002.

[21] Y. Wang, P. Berg, and M. Scherg, “Common spatial subspace
decomposition applied to analysis of brain responses under
multiple task conditions: a simulation study,” Clinical Neuro-
physiology, vol. 110, no. 4, pp. 604–614, 1999.

[22] A. Galka, O. Yamashita, T. Ozaki, R. Biscay, and P. Valdés-Sosa,
“A solution to the dynamical inverse problem of EEG gen-
eration using spatiotemporal Kalman filtering,” NeuroImage,
vol. 23, no. 2, pp. 435–453, 2004.

[23] A. Cichocki, “Blind signal processing methods for analyzing
multichannel brain signals,” International Journal of Bioelec-
tromagtism, vol. 6, no. 1, 2004, http://www.ijbem.org/.

[24] A. Cichocki, “Generalized component analysis and blind
source separation methods for analyzing multichannel brain
signals,” in Statistical and Process Models of Cognitive Aging, M.
J. Wenger and C. Schuster, Eds., Erlbaum, Mahwah, NJ, USA,
2006.

[25] S. Makeig, S. Debener, J. Onton, and A. Delorme, “Mining
event-related brain dynamics,” Trends in Cognitive Sciences,
vol. 8, no. 5, pp. 204–210, 2004.

[26] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S.
M. Arnfred, “Parallel factor analysis as an exploratory tool for
wavelet transformed event-related EEG,” NeuroImage, vol. 29,
no. 3, pp. 938–947, 2006.

[27] A. Cichocki and S. Amari, Adaptive Blind Signal and Image
Processing, John Wiley & Sons, New York, NY, USA, 2002.

http://www.bsp.brain.riken.jp/ICALAB
http://www.ijbem.org/


Zhe Chen et al. 25

[28] C. Févotte and C. Doncarli, “Two contributions to blind
source separation using time-frequency distributions,” IEEE
Signal Processing Letters, vol. 11, no. 3, pp. 386–389, 2004.

[29] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press,
New York, NY, USA, 2nd edition, 1999.

[30] C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Pernier,
“Stimulus specificity of phase-locked and non-phase-locked
40 Hz visual responses in human,” The Journal of Neuroscience,
vol. 16, no. 13, pp. 4240–4249, 1996.
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