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Abstract Recently, mobile-to-mobile (M2M) cooperative network technology has gained
considerable attention for its promise of enhanced system performance with increased mobil-
ity support. As this is a new research field, little is known about the statistical properties of
M2M fading channels in cooperative networks. So far, M2M fading channels have mainly
been modeled under the assumption of non-line-of-sight (NLOS) conditions. In this paper,
we propose a new model for M2M fading channels in amplify-and-forward relay links, where
it is assumed that a line-of-sight (LOS) component exists in the direct link between the source
mobile station and the destination mobile station. Analytical expressions will be derived for
the main statistical quantities of the channel envelope, such as the mean value, variance,
probability density function (PDF), level-crossing rate (LCR), and average duration of fades
(ADF) as well as the channel phase. Our results show that the statistical properties of the
proposed M2M channel are quite different from those of double Rayleigh and double Rice
channels. In addition, a high-performance channel simulator will be presented for the new
M2M channel model. The developed channel simulator is used to confirm the correctness of
all obtained theoretical results by simulations.
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1 Introduction

M2M communications in cooperative wireless networks is an emerging technology. Combin-
ing the advantages of cooperative diversity [1–3] with the features of M2M communication
systems [4] makes it possible to fulfill the consumer demands of enhanced quality of service
(QoS) with greater mobility support. M2M cooperative wireless networks exploit the fact
that single-antenna mobile stations can share their antennas to create a virtual multiple-input
multiple-output (MIMO) system in a multi-user scenario [5]. Thus, such wireless networks
permit mobile stations to relay signals using other mobile stations in the network to a final
destination [6]. Furthermore, the mobile relays can either decode and retransmit the received
signal or simply amplify and forward the signal [3]. This paper focuses on amplify-and-
forward relay type M2M cooperative wireless networks.

Since M2M cooperative network technology is a rather new concept, there are only some
few results available, which describe the multipath fading channel characteristics under
some specific communication scenarios. Studies on the statistical properties of amplify-and-
forward relay fading channels under NLOS conditions can be found in [7]. The authors
of [7] have modeled the amplify-and-forward relay channel in the equivalent complex
baseband as a zero-mean complex double Gaussian channel, i.e., the product of two zero-
mean complex Gaussian channels. Hence, the envelope of the overall amplify-and-for-
ward relay fading channel follows the double Rayleigh distribution [8]. Questions like how
does the double Rayleigh fading impact the systems’ performance are answered in [9].
However, there is still a lack of information about amplify-and-forward relay fading chan-
nels under LOS conditions. Thus, the purpose of this paper is to fill this gap by ana-
lyzing the statistical properties of amplify-and-forward relay fading channels under LOS
conditions.

An LOS component can either exist only in the direct link between the source mobile
station and the destination mobile station or in the link between the source mobile station
and the destination mobile station via a mobile relay (i.e., the double Rice fading scenario)
[10] or in both links. Our amplify-and-forward relay fading channel model takes into con-
sideration the LOS component only in the direct link between the source mobile station
and the destination mobile station. The novelty in our approach is that, we model the enve-
lope of the amplify-and-forward relay channel as a single-LOS double-scattering (SLDS)
fading channel, i.e., the superposition of a deterministic LOS component and a zero-mean
complex double Gaussian process. The PDF of the envelope of SLDS fading channels has
been derived in [11]. However, other important statistical quantities like the PDF of the
phase, LCR, and ADF have not been studied so far. Here, we present the integral expres-
sions for these statistical quantities. Furthermore, the validity of the analytical expressions
is confirmed with the help of a high-performance channel simulator. In addition, the re-
sults presented in this paper will provide sufficient evidence that the properties of SLDS
fading channels are quite different from those of double Rayleigh and double Rice chan-
nels.

The rest of the paper is structured as follows: In Sect. 2, the reference model for amplify-
and-forward SLDS fading channels is developed. Section 3 deals with the analysis of the
statistical properties of SLDS fading processes. Section 4 confirms the validity of the analyt-
ical expressions presented in Sect. 3 by simulations. Finally, concluding remarks are given
in Sect. 5.
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Fig. 1 The propagation scenario behind single-LOS double-scattering fading channels

2 The SLDS Fading Channel

In this section, we will develop a reference channel model for SLDS fading channels under the
assumption of flat fading. It is important to note that SLDS fading channels are M2M fading
channels in the amplify-and-forward relay links, where an LOS component exists only in the
direct transmission link between the source mobile station and the destination mobile station.
The communication scenario associated with SLDS fading channels is presented in Fig. 1.

Let us denote the transmission link between the source mobile station and the destination
mobile station via the mobile relay as LS−R−D. The signal transmitted by the source mobile
station is s (t). Furthermore, the deterministic LOS component, m (t) defined as

m (t) = mr (t) + jmi (t) = ρe j(2π fρ t+θρ) (1)

assumes fixed values for the amplitude ρ, Doppler frequency fρ , and phase θρ . The Doppler
frequency fρ of the LOS component corresponds to the sum of the Doppler frequencies fρS

and fρD caused by the motion of the source mobile station and the destination mobile station,
respectively, i.e., fρ = fρS + fρD . Throughout this paper, we will use the subscripts r and i to
indicate the real and the imaginary part, respectively, of a complex number. The transmitted
signal s (t) following the link LS−R−D reaches the destination mobile station in two steps.
First, the signal s (t) arrives through multipath propagation at the mobile relay, and then it
is retransmitted to the destination mobile station. The signal rR (t) received by the mobile
relay can be expressed as

rR (t) = μ(1) (t) s (t) + n1 (t) (2)

where μ(1) (t) is a scattered component that describes the fading in the link between the source
mobile station and the mobile relay (i.e., LS−R), and n1 (t) is an additive white Gaussian noise
(AWGN) process. Here, the scattered component μ(1) (t) is modeled as a zero-mean complex
Gaussian process having 2σ 2

1 variance, i.e., μ(1) (t) = μ
(1)
r (t) + jμ(1)

i (t). The mobile relay
then amplifies the signal rR (t) and retransmits it to the destination mobile station. Thus, the
total signal rD (t) received at the destination mobile station can be written as
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rD (t) = m (t) s (t) + AR μ(2) (t) rR (t) + n2 (t)

= m (t) s (t) + AR μ(2) (t) μ(1) (t) s (t) + AR μ(2) (t) n1 (t) + n2 (t)

=
(

m (t) + AR μ(2) (t) μ(1) (t)
)

s (t) + AR μ(2) (t) n1 (t) + n2 (t)

= (m (t) + AR ς (t)) s (t) + AR μ(2) (t) n1 (t) + n2 (t) (3)

where AR is referred to as the relay gain, μ(2) (t) is the second scattered component, ς (t)
corresponds to the double scattered component, and n2 (t) is the second AWGN process. We
have assumed fixed gain relays in our model, meaning that the relay gain AR is a real constant.
The scattered component μ(2) (t) is a zero-mean complex Gaussian process with variance
2σ 2

2 , i.e., μ(2) (t) = μ
(2)
r (t) + jμ(2)

i (t). This process models the fading channel in the link
between the mobile relay and the destination mobile station (i.e., LR−D). The double scattered
component ς (t) defines the overall fading channel in the link LS−R−D. It represents a zero-
mean complex double Gaussian process, which is modeled as the product of two independent,
zero-mean complex Gaussian processes μ(1) (t) and μ(2) (t), i.e., ς (t) = ςr (t) + jςi (t) =
μ(1) (t) μ(2) (t). It should be pointed out here that the relay gain AR acts as a scaling factor for
the variance of μ(2) (t), i.e., 2σ 2

AR
= Var

{
AR μ(2) (t)

} = 2 (ARσ2)
2. In (3), the sum of the

double scattered component ς (t) and the LOS component m (t) results in a non-zero-mean
complex double Gaussian process χ (t), i.e., χ (t) = χr (t)+ jχi (t) = ARς (t)+m (t). This
process χ (t) models the overall fading channel between the source mobile station and the des-
tination mobile station. The absolute value of χ (t) gives rise to an SLDS process �(t), i.e.,

�(t) = |χ (t)| . (4)

Furthermore, the argument of χ (t) defines the phase process 	(t), i.e.,

	(t) = arg{χ (t)}. (5)

3 Statistical Analysis of SLDS Fading Channels

In this section, we derive the analytical expressions for the statistical properties of SLDS
channels introduced in Sect. 2. The main statistical quantities of interest include the mean
value, variance, PDF of the envelope as well as the phase, LCR and ADF.

3.1 Joint PDF of SLDS Processes

The starting point for the derivation of the statistics of SLDS processes is the computation of
the joint PDF pχr χi χ̇r χ̇i (ur , ui , u̇r , u̇i ) of the stationary processes χr (t) , χi (t) , χ̇r (t), and
χ̇i (t) at the same time t . Throughout this paper, the overdot indicates the time derivative.
Applying the concept of transformation of random variables [12], we can write the joint PDF
pχr χi χ̇r χ̇i (ur , ui , u̇r , u̇i ) as follows

pχr χi χ̇r χ̇i (ur , ui , u̇r , u̇i ) =
∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
d ẏi d ẏr dyi dyr |J |−1

× p
μ

(1)
r μ

(1)
i μ̇

(1)
r μ̇

(1)
i μ

(2)
r μ

(2)
i μ̇

(2)
r μ̇

(2)
i

(xr , xi , ẋr , ẋi , yr , yi , ẏr , ẏi )

(6)
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where p
μ

(1)
r μ

(1)
i μ̇

(1)
r μ̇

(1)
i μ

(2)
r μ

(2)
i μ̇

(2)
r μ̇

(2)
i

(xr , xi , ẋr , ẋi , yr , yi , ẏr , ẏi ) is the joint PDF of the real

and imaginary parts of μ(k) (t) as well as their respective time derivatives μ̇(k) (t) (k = 1, 2).
The quantity xl is a function of yr , yi , ur , and ui , with ẋl as a function of ẏr , ẏi , u̇r , and
u̇i for l = r, i . In (6), J denotes the Jacobian determinant. It is worth mentioning here that
the processes χl (t) , χ̇l (t) , μ

(1)
l (t) , μ̇

(1)
l (t) , μ

(2)
l (t), and μ̇

(2)
l (t) (l = r, i) are uncorrelated

in pairs. Taking into account that the underlying Gaussian processes and their time derivatives,
i.e., μ

(k)
l (t), and μ̇

(k)
l (t) (k = 1, 2; l = r, i) are statistically independent allows us to write

p
μ

(1)
r μ

(1)
i μ̇

(1)
r μ̇

(1)
i μ

(2)
r μ

(2)
i μ̇

(2)
r μ̇

(2)
i

(xr , xi , ẋr , ẋi , yr , yi , ẏr , ẏi ) as a product of p
μ

(1)
r μ

(1)
i μ̇

(1)
r μ̇

(1)
i

(xr , xi , ẋr , ẋi ) and p
μ

(2)
r μ

(2)
i μ̇

(2)
r μ̇

(2)
i

(yr , yi , ẏr , ẏi ). Furthermore, p
μ

(1)
r μ

(1)
i μ̇

(1)
r μ̇

(1)
i

(xr , xi , ẋr , ẋi ) and p
μ

(2)
r μ

(2)
i μ̇

(2)
r μ̇

(2)
i

(yr , yi , ẏr , ẏi ) can be expressed by the multivariate Gauss-

ian distribution (see, e.g., [13, Eq. (3.2)]). Thus, substituting p
μ

(1)
r μ

(1)
i μ̇

(1)
r μ̇

(1)
i

(xr , xi , ẋr , ẋi )

and p
μ

(2)
r μ

(2)
i μ̇

(2)
r μ̇

(2)
i

(yr , yi , ẏr , ẏi ) in (6) and doing some lengthy algebraic computations

results in

pχr χi χ̇r χ̇i (ur , ui , u̇r , u̇i ) = 1

(2π)2 σ 2
1 σ 2

AR

∞∫

0

v e
− 1

2σ2
1

(
g1(ur ,ui ,ρ)

v2

)

× e
− 1

2σ2
AR

v2

e
− 1

2β1

(
g2(u̇r ,u̇i ,ρ)

v2

)

β2 g1 (ur , ui , ρ) + β1v4 e
β2

2β1

(
g1(ur ,ui ,ρ) g2(u̇r ,u̇i ,ρ)

v2(β2 g1(ur ,ui ,ρ)+β1v4)

)

dv (7)

where

g1 (ur , ui , ρ) = u2
r + u2

i + ρ2 − 2ρur cos
(
2π fρ t + θρ

)

− 2ρui sin
(
2π fρ t + θρ

)
(8a)

g2 (u̇r , u̇i , ρ) = u̇2
r + u̇2

i + (
2π fρρ

)2 − 4π fρρu̇i cos
(
2π fρ t + θρ

)

+ 4π fρρu̇r sin
(
2π fρ t + θρ

)
(8b)

and

β1 = 2 (σ1π)2 (
f 2
maxS

+ f 2
maxR

)
, β2 = 2

(
σARπ

)2 (
f 2
maxR

+ f 2
maxD

)
. (9a,b)

In (9a,b), the quantity βk (k = 1, 2) is the negative curvature of the autocorrelation function
of the real and imaginary parts of μ(k) (t) (k = 1, 2) presented here for the case of isotro-
pic scattering [14]. Furthermore, βk (k = 1, 2) is the characteristic quantity corresponding
to M2M fading process [15]. The symbols fmaxS , fmaxR , and fmaxD appearing in (9a,b)
correspond to the maximum Doppler frequency caused by the motion of the source mobile
station, the mobile relay, and the destination mobile station, respectively.

Starting from (7), the transformation of the Cartesian coordinates (ur , ui ) into polar coor-

dinates (z, θ) by means of z =
√

u2
r + u2

i and θ = arctan (ui/ur ) results after some lengthy
algebraic manipulations in

p��̇		̇

(
z, ż, θ, θ̇; t

) = z2

(2π)2 σ 2
1 σ 2

AR

∞∫

0

v e
− 1

2σ2
1

(
z2+ρ2

v2

)

e
− v2

2σ2
AR

β2 g3 (z, ρ, θ) + β1v4 e
zρ cos(θ−2π fρ t−θρ )

σ2
1 v2

e
− 1

2

(
v2

(
ż2+(zθ̇)

2)
+(2π fρv)2

β2 g3(z,ρ,θ)+β1v4

)

e
2π fρρv2(ż sin(θ−2π fρ t−θρ )+zθ̇ cos(θ−2π fρ t−θρ ))

β2 g3(z,ρ,θ)+β1v4 dv

(10)
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for z ≥ 0, |θ | ≤ π, |ż| < ∞, and
∣∣θ̇ ∣∣ < ∞. In (10), the function g3 (·, ·, ·) can be expressed

as follows

g3 (z, ρ, θ) = z2 + ρ2 − 2zρ cos
(
θ − 2π fρ t − θρ

)
. (11)

The joint PDF p��̇		̇

(
z, ż, θ, θ̇; t

)
in (10) is a fundamental equation, because it provides

the basis for the computation of the PDF, LCR, and ADF of SLDS processes � (t), as well
as the PDF of the phase process 	(t). We will provide sufficient evidence in the rest of the
current section to support our argument by deriving integral expressions for the PDFs, LCR,
and ADF using (10).

3.2 PDF of SLDS Processes

The PDF p� (z) of SLDS processes �(t) can be derived from (10) by solving the integrals
over the joint PDF p��̇		̇

(
z, ż, θ, θ̇; t

)
according to

p� (z) =
π∫

−π

∞∫

−∞

∞∫

−∞
p��̇		̇

(
z, ż, θ, θ̇; t

)
d θ̇ dż dθ, z ≥ 0. (12)

The closed-form solution of (12) can be given as

p� (z) =

⎧
⎪⎪⎨
⎪⎪⎩

z

σ 2
1 σ 2

AR

I0

(
z

σ1σAR

)
K0 (κ) , z < ρ

z
σ 2

1 σ 2
AR

K0

(
z

σ1σAR

)
I0 (κ) , z ≥ ρ

(13)

where κ = ρ/
(
σ1σAR

)
, I0 (·) and K0 (·) are denoting the zeroth-order modified Bessel func-

tion of the first kind and the second kind [16], respectively. The PDF p� (z) of SLDS processes
�(t) presented in (13) can be verified from the literature (see, e.g., [11]).

The condition ρ = 0 indicates the absence of the LOS component in the direct link
from the source mobile station to the destination mobile station. The PDF p� (z) of SLDS
processes �(t) given in (13) then reduces to the PDF of the envelope of double Rayleigh
processes [17], i.e.,

p� (z)
∣∣
ρ=0 = z

σ 2
1 σ 2

AR

K0

(
z

σ1σAR

)
, z ≥ 0. (14)

Furthermore, using the asymptotic expansions of the zeroth-order modified Bessel function
of the first kind and the second kind, i.e., I0 (·) and K0 (·), respectively, [17], the PDF p� (z)
of SLDS processes �(t) in (13) can be approximated for large values of κ as the Laplace
distribution [18], i.e.,

p� (z) | κ � 1 ≈
√

z

ρ

1

2σ1σAR

e
− |z−ρ|

σ1σAR ≈
√

z

ρ
po (z) , z ≥ 0 (15)

where po (z) represents the Laplace distribution having the mean value ρ and the variance
σ 2

1 σ 2
AR

. It is important to note here that the approximation in (15) is valid if κ � 1, i.e., the
ratio of the power of the LOS component to the power of the scattered components is large.
Otherwise, in the presence of a very strong LOS component, i.e., ρ � 1, when the power of
the scattered components is constant, κ acquires a large value.
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3.3 Mean Value and Variance of SLDS Processes

The expected value and the variance of a stochastic process are important statistical parame-
ters, since they summarize the information provided by the PDF. The expected value m� of
SLDS processes �(t) can be obtained using [12]

m� = E{�(t)} =
∞∫

−∞
z p� (z) dz (16)

where E{·} is the expected value operator. Substituting (13) in (16) results in the following
final expression

m� = κ K0 (κ)
[
ρ I1 (κ) + π

2
σ1σAR {I0 (κ) L1 (κ) − I1 (κ) L0 (κ)}

]
+ I0 (κ)(

σ1σAR

)2 g4 (z)

(17)

where

g4 (z) =
∞∫

ρ

z2 K0

(
z

σ1σAR

)
dz. (18)

In (17), In (·) and Kn (·) denote the nth-order modified Bessel functions of the first and the
second kind [16], respectively, and Ln (·) designates the nth-order modified Struve function
[16].

The difference of the mean power m�2 and the squared mean value (m�)2 of SLDS
processes �(t) defines its variance σ 2

� [12], i.e.,

σ 2
� = Var{�(t)} = m�2 − (m�)2. (19)

By using (13) and [12, Eq. (5.67)], the mean power m�2 of SLDS processes �(t) can be
expressed as

m�2 = E{�2 (t)} =
∞∫

−∞
z2 p� (z) dz

= 2ρ2 K0 (κ)
(

I2 (κ) + κ

2
I3 (κ)

)
+ I0 (κ)(

σ1σAR

)2 g5 (z) (20)

where the function g5 (·) is defined as follows

g5 (z) =
∞∫

ρ

z3 K0

(
z

σ1σAR

)
dz. (21)

From (17), (20), and by using (19), the variance σ 2
� of SLDS processes �(t) can easily be

calculated.
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3.4 PDF of Phase Processes

The PDF p	 (θ; t) of phase processes 	(t) can be derived from (10) by solving the integrals
over the joint PDF p��̇		̇

(
z, ż, θ, θ̇; t

)
according to

p	 (θ; t) =
∞∫

0

∞∫

−∞

∞∫

−∞
p��̇		̇

(
z, ż, θ, θ̇; t

)
d θ̇ dż dz, |θ | ≤ π. (22)

This results in the following final expression

p	 (θ; t) = 1

2π

∞∫

0

dx e
−x− 1

x

(
ρ

2σ1σAR

)2 [
1 +

√
π

2
g6

(
x, ρ, fρ, θ

)

× e
1
2 g6(x,ρ, fρ,θ)

2

{
1 + �

(
g6

(
x, ρ, fρ, θ

)
√

2

)}]
, |θ | ≤ π (23)

where

g6 (x, ρ, θ) = ρ cos
(
θ − 2π fρ t − θρ

)

σ1σAR

√
2x

. (24)

Furthermore, in (23), �(·) represents the error function [16, Eq. (8.250.1)]. From (23), it is
obvious that the phase process	(t) is not stationary in a strict sense since p	 (θ; t) �= p	 (θ).
This time dependency of the PDF p	 (θ; t) is due the Doppler frequency fρ of the LOS com-
ponent m (t). However, for the special case that fρ = 0 (ρ �= 0), the phase process 	(t) is
a strict sense stationary process. As ρ → 0, it follows �(t) = |ς (t) + m (t)| → |ς (t)|, and
from (23), we obtain the uniform distribution

p	 (θ)
∣∣
ρ=0 = 1

2π
, −π < θ ≤ π. (25)

3.5 LCR of SLDS Processes

The LCR of the envelope of mobile fading channels is a measure to describe the average
number of times the envelope crosses a certain threshold level r from up to down (or vice
versa) per second. The LCR N� (r) of SLDS processes �(t) can be obtained using [19]

N� (r) =
∞∫

0

ż p��̇ (r, ż) dż (26)

where p��̇ (r, ż) is the joint PDF of SLDS processes �(t) and its corresponding time deriv-
ative �̇ (t) at the same time t . The joint PDF p��̇ (z, ż) can be derived from (10) by solving
the integrals over the joint PDF p��̇		̇

(
z, ż, θ, θ̇; t

)
according to

p��̇ (z, ż) =
π∫

−π

∞∫

−∞
p��̇		̇

(
z, ż, θ, θ̇; t

)
d θ̇ dθ, z ≥ 0, |ż| ≤ ∞. (27)
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After, some lengthy computations, the joint PDF in (27) results in the following expression

p��̇ (z, ż) =
√

2π z

(2π)2 σ 2
1 σ 2

AR

∞∫

0

π∫

−π

e
− 1

2σ2
1

(
z2+ρ2

v2

)

e
− v2

2σ2
AR e

zρ cos θ

v2σ2
1√

β2 g7 (z, ρ, θ) + β1v4
e
− 2(π fρρv sin θ)2

β2 g7(z,ρ,θ)+β1v4

× e
− 1

2

(
(vż)2−4π fρρv2 ż sin θ

β2 g7(z,ρ,θ)+β1v4

)

dθ dv, z ≥ 0, |ż| ≤ ∞ (28)

where

g7 (z, ρ, θ) = z2 + ρ2 − 2zρ cos θ. (29)

Finally, after substituting (28) in (26) and doing some extensive mathematical manipulations,
the LCR N� (r) of SLDS processes �(t) can be expressed as follows

N� (r) =
√

2π r

(2π)2 σ 2
1 σ 2

AR

∞∫

0

π∫

−π

dθ dv

√
β2 g7 (r, ρ, θ) + β1v4

v2 e
− v2

2σ2
AR e

− g7(r,ρ,θ)

2v2σ2
1

×
(

e− 1
2 g2

8 (r,y,ρ,θ) +
√

π

2
g8 (r, v, ρ, θ)

{
1 + �

(
g8 (r, v, ρ, θ)√

2

)})
(30)

where

g8 (r, v, ρ, θ) = 2π fρ ρ v sin θ√
β2 g7 (r, ρ, θ) + β1v4

. (31)

The quantities β1 and β2 are the same as those defined in (9a,b). Furthermore, g7 (·, ·, ·) is
the function defined in (29).

Considering the special case when ρ = 0, (30) reduces to the expression of the LCR for
double Rayleigh processes given in [7] as

N� (r)
∣∣
ρ=0 = r√

2πσ 2
1 σ 2

AR

∞∫

0

√
β2 r2 + β1 v4

v2 e
− (r/v)2

2σ2
1 e

− v2

2σ2
AR dv. (32)

3.6 ADF of SLDS Processes

We will conclude Sect. 3 with the discussion on the ADF. The ADF T�− (r) of SLDS pro-
cesses �(t) can be defined as the ratio of the CDF F�− (r) of �(t) and its LCR N� (r), i.e.,

T�− (r) = F�− (r)

N� (r)
. (33)

The CDF F�− (r) of SLDS processes �(t) can be expressed using (13) as follows

F�− (r) =
r∫

0

p� (z) dz

=

⎧⎪⎪⎨
⎪⎪⎩

r

σ1σAR

K0 (κ) I1

(
r

σ1σAR

)
, r < ρ

1 − r

σ1σAR

I0 (κ) K1

(
r

σ1σAR

)
, r ≥ ρ.

(34)
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From (34), (30), and by using (33), the ADF T�− (r) of SLDS processes �(t) can easily be
computed.

It is quite obvious from (34) that as ρ → 0, (34) reduces to

F�− (r)
∣∣
ρ=0 = 1 − r

σ1σAR

K1

(
r

σ1σAR

)
. (35)

The resulting CDF F�− (r) in (35) corresponds to the CDF of double Rayleigh processes
[8]. Thus, substituting (35) and (32) in (33) gives the ADF of double Rayleigh processes.

4 Numerical Results

In this section, we will confirm the correctness of the analytical expressions presented in
Sect. 3 with the help of simulations. Furthermore, for a detailed analysis the results for
SLDS processes are compared with those of classical Rayleigh, classical Rice, double
Rayleigh, and double Rice processes. It is important to note that the double Rice pro-
cess is defined as the product of two independent classical Rice processes, i.e., � (t) =∣∣μ(1) (t) + ρ1

∣∣ ∣∣μ(2) (t) + ρ2
∣∣. To simplify matters, the amplitudes ρ1 and ρ2 of the LOS

components of the double Rice process are considered to be equal, i.e., ρ1 = ρ2 = ρ. The
concept of sum-of-sinusoids (SOS) [14] is used to simulate uncorrelated complex Gaussian
processes μ(k) (t) that make up the overall SLDS process. For simulating Gaussian processes
μ(k) (t) , N (k)

l = 20 (k = 1, 2; l = r, i) is used. Here, N (k)
r and N (k)

i denote the number of
sinusoids required to generate the real and the imaginary parts of μ(k) (t), respectively. It
is readily available in the literature that N (k)

l ≥ 7 is a sufficient number to approximate
the simulated distribution of

∣∣μ(k) (t)
∣∣ very close to the Rayleigh distribution [14]. For the

computation of the model parameters, we selected the generalized method of exact Doppler
spread (GMEDSq) proposed in [20] for q = 1. The values for the maximum Doppler frequen-
cies fmaxS , fmaxR , and fmaxD were set to 91 Hz, 75 Hz, and 110 Hz, respectively. The relay
gain AR as well as the parameters σ1 and σ2 were selected to be 1, unless stated otherwise.

The results presented in Figs. 2, 3, 4, 5, 6, 7, 8, and 9 show an excellent fitting of the
analytical and the simulation results. In Fig. 2, the PDF p� (z) of SLDS processes �(t) is
being compared with those of classical Rice and double Rice processes for different values
of ρ, where fρ was set to zero. It can be observed that the maximum value of the PDF p� (z)
of SLDS processes �(t) is higher than that of classical Rice and double Rice processes for
same value of ρ. On the other hand, the spread of the PDF p� (z) of SLDS processes �(t)
follows the same trend as that of classical Rayleigh, classical Rice, and double Rayleigh
processes. However, the PDF p� (z) of the SLDS process �(t) has a narrower spread when
compared to the spread of double Rice processes for the same value of ρ.

Figure 3 demonstrates the fact that for increasing values of κ , the PDF p� (z) of SLDS
processes �(t) approaches the symmetrical Laplace distribution. Furthermore, the right shift
of the PDF p� (z) of SLDS processes �(t) with increasing values of ρ is merely due to the
fact that ρ contributes towards the mean value of SLDS processes. The mean value of SLDS
processes for different values of ρ is presented in Fig. 4 along with the mean value of classical
Rice and double Rice processes. It is obvious from Fig. 4 that the increase in the mean value
of classical Rice and SLDS processes is proportional to ρ, whereas for double Rice processes
it is proportional to the squared value of ρ.

The observation that the PDF p� (z) of SLDS processes �(t) has a narrower spread when
compared to the spread of double Rice processes is more explicitly shown in Fig. 5. In Fig. 5,
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Fig. 2 A comparison of the PDF p� (z) of SLDS processes � (t) with that of various other stochastic processes
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Fig. 3 Approximation of the PDF p� (z) of SLDS processes �(t) to the Laplace distribution

the standard deviation σ� of SLDS processes �(t) for different values of ρ is presented
along with the standard deviation of classical Rice and double Rice processes. It can be seen
from Fig. 5 that for a particular value of ρ the standard deviation corresponding to double
Rice processes is greater than that of classical Rice and SLDS processes. Furthermore, when
the standard deviation σ� of various stochastic processes, i.e., the classical Rice, the double
Rice, and the SLDS process is self-compared for different values of ρ, it can be observed in
Fig. 5 that there is no noticeable difference in the standard deviation σ� of classical Rice and
SLDS processes with increasing values of ρ. However, the increase in the standard deviation
of double Rice processes, meaning thereby an increase in the spread of the PDF of these
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Fig. 4 A comparison of the mean value m� of SLDS processes � (t) with that of various other stochastic
processes
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Fig. 5 A comparison of the standard deviation σ� of SLDS processes � (t) with that of various other stochastic
processes

processes with increasing ρ is quite obvious. Similarly, Fig. 6 presents the CDF F�− (r) of
SLDS processes �(t) evaluated by using (34).

A comparison of the PDF p	 (θ) of the phase process 	(t) with that of the correspond-
ing classical Rice and double Rice phase processes is shown in Fig. 7. It is clear from Fig. 7
that the PDF p	 (θ) of the phase process 	(t) has a higher peak and narrow spread when
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Fig. 6 A comparison of the CDF F�− (r) of SLDS processes � (t) with that of various other stochastic
processes
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Fig. 7 A comparison of the PDF p	 (θ) of the phase process 	 (t) with that of various other stochastic
processes

compared with the PDF of the phase process associated with classical Rice and double Rice
processes for a specific value of ρ.

Figure 8 shows that at low signal levels, the LCR N� (r) of SLDS processes �(t) decreases
with an increase in ρ, keeping fρ constant. While, N� (r) increases at medium and high lev-
els with increasing ρ. Furthermore, as ρ increases, the LCR N� (r) of SLDS processes �(t)
becomes higher than that of double Rice processes at low signal levels. However, at medium
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Fig. 8 A comparison of the LCR N� (r) of SLDS processes �(t) for various values of ρ with that of various
other stochastic processes
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Fig. 9 A comparison of the ADF T�− (r) of SLDS processes �(t) for various values of ρ with that of various
other stochastic processes

and high signal levels, the LCR N� (r) of SLDS processes �(t) is lower than the LCR of
double Rice processes for the same value of ρ. Similarly, Fig. 9 compares the ADF T�− (r)

of SLDS processes �(t) with that of double Rice processes for different values of ρ keeping
fρ equal to zero.
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5 Conclusion

In this paper, we have studied the statistics of M2M fading channels in cooperative wireless
networks under LOS conditions. Considering the amplify-and-forward relay type systems,
the existence of an LOS component in the direct transmission link between the source mobile
station and the destination mobile station results in SLDS fading channels. Here, we have
modeled the NLOS link of the system as a zero-mean complex double Gaussian channel.
Thus, the overall SLDS fading channel is modeled as the superposition of a deterministic
LOS component and the zero-mean complex double Gaussian channel.

Statistical properties of SLDS fading channels are thoroughly investigated in this paper.
We have derived analytical expressions for the mean, variance, PDFs, LCR, and ADF. Further-
more, we have verified our analytical expressions using numerical techniques in simulations.
The close fitting of the presented theoretical and simulation results proves correctness of our
analytical expressions. It has been shown that the properties of SLDS processes are quite
different from both double Rayleigh and the double Rice processes. For example, the PDF of
SDLS processes approaches the symmetrical Laplace distribution when the amplitude of the
LOS component increases. Furthermore, the PDF of SLDS processes has a higher maximum
value as compared to various other stochastic processes. On the other hand, for a particular
value of ρ, the spread of the PDF of SLDS processes, follows the same trend as that of classical
Rayleigh and classical Rice processes. However, the PDF of SLDS processes has a narrower
spread as compared to the spread of double Rice processes. With increasing values of ρ the
PDF of the phase process associated with SLDS processes acquires a higher maximum value
and a narrower spread. A thorough analysis of the LCR of SLDS processes reveals that at
low signal levels, the LCR of SLDS processes decreases when ρ increases. However, the
LCR of SLDS processes increases with increasing ρ at low signal levels, when compared
with the LCR of double Rice processes. At medium and high signal levels, the LCR of SLDS
processes is always lower than that of double Rice processes for the same value of ρ. The
ADF of SLDS processes shows a behavior opposite to the LCR of SLDS processes. We have
also provided sufficient evidence in this paper that SLDS processes reduce to double
Rayleigh processes in the absence of the LOS component.

The theoretical analysis presented in this paper is useful for researchers and designers
of the physical layer for mobile-to-mobile communication systems. Our study provides an
insight into the dynamics of SLDS fading channels, which can be exploited to develop robust
modulation and coding schemes for such fading environments. Furthermore, with the help of
the designed channel simulator, the overall performance of the system can also be evaluated
by simulation for different kinds of SLDS fading environments.
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