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Statistical Modeling and Estimation of Censored

Pathloss Data
Carl Gustafson, Taimoor Abbas, David Bolin and Fredrik Tufvesson

Abstract—Pathloss is typically modeled using a log-distance
power law with a large-scale fading term that is log-normal.
However, the received signal is affected by the dynamic range
and noise floor of the measurement system used to sound the
channel, which can cause measurement samples to be truncated
or censored. If the information about the censored samples are
not included in the estimation method, as in ordinary least
squares estimation, it can result in biased estimation of both
the pathloss exponent and the large scale fading. This can be
solved by applying a Tobit maximum-likelihood estimator, which
provides consistent estimates for the pathloss parameters. This
letter provides information about the Tobit maximum-likelihood
estimator and its asymptotic variance under certain conditions.

Keywords—Pathloss, maximum-likelihood estimation, ordinary
least squares, censored data, truncated data, vehicular communi-
cation.

I. INTRODUCTION

Pathloss describes the expected loss in received power as a
function of the transmitter (Tx) and receiver (Rx) separation
distance and the effects of random large scale fading. It
includes losses due to the expansion of the radio wave front in
space as well as losses due to reflection, scattering, diffraction
and penetration. A number of pathloss models have been
developed for a variety of wireless communication systems,
e.g., for cellular systems, Bluetooth, Wi-Fi, vehicle-to-vehicle
communications, and, mm-wave point-to-point communica-
tions, operating over different frequency bands ranging from
hundreds of MHz to tens of GHz [1]–[4]. These models
have widely been used for the prediction and simulation of
signal strengths for given Tx-Rx separation distances. Pathloss
models are often developed based on channel measurements in
realistic user scenarios. The model parameters estimated from
measurement data are thus typically valid only for a particular
frequency range, antenna arrangement, and environment for
the targeted user scenario.

However, in practice, the observation of the received signal
power at the receiver is limited by the system noise, i.e.,
the signals with power below the noise floor can not be
measured properly. In many vehicle-to-vehicle measurements,
this limitation due to the system noise is often present at
longer distances [5]–[7]. Also, in mm-wave measurements, the
pathloss values are in general larger than at lower frequencies,
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which effectively can reduce the range in which the data is
unaffected by the noise floor. Due to the limited dynamic range
of the measurement system, sample data might be truncated,
whereby all data above or below a certain range are immea-
surable, or censored, meaning that all data above or below
a certain range are counted, but not measured. Estimation
of the cluster decay and cluster fading based on truncated
data has previously been addressed in [8]. For clusters, the
data is modeled as truncated, since it is generally impossible
to measure or count clusters that are below the noise floor.
However, in pathloss measurements, where distances for the
measurement points where the received power falls below the
noise floor are known, it is possible to model the data as being
censored. Estimating statistical parameters without considering
the effects of censored or truncated data samples, can lead
to erroneous results. The fact that this can be a problem for
pathloss data is acknowledged in [6], however, the authors do
not give any detailed information on how to solve this issue. In
this letter, we discuss the use of a Tobit model [9] for censored
pathloss data and a maximum-likelihood (ML) method for the
estimation of pathloss parameters [10]. Supplementary material
and Matlab codes can be found in a supporting technical report
[11].

II. PATHLOSS MODELING

Pathloss is often modeled by a log-distance power law plus a
large scale fading term [12]. In units of dB this can be written
as

PL(d) = PL(d0) + 10nlog
10

(

d

d0

)

+Ψσ, d ≥ d0, (1)

where d is the distance, n is the pathloss exponent, PL(d0)
is the pathloss at a reference distance of d0 and Ψσ is a
random variable that describes the large-scale fading around
the distance-dependent mean pathloss. For measurement data,
it is here assumed that the effects of small scale fading is
removed from the data set. It is also assumed that the peak
value of the aggregated antenna gain is removed from the
measurement data [13]. Ideally, the variation of the aggregated
antenna gain should be small, so that it does not affect
the measured large-scale fading too much. The large-scale
fading term is usually modeled by a log-normal distribution,
which in the dB-domain corresponds to a zero-mean Gaussian
distribution with standard deviation σ, i.e., Ψσ ∼ N (0, σ2).
Hence, the pathloss is normally distributed with a distance
dependent expected value, PL(d) ∼ N (µ(d), σ2), where

µ(d) = PL(d0) + 10nlog
10

(

d

d0

)

. (2)
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The reference value PL(d0) can be estimated based on
measurement data, or based on reference measurements at this
distance. For line-of-sight (LOS) scenarios, it is sometimes
deterministically modeled based on the free-space pathloss, as

PL(d0) = 20log
10

(

4πd0
λ

)

. (3)

Here λ is the wavelength at the given frequency. Here, it
is worth noting that the approach of using the deterministic
reference value of Eq. (3) only provides theoretically correct
results if the pathloss exponent is equal to 2. If the pathloss
exponent is not equal to 2, but Eq. (3) is used to determine the
reference value, the data model of Eq. 1 is inconsistent, as it
depends on the choice of the reference distance d0. For non-
line-of-sight (NLOS) scenarios, it is clear that the free-space
equation (3) does not hold, which means that the reference
value in this case must be determined in another fashion. Due
to the above, it is preferable to use actual measurements of the
reference level, or, to estimate it based on the measurement
data. In some cases, it might be difficult to produce reliable
measurements of the reference value scenarios due to practical
reasons, especially considering that it might be hard to produce
a large number of uncorrelated measurement samples exactly
at d0.

III. ESTIMATION BY ORDINARY LEAST SQUARES

To completely model the pathloss and large-scale fading for
a given data set, we wish to estimate the three parameters
of (1), i.e., n, PL(d0) and σ2. The data under consideration
is implicitly assumed to be Gaussian since Ψσ is Gaussian
in the dB domain. Using (1) the data set for L path loss
measurements, y = [PL(d/d0)]L×1

can be written as,

y = Xα+ ǫ, (4)

where X = [1 10log
10
(d/d0)]L×2 and α = [PL(d0) n]T .

The term ǫ = [Ψσ]L×1 is a row vector describing the large-
scale fading term for each of the L different pathloss samples.

When there are no censored samples, the parameters of the
log-distance power law can be estimated by applying ordinary
least squares (OLS). The parameter α is then estimated as1

α̂ =
(

XTX
)−1

XTy. (5)

The variance of the large-scale fading, σ2, can then be esti-
mated as

σ̂2 =
1

L− 1
(y −Xα̂)T (y −Xα̂). (6)

The estimate α̂ is Gaussian,

α̂j ∼ N
(

αj , σ
2(XTX)−1

jj

)

, j = 1, 2, (7)

1As the variance σ
2 is assumed to be independent of delay, weighted least

squares (WLS) are not applied. However, we note that WLS could be of use
for cases when σ

2 is being modeled with a distance dependence.

which alternatively can be expressed as

P̂L(d0) = α̂1 ∼ N
(

PL(d0), σ
2
(

L−1 + x̄2S−1

xx

))

,

n̂ = α̂2 ∼ N
(

n, σ2S−1

xx

)

,
(8)

where

x̄ =
1

L

L
∑

l=1

10log
10
(dl/d0),

Sxx =

L
∑

l=1

(10log
10
(dl/d0)− x̄)

2
.

(9)

Using Eq. (9), standard errors2 for n̂ and P̂L(d0) can be found
by replacing the unknown standard deviation of the large scale
fading, σ, by its estimate, σ̂, which gives

ŜE(n̂) = σ̂
√

S−1
xx ,

ŜE(P̂L(d0)) = σ̂
√

L−1 + x̄2S−1
xx .

(10)

The standard errors are useful for evaluating the accuracy
of the estimated parameters. However, it should be stressed
that these standard errors only applies when the data actually
follows the log-distance power law model with a large-scale
fading variance that is independent of delay. For this reason, it
is often necessary to validate the measurement data against
the presumed model. This could be done by investigating
the residuals between the measured data and the regression,
to make sure that the residuals do not exhibit any sort of
distance dependence. If the data seems to be described by a
different model, then a different pathloss model would have to
be considered. The standard error of the parameters estimated
with OLS depend on the number of samples and the exact
pathloss sample distances that are used in the measurement.
However, if the data is being censored, OLS would provide
biased results, which means that Eq. (11) no longer applies.

IV. ESTIMATION OF CENSORED PATHLOSS DATA

In order to estimate the pathloss exponent and fading
variance of censored data, with a known number of missing
samples where only the distance is known, it is possible to
base the estimation on a censored normal distribution. Under
this assumption, the observations follow a censored normal
distribution [9]. The censoring occurs for data samples where
the pathloss is greater than or equal to c. The value −c is
a channel gain that corresponds to the noise floor of the
channel sounder or measurement device. In practice, c is
chosen with some margin with respect to the noise floor, so that
a limited number of samples dominated by noise are included
as measurement data. Using the data set model in (4), the data
is assumed to be censored so that observations with values at
or above c are set to c, i.e.,

yi =

{

y∗i if y∗i < c
c if y∗i ≥ c

(11)

2The standard error is the standard deviation of the sampling distribution
of a statistic.



3

where

y∗i ∼ N (xiα, σ2). (12)

The probability of observing a censored observation at a
distance d is given by

P (y ≥ c) = 1− Φ

(

c− xiα

σ

)

, (13)

where Φ is the cumulative distribution function (CDF) of the
standard normal distribution. Now, by using I as an indicator
function that is set to 1 if the observation is uncensored and
is set to 0 if the observation is censored, it is possible to write
down the likelihood function as [9]

l(σ,α) =

N
∏

i=1

[

1

σ
φ

(

yi − xiα

σ

)]Ii [

1− Φ

(

c− xiα

σ

)]1−Ii

,

where φ is the standard normal probability density function
(PDF). The log-likelihood L(σ,α) = ln[l(σ,α)] can now be
written as

L(σ,α) =
N
∑

i=1

Ii

[

−lnσ + lnφ

(

yi − xiα

σ

)]

+

N
∑

i=1

(1− Ii)ln

[

1− Φ

(

c− xiα

σ

)]

.

(14)

Using the log-likelihood, the parameters σ and α are estimated
using

[σ̂, α̂] = argmin
σ,α

{−L(σ,α)}, (15)

which is easily solved by numerical optimization of α and
σ, using for instance the method of Newton [10]. In this
work, we have solved this by using the fminsearch function in
Matlab, which is based on a Nelder-Mead search method. The
estimates obtained from OLS were used as initial values for
the minimization. The presented method approach can easily
be further extended, so that it supports other pathloss models.

A. Asymptotic Variance of the ML estimator

The asymptotic variance of the ML estimator has been
derived in [10] for the problem with censoring of samples
where yi ≤ 0. We therefore transform the data in Eq. (4), by
letting

yt = −y + c = −Xα− ǫ+ c = Xαt − ǫ, (16)

where
αt = [−PL(d0) + c − n]T . (17)

The parameters to be estimated for the transformed data are

θt = [αT
t σ2]T . (18)

The asymptotic variance for the ML estimates of the original
parameters, θ, are however the same as for the parameters of
the transformed data, θt. Therefore, we can directly use the

equations found in [10] to calculate the asymptotic variance
as

Avar(θ) = Avar(θt) = diag







(

N
∑

i=1

Ai(xi,θt)

)−1






, (19)

where

Ai(Xi,θt) =

(

aix
T
i xi bix

T
i

bixi ci

)

, (20)

with coefficients

ai = −σ−2
[

ziφi − φ2

i /(1− Φi)− Φi

]

,

bi = σ−3
[

z2i φi + φi − ziφ
2

i /(1− Φi)
]

/2,

ci = −σ−4
[

z3i φi + ziφi − z2i φ
2

i /(1− Φi)− 2Φi

]

/4.

(21)

Here, φi = φi(zi) and Φi = Φi(zi) and zi = xiαt/σ. In order
to avoid numerical issues when calculating the coefficients in
Eq. 21, it is worthwhile to rewrite the ratio φi/(1− Φi) as

φi(zi)

1− Φi(zi)
=

1√
2π

exp(−z2i /2)

1− 1

2
erfc(−zi/

√
2)

=
2√

2πerfcx(zi/
√
2)

, (22)

where erfc(·) is the complementary error function and erfcx(·)
is the scaled complementary error function.

As stated previously, the asymptotic variances of the pa-
rameters θt are the same as for θ. Therefore, the asymptotic
variance of the parameters PL(d0), n and σ2 are given by
the three main diagonal elements of the matrix in Eq. (19).
For measurement data, an estimate of the asymptotic variance
can be found by replacing the true parameter values with their

estimates, P̂L(d0), n̂ and σ̂2. Estimates of the standard errors
can then be obtained simply by taking the square root of the
asymptotic variance.

The standard errors of the estimated parameters depend on
many different things, such as the pathloss sample distances,
the level of the censoring, the number of samples as well as
the exact values of PL(d0), n and σ2. Therefore, it is often
necessary to evaluate the standard errors for each individual
measurement case. Implemented Matlab codes for the ML
estimator and its asymptotic variance can be found in [11].

V. RESULTS

As an example, synthetic data at 5.6 GHz was generated
according to Eq. (1) with known parameters (n = 2 and
σ = 4) and a synthetic censoring level at c. The parameters
were estimated using OLS and the ML method described
above. The result is shown in Fig. 1. The OLS method clearly
underestimates both the pathloss exponent, n̂, as well as the
standard deviation of the large scale fading, σ̂. The ML method
on the other hand, is able to correctly estimate both parameters
in this example. Fig. 2 shows the same thing as Fig. 1, but is for
measured data from a vehicle-to-vehicle (V2V) measurement
campaign for NLOS scenarios at 5.6 GHz [14]. In this case,
the parameter estimates obtained using OLS show significantly
smaller values compared to the parameter estimates for the
ML method. This large discrepancy is due to the large
number of censored samples in this data set; about 45 % of
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Fig. 1. Pathloss estimation based on censored synthetic data using the ML
estimation method that considers censoring and using OLS without considering
censoring. The ML method produces accurate estimates, whereas the OLS
method underestimates n and σ.
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Fig. 2. Pathloss estimation of censored measurement data, using ML and
OLS estimation. The estimated standard error for the ML estimates are
SE(P̂L(d0)) = 0.72 dB, SE(n̂) = 0.04 and SE(σ̂2) = 1.6.

the measurement data points are censored. As a result, the
OLS, which does not consider the censored samples, greatly
underestimates the pathloss exponent and large scale fading.
This shows the importance of taking censored samples into
account when estimating the pathloss parameters.

VI. CONCLUSIONS

In this letter, we suggest the use of a Tobit ML method [9]
for the estimation of pathloss parameters based on censored
data. When the data is censored, the standard approach of OLS,
which has been widely used in the literature, is inconsistent,
and yields biased estimates. The suggested ML estimator
solves this problem by jointly estimating the parameters based
on a censored normal distribution. Equations for the standard

errors of this estimator are also provided. Using these equa-
tions, we show that the sampling distribution of the measure-
ment samples can have a significant effect on the standard error
in typical pathloss measurements. Using synthetic pathloss data
that is censored, we also show that the ML method is able
to correctly estimate the pathloss parameters, whereas OLS
is biased and underestimates the pathloss exponent and the
large-scale fading variance. Lastly, by using measured pathloss
data from a V2V measurement campaign, we see that the ML
method yields drastically different and more realistic estimates
compared to the OLS method. Additional results and Matlab
codes can be found in the supplementary technical report [11].
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