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EXECUTIVE SUMMARY 
 
 
The statistical modeling component of the Intersection Decision Support (IDS) project 
had four main objectives: 
 
(1) Identify stop-controlled intersections on Minnesota's rural expressways whose crash 

experience makes them candidates for (future) IDS deployment; 
(2) Develop a method for estimating the crash-reduction effect of the IDS deployment at 

USTH 52 and Goodhue CSAH 9, even though selection bias will be present; 
(3) Develop a method for predicting the crash reduction potential of the IDS deployment 

for input into a first approximation of a cost/benefit analysis; 
(4) Test the hypothesis that older drivers are over-represented in intersection crashes 

along USTH 52, and identify other rural expressway intersections where older drivers 
might be over-represented.  

 
To accomplish these, a hierarchical statistical model similar to that employed in the 
Federal Highway Administration’s Interactive Highway Safety Design Model was 
developed, using crash, traffic and roadway data for 197 four-legged, two-way, stop-
controlled intersections on Minnesota rural expressways. Both major- and minor-
approach average daily traffic turned out to be important predictors of crash frequency, 
while the number of major approach driveways had a weaker effect. (1) The model was 
then used to identify intersections whose expected crash frequency exceeded, with high 
probability, what would be typical for rural expressway intersections with the same 
traffic volumes. The five intersections so identified formed a subset of the 23 potentially 
high-hazard intersections identified in an earlier report, which used the critical rate 
method. The intersection of USTH 52 and CSAH 9, in Goodhue County, was one of the 
five we identified as showing an atypically high expected crash frequency. (2) It was next 
possible to consider a plausible range of hypothetical crash counts occurring after 
deployment of the IDS at USTH 52 and Goodhue CSAH 9 and use these hypothetical 
counts to compute Bayes estimates of the IDS accident modification factor. Our results 
suggested that a three-year after period at this single intersection would probably be 
sufficient to detect whether or not the IDS had a beneficial effect, but that estimating the 
magnitude of this effect would be more difficult. (3) Our statistical model was then used 
to predict potential crash reduction benefits of a wider IDS deployment, on the 
assumption that the IDS would reduce the crash propensity at a high crash location to 
what would be typical for similar intersections. Over a 15-year period, deployment of the 
IDS at the five high-crash intersections identified earlier would result in a reduction of 
about 308 crashes. (4) Finally, an induced exposure approach was used to identify 
intersections where older drivers appear to be over-represented. Twelve such 
intersections were identified, with five of them being on USTH 52. This last result should 
be interpreted cautiously however since the possibility that older drivers are differentially 
more prevalent on minor approaches has not been discounted. 



 

CHAPTER 1:  INTRODUCTION 
 
 
A number of highways in Minnesota support the rapid inter-regional movement of goods 
and people, but limited financial resources and other constraints prevent providing these 
corridors with the extensive grade separation characteristic of freeways. Many of the 
intersections on these corridors are simple at-grade with two-way stop sign control, and 
highway engineers can be faced with a dilemma when the crash experience at one of 
these intersections indicates that an intervention is required. Replacing the two-way stop 
control with a traffic signal can in some circumstances reduce crashes, but this will also 
add delays to the traffic on the major approaches. Replacing the at-grade intersection with 
one that is grade-separated can reduce crashes without delaying the major approach 
traffic, but this sort of intervention tends to be prohibitively expensive. The goal of the 
Intersection Decision Support (IDS) project is to design and test an alternative 
intersection treatment, based on providing minor approach drivers with real-time 
information about gap availability, that can reduce intersection-related crashes without 
delaying the major approach traffic.   
 
The statistical modeling component of the IDS project sought to extend the analyses 
conducted earlier in the project (Preston et al 2004), and had four main objectives: 
 
(1) Identify stop-controlled intersections on Minnesota's rural expressways whose crash 

experience makes them candidates for (future) IDS deployment; 
(2) Develop a method for estimating the crash reduction effect of the IDS deployment at 

USTH 52 and Goodhue County CSAH 9, even though selection bias will be present; 
(3) Develop a method for predicting the crash reduction potential of the IDS deployment 

for input into an initial cost/benefit analysis; 
(4) Test the hypothesis that older drivers are over-represented in intersection crashes 

along USTH 52, and identify other rural expressway intersections were older drivers 
might be over-represented.  

 
A general statistical approach can be used to accomplish all these objectives. This 
approach begins with the observation that road crashes are rare events, so that the Poisson 
distribution provides a plausible model of the random variation in crash counts. A high 
crash count at a location can be due to that location's hazards, but it might also be simply 
a randomly high fluctuation. To some extent statistical methods can be used to untangle 
these two effects by assuming that, under stable conditions, the crash counts at an 
intersection during comparable time periods should be distributed as Poisson random 
outcomes, with expected values determined by the intersection's traffic, geometric and 
other characteristics. Estimates of these expected values, rather than the raw crash counts 
themselves, can then be used to identify potentially hazardous locations.  
 
Often however, when one actually attempts to fit Poisson models to crash data, it turns 
out that the crash counts are more variable than the Poisson model allows for, even after 
controlling for factors which tend to be related to the production of crashes. The technical 
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name for this increased variability is over-dispersion, and its presence can reasonably be 
attributed to additional but unobserved features of the intersections which lead them to 
produce more or fewer crashes. The question then is how to also estimate the effects of 
these unobserved features. 
 
This sort of problem is not peculiar to intersections, and can be illustrated with a 
modification of Hauer's (1997) example of a male, 22 year-old, licensed driver. Suppose 
actuarial data has indicated that drivers in this group have, on average, about 0.12 
crashes/year. Now suppose that we also know that a particular 22 year-old male driver 
was actually involved in three crashes during the past year. We would probably be 
inclined to think that, in addition to being a 22 year-old male, and hence more likely to be 
involved in a crash than say a 40 year-old female, there is something special about this 
driver, or the way he drives, that makes him more likely to crash than is typical for 22 
year-old males.  But it may also be that our driver was to some extent unlucky last year, 
and in this case it is probable that during the next year he would be involved in fewer 
crashes.  If we were to require, on the basis of this high crash count, that our driver take a 
driver's refresher course and then evaluate the effectiveness of the course by comparing 
crash counts before and after taking the course, there will be an in-built bias toward 
seeing the course as being more effective than it actually was. 
 
Let's try to sort this out. On one hand we have crash counts for an identified population of 
drivers, in this case 22 year-old males, and using standard statistical methods we can 
estimate the crash involvement for a 'typical' member of the population. We can also 
compute what the distribution of crash counts would be if crashes happened randomly to 
the members of our population according to the Poisson rare-event model.  If the crash 
counts are more variable than the Poisson model allows for, then it is possible that there 
are systematic, unobserved differences in the crash propensities of our population 
members. The problem facing us then is how to produce reasonable estimates of these 
individual propensities. If our population is homogeneous enough that these individual 
differences can be considered to be distributed independently and identically over the 
population members, then we can solve this estimation problem using statistical methods 
developed for what are often called hierarchical models.  The basic idea behind a 
hierarchical model is that the random process assumed to generate an observed quantity 
could take place in several stages, and that the results of some of these stages may not be 
directly observed.  
 
For example, imagine you first toss a fair coin, and then if the coin turns up heads you 
roll a six-sided die with sides numbered form one to six, while if the coin turns up tails 
you roll a ten-sided die, with sides numbered from one to ten. Now imagine that the only 
'datum' recorded from this experiment is the number on the upper side of the die, but not 
which die was tossed or the outcome of the coin toss. Because the dice have different 
outcome spaces and different probability distributions, the final recorded outcome 
provides information about the outcome of the coin toss, even though this was not 
directly observed. (To be precise, if the final outcome was between seven and 10, then 
the probability the coin toss produced a head is 0, while if the final outcomes were 
between one and six, the probability the coin toss produced a head is 5/8).  
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In a similar manner we can model the unobserved individual crash propensities as 
distributed over our population of entities, and then use crash counts to make inferences 
about these individual propensities. The basic idea behind this approach, that individual 
variation in crash propensity can explain over-dispersion in crash counts, dates back at 
least to Greenwood and Yule (1920), while the estimation methods have roots in the 
work of Robbins (1955) on empirical Bayes estimation. The application of hierarchical 
models in road safety can be traced to Hauer's work in the early 1980's, and was 
developed and extended by Hauer and his associates (e.g. Hauer and Persaud 1987; 
Hauer, Ng and Lovell 1989), and by Morris, Christiansen and Pendelton (1991). Hauer 
(1992) and Christiansen and Morris (1997) used generalized linear modeling to describe 
systematic variations in crash propensity, and an overview of this earlier work has been 
given in Davis (2001). More recently, hierarchical crash models have become important 
components of both the FHWA's Interactive Highway Safety Model (IHSDM) (Harwood 
et al. 2000), and the Highway Safety Manual (HSM) being developed by the 
Transportation Research Board.  This approach is related to risk assessment procedures 
used in the insurance industry (Tomberlin 1982), and to solutions to small area estimation 
problems in spatial statistics (Ghosh et al 1998).  
 
Before proceeding it may be helpful to compare our approach to a more traditional 
practice. A commonly used method for identifying potentially high-hazard locations is 
the rate quality control method, also called the critical rate method. In this method one 
begins with a set of roadway locations and estimates a common crash rate for this set. 
One then compares each location's individually estimated crash rate to this common rate, 
flagging those locations where the individual rate estimates appear to be atypically high. 
It turns out that the critical rate method and hierarchical modeling both tend to pick out 
the same sites as hazardous, so one might ask why bother with the extra effort needed to 
do hierarchical modeling. The main advantage to the latter comes when one is faced with 
trying to estimate the crash reduction effect of a countermeasure. If a site has been 
selected for application of a countermeasure in part because of an atypically high crash 
rate (or frequency) then simply comparing crashes before and after tends to produce 
biased estimates of the crash reduction effect. (This biasing effect is called regression to 
the mean (RTM) and can be illustrated using a simple demonstration. Roll a fair, six-
sided die until you get a six. Now imagine that this six represents a before-crash count, 
while the next roll will represent the after-count. The odds are 5/6 that the after count will 
be lower than the before count even though nothing about the die has changed.)  Probably 
the most important advance in statistical crash analysis during the last 20 years has been 
the development of methods for correcting for this sort of bias, and these methods require 
the modeling approach we plan to use here. In addition, it is fairly straightforward to 
show that the statistical model underlying the critical rate method approximates a special 
case of our hierarchical model,  so that situations where the critical rate method would be 
applicable will also be well-described by our hierarchical approach, while we gain some 
additional flexibility in describing a broader class of situations. 
 
Following Hauer (1997),  we recognize that crash counts are to some extent  random and 
unpredictable, and we assess the safety of an intersection using the expected number of 
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crashes occurring over some specified time interval. Actual crash counts at sites are then 
treated as random outcomes varying around these expected values.  The expected crash 
frequency at an intersection is treated as having two components, a systematic component 
whose variation across sites can be captured by considering differences in traffic 
volumes, frequency of access points, geometric characteristics or other measurable 
features, and an individual component due to unobserved, individual features of the 
intersection. Figure 1 shows a graphical representation of the hierarchical model for an 
intersection labeled number k.  
 

 

mu.bark

Xk b

mukak

yk

Observed Intersection 
Features Feature Coefficients

Expected “Typical” Crash 
Frequency

Effect of Unobserved Features 
(Random Component)

Observed Crash Count

Expected Crash Frequency

 
 

Figure 1. Hierarchical Crash Model for Intersection k 
 
In Figure 1 Xk represents a set of observed intersection features which are related to the 
intersection's tendency to produce crashes. In the Interactive Highway Safety Design 
Model’s (IHSDM) model for four-legged stop-controlled intersections on two-lane 
highways, these measurable features were the major and minor approach average daily 
traffic (ADT), the number of driveways or access points on the major approaches within 
250 feet of the intersection, and a measure of how skewed the intersection was. The 
vector b stands for coefficients which determine the relative impacts of the observed 
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factors contributing to the expected typical crash frequency, which we call mu.bark. For 
the ISHDM's two-lane highway model, mu.bark was identified using a generalized linear 
model of the form 
 

mu.bark = exp(b0 +b1X k,1+..+bmX k,m)     (1) 
 
where for the ISHDM's two-lane highway model 
 
 X k,1 = natural logarithm of major approach ADT at intersection k, 
 X k,2 = natural logarithm of minor approach ADT at intersection k, 
 X k,3 = number of major approach access points within  250 feet of intersection k, 
 X k,4 = measure of intersection k's  skew. 
 
The specific expected crash frequency at intersection k is then determined by combining 
the expected frequency with a random component, ak, which reflects the effect of 
unobserved features. The observed crash count Yk is finally generated as a Poisson 
outcome with mean value muk.  
 
One way to help understand how these pieces fit together is to consider trying to generate 
simulated crash counts for intersection number k using random number generators. 
Starting first at the top of Figure 1, the measured attributes Xk and the model coefficients 
b would be combined to compute a typical expected crash frequency, using equation (1). 
Next, a random outcome ak would be drawn from the appropriate distribution and 
combined with mu.bark to produce intersection k's expected crash frequency muk. Finally, 
an actual crash count yk would be generated from a probability distribution having muk as 
its expected value.   
 
The statistical estimation problem is to compute estimates of the model parameters 
b0,..,bm, in order to determine what would be typical at intersections like  number k, as 
well as estimates of each intersection's expected crash frequency, muk, which when 
compared to the typical expected frequency mu.bark allows us to identify those 
intersections which appear to be atypically hazardous. It turns out that a Bayesian 
solution to this estimation problem is especially easy to implement using Markov Chain 
Monte Carlo (MCMC) computational methods, and all estimation described in this report 
was carried out using the MCMC program WinBUGS (Spiegelhalter et al 2001). For 
more detail on the model discussed above and the software used to implement the model, 
see Appendix A. 
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CHAPTER 2: DATA AND ANALYSIS 
 

2.1 Data Preparation  
 
In a simple, tractable, world a statistical model fit to one set of data could immediately be 
applied to other data and situations without first verifying that the model represents the 
new situation. The bulk of experience with crash prediction models indicates however 
that this is not the case (Oh et al. 2003). It may be that the factors influencing crash 
frequency are the same on both two-lane highways and rural expressways, but a natural 
caution indicates that this should be verified empirically rather than naively assumed. In 
addition, once we have developed an in-house prediction model for Minnesota's rural 
expressway intersections, the computations needed to achieve our objectives (1) - (3) can 
be accomplished with relatively simple modifications of our model's code.  
 
Toward this end, personnel at the Minnesota Dept. of Transportation (Mn/DOT) 
identified 197 4-legged, two-way stop-controlled intersections on Minnesota rural 
expressways, and provided a text file containing images of the computerized records of 
crashes occurring at these intersections for the years 2000-2002. These were the same 
raw data used in Report #1 (Preston et al. 2004). Project personnel then transferred these 
crash records to an Excel spreadsheet, and computed counts of intersection-related 
crashes for each of these intersections. A crash was classified as intersection-related if it 
involved two or more vehicles and if it was not one of several excluded types, such as a 
run-off road, a head-on, or a collision with an animal. In addition, project personnel 
studied Mn/DOT's ADT maps to estimate major and minor approach ADTs for each 
intersection, viewed Mn/DOT's video log to count the number of driveways on each 
intersection's major approaches, and used aerial photographs to measure the degree of 
skew present on each intersection's minor approaches.  These measurements were also 
entered into the Excel spreadsheet, and a text file for input into statistical analysis 
software was prepared. 

2.2 Identification of High-Hazard Intersections 
 
As noted earlier, the IHSDM's two-lane highway model uses the natural logarithms of the 
major approach and minor approach ADTs, the number of access points, and a measure 
of an intersection's skew as the 'X' variables in equation (1).  As it turned out, very few of 
the rural expressway intersections had adjacent access points, and very few had skewed 
minor approaches, so that inclusion of both these variables in the statistical model 
produced an ill-posed problem. An initial analysis using maximum likelihood methods 
indicated that the model with access counts included had a (slightly) higher likelihood 
than the one using skew, so the skew variable was deleted from the model.  The program 
WinBUGS was then used to compute Bayes estimates of the regression model parameters 
(b0,b1,b2,b3), and these results are summarized in Table 1.  This table also includes, for 
comparison, the corresponding estimates from the IHSDM's two-lane highway model. 
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Table 1. Comparison of Parameter Estimates: IHSDM Two-lane Highway Model 
and Minnesota Rural Expressway Model 

      Bayes Estimates for MN  Rural Expressways 
Variable (parameter) IHSDM 2-lane Mean Stan. Dev. 2.5%-ile 97.5%-ile 
Constant (b0) -9.34 -8.98 0.99 -10.92 -7.05 
Log MajorADT (b1) 0.60 0.70 0.10 0.50 0.88 
Log MinorADT (b2) 0.61 0.56 0.06 0.45 0.68 
#Driveways (b3) 0.13 -0.19 0.13 -0.45 0.06 

 
 
As can be seen from Table 1, the coefficient estimates for Minnesota's rural expressway 
intersections are not dissimilar from those the IHSDM uses for two-lane highways. The 
large negative values for the constant parameters reflect the relative rarity of crashes. For 
example, the IHSDM model would predict exp(-9.34)=.000088 crashes per year when 
MajorADT=1, MinorADT=1 and #Driveways=0. The main difference between the 
models is in the coefficient for the number of driveways, which shows a weak negative 
effect for the rural expressway intersections, suggesting that intersections with fewer 
driveways tend to have higher expected crash frequencies. This association is probably 
not causal, but is more likely a reflection of good access management. Rural expressway 
intersections with higher volumes (and therefore higher crash counts) tend to have no 
adjacent driveways. 
 
As noted earlier, for each intersection it is possible to compute two estimates of its crash 
propensity, one reflecting what would be typical for rural expressway intersections with 
the similar ADTs and driveway densities, and one which attempts to allow for the 
intersection's unique features. The difference between these two estimates is arguably an 
indicator of the degree to which an intersection's crash-producing propensity is atypical. 
That is, intersections for which this estimated difference, which we will call excess 
crashes,  is positive tend to have more crashes than would be typical. As with any 
estimate there will be uncertainty as to the exact value of this difference but one way to 
flag potentially hazardous sites is to identify those for which it is highly probable that the 
estimated difference is positive. Technically, it turns out that Bayes estimates of the two 
expected crash frequencies, and their difference, are easily obtained using WinBUGS. 
Inspection of the WinBUGS output revealed five intersections for which the posterior 
probability that the crash excess was positive exceeded .975. Another way of interpreting 
this result is that, after considering the information provided by the data, the probability 
that any of these five intersections had no excess expected crashes was 0.025. This is a 
somewhat more stringent condition than was used to identify high-hazard sites via the 
critical rate method.  The locations of the five high-hazard intersections are shown in 
Figure 2, and information about them is given in Table 2.  
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Figure 2. Locations of the Five High-Hazard Intersections 
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Table 2. Five Potential High-Hazard Intersections 
 
Highway X-street Actual 

Crash 
Count 

Mean 
Typical 
Expected 
Crashes 
(mu.bar) 

Mean 
Expected 
Crashes 
(mu) 

Mean 
Excess 

Excess 
2.5%ile 

USTH 52 CSAH 14 40 12.5 35.6 23.1 12.8 
USTH 52 CSAH 9 15 5.0 11.8 6.7 1.9 
USTH 52 CSAH 47 20 9.6 17.8 8.2 1.3 
USTH 169 CSAH 11 13 3.6 9.2 5.6 1.6 
MNTH 65 177th 19 6.4 15.6 9.2 3.1 

 
The intersections in Table 2 are listed in order of their positions in the original Mn/DOT 
data file. To help interpret the results in Table 2, note that the first entry is the 
intersection of USTH 52 and CSAH 14, at which we counted 40 intersection-related 
crashes during the period 2000-2002. For a typical rural expressway intersection with the 
same ADTs and no driveways we would have expected only about 12.5 crashes (Mean 
mu.bar=12.5) during that period, but the estimated expected crash count for this 
intersection was 35.6 (Mean mu=35.6), for an expected excess of about 23.1 crashes. 
This value is an estimate and so has associated with it a degree of uncertainty, but the 
posterior probability that the excess is greater than 12.8 crashes is 97.5%, giving us good 
reason to believe that the crash frequency at this intersection is atypically high. Similarly, 
for the intersection of USTH 52 and Goodhue CSAH 9, 15 intersection-related crashes 
occurred during 2000-2002, and the expected crash frequency for this period was 11.8, of 
which 6.7 could be attributed to atypical features of this intersection. 
 
As part of the statistical analyses used to identify candidate locations for deployment of 
the IDS test, Mn/DOT provided our personnel with a list of 23 rural expressway 
intersections whose estimated crash rates were significantly higher than the common rate 
estimated for all rural expressway intersections (Preston et al 2004).  The five 
intersections listed in Table 2 above were all included in the original Mn/DOT list. That 
is, the hierarchical modeling approach identified a subset of the intersections on the 
Mn/DOT list. One intersection identified as a potential candidate for the IDS study site, 
the intersection of USTH 10 and Country Road 43 in Big Lake, came close to satisfying 
our criteria for inclusion in the high risk group. 

2.3 Estimating an Accident Modification Factor for IDS Deployment 
 
As indicated in the Introduction, our second objective was to develop a method for 
estimating the crash reduction attributable to the introduction of our IDS-based 
countermeasure. Long-running practice in traffic engineering has been to characterize a 
countermeasure's effect on safety using the accident modification factor (AMF), also 
known as an accident reduction factor, or a crash reduction factor, which takes the 
general form 
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AMF = (C w/o - Cw)/C w/o        (2) 
 
Where 
 
 C w/o = crash experience without the countermeasure, 
 Cw = crash experience with the countermeasure. 
 
The AMF can be usefully interpreted as the proportion of crashes prevented by the 
countermeasure.  Ideally, a simple comparison of crash experience before and after IDS 
deployment would be sufficient, but since the target intersection was selected in part 
because of its high crash count during 2000-2002, any conclusion based on comparing an 
after deployment crash count to a count including some of those years will be 
compromised  by regression-to-the-mean bias.  
 
To illustrate this, refer back to Table 2 which shows that during the years 2000-2002 the 
intersection of USTH 52 and Goodhue CSAH 9 had 15 intersection-related crashes, but 
the mean estimated three-year crash frequency, with no change in ADT, was only 11.8 
crashes. If we actually observed 11 crashes during the three-year period following the 
countermeasure and use Cw/o=15 and  Cw=11,  our estimated AMF would be 27%, even 
though the crash count during the after period was fairly close to what would be expected 
if the countermeasure had not been installed. This appearance of a 27% reduction would 
be due to the randomly high count of 15 crashes being followed by a more probable 
lower value. We can correct for this bias by using the mean three-year count of 11.8 as 
our estimate of Cw/o in which case our estimated AMF would be only about 7%.  
 
Complicating the situation even further is the fact that all the quantities appearing in 
equation (2) are random variables, and so our estimated AMF will be to some extent 
uncertain. It turns out that Bayes estimates of AMFs, which allow for all sources of 
uncertainty, are relatively easy to compute using Markov Chain Monte Carlo methods. 
Because the IDS has yet to be deployed we do not have an actual after implementation 
crash count at hand. It is however possible to identify a plausible range of values for this 
count and then to compute the Bayes estimate of the AMF for each value in this range. 
To this end we constructed two hypothetical scenarios, one where a crash count was 
available for a single year after deployment of the IDS, and one where a three-year after 
count was available. For both scenarios we assumed no change in major or minor 
approach ADT, or in the number of major approach driveways, during the after period. 
However, incorporating the actual changes in these variables when available would be 
straightforward. 
 
Figure 3 displays the WinBUGS code needed to compute Bayes estimates of the IDS 
modification factor at USTH 52 and Goodhue CSAH 9, assuming a three-year after 
count. As indicated in Table 2, in the absence of changes in traffic volume or the 
introduction of a countermeasure one would expect 11.8 crashes at this intersection 
during a three-year period, and the posterior standard deviation associated with this 
estimate (not listed in Table 2)  was 2.86. The prior uncertainty concerning the expected 
crash frequency was described using a normal distribution with mean (11.8) and standard 
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deviation (2.86) equal to the estimates computed for that site in our hierarchical model. 
(If one was uncomfortable with this normality assumption the output from WinBUGS 
could be used to identify a different, more plausible distribution.)   
 
The hypothetical three-year after counts range from 0 to 20 crashes, and the prior 
distribution for the AMF was uniform between -1 and 1. That is, prior to obtaining data 
on the crash reduction effect we assumed that the AMF could be anywhere between a 
100% increase and a 100% decrease with equal probability. A summary of the Bayes 
estimates for the AMFs is given in Table 3. 
 
 
Model amf 
# Estimated amfs based on hypothetical 3-year counts at selected site #62, USTH 52 & CSAH 9 
{ 
  for (k in 1:ny) { 
  musim[k] ~ dnorm(11.8,.122)I(0,) 
  amf[k] ~ dunif(amf.lo,amf.hi) 
   mupred[k] <- (1-amf[k])*musim[k] 
  ypred[k] ~ dpois(mupred[k]) } 
} 
Data   list(ny=11,ypred=c(0,2,4,6,8,10,12,14,16,18,20),amf.lo=-1,amf.hi=1) 
 

Figure 3. WinBUGS Code for Computing Hypothetical AMFs 
 
 
What Table 3 tells us is that if no intersection-related crashes occur at the target 
intersection for three years after deployment of the IDS (i.e. the after count equals 0) then 
the posterior mean for the AMF would be 0.90, with a 95% credible interval ranging 
between 0.60 and 0.99. (Credible intervals are the Bayesian equivalents of the traditional 
confidence intervals.) The posterior probability that the AMF is greater than zero (i.e. that 
a beneficial effect occurred) is 0.99. This is reasonable since in the absence of the 
countermeasure we would have expected 11.8 crashes during this period. On the other 
hand, if we observe 20 crashes during the after period the posterior probability that the 
AMF is negative would be 0.95 and this would be evidence that the IDS increased the 
frequency of crashes at the intersection. If we were to observe 10 crashes during the after 
period the AMF could, with 95% probability, be anywhere between -0.84 and 0.55 and 
the proper interpretation would be that our experiment provides no evidence for either an 
increase or a decrease in crashes attributable to the IDS. In essence, the entries in Table 3 
show that a three-year after count would probably be sufficient to detect a beneficial 
effect of 50% or greater, but that the estimate of the magnitude of this effect would be 
subject to a rather wide uncertainty range. 
 
 
 
 

 

11 



 

Table 3. Estimated AMF versus Hypothetical Three-Year After Count 
 
                  Summary of Bayes Estimates of AMF 
After Count Mean 2.5%-ile 97.5%-ile P[AMF > 0] 
0 .90 .60 .99 .99 
2 .70 .17 .95 .99 
4 .51 -.20 .86 .95 
6 .33 -.49 .77 .86 
8 .15 -.70 .67 .71 
10 0.01 -.84 .55 .54 
12 -.14 -.89 .46 .38 
14 -.27 -.93 .36 .24 
16 -.37 -.95 .25 .15 
18 -.46 -.97 .17 .08 
20 -.53 -.98 .08 .05 
 

2.4 Predicting Crash Reduction Effects of IDS Deployment 
 
The IHSDM predicts the crash reduction effects of countermeasures by first using the 
expected crash frequency model described in section 2.2 "Identifying High-hazard 
Intersections" to predict crash experience in the absence of countermeasures, and then 
multiplying this expected crash count by the countermeasure's crash modification factor 
to predict the crashes prevented by the countermeasure.  A limited set of AMFs is given 
in Harwood et al. (2000), and a method for estimating AMFs using data collected before 
and after implementation of a countermeasure is described in Hauer (1997). Because the 
IDS is a genuinely new countermeasure, no empirical assessment of its effectiveness 
exists and an estimate of its AMF must await deployment. On the other hand, if we 
assume that the IDS is deployed only at intersections showing atypically high crash 
counts, and that the effect of the IDS is to alleviate those features of an intersection which 
cause its crash experience to be atypically high, then the hierarchical model described 
above can be used to produce a plausible prediction of the effect of IDS deployment. That 
is, if the predicted effect of the IDS is to eliminate 'atypical' crashes, then the difference 
between an intersection's expected crash frequency and the expected frequency at a 
similar 'typical' intersection is an estimate of the IDS reduction effect. 
 
The scenario we envisioned was that an IDS would be deployed at each of the five 
intersections listed in Table 2, and left in place for a period of 15 years. To allow for 
growth in traffic during this time, we noted that the number of licensed drivers in 
Minnesota increased from about 2.77 million in 1980 to about 3.69 million in 2001, 
which corresponds to a growth rate of about 4.2% every three years (Minnesota DPS 
2002). The 15-year forecast period was divided into five 3-year blocks and the 4.2% 
growth factor was applied to each intersection's ADTs to produce forecasted future 
volumes. Forecasted expected three-year crash counts, with and without the IDS, were 
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then computed for each 3-year time slice and simulated crash counts were then generated 
as Poisson outcomes, as explained in Appendix A.   
 
In addition, the observed intersection-related crashes at the five candidate intersections 
were classified as to severity level, and these results are displayed in Table 4. The injury 
severity categories are the standard ones appearing on the Minnesota Accident Report 
Form, where K denotes a fatality, N denotes a property-damage-only crash, and A-C 
denote non-fatal injuries in order of decreasing severity.  Predicted crashes were then 
assumed to be distributed randomly across severity categories using the same proportions 
generating the Table 4 data so that predicted reductions by severity category could also 
be computed.  As before, these computations are relatively easy to implement using 
WinBUGS, and Table 5 shows the results. 
 
 

Table 4. Counts of Intersection-Related Crashes by Injury Severity Category at the 
Five 'High-Hazard' Intersections 

 
  Injury Severity Category (from Accident Report) 
Highway X-street K A B C N 
USTH 52 CSAH 14 2 2 7 11 18 
USTH 52 CSAH 9 0 1 7 5 2 
USTH 52 CSAH 47 2 2 7 4 5 
USTH 169 CSAH 11 1 0 5 3 4 
MNTH 65 177th 0  2 5 2 10 
Totals 5 7 31 25 39 
 
 

Table 5. Crash Reductions Predicted to Result from IDS Deployment at Five 'High-
Hazard' Intersection, 15-year Forecast Horizon 

 
  Mean Reduction Reduction Mean Reduction by Severity
Highway X-street Reduction 2.5%-ile 97.5%-ile Fatal Injury PDO 
USTH 52 CSAH 14 134.3 67 211 7.4 78.1 48.8 
USTH 52 CSAH 9 39.5 6 81 2.1 23.0 14.3 
USTH 52 CSAH 47 48.4 0 104 2.7 28.1 17.6 
USTH 169 CSAH 11 32.9 4 69 1.8 19.2 12.0 
MNTH 65 177th 53.3 12 102 2.9 31.1 19.3 
Totals 308.4 200 427 16.9 179.5 112.0 
 
 
So what can we learn from Table 5? Looking at the row for USTH 52 and CSAH 9, if the 
effect of the IDS-based countermeasure is to make the crash propensities at this 
intersection similar to those at similar typical intersections, then over a period of 15 
years, with an annual growth rate in traffic volume of about 1.4% (equivalent to 4.2% 
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over three years), we would expect the IDS countermeasure to prevent about 40 crashes, 
of which about 2 would have fatal injuries, and 23 would have some degree of non-fatal 
injuries. Allowing for uncertainties in the estimated crash-model parameters and for the 
fact that the actual 15-year crash count will be a random outcome, the 15-year crash 
reduction of this intersection would quite probably be between 6 crashes and 81 crashes. 
A similar interpretation can be given to the other rows of Table 5, and our best estimate 
of the total 15-year crash reduction at these five intersections is about 308 crashes 
prevented. 
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CHAPTER 3: OLDER DRIVER ISSUES 
 
A Road Safety Audit conducted on MNTH 52 (Preston and Rasmussen 2003) suggested, 
among other things, that older drivers might be over-represented in intersection crashes 
along this highway.  Preliminary investigation of age distribution at MNTH 52 and 
Goodhue CSAH 9 suggested that older drivers were over-represented in crossing-path 
crashes (Preston et al 2004).  National statistics indicate that crash involvement is highest 
for drivers aged 15-44, but  when one attempts to control for the fact that drivers in these 
age groups often drive more miles, a plot of crash involvement per mile driven versus age 
tends to show a U-shaped relationship, with younger and older drivers having higher 
involvement rates (TRB 1988). With regard to intersection-related crashes, independent 
estimates of driver exposure by age are difficult to come by, but induced exposure 
methods appear to suggest again a U-shaped relation between age and crash risk (Maleck 
and Hummer 1986).  
 
The final objectives of the statistical modeling effort were to identify rural expressway 
intersections where older drivers appear to be over-involved, and to test the hypothesis 
that older drivers tend to be over-involved in intersection crashes along USTH 52. The 
ages of drivers involved in crashes are included in Minnesota crash records, so if it were 
possible to obtain estimates of ADT broken down by driver age, a statistical modeling 
approach similar to that used for all drivers would be feasible. In practice however age-
specific estimates of ADT are almost always unavailable, and this forced us to rely on the 
less direct induced exposure approach.  
 
The assumptions and a statistical theory for induced exposure methods have been 
developed in some of our earlier papers (Davis and Gao 1993, Davis and Yang 2001) and 
are summarized in Appendix A of this report. The basic idea however is that in a majority 
of two-vehicle crashes it is possible to identify one driver as being at-fault while the other 
is a victim. If the victim drivers are selected randomly from the population of drivers 
using an intersection, then the proportion of victim drivers in an age group is an estimate 
of the proportion of drivers in that age group using that intersection. The estimated victim 
proportions can then be combined with the estimated proportions of at-fault drivers in age 
groups to obtain estimates of relative risk, which is the ratio of the probability a driver in 
one age group has a crash to the probability a driver in a different age group has a crash. 
More specifically, if 
 
 λo = crash rate for older drivers 

λc = crash rate for comparison drivers 
eo = exposure for older drivers 
ec = exposure for comparison drivers 

 
we can define the relative risk for older drivers as simply the ratio of the crash rate for 
older drivers to the crash rate for comparison drivers 
 
 ∆ = λo/λc         (3) 
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and we can define the relative exposure for older drivers as 
 
 r = eo/(eo+ec).          (4) 
 
The relationship between relative risk and relative exposure is a bit complicated (see 
Appendix A) but Davis and Gao (1993) have shown how to compute maximum 
likelihood estimates of these quantities from counts of crashes cross-classified by the 
ages of the at-fault and innocent drivers. Davis and Yang (2001) have described how the 
hierarchical modeling framework described in Chapter 2 can be applied to induced 
exposure models. 
 
The intersection-related crashes at each of the 197 rural expressway intersections were 
classified as to the ages of the at-fault and victim drivers. A driver was considered at-fault 
if one or more contributing factors were cited for that driver in the crash record, while a 
driver was considered the victim if the code for "No Clear Contributing Factor" was 
listed on the crash record. Crashes where both drivers or neither driver had contributing 
factors listed were deleted.  
 
Before proceeding we need to first define what we mean by an older driver. Nationally 
aggregated statistics, based on self-reported estimates of annual miles traveled, tend to 
show increased crash risk for drivers in the their 70s and older (TRB 1988; Williams, 
2003). When one attempts to look at intersection-related crashes or crashes involving gap 
selection judgements, estimating risk becomes more difficult.  If the national surveys also 
contained an item requesting the respondent to give the number of times he or she entered 
an intersection, it might be possible to compute nationally aggregated estimates of 
intersection crash risk. Such data are not available (and the relevance of national 
aggregates for assessing the risk at particular intersections is problematic, to say the 
least.)   
 
To date the only evidence relating crash risk at intersections to driver age comes from 
induced exposure studies using state-wide aggregation (Maleck and Hummer 1986; 
Mckelvey et al 1988; Stamatiadis and Deacon 1995, 1997). For example, Figure 12 in 
McKelvey et al (1988, p. 55) shows a slight increase in relative risk at rural intersections 
for drivers in the cohort centered at age 57.5 compared to that of the cohort centered at 
52.5. Similarly, Figure 6 in Stamatiadis and Deacon (1995, p. 454) shows a slight rise in 
relative risk at intersections for drivers aged 55-59 compared to drivers aged 50-54, as 
does Figure 4 in Maleck and Hummer (1986, p. 9), for drivers aged 55 to 64 involved in 
right-angle crashes. Probably the most striking result though is Figure 6 in Maleck and 
Hummer (1986, p. 10), where drivers aged 55-64 show a substantial increase in relative 
risk for left-turn crashes.  
 
Therefore, in the following analyses, a driver was considered Older if the age listed in the 
crash record was 56 or greater, and was considered Mid-aged if the listed age was 
between 25 and 55. The mid-aged drivers were used as the comparison group against 
which to assess the relative risk for the older drivers.  

16 



 

 
 
Table 6 shows counts of the intersection-related crashes cross-classified by the ages of 
the at-fault and innocent drivers, for all 197 intersections. For example, 108 crashes had 
an older driver as the at-fault party and a mid-aged driver as the innocent party, while in 
22 crashes both the at-fault and innocent parties were older drivers. As shown in 
Appendix A, we can compute an aggregate estimate of the relative risk to older drivers 
from the marginal totals of this table, as 
 

13.2
)75)(241(
)296)(130(ˆ ==∆        (5) 

 
An approximate 95% confidence interval for this estimate would be (1.52, 2.99). If the 
crash risk were equal for the two driver groups the relative risk would equal 1.0 so it 
appears that the older drivers are over-represented in the at-fault group. However, this 
aggregate statistic gives us no way to determine if older drivers are over-represented at 
particular intersections.  
 

Table 6. Cross-Classification of Crashes by Age of At-Fault and Victim Drivers 
 
          Age of Innocent Driver 
  Mid-Aged Older Total 

Mid-Aged 188 53 241 
Older 108 22 130 

Age of At-Fault 
Driver 

Total 296 75 371 
 
 
A hierarchical model similar to that developed in the preceding sections, where relative 
risk and relative exposure were both allowed to vary over intersections due to unobserved 
factors, was formulated and coded for WinBUGS. Basically, the typical expected relative 
risk at site k takes the form 
 

)exp( 3,32,21,10 kkkk XbXbXbb ++++=∆      (6) 
        
 
where 
 
Xk,1  =logarithm of major approach ADT, 
X k,2 = logarithm of minor approach ADT, 
X k,3 = driveway density, 
b0,…,b3 denote parameter vectors (to be estimated). 
 
As with the model described in Chapter 2, the actual relative risk at site k is then modeled 
as a function of the typical relative risk given in equation (6) and a site-specific random 
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effect, reflecting the operation of unobserved, site-specific factors. Bayes estimates of the 
generalized linear model's coefficients, along with the relative risk for each of the 197 
intersections, were computed using WinBUGS.  
 
Table 7 displays estimation summaries for the b1,b2,b3 as well as for the model's over-
dispersion parameters and the mean relative exposure for older drivers. Looking first at 
the regression model coefficients we can see that the 95% credible interval for b1 is 
bounded by -0.56 and 0.24, suggesting that differences in major ADT have little effect on 
the relative risk to older drivers.  A similar interpretation can be given to the coefficient 
b3, indicating the differences in driveway density also have little influence on relative risk 
to older drivers. The posterior probability for b2 on the other hand is concentrated almost 
entirely to the right of zero, suggesting that higher traffic volumes on the minor 
approaches are associated with increased relative risk to older drivers.  
 
Next, as we've pointed out earlier, over-dispersion reflects the presence of unobserved, 
site-specific factors that affect relative risk and/or exposure. The induced exposure model 
has been parameterized so that low values of an over-dispersion parameter indicate 
substantial between-site variability while large values of an over-dispersion parameter 
indicate little between-site variability not already accounted for by observed differences 
in ADT or driveway density. Looking at the over-dispersion parameters m1 and m2, we 
see that the parameter reflecting intersection to intersection variability in relative risk 
(m1) appears to have a relatively low value (between about 1.4 and 28 with posterior 
probability 0.95), while that reflecting intersection-to-intersection variability in the 
relative frequency of older drivers (m2) is relatively large. The high value for m2 tells us 
that the fraction of older drivers in the victim group tends to be fairly stable across 
intersections, at around 20%, with little detectable difference across the intersections.  
The low value for m1 coupled with the high value for m2 then tells us that the fraction of 
older drivers in the at-fault group tends to vary substantially over intersections.  
 

Table 7. Parameter Estimates for Induced-Exposure Model 
 
 Estimation Summary 
Parameter name (variable) Mean 2.5%-ile 97.5%-ile 
b1 (log major adt) -.18 -.56 .24 
b2 (log minor adt) .25 -.02 .52 
b3 (# driveways) -.31 -.97 .23 
m1 (risk overdispersion) 6.1 1.4 27.8 
m2 (exposure overdispersion) 199 16 1281 
r.bar (mean relative exposure) .20 .17 .25 
 
 
To identify which intersections appear riskier for older drivers, recall that a relative risk 
of 1.0 can be interpreted as indicating that the crash propensities of older and mid-aged 
drivers are about equal, while a relative risk greater than 1.0 indicates that the older 
drivers may be at risk. Bayes estimates of the relative risk were computed for each of the 
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197 intersections, and those for which the probability of relative risk exceeding 1.0 was 
greater than 0.975 were identified as potentially high risk sites for older drivers.  It turned 
out that 12 intersections satisfied this condition, and these are listed in Table 8.  
 
 

Table 8. Intersections Showing Over-representation of Older Drivers 
 
   Estimated Relative Risk 
Site ID # Highway X-street Mean 2.5%-ile 97.5%-ile 
1 USTH 2 CSAH 17 3.4 1.1 8.1 
56 USTH 52 CSAH 14 3.8 1.6 7.9 
61 USTH 52 TH 57 3.1 1.1 6.8 
62 USTH 52 CSAH 9 2.8 1.1 6.1 
70 USTH 52 CSAH 66 2.9 1.1 6.7 
73 USTH 52 CSAH 48 3.1 1.1 6.6 
88 USTH 61 TH 42 4.0 1.1 9.8 
94 USTH 65 CSAH 45 4.3 1.0 11.8 
124 USTH 169 TH 27 4.2 1.5 9.7 
129 USTH 212 TH 5 3.4 1.0 8.1 
132 USTH 212 Tacoma Ave 3.1 1.1 7.1 
148 MNTH 34 CSAH 11 4.0 1.2 9.8 
 
Interestingly, five of the 12 intersections appearing in Table 8 are on USTH 52. Since 
USTH 52 intersections make up only 23 of the 197 intersections in our population it 
appears that USTH 52 is over-represented in this set.  
 
Finally, we need to point out a caveat. In earlier applications of induced-exposure 
methods, using crashes at signalized intersections, it was reasonable to assume that at-
fault and victim drivers were relatively evenly distributed over an intersection's 
approaches. For two-way stop-controlled intersections however the majority of at-fault 
drivers enter from the minor approaches. If the proportion of older drivers on the minor 
approaches is different from that on the major approaches, older drivers will be appear to 
be over-represented in the at-fault group, but not necessarily because they have a higher 
crash rate. 
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CHAPTER 4: SUMMARY AND CONCLUSIONS 
 
Using crash, traffic and roadway data from 197 four-legged, two-way stop-controlled 
intersections on Minnesota's rural expressways, a statistical model for predicting the 
frequency of intersection-related crashes was developed. As with the IHSDM's model for 
two-lane highway intersections, both major and minor approach ADT were important 
predictors of crash frequency. A hierarchical Bayesian method was then used to identify 
those intersections whose crash frequency appeared to be atypically high compared to the 
general tendency in our sample. When compared to the more traditional critical rate 
method, the hierarchical model permits us to control for a wider range of systematic 
differences between intersections (in our model we controlled for separate effects due to 
major and minor approach ADT as well as for differences in driveway density) as well as 
allowing for the possibility of a nonlinear relationship between traffic volume and crash 
risk.  The five intersections so identified had also all been picked out in an earlier 
Mn/DOT analysis using the critical rate method, and included the IDS study site at the 
intersection of USTH 52 and Goodhue CSAH 9 (Preston et al 2004).  The criterion we 
used to identify potential high-hazard sites was more stringent than that used in the 
critical crash rate study, in part because we required significance at the 2.5% level instead 
of the 5% level, but mainly because the hierarchical model provides a more complete 
accounting of the uncertainty attached to the risk estimates. So it is not surprising that our 
list of high-hazard sites is a subset of the list produced by the critical rate analysis. 
 
We then turned to the question of estimating the crash reduction effect of the IDS-based 
countermeasure once it is deployed, and were able to determine that a three-year 
observation of crash experience after deployment should be sufficient to detect a crash 
reduction effect of 50% or greater.  This is where the hierarchical model has its greatest 
advantage, because it leads naturally to a method for estimating accident reduction effects 
that are not subject to regression-to-mean bias.  
 
Next we looked into predicting the potential crash reduction effects of a wider IDS 
deployment and determined that, on the assumption that the effect of the IDS-based 
countermeasure is to eliminate atypical crashes, one could expect a reduction of about 
308 crashes over a 15-year period at the five high-hazard intersection identified earlier.  
Finally, we looked at over-representation of older drivers in intersection-related crashes 
on rural expressways. Using an induced exposure approach we were able to identify 12 
intersections were older drivers appeared to be over-represented, and this group included 
five intersections located on USTH 52.  Interestingly, except for the intersections of 
USTH 52 with Goodhue CSAH 14 and 9, none of these intersections appeared on our list 
of over-all high hazard intersections. 
 
In conclusion, we are well-positioned to estimate the crash reduction effect of the IDS-
based countermeasure once it is deployed, and we have produced predicted crash 
reduction effects that can be used in an initial cost-benefit assessment.  If it turns out that 
the IDS countermeasure is especially effective in reducing older-driver related crashes, 
our induced exposure model provides an additional tool for identifying potentially 
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promising locations for deployment. Finally, we have illustrated how three of the 
important stages in safety improvement programming, identifying high-risk locations, 
estimating crash reduction effects from before-after studies, and predicting crash  
benefits, can be carried out in an integrated manner using Markov Chain Monte Carlo 
statistical methods. 
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APPENDIX A: TECHNICAL DETAILS OF THE MODEL 
AND ITS SOFTWARE IMPLEMENTATION 
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Hierarchical Crash Model 
 
Referring to Figure 1, the systematic component of intersection k's expected crash 
frequency is modeled using a log-linear model of the form 
 

)...exp(. ,1,10 mkmkk xbxbbbarmu +++=  
 
where xk,j refers to value of independent variable j at intersection k, and b0, b1, ..,bm are 
parameters to be estimated from data. For example, the prediction model used by the 
IHSDM for 4-legged, two-way stop-controlled intersections on two-lane highways has 
the form (Harwood et al, 2000) 
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where 
 
ADT k,1 = major approach average daily traffic at intersection k, 
ADT k,2 = minor approach average daily traffic at intersection k, 
NDk = number of driveways on major approach legs within 250 feet of intersection k, 
SKEWk = a measure of how skewed the minor approaches are at intersection k. 
 
The next step is to modify the systematic component of the expected crash frequency to 
allow for individual, unobserved features, and this is depicted in Figure 1 as the node 
muk, which takes as inputs the systematic component mu.bark, and a parameter that 
describes the variability of these latent components. Probably the easiest way to represent 
the action of this node is via 
 

kkk abarmumu .=  
 
where ak denotes a random variable with expected value equal to 1.0. In the statistical 
modeling done to support the IHSDM, the standard assumption has been that the latent 
components ak are distributed over the population of sites as independent, identically 
distributed gamma random variables. That is, they are assumed to have a probability 
density function of the form 
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which is the probability density function for a gamma random variable with expected 
value equal to 1.0. Here  ρ is a parameter governing the site-to-site variability in the 
random terms and Γ(.) denotes the gamma function.  
 
The final step in the hierarchical model is to allow for the fact that crash counts are not 
completely predictable even under fairly stable conditions. Letting the node Yk denote 
intersection k's actual crash count, this is assumed to be generated as a Poisson random 
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outcome with expected value muk. That is, the probability that one observes j crashes at 
site k is given by 
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Each site has in effect two random elements, its observed crash count Yk and the 
unobserved expected crash count muk, so the full probability model for intersection k 
consists of the product of the gamma density and the Poisson probability. Since the muk 
are unobserved, the marginal likelihood for the crashes counts Yk, as a function of only 
the regression parameters b0,.., bm and the dispersion parameter ρ, can be found by 
integrating out the muk, producing a negative binomial distribution for the observed crash 
counts. Maximum likelihood estimation for negative binomial models is presented in 
some detail by Lawless (1987), and routines implementing this are now available in 
statistics packages such as GLIM and S+. Given estimates of b0,..,bm and ρ, empirical 
Bayes estimates of the unobserved expected crash frequencies for each intersection can 
be computed via 
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where mu.bark is computed using the generalized linear model and the estimates for 
b0,..,bm.  
 
A weakness of this empirical Bayes approach is that it treats the model parameters as if 
they were known with certainty, when in fact all we have are more or less uncertain 
estimates. In principle one might appeal to asymptotic normality of maximum likelihood 
estimates and then develop a delta-method approximation for the distribution of the 
empirical Bayes estimates, but to date no one seems to have pursued this very far.  
 
One problem that arises is that the estimates of the dispersion parameter ρ tend not to be 
as well-behaved as those of the regression parameters, so the sample sizes needed to 
justify asymptotic normality can be prohibitively large. Alternatively, one might adopt a 
Bayesian approach by first specifying prior distributions for the model's parameters and 
the unobserved ak, and then using Bayes theorem to compute posterior distributions. 
Closed form expressions for certain integrals that arise are not available, necessitating a 
reliance on numerical approximations. Christiansen and Morris (1997) describe an 
approach based on some clever approximations of the desired posterior distributions.  
 
Arguably the major advance in statistical computation during the last decade has been the 
development of Markov Chain Monte Carlo (MCMC) methods for generating pseudo-
random samples from the desired posterior distributions. Bayesian computations for 
hierarchical models like the one described here turn out to be especially easy to 
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implement using the MCMC code WinBUGS (Spiegelhalter et al 2001). A code file 
implementing this model can be found at the end of this Appendix. 
 
 
Induced Exposure Model 
 
Traditional estimates of crash risk involve comparing a measure of crash occurrence, 
usually a count of relevant crashes, to some measure of opportunity to be involved in 
crashes, called exposure. For example, the critical rate method used to identify potentially 
high risk intersections requires estimates of the total number of vehicles entering an 
intersection during the time period of interest. But while estimates of total entering 
vehicles can be obtained by simple traffic counts, estimates of exposure disaggregated by 
driver age tend to be hard to come by, especially for spatially disaggregated locations. 
One partial solution to this problem is to employ an induced exposure analysis, where the 
fraction of victim drivers in two-vehicle crashes is used to estimate relative exposure. 
This is not a new idea (e.g Haight 1970), and Davis and Gao (1993) have described the 
basic statistical model which underlies application of induced exposure methods. The 
starting point is the assumption that at-fault drivers have crashes according to the 
standard Poisson model, where expected crash frequency for a driver age group is equal 
to the product of an age-specific crash rate and an age-specific exposure. The next 
assumption is that the victim drivers are selected at random, i.e. there is no inherent 
tendency for drivers in one age group to appear as victims compared to drivers in other 
age groups. These assumptions together imply that when we cross-classify crashes by the 
ages of the at-fault and victim drivers, the number of crashes in each cross-classification, 
at an intersection (call it k), have a multinomial distribution of the form 
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and nk is the total number of crashes appearing in the table. Further, if we let ∆k denote 
the relative risk for older drivers at site k, then this quantity is determined from the above 
via the relationship 
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It then follows that the maximum likelihood estimator (MLE) for ∆k is given by 
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and for nk suitably large, the distribution of the natural logarithm of this MLE is 
approximately normal with mean equal to log(∆k) and a variance which can be estimated 
using the formula 
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Interestingly, the multinomial induced-exposure model implies that the probability a 
crash falls in one of the cells of the induced exposure table is equal to the product of the 
table's row and column probabilities. That is, for the assumption of random victim 
selection to be valid the induced-exposure table should show independence of rows and 
columns. This is easy to test using the standard cross-product statistic, and for Table 6 
this test yields 
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We would not reject the hypothesis that the rows and columns are independent, consistent 
with what one would expect if victim selection were random. When nk is small, as will 
typically be the case for a single intersection, the asymptotic approximation will be 
suspect, while if either xk or yk equals nk or 0, the variance of the MLE will be undefined. 
A hierarchical model similar to that used for all crashes can be developed by assuming 
that the relative risk and relative exposure at an intersection have both a systematic 
component and a random component. The systematic component for relative is risk is 
assumed to vary over sites according to the model 
 

)exp( βkk X=∆           
 
where 
 
Xk  denotes a vector of observed site characteristics, 
β denotes parameter vectors (to be estimated). 
 
The relative exposures at the individual sites (defined in equation (4) of the main report) 
are assumed to be randomly distributed about a common mean r.bar. The individual ∆k 
and rk are then assumed to be independent gamma random outcomes, with dispersion 
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parameters m1 and m2, respectively. The parameters governing the multinomial 
distribution at intersection k can then be recovered via 
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Bayes estimates were computed using WinBUGS, with noninformative priors assumed 
for the β parameters, while the prior for the dispersion parameters was Christiansen and 
Morris's shifted Pareto distribution 
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WinBUGS Code for Estimating Hierarchical Crash Model 
 
model hierarchical Bayes 
# Poisson-gamma model 
# deviation from mean X matrix 
# example reduction effects/ 3 year hypothetical count 
# USTH 61 & Orrin (#86) deleted 
# alternative gamma specification 
{ 
 
# Poisson-gamma data model 
m1 <-mean(X[,1]) 
m2 <- mean(X[,2]) 
m3 <- mean(X[,3]) 
for (i in 1:N) { 
mubar[i]<-exp(beta0+beta1*(X[i,1]-m1)+beta2*(X[i,2]-m2)+beta3*(X[i,3]-
m3)) 
# mubar[i] <- exp(beta0 +beta1*X[i,1]+beta2*X[i,2]) 
# b[i] <- r/mubar[i] 
# mu[i] ~ dgamma(r,b[i]) 
e[i] ~ dgamma(r,r) 
mu[i] <- e[i]*mubar[i] 
Y[i] ~ dpois(mu[i]) 
excs[i] <- mu[i]-mubar[i] } 
 
beta0fed <- beta0-beta1*m1-beta2*m2-beta3*m3 
 
# Priors for parameters 
beta0 ~ dnorm(0,1.0E-06) 
beta1 ~ dnorm(0,1.0E-06) 
beta2 ~ dnorm(0,1.0E-06) 
beta3 ~ dnorm(0,1.0E-06) 
rx ~dpar(1,1) 
r <- rx-1 
a <- 1/r 
} 
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WinBUGS Code for Fitting Induced Exposure Model 
 
model IDS_index4 
# older driver vs mid-aged drivers 
#  Y table order guilty-victim: m-m, m-o, o-m, o-o 
# site #86 USTH 61 and Orrin deleted 
{ 
beta0~ dnorm(0.0, 1.0E-06) 
beta1~ dnorm(0.0, 1.0E-06) 
beta2 ~ dnorm(0.0,1.0E-06) 
beta3 ~ dnorm(0.0,1.0E-06) 
 
r.bar ~ dunif(0,1) 
m1x ~ dpar(1,1) 
m1 <- m1x-1 
m2x ~ dpar(1,1) 
m2 <- m2x-1 
 
for (k in 1 : K)  { 
delta.bar[k]<-exp(beta0+beta1*(A[k,1]-mean(A[,1]))+beta2*(A[k,2]-
mean(A[,2]))+beta3*ND[k]) 
b1[k] <- m1/delta.bar[k] 
delta[k] ~ dgamma(m1,b1[k]) 
a2[k] <- m2*r.bar 
b2[k] <- m2*(1-r.bar) 
r[k] ~dbeta(a2[k],b2[k]) 
p[k] <-(delta[k]*r[k])/(delta[k]*r[k] +(1-r[k])) 
 
pm[k,1]<-(1- p[k])*(1-r[k]) 
pm[k,2]<- (1-p[k])*r[k] 
pm[k,3]<- p[k]*(1-r[k]) 
pm[k,4]<- p[k]*r[k] 
n[k]<- sum(Y[k,1:I]) 
Y[k,1:I]~ dmulti(pm[k,1:I],n[k])  
 
 } 
} 
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