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Abstract— This paper presents two fast and accurate methods to 
estimate the lower bound of supply voltage scaling for standby 
SRAM/Cache leakage power reduction of an SRAM array. The 
data retention voltage (DRV) defines the minimum supply 
voltage for a cell to hold its state. Within-die variation causes a 
statistical distribution of DRV for individual cells in a memory 
array, and cells far out the tail (i.e. >6σ) limit the array DRV for 
large memories. We present two statistical methods to estimate 
the tail of the DRV distribution. First, we develop a new 
statistical model based on the connection between DRV and 
Static Noise Margin (SNM). Second, we apply our Statistical 
Blockade tool to obtain fast Monte-Carlo simulation and a 
Generalized Pareto Distribution (GPD) model for comparison. 
Both the new model and the GPD model offer a high accuracy 
(<2% error) and a huge speed-up (>104× for 1G-b memory) over 
Monte-Carlo simulation. In addition, both models show a very 
close agreement with each other at the tail even beyond 7σ. 

I. INTRODUCTION 
Standby leakage power can dominate the total power 

budget of memories or SoCs that dedicate increasingly large 
percentages of die area to memory. Supply voltage (VDD) 
scaling is an effective approach for leakage power savings 
during SRAM/Cache standby mode [1]. Besides the direct 
effect of smaller voltage on power saving, VDD scaling reduces 
both sub-threshold leakage current (due to drain induced 
barrier lowering (DIBL)) and gate leakage. Lowering VDD as 
far as possible maximizes leakage power savings. However, 
lowering VDD too far results in data loss. The data retention 
voltage (DRV) is the lower bound of the standby supply 
voltage that still preserves data in the bitcells [2].  

Within-die device variation (i.e. mismatch) creates a 
statistical distribution of the DRV for the individual cells in a 
memory array. Monte-Carlo (M-C) simulation is a well-
known existing approach that can provide the worst-case DRV 
for an SRAM array given the array size and the statistical 
parameters of the device variation. However, M-C simulations 
can be quite time-consuming for large arrays requiring long 
tail simulations (i.e. >6σ). Fig. 1 is the histogram of a 5k-point 
M-C simulation showing the DRV for SRAM bitcells that 
have normally-distributed within-die threshold voltage (VT) 
variation. Since the DRV is not distributed normally, small 
Monte-Carlo simulations cannot be extrapolated using a 
normal distribution to model the tail. 

 
An alternative approach is to develop a theoretical model 

of the DRV distribution. Although [2] provides an analytical 
model for the DRV of an individual cell, a model of the DRV 
distribution is necessary for determining the DRV of a full 
SRAM array, because the worst case tail of the DRV 
distribution determines the lower bound of VDD for the whole 
SRAM. In this paper, we propose a new statistical model for 
the DRV distribution that allows us to estimate the array-wide 
DRV for an SRAM array of arbitrary size. We base our 
method on the connection between DRV and static noise 
margin (SNM). We also show that the Statistical Blockade 
tool [3], which is designed to model the behavior on statistical 
tails, produces an accurate estimation for the tail of the DRV 
distribution. 

The rest of the paper is organized as follows: Section II 
discusses new insight regarding the data dependency of DRV 
for a single cell and the connection between DRV and SNM. 
Section III gives the details of our statistical method to 
estimate the worst DRV based on SNM and compares our 
models with M-C simulation. Section IV presents approaches 
to improve DRV for memories in deeply scaled technologies. 
The conclusions are drawn in Section V. 

II. DRV AND SNM  
This section describes the connection between DRV and 

SNM for a 6T SRAM cell. The DRV is the minimum VDD for 
retaining the cell data. Fig. 2 shows that VDD scaling can 
cause failure in two ways. If the cell is balanced (symmetric), 
then its internal nodes Q and QB converge to a metastable 
point as a result of degraded gain, making the ‘0’ and ‘1’ 
states indistinguishable (Fig. 2a). In contrast, an imbalanced 
(asymmetric) cell will flip to its more stable state (Fig. 2b), 
causing it to have a higher DRV than the balanced one. This 
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Fig. 1: The histogram of DRV from a 5k-point M-C simulation of bitcells 
having within-die VT variation. 



data dependence of the imbalanced cell can be better 
understood by examining SNM, the well-known measure of 
the maximum amount of voltage noise that a cell can tolerate 
[4]. Fig. 3 shows the butterfly curves that illustrate SNM 
(length of the side of the embedded square) for the two 
bitcells from Fig. 2. Fig. 3a shows that symmetry allows the 
cell to remain bistable to lower VDD. Furthermore, it becomes 
clear that the DRV equals the supply voltage at which SNM 
is equal to zero in a noiseless system. As shown in Fig. 3a, 
both SNM High (upper-left square) and SNM Low (lower-
right square) decrease symmetrically to zero, so the DRV is 
same regardless of the data stored in the cell. However, the 
stability of the imbalanced cell (and its DRV) strongly 
depends on the data pattern. For example, in Fig. 3b this 
particular imbalanced cell always has a larger SNM Low, and 
its SNM High decreases to zero at a lower VDD. Therefore, 
this imbalanced cell is more sensitive to VDD when Q=‘0’, 
and its DRV is set by this worst-case data value. 

It should be noted that when VDD is reduced to the DRV, 
all six transistors in the SRAM cell are in the sub-threshold 
region. The impact of different parameters on SNM for a sub-
threshold bitcell was shown in [5]. Because of the natural 
connection between SNM and DRV, DRV has similar 
dependencies. These include a nearly linear dependence on 
temperature, a relatively weak dependence on sizing, and a 
strong dependence on local variation (which causes the 
imbalanced cell scenario) [5]. Thus, we can exploit our 
understanding of SNM for sub-threshold bitcells to develop a 
model for DRV distribution. 

III. MODELING DRV FOR A FULL SRAM ARRAY 

A. Proposed New Statistical DRV Model Based on SNM 
Since the DRV occurs when SNM is equal to zero, our 

method is based on analyzing SNM then utilizing those 
results to model the DRV. 

Fig. 4 shows that the change of SNM High (SNMh) with 
VDD is almost linear before reaching the DRV point (i.e. 

SNM=0). Also, the slope of SNMh is approximately 
unchanged regardless of the VT mismatch in the cell 
transistors. Therefore, we assume the first-order differential 
coefficient ∂SNMh/∂VDD is a constant value ‘k’ which is 
independent of variations. We can approximate SNMh with 
the first order model (1) as in [2] 

 SNMh=k·VDD+c. (1) 

The coefficient ‘k’ is extracted from a simple dc-sweep 
SPICE simulation of a balanced cell. However, different 
mismatch values will change the offset value ‘c’ which 
implies that DRV does change with mismatch, so we need to 
quantify the impact of variation on SNM. 

Monte-Carlo simulation with random independent VT 
mismatch in all transistors indicates that both the SNM High 
and SNM Low are normally distributed [5]. Fig. 5 plots the 
SNM High distribution of the bitcell with varying VDD. 
Although the distributions have different mean (µ) values, 
their standard deviation (σ) values are almost constant. This is 
reasonable because σ of the SNM High distribution is 
determined by the VT mismatch, and changes in VDD do not 
alter VT mismatch. In addition, µ of SNM High at a certain 
VDD is approximately equal to the ideal value without 
mismatch, which can be obtained using (1). Therefore, if the 
SNM High at a specific supply V0 is a Gaussian with mean µ0 
and standard deviation σ0, then the SNM High at supply 
voltage x is also a Gaussian with mean µ=µ0+k·(x-V0)  and 
standard deviation σ=σ0. We can extract µ0 and σ0 from a 
small-scale Monte-Carlo simulation (e.g. 1.5k to 5k points). 
Since the SNM Low distribution has a similar statistical 
characteristic, it can also be estimated by using the same 
Gaussian as SNM High. 

The actual SNM is the minimum of SNM High and SNM 
Low, and its PDF and CDF can be approximated by the 
model in [5], which gives a good estimate of the tail of the 
SNM distribution. We expand on that model to calculate the 
probability that SNM is less than s at the supply voltage x, 
which can be expressed as  
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Fig. 2: DC sweep of (a) balanced and (b) imbalanced cells. 

Fig. 3: VTCs of (a) balanced and (b) imbalanced cells with varying VDD; 
VM is the trip point of the VTCs. 

0 65 100 200
0

65

100

200
(a)

V
M

Q (mV)

Q
B

 (
m

V
)

0 130 200
0

130

200
(b)

V
M

Q (mV)

Q
B

 (
m

V
)

Fig. 5: The distribution of SNM High for a cell with mismatch has similar σ 
value across different VDD values. 
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Fig. 4: SNM High versus VDD with VT mismatch in one transistor. 
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where erfc(·) is the complementary error function, and µ and 
σ are the mean and standard deviation of SNM High at that 
supply voltage x. Since the DRV occurs at SNM=0, the CDF 
of DRV is 

 ( ) ),0(1 xVSNMPxF DDDRV =≤−=  (3) 

By substituting (2) and the previous expressions of µ and σ 
related to µ0 and σ0, we can get the final CDF model of the 
DRV distribution:  
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   (4) 
We also provide the inverse CDF of the DRV distribution: 

 ( )( ) 00
1

0
1 2221)( Vxerfc

k
xFDRV +−−⋅= −− µσ  (5) 

where erfc-1(·) is the inverse function of erfc(·). Now we can 
get a fast estimate for the worst-case tail of the DRV 
distribution by using (5). Here is the procedure for applying 
our model: 

Step 1. Extract ‘k’ from a short dc-sweep of SNM vs VDD. 
Step 2. Extract µ0 and σ0 from a 1.5k to 5k-point M-C 

simulation of SNM High at VDD=V0 (we will 
comment in Section III-C on how to select V0). 

Step 3. Use (4) to find P(DRV ≤ voltage x) or  
Step 4. Use (5) to calculate the VDD that is necessary to 

ensure that P(DRV ≤ VDD) = x. 

B. Statistical Blockade Tool and  Statistical Tail Modeling  
Monte-Carlo simulation of phenomena such as array-wide 

DRV can take huge amounts of time. As the memory size 
increases and samples from far out the tail are required, this 
simulation delay becomes untenable. Our new Statistical 
Blockade (SB) tool [3] improves upon traditional M-C for 
simulating rare events. To reduce simulation time, the 
Blockade tool classifies the possible M-C samples prior to 
simulation and selects only a subset of them that are likely to 
appear on the tail for simulation. After simulating this subset 
of points, the tool identifies the true tail points and uses them 
to fit a Generalized Pareto Distribution (GPD) model to the 
tail [3]. This statistical model allows estimation of events 
even farther out in the tail of the distribution of interest. In the 
next section, we show how we used the SB tool to verify the 
statistical DRV model and how the GPD model produced by 
the tool closely matches the actual DRV distribution. 

C. Analyzing the Proposed DRV Models  
We used an industrial 90nm technology to test the DRV 

models. For the new model, we calculated k=0.425 from a 
DC sweep simulation as in Step 1. We selected 100mV as V0 
and obtained the parameters µ0=11.0mV and σ0=9.3mV from 
a 5k-point M-C simulation as in Step 2. Fig. 6 shows the 
semilog plot of the probability that SNM≤0 obtained from (2) 

(with s=0) with varying VDD. The curve confirms that 
reducing VDD leads to the higher probability of negative 
SNM, i.e., lower reliability of the SRAM. The dashed lines in 
the plot show that the probability that the SNM is less than or 
equal to 0 is 10-5 with a 170mV supply. In other words, the 
DRV for a 100kb memory is 170mV. In addition, we can also 
get the probability trend for a memory that must tolerate a 
certain amount of noise by setting s>0 (e.g. 20mV), which 
allows us to redefine the DRV to an SNM of 20mV.  

For a given-size memory, the worst DRV of the entire 
memory is actually determined by the failure probability 
constraint, (n+1)/m, where n is the number of erroneous bits 
that can be tolerated and m is the size of the memory in bits. 
For memories that can tolerate some bit errors (e.g. because 
they are correctable using redundancy or ECC), the worst 
DRV value will be lower and more leakage power saving can 
be achieved. For a fault-free memory (i.e. having no ECC), 
n=0. So the critical failure probability threshold is equal to 
1/m. Here, we will use this fault-free memory as an example. 
However, it is easy to extend the use of our statistical model 
to apply to a fault-tolerant memory. 

Fig. 7 shows the worst DRV for a fault-free memory 
calculated by our new statistical model (e.g. Step 4), and the 
GPD model generated by Statistical Blockade, and compares 
them with Monte-Carlo simulation. The size of the memory is 
represented by the corresponding sigma value (For example, 
6σ stands for a ~1G-b memory). Results from Equation (5) 
closely track the M-C results with an average error of 1.3% 
out to 6σ. M-C points greater than 5σ were simulated using 
the selected points from the Blockade tool classifier, thus 
allowing dramatically reduced simulation time. The GPD 
model produced by the Blockade tool also closely matches 
the M-C data with an average error of 1.0%. In addition, the 
two models match each other even at the 7~8σ tail, which is 
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Fig. 6: Probability of SNM≤0 versus VDD, using (2). 
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too time-consuming for using filtered Monte-Carlo. This 
matching of independently derived models increases the 
confidence that they are correct. We also show the estimation 
from Normal and Log-normal models that were based on a 
5k-point M-C simulation for comparison. The Normal model 
underestimates DRV while the Log-normal model 
overestimates it.  

The primary advantage of our new statistical model is a 
significant speedup compared with M-C for large memories. 
Specifically, we replace a M-C simulation of m-bits with a 
much smaller simulation of only a few thousand bits. So for a 
1G-b memory, our model provides a speed-up about 5 orders 
of magnitude. Fig. 8 shows that the average error of our 
model for estimating the tail of the DRV distribution is ≤3% 
for an M-C simulation of greater than 1.5k points in Step 2. 
Likewise, the sensitivity of our model to the parameters k, µ0, 
σ0 and V0 is quite small. Fig. 9 shows that the absolute 
average error rate of our model over M-C is <6% even when 
those parameters vary. The voltage V0 should be selected in 
the sub-threshold region, and Fig. 9(d) suggests that a choice 
of V0 closer to the DRV of an ideal cell decreases error. 

IV. DRV REDUCTION 
With technology scaling, variation becomes more and 

more severe, which leads to higher DRV and degrades 
leakage power saving. Therefore, improving DRV is 
important, and this section describes general techniques for 
decreasing the DRV of an SRAM design.  

Process P/N strength at the typical corner has a strong 
impact on SNM, and thus DRV, in the sub-threshold region 
where it is set by parameters like VT instead of mobility [6]. 
The effect of P/N strength mismatch as well as global process 
variation can be reduced by body biasing. To improve DRV, 
we should move a given process (e.g. using adaptive body 
biasing [7]) towards being balanced. Using larger transistors 
in the bitcell can also improve DRV. The standard deviation 
of the threshold voltage is proportional to (WeffLeff)-1/2 [8], 
where Weff and Leff are the effective FET channel width 
length. Larger transistor sizes lead to a reduction of the 
spread of local threshold voltage variation and thus reduce the 
impact of mismatch on DRV. Bitline leakage can impact 
DRV significantly when mismatch makes the access 
transistor at the ‘0’ side stronger. Bitline leakage reduction 
techniques, such as negative wordlines or floating bitlines, 
can be used with supply voltage scaling to reduce the impact 
of bitline leakage on DRV.  

V. CONCLUSIONS 
Local variation, or mismatch, has the largest impact on 

DRV and causes a spread of DRV for cells in the same 
SRAM array. The worst-case tail of the DRV distribution 
becomes the critical metric and sets the DRV for the whole 
memory. Based on the relationship between DRV and SNM, 
we proposed a statistical model to estimate the worst DRV 
value for an entire memory with a given size and error-
tolerant ability. Our new model is accurate to within a few 
percent even out to 6σ compared with Monte-Carlo 
simulation. And it shows a close agreement with the GPD 

model from the Statistical Blockade tool at the tail out to 8σ. 
Furthermore, it replaces computationally costly Monte-Carlo 
runs with a single small-scale M-C simulation. It thus offers a 
103~105× speedup compared with traditional Monte-Carlo 
simulation for a full memory with 1M~1G bits. The 
Statistical Blockade tool also produces an accurate statistical 
model of the DRV tail and offers a ~104× speed-up over 
Monte-Carlo for a 1G-b memory. For DRV tail estimation, 
our new model is about 10 times faster than the SB tool, 
which is a more generic approach for tail modeling.  
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Fig. 9: Average error rate of our new model over M-C changes slightly with 
the altering of (a) k, (b) µ0, (c) σ0 and (d) V0. 
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Fig. 8: Average error rate of our new model over M-C vs. the number of 
sample points for SNM High M-C simulation at V0. 


