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ABSTRACT

This paper improves upon an existing extreme precipitationmonitoring system that is based on the Tropical
RainfallMeasuringMission (TRMM)daily product (3B42) using new statisticalmodels. The proposed system
utilizes a regionalmodeling approach in which data from similar locations are pooled to increase the quality of
the resulting model parameter estimates to compensate for the short data record. The regional analysis
is divided into two stages. First, the region defined by the TRMM measurements is partitioned into
approximately 28 000 nonoverlapping clusters using a recursive k-means clustering scheme. Next, a statistical
model is used characterize the extreme precipitation events occurring in each cluster. Instead of applying the
block maxima approach used in the existing system, in which the generalized extreme value probability
distribution is fit to the annual precipitation maxima at each site separately, the present work adopts the
peak-over-threshold method of classifying points as extreme if they exceed a prespecified threshold.
Theoretical considerations motivate using the point process framework for modeling extremes. The fitted
parameters are used to estimate trends and to construct simple and intuitive average recurrence interval
(ARI) maps that reveal how rare a particular precipitation event is. This information could be used by policy
makers for disaster monitoring and prevention. The new method eliminates much of the noise that was
produced by the existing models because of a short data record, producing more reasonable ARI maps when
compared with NOAA’s long-term Climate Prediction Center ground-based observations. Furthermore, the
proposed method can be applied to other extreme climate records.

1. Introduction

The effective monitoring and measurement of ex-

treme precipitation events form an integral component

for understanding the underlying nature of extreme

climate phenomena and are crucial for evaluating future

changes and impacts of precipitation extremes. Many

recent studies have found a marked increase in the fre-

quency and intensity of extreme precipitation events

occurring in the last few decades (Donat et al. 2016; Min

et al. 2011; Alexander et al. 2006). Changes in the be-

havior of extreme precipitation phenomena are among

the most important aspects of global climate change,

with significant implications for human society and the

environment. For example, a study of the spatial het-

erogeneity of such changes found that regions where

high-intensity precipitation is less common are especially

prone to increases in precipitation totals and extremes

(Donat et al. 2016); unfortunately, the infrastructure in

these regions is particularly ill adapted to deal with ex-

treme precipitation. A rise in the frequency and severity

of extreme climate events also exacts a large human and

economic toll. For example, in October 2013, Typhoon

Fitow led to record winds and flooding throughout east-

ern China, shutting down roadways, schools, and hospi-

tals, and resulting in an estimated $10 billionUSD in total

damages (Typhoon Committee 2013). In mid-August

2016, a storm system in southern Louisiana resulted in

unprecedented precipitation and flooding, with some

areas receiving in excess of 280mm of rain in a single day.Corresponding author: Levon Demirdjian, levondem@ucla.edu
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The storm, which brought roughly 3 times as much rain

over Louisiana as Hurricane Katrina did in 2005, was

later described as being an event occurring with 0.2%

probability in any given year (Di Liberto 2016). More

recently, in October 2016 Hurricane Matthew ravaged

the western Atlantic Ocean, causing widespread power

outages and flooding and over $8 billion in total damage.

Hurricane Matthew led to the deaths of over 500 people

in Haiti alone, and was the strongest storm to hit the

country in over 50yr.

Satellite-based retrieval algorithms based on the mea-

surements made by the Tropical Rainfall Measuring Mis-

sion (TRMM) and the more recent Global Precipitation

Measurement (GPM) satellites have provided a rich source

of precipitation data at the global scale. The TRMM Mul-

tisatellite Precipitation Analysis (TMPA; Huffman et al.

2007) combines precipitation estimates from a variety of

satellite systems toprovide estimates at fine scales (3 hourly,

0.258 3 0.258) with quasi-global coverage (508S–508N);

moreover, TMPA estimates are available in both real-time

(3B42-RT) and post-real-time (3B42) data products.

One of the most common approaches for modeling

extreme values of hydrological variables is to adopt the

framework of statistical extreme value theory, where

precipitation intensities are assumed to be random draws

from an underlying probability distribution, and charac-

terizing extreme value behavior is equivalent to charac-

terizing the upper tail of this distribution (Leadbetter

et al. 1983; Katz et al. 2002; Shane and Lynn 1964; Chan

et al. 2014). Although physical models can quite accu-

rately describe the processes generating precipitation,

from a probabilistic point of view, the true data-

generating process producing precipitation intensities is

almost never known in practice. Thus, one typically uses a

set of data to select a distribution from a prespecified

family of distributions that describe the tail behavior. To

translate the estimates of the fitted model parameters to

terms easily understood by policymakers and the general

public, one can construct average recurrence intervals

(ARIs) that describe the rarity of precipitation events.

For example, a precipitation event with an ARI of 10yr

means that it occurs on average once every 10yr. The

amount of precipitation corresponding to the 10-yr ARI

is referred to as the 10-yr return level. Note that a 10-yr

ARI does not mean that the event will occur once every

10yr; it simply means that in any given year, there is a

10% probability of such an event occurring, and that the

occurrence of the event in one year does not preclude it

from occurring in another year.

Extreme value distributions (EVDs) like the gener-

alized extreme value (GEV) and generalized Pareto

(GP) distributions have commonly been used for the

modeling of precipitation and temperature extremes.

EVDs have been used to analyze trends and changes in

daily temperature (Brown et al. 2008), to project

changes in seasonal precipitation extremes using en-

sembles of climate models (Kharin et al. 2007; Fowler

and Ekström 2009), and to study the spatial and spa-

tiotemporal behavior of extreme precipitation (Wang

et al. 2017; Schindler et al. 2012). Serinaldi and Kilsby

(2014) used the GP distribution to model precipitation

extremes, focusing specifically on the impact of thresh-

old selection on the tail behavior of the fitted GP dis-

tributions. Using a point process model, Heaton et al.

(2011) discovered significant increases in the intensity of

extreme weather in parts of the contiguous United

States (CONUS). Schindler et al. (2012) modeled ex-

treme precipitation across the United Kingdom using an

inhomogeneous Poisson point process, accounting for

annual cycles using a sinusoidal model for the location

and scale parameters of the corresponding GEV distri-

bution. The point process approach to extreme value

analysis has also been used to detect trends in ozone

levels (Smith 1989), as well as to generate stochastic

climate scenarios to facilitate the modeling of pre-

cipitation extremes (Furrer and Katz 2008).

The extreme precipitation monitoring system pro-

posed in Zhou et al. (2015) uses measurements taken

from the TMPA data series to construct ARI maps for

the purpose of disaster preparation and monitoring.

While the TRMM extreme precipitation monitoring

system is a highly effective framework in general, the

statistical modeling of the system Zhou et al. (2015) used

suffers from several limitations. First, data from each of

the grid points in theTMPAdomain are considered to be

independent, an assumption that is questionable in

practice. Second, only the annualmaxima values for each

grid location are considered to be extreme, meaning that

only 16 data points are available for model fitting at each

location. As a result, there is a high degree of uncertainty

in the parameter estimates and resulting ARI maps.

Furthermore, the annual maxima approach cannot ac-

commodate multiple extreme events occurring during

the same year, for example, during different seasons.

In this paper, we propose an alternative methodology

for the statistical modeling of the TRMM extreme pre-

cipitation monitoring system that overcomes the above

limitations. In section 2, we outline the two stages of our

proposed algorithm, which first partitions the map into

disjoint clusters of similar sites and then fits an appro-

priate statistical model to the pooled data in each cluster.

In section 3, we present the results of our methodology

when estimating return levels and trends in extreme

precipitation and compare the return-level estimates with

those in Zhou et al. (2015). Section 4 demonstrates that

our procedure is general enough to be used to analyze
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extreme climate events other than precipitation; in this

case, we analyze surface air temperature data. We con-

clude with a discussion covering several possible exten-

sions of our work.

2. Methodology

To overcome the above-mentioned shortcomings of

the existing TRMM extreme precipitation monitoring

system, we implement a two-stage methodology that 1)

partitions the map into relatively homogeneous non-

overlapping regions, and 2) fits an appropriate statistical

distribution to the data from each of the regions from the

first stage. We are not proposing a completely novel

methodology for extreme value analysis but rather an

alternative framework formodeling the TRMMdata that

improves upon themethodology ofZhou et al. (2015).All

of the results in this paper are based on the TRMM 3B42

daily precipitation record (NASA GES DISC 2016).

a. Regional clustering

The idea of pooling similar sites into one common region

has a rich history in the hydrological literature (Cunnane

1989; Hosking et al. 1985; Hosking and Wallis 1988), has

also been utilized in precipitation analysis (Buishand

1991), and fits into the broader framework of regional

frequency analysis (Hosking and Wallis 1993, 1997).

There are two general approaches for clustering sites

in a regional analysis of extreme climate events. In the

first approach, regions are clustered based on their site

characteristics (e.g., locational and topographic in-

formation) and not at-site statistics such as the time se-

ries of annual maxima or threshold exceedances (i.e.,

Smithers and Schulze 2001; Satyanarayana and Srinivas

2008; Wang et al. 2017; Hosking and Wallis 1997). An

alternative framework for regional partitioning is to use

the data themselves as input into the clustering algo-

rithm. For example, the location similarity measures in

Bernard et al. (2013) andBador et al. (2015) use the time

series of annual maxima themselves as variables in the

clustering algorithm, the goal being to achieve maxi-

mum stability within each cluster. Despite the merits of

these clustering methods, there are two potential

drawbacks with this approach. First, using the same data

both to form the regional clusters and to test for ho-

mogeneity within those clusters will almost certainly

lead to a biased assessment of homogeneity (Hosking

and Wallis 1997). Furthermore, the clustering results

will change every time data are added to the model, for

example, if data from the GPM ‘‘IMERG’’ data product

were to be added to the statistical model.

With these considerations, here we adopt a clustering

scheme based on site characteristics using a recursive

k-means clustering algorithm with spatial location (lon-

gitude, latitude), topography [derived from 50 National

Geophysical Data Center (NGDC) TerrainBase Global

Digital Terrain Model (DTM), version 1.0 (Row and

Hastings 1994), and binned into 0.258 resolution], and the

90th percentile of precipitation values (all variables

standardized) as input to the algorithm. The k-means

algorithm seeks to partition the data (here, the map) into

k nonoverlapping groups (where the number of clusters k

is prespecified) so as to minimize the sum of squared

distances from each data point to its assigned cluster’s

center in feature space. See Hastie et al. (2009) for more

details about k-means clustering and its implementation.

Our recursive k-means algorithm first partitions the

map into approximately 30 large clusters; each cluster is

further partitioned into another set of 30 clusters, re-

sulting in about 900 clusters in total. This process is

repeated a final time for each of the resulting regions; if

there are fewer than 30 grid points in a particular region,

we skip this final step for that region. This entire process

yields 28 221 nonoverlapping regions, for an average of

about 20 grid points per cluster, which follows the

guidelines set forth in Hosking and Wallis (1997).

Figure 1 illustrates the idea behind the recursive clus-

tering scheme. Note that the region a given cluster

covers need not be contiguous, and one can weight the

inputs of the algorithm to adjust their relative impor-

tance. The results of our algorithm are displayed in Fig. 2

for the first two clustering operations.

Next, we implement the homogeneity test given in

Viglione et al. (2007) that combines the ‘‘Hosking and

Wallis heterogeneity statistic’’ (Hosking and Wallis

1997) with the bootstrap Anderson–Darling statistic

(Scholz and Stephens 1987) to decide if the distributions

of extreme precipitation intensity for different sites

within each cluster are the same. Of 28 221 regions,

21 112 were identified as being acceptably homoge-

neous. We did not correct for multiple testing since the

Hosking and Wallis statistic is not a formal test statistic,

and therefore the number of heterogeneous regions is

almost certainly overestimated. Since regional analysis

will produce more accurate statistical estimates than a

single-site analysis even with slight or moderate degrees

of homogeneity (Hosking and Wallis 1997), we do not

expect our results to be greatly affected by the hetero-

geneity in some clusters.

b. Statistical modeling

The next stage is to fit an appropriate probability

distribution to the pooled extreme precipitation data in

each resulting cluster. The estimated parameters of the

fitted distributions will then characterize the underlying

behavior of extreme precipitation events in that region.
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1) CHOICE OF AN APPROPRIATE DISTRIBUTION

We begin by reviewing some of the common ap-

proaches to extreme value modeling, motivating our

choice to adopt the point process (PP) framework to

model precipitation extremes.

To model extreme values, Zhou et al. (2015) utilize

the block maxima approach where only the largest an-

nual precipitation values are considered to be extreme,

and where the GEV distribution is used to model the

resulting extreme values. See Leadbetter et al. (1983)

for the theoretical justification for using the GEV dis-

tribution to model sample maxima. The GEV cumula-

tive distribution function is given by

F
GEV

(x;m,s, j)5

8

>

>

>

>

<

>

>

>

>

:

exp 2

�
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�2
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j

( )

if j 6¼ 0

exp
h

2exp
�

2
x2m

s

�i

if j5 0,

(1)

where m is the location parameter, s . 0 is the scale

parameter, and j is the shape parameter. Extreme value

modeling using block maxima to fit the GEV distribution

has widely been used for modeling hydrological extreme

data [see, e.g., Katz et al. (2002) and the references

therein], but has the obvious limitation that a large

number of observations are discarded, resulting in a short

data record. One approach for dealing with this limitation

of the block maxima approach is to adopt the peak-over-

threshold (POT) method, where observations are con-

sidered extreme if they exceed a prespecified threshold

(Todorovic and Zelenhasic 1970; Davison and Smith

1990). For large enough thresholds, the distribution of

threshold exceedances will approximately follow the GP

distribution (Leadbetter et al. 1983).

The framework of PP unifies the two approaches

discussed above [see Cox and Isham (1980) for the

general theory of point processes; some applications to

environmental modeling via the PP approach can be

found in Smith (1989) and Smith and Shively (1995)].

According to PP theory, the occurrence time and

FIG. 1. Illustration of recursive clustering algorithm. In this example, the CONUS is initially clustered into six distinct
regions (marked by different colors). Each region is further clustered (e.g., regionA is itself partitioned into five clusters);
this process is repeated for each resulting cluster (e.g., region B is further partitioned into seven clusters).

FIG. 2. Results of the clustering algorithm. Each color corresponds to a different cluster. While
there are over 28 000 distinct clusters, only those created during the first two stages are depicted.
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intensity of an event that exceeds a prespecified

threshold will approximately follow a Poisson PP (as-

suming the threshold is sufficiently large).Moreover, the

intensity function of the PP is parameterized by a GEV

(m, s, j) distribution corresponding to the annual max-

imum distribution of the observed process (Leadbetter

et al. 1983; Coles 2001). Using the PP framework offers

the advantage that its likelihood is parameterized in

terms of the GEV parameters in (1), since these pa-

rameters are invariant to the choice of threshold. Fur-

thermore, this parameterization allows nonstationarity

to easily be incorporated into themodel bymodeling the

GEV parameters as functions of time or other co-

variates. These parameters are often easier to interpret

than those of the corresponding GP models. See Coles

(2001) for more details regarding the equivalence of the

GP and PP approaches to extreme value modeling.

With the above considerations in mind, we proceed using

the PP framework. Several practical considerations must be

addressed before proceeding to fit a model to the data.

2) THRESHOLD SELECTION

The problem of selecting the threshold v in both the

GP and PP approaches is an instance of the bias–

variance trade-off commonly encountered in statistics;

a threshold that is too low may lead to model bias,

while a threshold that is too large may yield larger var-

iability in the resulting parameter estimates. See

Serinaldi and Kilsby (2014) for more on the issue of

threshold selection in POT models and methods to

correct for model bias due to short data records.

There are many reasonable, data-driven methods for

selecting the thresholdv. For instance, one can setv equal

to some large percentile of the data, for example, the 95th

or 99th percentile of daily precipitation values. Another

approach is to model the threshold as a time-varying

function (Coles 2001), for example, as a step function:

v(t)5v
i

if t 2 T
i
, (2)

where the Ti are disjoint sets indexing time, and where

the vi are predetermined constants. In our analysis, we

adopt the threshold function in (2) where we let Ti, i 5

1, . . . , 12 correspond to the different months and where

thevi in each region correspond to the 99th percentile of

precipitation values for the pooled data in that region

and month. Since the function in (2) has abrupt jumps at

the end of each component, we smooth the threshold

function in (2) via cubic splines.

3) SPATIAL AND TEMPORAL DEPENDENCE

Since extreme precipitation events tend to occur in

temporal clusters (e.g., spans of 2–3 days at a time), in

practice, the assumption of independent observations

underlying the PP framework will be violated. To deal

with this problem, we adopt a commonly used declus-

tering procedure that first partitions the threshold ex-

ceedances at each site into separate temporal clusters,

then only retains the cluster maxima for subsequent

model fitting. Here, we add data points (precipitation

values) to each temporal cluster until 5 consecutive

points fall below the (99th percentile) threshold. For

more details on this particular declustering scheme, see,

for example, section 5.3.2 in Coles (2001).

There is also the problem of likely spatial dependence

arising from the regional clustering procedure. It is not

always clear how to effectively incorporate spatial de-

pendence into an extreme value–based statistical

model. Even recent attempts at incorporating spatial

dependence into a regional analysis (see, e.g., Wang et al.

2014) require a subjective specification of a dependence

structure. Misspecification of this dependence structure

can introduce significant bias into the model, defeating

the purpose of modeling such dependence in the first

place. As pointed out in Katz et al. (2002) and Hosking

and Wallis (1988), intersite correlation introduces little

bias (if any) into point estimates of quantiles but results in

underestimation of the standard errors of model param-

eters. For these reasons, we do not attempt to model the

spatial dependence in this work.

4) MODEL FITTING

Several methods, such as maximum likelihood esti-

mation (MLE) (Ferguson 1996), L moments (Hosking

1990, 2006), and Bayesian estimation can be used for

model fitting and parameter estimation, though we

found the Bayesian framework to be too computation-

ally intensive for our analysis. When experimenting with

these different model fitting techniques, we found there

to be a minimal difference overall in the parameter es-

timates because of the relatively large sample sizes ob-

tained as a result of the clustering step. Furthermore, the

only way to obtain confidence intervals for parameter

estimates in the L-moment framework is to apply the

parametric bootstrap, making this approach relatively

computationally expensive. Because of these consider-

ations, we decided to proceed using the MLE approach.

All model fitting was carried out using the ‘‘extRemes’’

package available in the R computing environment

(Gilleland and Katz 2016).

5) NONSTATIONARITY

Under the assumption of stationarity in the time se-

ries, finding the return levels and recurrence intervals is

straightforward. In the case of nonstationarity, however,

the situation is more complicated since the properties of
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the underlying distribution vary with time (we take the

term ‘‘nonstationary’’ to refer to any statistical model

whose parameters are expressed as a function of time).

Risk forecasts based on stationary models will ignore

time-dependent changes in the distribution of extreme

precipitation intensity, leading to potentially unrealistic

estimates of risk. Several measures have been recently

proposed to address this difficulty: these include the

effective return level (Katz et al. 2002; Cooley 2013),

the design life level (Rootzén and Katz 2013), and the

nonstationary extreme value analysis (NEVA) frame-

work of Cheng et al. (2014). Here we have chosen to use

the effective return level, though the other two methods

can also be used depending on one’s goals.

As a first approximation appropriate to many loca-

tions, we model the location and scale parameters of the

PP model with the first-order sinusoidal functions:

m(t)5a
0
1a

1
sin

�

2pt

365:25

�

1a
2
cos

�

2pt

365:25

�

and

(3)

logs(t)5b
0
1b

1
sin

�

2pt

365:25

�

1b
2
cos

�

2pt

365:25

�

; (4)

the annual periodicity of these functions ensures that the

effective return levels need only be computed for each

day of the year (e.g., for t5 1, . . . , 365 as opposed to each

day in the entire time series), yielding one return-level

map for each day of the year for any specified ARI.

For thoroughness,we compared themodel definedby (3)

alone, that is, assuming time-dependent location parameter

and constant scale and shape parameters, with the model

defined by both (3) and (4). The latter model better ex-

plains the data in 74% of the regions according to both the

Akaike information criterion (AIC) and Bayesian in-

formation criterion (BIC) (it is worth noting that the AIC

can result in model overfitting, whereas the BIC, which

penalizes additional parameters, can lead to underfitting).

Furthermore, both the AIC and BIC indicate the non-

stationary model defined by (3) and (4) is superior to the

stationarymodel in 94%of the regional clusters. Therefore,

we adopt the nonstationary model defined by (3) and (4)

throughout the rest of the paper unless stated otherwise.

3. Results

In this section, we discuss the return-level and trend

estimates of the nonstationary PP model.

a. Return-level estimates

After fitting a distribution to the data in each region,

the resulting parameter estimates are used to construct

return-level maps that convey the rarity of precipitation

events. It is important to note that because of the short

data record, estimates of lower probability are subject

to high uncertainty. As remarked in Parzybok et al.

(2011), ARI results obtained from extreme value

analysis are expected to be reliable for twice the data

length. Since we are using 16 yr of TRMM data in our

analysis, the model will be able to identify a 32-yr ARI

event relatively accurately.

Some examples of the return-level maps for CONUS

are given in Fig. 3. Comparing the maps for 1 January

and 1 July reveals that there can be significant variability

in the severity of extreme events throughout the year.

For example, much of the West Coast has substantially

higher return levels in January than in July, whereas the

return levels are relatively stable among these two dates

for much of the East Coast. Our findings are consistent

with the results of Agel et al. (2015), who found that the

intensity on extreme days in the Northeast is relatively

invariant to the season.

Figures 4a and 4b show model diagnostic plots for the

data from the cluster containing Los Angeles. To pro-

duce theQ–Q plot in Fig. 4a, the parameters of the fitted

PP model are converted to the equivalent GP distribu-

tion (the quantiles are from threshold excesses of the

data). The Q–Q plot in Fig. 4a indicates a reasonable

model fit, with the empirical data distribution having a

thicker upper tail than the fitted distribution. The Z

plot in Fig. 4b is yet another gauge of model fit

tailored specifically for the PP model fit (Smith and

Shively 1995). Under the PP model, the waiting times

between events should follow a mean-one exponential

distribution. Therefore, the Z plot is a Q–Q plot that

compares the quantiles of empirical waiting times with

the quantiles of a mean-one exponential distribution.

Figure 4b does not indicate any obvious departures from

model assumptions.

Figure 4c shows some of the fitted return-level curves

for several extreme precipitation events that occurred in

Los Angeles from late 2004 to early 2005. The threshold

for extreme events varies from around 1mm in the sum-

mer (not surprising if one has ever spent a summer in Los

Angeles) to about 38mm in February. According to our

model, one event crosses the 100-yr return-level curve,

corresponding to an event that occurs in any given year

with about 1%probability (as always, one should interpret

such estimates after considering sampling variability, for

example, via confidence bands for the return-level curves).

In fact, the 2004/05 winter season proved to be one of the

wettest seasons on record for Los Angeles county.

Finally, to capture the uncertainty in the parameter

estimates used to make the return-level maps, we

calculate 95% normalized confidence ranges (NCR)

following the procedure in Zhou et al. (2015). For each
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region and for a given ARI (in years), we compute the

difference between the upper and lower limits of the

95% confidence interval for the return levels, then di-

vide this difference by the point estimate of the return

levels. The NCR offers the advantage that it is in-

dependent of units of measurement, and can thus be

used to compare regions with very different mean

precipitation. Smaller values of the NCR imply a more

confident estimate of the ARI; for example, an NCR

value of 1 corresponds to an ARI estimate that lies

within 100% of its magnitude with 95% confidence.

Since the return-level estimates vary according to the

time of year, we take a conservative approach and

compute the maximum value the NCR obtains during

the year. Figure 5 reveals that the majority of the re-

gions on the map correspond to high confidence esti-

mates (e.g., NCR, 1), both for 5- and 20-yr ARIs. The

general pattern in the NCR maps is very similar to the

results of Zhou et al. (2015), with low confidence re-

gions primarily located in exceedingly dry areas

such as northern Africa, the Arabian Peninsula, and

the southeast Pacific Ocean, though the values in the

5- and 20-yr NCR maps based on our methodology are

generally much smaller than those in Zhou et al. (2015).

As pointed out in Zhou et al. (2015), as the data length

of the TRMM-GPM precipitation records increases,

the degree of confidence in the ARI estimates will in-

crease even further.

b. Comparison with previous models

To put our results into perspective, we compare the

return-level maps resulting from our proposed meth-

odology with those based on the annual maxima–GEV

framework as in Zhou et al. (2015). Both methods are

applied to the same 3B42 daily precipitation data, but

because Zhou et al. (2015) did not use the data from

2013 in their analysis, we restrict the data for our model

to the 1998–2012 span to facilitate model comparisons.

As a benchmark for comparison, we also show the

return-level maps generated using NOAA’s Climate

Prediction Center (CPC) daily unified precipitation

dataset, which is a gauge-based, gridded, and quality-

controlled product derived from daily and hourly pre-

cipitation measurements from 1948 to 2012 in which

FIG. 3. (left) Two-year and (right) 25-yr return-level maps for the CONUS for (top) 1 Jan and (bottom) 1 Jul
resulting from the nonstationary PP model using the TRMM 3B42 daily product.
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measurements were taken from over 13 000 stations

(8000 before 2012) over the CONUS. The CPC data also

have the same 0.258 spatial resolution as the 3B42 data.

The CPC data were modeled using the single-site, an-

nual maxima–GEV framework in Zhou et al. (2015). To

make our results directly comparable to both of these

sets of return-level maps that were constructed under

the assumption of stationarity (implying a single return-

level map for the entire year), we also assume statio-

narity in our PP approach and thus do not allow for

seasonality in the rest of this section. That is, we take a

single threshold for the entire time series (the 99th

percentile of precipitation values) of a given region, and

assume that the location, scale, and shape parameters do

not vary with time or other covariates.

In Fig. 6, we compare the return-level maps corre-

sponding to ARIs of 2 and 25 yr produced using the

three different approaches stated above. The most

striking feature of these diagrams is the reduction in

noise when using the regional analysis over the ex-

isting single-site methodology. In the return-level

maps corresponding to an ARI of 25 yr, for example,

the return-level map based on the TRMM data using

the single-site block maxima approach is quite coarse,

with many isolated grid points exhibiting return

levels that are in sharp contrast to their surrounding

FIG. 4. Nonstationary PP model diagnostic plots and return-level plot for the cluster containing Los Angeles.
(a) The Q–Q plot. (b) The Z plot: The solid gray line is the regression fit of Zk on the expected values of the
observed order statistics under the model. The dashed orange line is a 458 reference line, and the dashed gray
lines are 95% confidence bounds. (c) Return-level plot: Fitted precipitation return levels in Los Angeles for
December 2003–May 2006. The orange solid, red solid, and green dashed curves correspond to the seasonal
threshold, the 2-yr return level, and the 100-yr return level, respectively. The 95% confidence bounds are
indicated by gray dot–dashed curves.
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neighbors. The short data record for this approach (15

data points per site) means that the GEVmodel fitting

procedure could not effectively separate the signal

from the statistical noise. Of course, it is possible that

some of the isolated ‘‘spikes’’ in the return-level maps

reflect actual contrasts in precipitation extremes.

However, since the same GEV method was used on

both the 65-yr CPC data and the 15-yr TRMM data,

and since using a longer data record smoothed away

most of the spikes, it is reasonable to conclude that

most of the contrasts were indeed a result of the short

data record. From the maps, it is apparent that our

methodology results in a smoother return-level map

when compared with the single-site, annual maxima

framework, capturing the general pattern in the CPC

results using fewer data.

c. Model fit

To assess how well the stationary PP approach

models the observed data, we constructed several di-

agnostic plots including kernel density plots as well as

Q–Q plots. The results for one randomly selected re-

gion, corresponding to four grid points in western Co-

lombia, are displayed in Fig. 7. The density and Q–Q

plots indicate that both the PP and single-site GEV

models fit to the TRMM 3B42 series explain the data

FIG. 5. Maximum of daily 95% NCRs of estimated (top) 5-yr and (bottom) 20-yr return
levels from the nonstationary PP model. White values correspond to NCR values
above 2.
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reasonably well (note the bimodality in the empirical

distribution of the block maxima model—this issue is

discussed further in the discussion section). Figure 7

also includes return-level plots for both methods,

which plot the return levels (in millimeters) expected

to occur on average once during the corresponding

recurrence interval (given in years). The return-level

plots suggest that the two models differ in their char-

acterizations of the tail behavior of extreme events.

Indeed, at the 5% level of significance, the PP model fit

implies a finite upper bound for extreme precipitation

intensity, while the GEV model fit indicates un-

bounded tail behavior. The 95% confidence limits

(dashed gray lines) indicate a higher level of confidence

FIG. 6. Comparison of the return-level maps produced by the CPC measurements (GEV model; CPC daily
unified product),GEV-basedTRMMmodel (TRMM3B42 product), and the stationary PPTRMMmodel (TRMM
3B42 product).
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in the results produced by the PP method than the

single-site GEV approach. We also note that the 95%

NCR maps corresponding to our method in the sta-

tionary setting (not included here for brevity) are very

similar to those in Fig. 5, indicating an overall increase

in statistical confidence.

d. Case study

We applied our methodology to evaluate the severity

of a particular climate event, Typhoon Fitow, the

strongest typhoon to hit mainland China in more than

60 years. Specifically, we estimated the annual proba-

bilities of the precipitation event that occurred on

6 October 2013 for the nonstationary PP model with

regional clustering, as well as for the stationary GEV

model of annual maxima without regional clustering

used in Zhou et al. (2015).

Figure 8 shows the 1-day precipitation total on 6

October 2013 over China’s Zhejiang province, as well as

the predicted annual probabilities of the corresponding

precipitation intensities of both models. The estimated

probabilities for the precipitation totals recorded during

this event are generally higher under the PP model than

those of the GEV model, implying that such extreme

events are more common than the existing method in

Zhou et al. (2015) would have predicted. Most of the

probabilities under the GEV model are less than 0.01,

and given the short length of the data record, the validity

of such estimates is questionable. Although there are

also low-probability events (,0.01) predicted by the PP

model, more than 80% of the predicted probabilities are

larger than 3%; thus the reliability of the PP estimates is

less affected by the short data record. The PP model

predictions in Fig. 8 reveal that there were three distinct

FIG. 7. Comparison of model fit using (top) the PP approach and (bottom) the block maxima/GEV approach for a randomly selected
regional cluster corresponding to four grid points in western Colombia (for the block maxima approach, we randomly selected one of
these four grid points). (left) Kernel density plots. Black (solid) curves are empirical data; blue (dashed) curves are model fit. To create
the PP density plot, the empirical density of the annual maxima of the data is calculated (black solid line) and compared with the GEV
distribution implied by the fitted PP (blue dashed curve). (center) Q–Q plots. (right) Return-level plots; the dashed curves are 95%
confidence bounds.
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regions of particularly rare precipitation intensity, with

the largest region overlapping with the area of heaviest

precipitation. The GEV approach failed to make the

distinction between these three regions.

e. Trends in extreme precipitation intensity

A straightforward modification of the nonstationary

PP model allows an analysis of long-term trends. A

simple starting point is to model the GEV location pa-

rameter as a linear function of time, that is,

m(t)5m
0
1m

1
t , (5)

and to assume constant scale and shape parameters. In

this setup and for any fixed probability p, the coefficient

m1 measures the change in the GEV quantile function

over the data period (given t is scaled to lie in [0, 1]);

positive values of m1 reflect more intense extreme pre-

cipitation events and negative values reflect less intense

extreme events. To visualize the results, we adopt the

approach used in Katz et al. (2002) and set p 5 0.5 and

compute the percentage change in the median of the

fitted GEV distribution over the data period; intuitively,

we are calculating how much the underlying distribu-

tions of extreme precipitation intensities shifted from

1998 to 2013. The percent changes in the medians of

extreme precipitation intensities are shown in Fig. 9

(only trends significant at the 5% level are shown). We

stress that these results should not be extrapolated to

periods outside of the data record and are only used here

to study the behavior of extreme events from 1998

to 2013.

Figure 9 shows generally increasing intensities of ex-

treme precipitation in the tropical ITCZ, including the

tropical Indian Ocean, ‘‘Maritime Continent,’’ western

Pacific Ocean warm pool, Caribbean Sea, and Gulf of

Mexico regions. Decreases in extreme precipitation are

observed in most of the tropical and subtropical land

regions, that is, South America, tropical and southern

Africa, and north and west Australia, consistent with the

results of Wu and Lau (2016). Negative trends are also

observed over most of the CONUS, especially in the

southwest United States, contributing to the drying trend

in the region (Prein et al. 2016). However, decreases in

extreme precipitation in the midlatitude oceans in the

Pacific and North Atlantic, together with increases in

extreme precipitation in the southern (north) edge of the

subtropical jet in theNorthern and SouthernHemisphere

could indicate an equatorward shift of heavy pre-

cipitation regions as opposed to a general expansion of

the ITCZ (Zhou et al. 2011; Lucas et al. 2014).

We emphasize that only linear trends in time have

been investigated here, and therefore our model can

only detect static increases/decreases in precipitation

extremes. One possible workaround to this problem

would be to use the average temperature within each

cluster as a covariate instead of time; the resultingmodel

could then capture more complex behaviors in the

global precipitation system. In addition, since the data

record is relatively short, the estimated trends might be

capturing part of a longer-period fluctuation. For ex-

ample, evenmodels that correctly identify a trend over a

short time period may fail to identify a reversal of the

trend if such a reversal occurred over a time span longer

than the data record (Fu et al. 2010; Kunkel et al. 2013).

4. Application to surface air temperature data

The generality of the PP framework implies that our

clustering and model fitting procedures can easily be

FIG. 8. Typhoon Fitow (6 Oct 2013) (left) precipitation (mm) and predicted annual probabilities for the (center) nonstationary PP
model and (right) stationary GEV model. Only precipitation levels. 50mm and their corresponding probabilities are shown for clarity.
Note the different probability scales.
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applied to model various types of data other than pre-

cipitation data. As a proof of concept, in this section we

apply our methodology to analyze trends in extreme

temperature intensity. Specifically, we use surface air

temperature data from NOAA’s NCEP North Ameri-

can Regional Reanalysis (NARR) product (NOAA/

NCEP 2004). The data are daily surface temperatures

(8C) spanning from 1 January 1979 to 31 December 2013

over North America at a resolution of approximately

0.38 (32 km) at the lowest latitude, and the number of

grid squares is 3493 277. Here, we restrict our analysis to

the CONUS. More information about the NARR prod-

uct can be found online (http://www.esrl.noaa.gov/psd/

data/gridded/data.narr.html; Mesinger et al. 2006). Again,

we stress that the results from the short data record cannot

be extrapolated into the future.

We used 50 clusters for the first round of kmeans and

30 clusters for the second round, resulting in a total of

1500 disjoint regions. We used location and the 90th

percentile of temperature values as input for clustering,

though more extensive analyses should consider a more

comprehensive set of variables. The Viglione et al.

(2007) homogeneity test identified 1431 of 1500 regions

as being acceptably homogeneous. Next, we fit a non-

stationary PP model to the data in each region following

the procedure outlined in section 2. Since we will be

examining long-term trends, for the threshold function

in (2), we took one threshold per year, taken to be the

95th percentile of temperature intensities for that year

(using the 95th percentile instead of the 99th percentile

produced more stable parameter estimates). As before

when examining trends in precipitation extremes, we

assumed constant scale and shape parameters and a

linear trend in the location parameter. A map showing

the percent change of the median of the fitted extreme

temperature distributions is shown in Fig. 10, along

with a map of average temperatures for comparison.

Only trends significant at the 5% level are shown.

According to our model, most of CONUS experi-

enced an increase in the intensities of extreme temper-

ature events during this time period. Figure 10 indicates

that the largest increase in the medians of extreme

temperatures was about 4% in southern Louisiana and

eastern Texas. The East Coast also showed a consistent

increase in extreme temperature intensities, with the

largest increase of about 2% occurring in eastern

Maryland and Delaware. The trends are reversed near

parts of the Rocky Mountains, with decreases in the

median of temperature intensities as large as 2% in

western Colorado. Some smaller decreases are observed

in the northern Great Plains and parts of central Cal-

ifornia. These results are generally in line with the an-

alyses and projections of Schoof and Robeson (2016),

who predict a consistent increase across the United

States in the number of excessively warm days over the

twenty-first century. Our findings are also consistent

with the behavior of extreme heat waves over this time

period, particularly with the increased number of ex-

treme heat waves occurring from 2000 to 2010 (Kunkel

et al. 2013). Notably, unlike the findings in Peterson

et al. (2013), our results do not reflect any cooling trends

over the ‘‘warming hole’’ (Meehl et al. 2012; Kunkel

et al. 2006) in the southeastern United States. The phase

reversal of the interdecadal Pacific oscillation in the

tropical Pacific in the late 1990s may explain the disap-

pearance of the warming hole after 2000 (Meehl et al.

2015), and therefore part of the difference in our find-

ings may be due to differences in the data period [1950–

2007 in Peterson et al. (2013) vs 1979–2013 here]. Once

again, we emphasize that we have assumed a simple

FIG. 9. Percent change in the median of the fitted GEV distribution of extreme
precipitation intensities. Positive changes reflect more intense extreme precipitation
events, and negative changes reflect less intense extreme events (only trends significant at
the 5% level are shown).
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linear trend in time, and that more complicated trend

structures would be able to capture more sophisticated

behavior in temperature extremes.

5. Discussion

In this paper, we propose an alternative methodology

for the statistical modeling of the TRMM extreme pre-

cipitation monitoring system. Our regional clustering

algorithm, in conjunction with the POT approach for

modeling extremes, allows us to leveragemore data than

the single-site block maxima method, yielding more

accurate estimates of the regional ARIs. The resulting

return-level maps produced by our method (Fig. 6) re-

veal that our algorithm can more effectively separate

out the statistical noise than the existing Zhou et al.

(2015) approach. Our model provides a useful tool for

studying the global and regional characteristics and

trends of extreme variables, whether these are pre-

cipitation events or other climate events.

There are several possible extensions to our analysis.

First, in this paper we only consider 1-day precipitation

totals. More complete information about return levels

and trends in extreme precipitation can be obtained by

consideringmultiday cumulative precipitation totals, for

example, 3- or 5-day precipitation totals reflecting the

severity of multiple-day precipitation events. However,

when modeling such accumulated precipitation events,

we noticed significant multimodality in the intensity of

the accumulated precipitation events. While multi-

modality in precipitation occurrences and intensity has

been previously reported (Schindler et al. 2012; Tye

et al. 2016), we are not aware of any statistical models

that have specifically been developed to model multi-

modality in accumulated precipitation totals. We are

currently developing a framework based on mixture

modeling that would be able to deal with this realistic

scenario.

Second, we did not attempt to model the spatial de-

pendence among grid locations in each regional cluster.

Future studies should aim at developing models that

are flexible enough to accommodate a wide range of

dependence structures while being careful to avoid

overfitting.

Finally, we chose to adopt first-order sinusoidal

functions to represent the GEV location and scale

parameters when estimating return levels. While this

choice may be a reasonable first approximation for

modeling seasonality at all locations, a more flexible

seasonal cycle would be more appropriate. Effectively

modeling the seasonal cycle can be beneficial for

assessing the variability in extreme events throughout

the year at any location; the resulting effective return

levels can be crucial for public policy and disaster

relief planning, especially during months where ex-

treme precipitation events are particularly intense. A

more realistic and flexible seasonal cycle warrants

further study.

FIG. 10. (left)Mean surface air temperatures in the CONUS, 1979–2013 (NCEPNARRproduct). (right) Percent
change in the median of the distribution of temperature extremes from the nonstationary PP model (only trends
significant at the 5% level are shown).
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