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Statistical Modeling of RNA-Seq Data
Julia Salzman1, Hui Jiang1 and Wing Hung Wong

Abstract. Recently, ultra high-throughput sequencing of RNA (RNA-Seq)
has been developed as an approach for analysis of gene expression. By ob-
taining tens or even hundreds of millions of reads of transcribed sequences,
an RNA-Seq experiment can offer a comprehensive survey of the popula-
tion of genes (transcripts) in any sample of interest. This paper introduces a
statistical model for estimating isoform abundance from RNA-Seq data and
is flexible enough to accommodate both single end and paired end RNA-Seq
data and sampling bias along the length of the transcript. Based on the deriva-
tion of minimal sufficient statistics for the model, a computationally feasible
implementation of the maximum likelihood estimator of the model is pro-
vided. Further, it is shown that using paired end RNA-Seq provides more
accurate isoform abundance estimates than single end sequencing at fixed
sequencing depth. Simulation studies are also given.

Key words and phrases: Paired end RNA-Seq data analysis, minimal suffi-
ciency, isoform abundance estimation, Fisher information.

1. INTRODUCTION

1.1 Biological Background

All cells in an individual mammal have almost iden-
tical DNA. Yet, cell function within an organism has
huge variation. One mechanism that differentiates cell
function is its gene expression pattern. Recent research
has shown that this differentiation may be on a fine
scale: that subtle sequence variants of expressed genes
(also referred to as transcripts), called isoforms, have
significant impact on the function of the proteins en-
coded by the RNA and hence their function in the cell
(see, e.g., Wang et al., 2008). The purpose of this pa-
per is to develop and analyze statistical methodology
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for measuring differential expression of isoforms us-
ing an emerging powerful technology called Ultra High
Throughput Sequencing (UHTS). Such study has the
potential to help reveal new insights into cellular iso-
form level gene expression patterns and mechanisms,
including characteristics of cell specific specialization.

The central dogma in biology describes the infor-
mation transfer that allows cells to generate proteins,
the building blocks of biological function. This dogma
states that DNA is transcribed to messenger RNA
(mRNA) which is in turn translated into proteins. Re-
cent discoveries have highlighted the importance of
regulation at the level of mRNA, showing that protein
levels and function can be regulated by subtle differ-
ences in the sequence of mRNA molecules in a cell.

In bacteria, short DNA sequences are transcribed in
a one to one fashion to mRNA. This mRNA is referred
to as a gene or a transcript. Like DNA, each mRNA is
a string of nucleotides, each position taking four pos-
sible values. Mammalian cells commonly generate a
large class of mRNA molecules from a single relatively
short DNA sequence. The set of such mRNA mole-
cules are called isoforms of a gene. This paper con-
centrates on one common mechanism generating iso-
forms called alternative splicing. An example of alter-
native splicing is depicted in Figure 1: two isoforms
can arise from the same gene when the DNA, which
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is comprised of three sequence blocks (called exons),
can be transcribed into two different mRNA molecules:
one of which contains all three exons and one of which
only contains the first and third exon. As this exam-
ple shows, isoforms typically have highly similar se-
quence. Despite this sequence similarity, isoforms can
encode proteins which may have different functional
roles. Further, most genes have more than three exons,
and alternative use of exons can give rise to large num-
bers of isoforms. Thus, it has been historically diffi-
cult for technology and statistical methods to allow re-
searchers to distinguish between different isoforms of
the same gene.

1.2 Ultra High Throughput Sequencing

Ultra High Throughput Sequencing (UHTS or sim-
ply “sequencing”) is an emerging technology which
promises to become as (or more) powerful, popular
and cost-effective than current microarray technology
for several applications, including isoform estimation.
When used to study mRNA levels, UHTS is referred to
as RNA-Seq. In the past year, studies using UHTS to
study genome organization, including isoform expres-
sion, have been prominent (see Pan et al., 2008; Zhang
et al., 2009; Wahlstedt et al., 2009; Hansen et al., 2009;
Maher et al., 2009) and featured in the journals Science
and Nature (see Sultan et al., 2008; Wang et al., 2008),
which dubbed 2007 as the “year of sequencing” (see
Chi, 2008).

Briefly, UHTS is a method that relies on directly se-
quencing the nucleotides in a sample rather than infer-
ring abundance of mRNA by measuring intensities us-
ing predetermined homologous probes as microarrays
do. Thus, the data generated from an UHTS experiment
are large numbers of discrete strings of nucleotides,
called base pairs (bp), which can take values of A, C,
G or T. In 2010, each experiment produced tens of mil-
lions of up to 100bp reads. The throughput of this tech-
nology is expected to continue its rapid growth.

Two experimental protocols for RNA-Seq are in
common use: (a) single end and (b) paired end se-
quencing experiments. For single end experiments, one
end (typically about 50–100 bp) of a long (typically
200–400 nucleotide) molecule is sequenced. For paired
end experiments, typically 50–100 bp of both ends of a
typically 200–400 nucleotide molecule are sequenced.
Using current Illumina technology, each time the se-
quencing machine is operated, eight samples (e.g.,
potentially eight different catalogues of gene expres-
sion) can be interrogated (essentially) independently
and tens of millions of reads are produced in each sam-
ple.

1.3 Related Work

An important application and use of UHTS technol-
ogy is to quantify the abundance of mRNA in a cell
(RNA-Seq). This is done by matching the sequences
generated in an UHTS experiment to a database of
known mRNA sequences (called alignment) and in-
ferring the abundance of each mRNA from the num-
ber of experimental reads (fragments of the original
mRNA molecules) aligning to it. Sometimes, a statis-
tical model is used for this estimate. Importantly, ex-
perimental steps involved in an UHTS experiment can
affect the probability of each fragment being observed,
although modeling of these processes is not the focus
of this paper.

The rapid technological advances in sequencing have
spawned a large number of algorithms for analyzing
sequence data (see Langmead et al., 2009; Trapnell,
Pachter and Salzberg, 2009; Trapnell et al., 2010;
Mortazavi et al., 2008), some of which aim to estimate
mRNA abundance. To date, inference on the abun-
dance of mRNA has been made by aligning reads to
known genes and estimating a gene’s expression by
averaging the number of reads which map uniquely
to it using the simplifying assumption that the tran-
script is sampled uniformly (see Jiang and Wong, 2009;
Mortazavi et al., 2008), and sometimes using heuris-
tic approaches to accommodate reads which map to
multiple locations (see Mortazavi et al., 2008). These
models do not provide optimal estimators of isoform-
specific expression levels and do not accommodate
modeling of important steps in the experimental pro-
cedure. The work in this paper significantly extends
a basic Poisson model developed in Jiang and Wong
(2009) to allow for more flexible and efficient infer-
ence and establish rigorous statistical theory. In par-
ticular, the model in Jiang and Wong (2009) does not
work with paired end sequencing data, or read-specific
sample rate in a sequencing protocol.

This paper introduces a statistical model for estimat-
ing isoform abundance from RNA-Seq data. By group-
ing the reads into categories and modeling the read
counts within each category as Poisson variables, the
model is flexible enough to accommodate both single
end and paired end RNA-Seq data. Based on the deriva-
tion of minimal sufficient statistics, a computationally
feasible implementation of the maximum likelihood
estimator of the model is provided. Using a study of
the Fisher information and also numerical simulation,
it is shown that using paired end RNA-Seq one can
get more accurate isoform abundance estimates. To the
best of our knowledge, this is the first such statistically
rigorous methodology and analysis to be developed.
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2. RNA-SEQ

Isoforms of a gene are subtle differences in a gene
sequence, sometimes resulting from inclusion or exclu-
sion of a single exon, a discrete piece of sequence de-
picted in Figure 1. In principle, compared to microar-
rays, UHTS has the potential to provide high resolution
estimates of isoform use. However, signal deconvolu-
tion must take place for these estimates to be accurate.

In order to estimate the expression of different iso-
forms of the same gene, several measurements of that
gene’s expression, whether from a microarray or se-
quencing, must be deconvolved. Several studies have
investigated this deconvolution problem when mea-
surements are made from a microarray (see Hiller et al.,
2009 or She, Hubbell and Wang, 2009). This paper
presents an estimator for deconvolution for ultra high
throughput sequencing experiments.

As mentioned, two experimental approaches for
RNA-Seq are in wide use. In single end read exper-
iments, reads are generated from one end of a mole-
cule (depicted schematically in Figure 2); in paired end
reads, reads are generated from both ends of a mole-
cule, but typically a large number of nucleotides in-
terior to the molecule are left unsequenced (depicted
schematically in Figure 3). The length of the whole
molecule being sequenced is called the insert size or
insert length.

To appreciate the additional information provided by
the paired end reads, consider Figure 2 which depicts
single end reads randomly sampled from a transcript of
a gene. Suppose there are two possible isoforms for the
transcript of this gene depending on whether an exon
of length l is retained or skipped. In this case, only
the reads that come from the alternatively spliced exon

FIG. 1. A gene (DNA sequence) with three exons. During tran-
scription, two isoforms are generated. The first isoform contains
all of the gene’s three exons. The second isoform contains the first
and third exon, skipping the middle exon. This process is called
alternative splicing and the middle exon is called an alternatively
spliced exon.

FIG. 2. Single end sequencing. A gene of three exons is shown
with the middle exon of length l being alternatively spliced. Reads
that come from this gene are shown above the gene in solid bars and
the parts that are not sequenced are shown in broken lines. Reads
that span an exon–exon junction are shown in solid bars connected
by thin lines. Reads that are related to the AS exon are shown in red
color. In this case only the reads in red are isoform informative.

(AS exon), or come from junctions involving either the
AS exon or the two neighboring exons, can provide in-
formation to distinguish the two isoforms from each
other, that is, only these reads are isoform informative.
If the AS exon is short compared to the transcript, then
the majority of the single end reads contain information
only on gene level expression but not isoform level ex-
pression. Assuming uniform distribution on the reads’
positions in the gene, it is evident that a read is related
to the AS exon with probability P = l+r

L−r
if the read

comes from the AS exon inclusive isoform, where L

is the length of the whole gene (without the intronic
regions) and r is the length of the reads. Thus, P is
a strictly increasing function with respect to the read
length r as well as the AS exon length l. As an exam-
ple, for a gene of length 2000 bp with a short AS exon
of length 50 bp, P = 0.0406 for reads of length 30 bp,
P = 0.0513 for reads of length 50 bp, and P = 0.0789
for reads of length 100 bp.

Currently, technical limitations limit the length of
sequenced reads. These limitations vary by particular
platform used for UHTS. The two platforms in widest
use are the Illumina platform and the ABI SOLiD plat-
form. To date, the longest read that can be sequenced

FIG. 3. Paired end sequencing. A gene of three exons is shown
with the middle exon of length l being alternatively spliced. Paired
end reads that come from this gene are shown above the gene in
solid bars and the parts that are not sequenced are shown in broken
lines. Reads that span an exon–exon junction are shown in solid
bars connected by thin line. Reads that are directly related to the AS
exon are in red as before. Reads that provide indirect information
for separating isoform expressions are in green.
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on the Illumina platform is roughly 100 bp, and the
most reliable read length is still roughly 70 bp.2

Paired end reads are an attractive way to decouple
the isoform specific gene expression. By performing
paired end sequencing, reads are produced from both
ends of the fragments, but the interior of the fragment
remains unsequenced. This method of sequencing both
sides of the fragment increases the number of isoform-
informative reads as illustrated in Figure 3. Paired end
reads that are mapped to the genes are shown in solid
bars above the gene, with read pairs connected by bro-
ken lines.

As shown in Figure 3, some read pairs (colored red)
are directly informative on the retention or skipping of
the AS exon. In addition, some read pairs span both
sides of the AS exon (colored green). For these read
pairs, the length of the fragment that they span (a.k.a.
the insert size or insert length) depends on whether the
AS exon is used or skipped in the transcript. If the dis-
tribution of the insert size is given, then these read pairs
can also provide discriminatory information on the iso-
forms as shown in Figure 3 and developed rigorously
through the insert length model in Section 3.4.2. For
illustration, suppose the experimental protocol selects
fragments of sizes around 200 bp for pair-end sequenc-
ing.3 In such an experiment, if the insert size of a read
pair is either 200 bp or 350 bp depending on whether
the read pair came from a transcript that included or
excluded an exon of length 150 bp, then this read pair
is unlikely to have come from a transcript that retained
the AS exon.

It is easy to see from Figure 3 that the fraction of
reads that contain information to distinguish the two
isoforms from each other increases not only with the
read length and the length of the AS exon, but also
with the insert size (when the insert size distribution is
a point mass). Since it is possible to have a much longer
insert size than read length,4 a considerable amount of

2The read length is roughly the same for the ABI SOLiD plat-
form. For the 454 platform the read length can be several folds
higher, but the throughput is much lower compared to the other two
platforms. Because sequencing technology is developing so rapidly,
these numbers are likely to be out of date very soon. Our statistical
models apply to all platforms and all read lengths.

3The insert size can be controlled by tuning the parameters in-
volved in the fragmentation, random priming and size selection
steps in the sample preparation process.

4Current technology allows a biochemical modification of se-
quenced molecules (via a circularization step) that can produce two
short reads from two physical locations on a molecule that may be
separated by up to several kilobases (using the ABI platform or a

information can be extracted from the paired end reads
for decoupling the isoform-specific gene expression.
This concept is developed precisely in the following
sections.

3. THE MODEL

3.1 Notation

The notation in Table 1 is used to present the statis-
tical model.

3.2 Assumptions

The following assumptions on the process of UHTS
are used in this paper.

(1) The sample contains I unique transcripts. In this
paper we deal with one gene at a time and consider
all the isoforms of the genes of interest as the set of I

transcripts. The abundances for the transcripts are the
parameters of interest and denoted {θi}Ii=1.

(2) After sequencing the sample, there are J distinct
reads denoted as {sj }Jj=1. A type of read refers to a
single end read that is mapped to a specific position
(which can be denoted as the 5′ end of the read) in a
transcript in single end sequencing, or a pair of reads
that are mapped to two specific positions (which can be
denoted as the 5′ end of the first read and the 3′ end of
the second read) in paired end sequencing.

(3) Each transcript is independently processed and
then sequenced.

(4) ni,j , the number of reads of type sj that are gen-
erated from transcript i, are approximated as Poisson
random variables with parameter θiai,j , where ai,j is
the relative rate that each individual transcript i gener-
ates read sj , called the sampling rate defined below.

(5) Given {θi}1≤i≤I , {ni,j }1≤i≤I, 1≤j≤J are indepen-
dent random variables.

If transcript i cannot generate read sj , ai,j is set to
zero: ai,j = 0. More specifically, for 1 ≤ i1, i2 ≤ I , 1 ≤
j1, j2 ≤ J , assuming none of the aik,jk

for k = 1,2 are
zero, aik,jk

are defined so that
ai1,j1

ai2,j2

= Pr(read sj1 observed after

processing one copy of transcript i1)
(1)

/Pr(read sj2 observed after

processing one copy of transcript i2).

long-insert protocol from Illumina), which is also called the mate-
pair sequencing. Although technologically it is different from the
paired end sequencing, the analysis is the same from a statistical
point of view.
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TABLE 1
Notation

Symbol Meaning

I Total number of unique transcripts (nucleotide sequences) in the sample.
J Total number of unique reads.
θi The abundance of transcript type i, i = 1, . . . , I .
θ The isoform abundance vector [θ1, θ2, . . . , θI ].
sj Read type j , j = 1, . . . , J .
ni,j The number of reads sj that are generated from transcripts i.
nj The number of read sj that are generated from all the transcripts,

that is, nj = ∑I
i=1 ni,j .

ai,j Up to proportionality, the sampling rate of ni,j , that is, the rate that
read sj is generated from each individual transcript i.

aj The sampling rate vector [a1,j , a2,j , . . . , aI,j ] for read sj .
θ · aj The sampling rate of nj , that is, the rate that read sj is generated

from all the transcripts.

A The I × J matrix of the sampling rates {ai,j }I,Ji=1,j=1.

ci The number of copies of the ith transcript in the sample.
li The length of the ith transcript in the sample.
n The total number of reads.

Therefore, up to a multiplicative constant, ai,j is the
sampling rate of the j th read from the ith transcript.
This constant is chosen so that the estimates of θi are
normalized in order to be comparable across experi-
ments. Two such choices are described in Section 3.4.
With appropriate choice of ai,j , the probabilistic inter-
pretation of ai,j can be maintained across different ex-
periments.5

EXAMPLE 1. Suppose a gene has three exons and
two isoforms, as shown in Figures 2 and 3. Suppose
the three exons have lengths 200 bp, 100 bp and 200
bp. Suppose the read length is 50 bp and single end
reads are generated from a transcript uniformly. There
are totally 500 different reads. 302 of them are from
regions shared by the two isoforms, 149 of them are
from isoform 1 only and 49 of them are from isoform
2 only. In this case, I = 2, J = 450 and the matrix A,
up to a multiplicative constant, is

A =
(

1 1 · · · 1 1 1 · · · 1 0 0 · · · 0
1 1 · · · 1 0 0 · · · 0 1 1 · · · 1

)
,

5The implementation of the model described in this paper ignores
reads that align to multiple genes (while of course not ignoring
reads that align to multiple isoforms). This detail does not impact
the significant number of genes which contain no such reads that
map to multiple genes, and a simple adaptation of the model can
accommodate reads mapping to multiple genes.

where A has 302 columns of
(1
1

)
, 149 columns of

(1
0

)
and 49 columns of

(0
1

)
.

3.3 Likelihood Function

The challenge of estimating isoform abundance
arises from the fact that different isoforms of a gene can
have common sequence characteristics and, therefore,
different isoforms may generate common read types.
Thus, the ni,j ’s cannot be directly observed. Rather, the
observed quantities are sequences that are necessarily
collapsed over the potentially multiple transcripts gen-
erating them. The observed quantities in an RNA-Seq
experiment are therefore nj , where

nj := n.,j =
I∑

i=1

ni,j ,

denoted as nj for simplicity.
Since {ni,j }1≤i≤I, 1≤j≤J are assumed to be indepen-

dent, and it is assumed that the number of reads of
type sj that are generated from transcript i follows a
Poisson distribution with parameter θiai,j , nj follows
a Poisson distribution with parameter

∑I
i=1 θiai,j =

θ · aj , where θ is the vector of isoform abundance
[θ1, θ2, . . . , θI ] and aj is the vector of sampling rates
[a1,j , a2,j , . . . , aI,j ] for read sj , in which there is a
component for each isoform.
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Under the assumption that each read is indepen-
dently generated, given {θi}Ii=1, {nj }Jj=1 are indepen-
dent Poisson random variables, and therefore have the
joint probability density function

fθ (n1, n2, . . . , nJ ) =
J∏

j=1

(θ · aj )
nj e−θ ·aj

nj ! .(2)

Note that since E(nj ) = θ · aj = ∑I
i=1 θiai,j , for all

i, j , θ , the density (2) is a curved exponential family:
the natural parameter of the model is in R

J while the
underlying parameter is in R

I with J > I .

3.4 Statistical Models for the Sampling Rate: ai,j

This paper focuses on two choices of ai,j and illus-
trates the assumptions and interpretation of the result-
ing {θi}Ii=1 parameters. The two choices give rise to
two different models: the first is the uniform sampling
model, and the second is the insert length model.

While these models differ by whether insert length
is taken into consideration, both are motivated by the
same model of sample preparation below. To facilitate
such modeling, the biochemical steps preparing a sam-
ple for sequencing are represented schematically as the
composition of the following:

1. Transcript fragmentation: each full length mRNA
is fragmented at positions according to a Poisson
process with rate parameter λ.6

2. Size selection: each fragment is selected with
some probability depending on only its length.

3. Sequence specific amplification or selection: each
sequence is amplified or further selected based on se-
quence characteristics.

The sampling rate matrices A for the uniform sam-
pling model and the insert length model presented be-
low are approximated from the same statistical model
for steps (a) and (b) above. Namely, transcript fragmen-
tation (positions where the transcript is cut) is modeled
as a Poisson point process. Let p(·) denote the proba-
bility mass function of fragment lengths obtained from
this process. Note that p(·) is an unobserved quantity
because the sample is subject to a size selection step af-
ter fragmentation and before sequencing. The size se-
lection step is modeled as follows: a length l fragment
of transcript is obtained with probability r(l) indepen-
dently of the identity of the molecule. r(·) is called the
filtering function.

6Because genomic coordinates are discrete, the occurrence times
in the Poisson process should be rounded to the nearest natural
numbers.

While the model in steps (a) and (b) are realistic
across experiments, modeling step (c) is more involved
and variable across experiments. Modeling how the
specific nucleotide sequences affect the probability of
being amplified and selected for sequencing varies sig-
nificantly by experiment and is beyond the scope of
this work. However, it is important to emphasize that
the model presented in this section is flexible enough to
account for estimation of the effect of step (c). More-
over, the model can be adapted to accommodate dif-
ferent model choices in any of steps (a), (b) or (c). In
the two models presented below, it is assumed that se-
quence selection and amplification are uniform.

Modeling the random processes (a) and (b) above
as independent and only dependent on a fragment’s
length and assuming that sequence selection and am-
plification are uniform produces a model for the dis-
tribution of fragment lengths in the sample. This dis-
tribution is represented by q(·) and can be estimated
empirically from a paired end sequencing run, namely,
mapping both pairs from each read to a database and
inferring the insert length.7 Such an empirical function
q̂(·) is depicted in Figure 5 and represents a reasonable
approximation to the overall distribution of molecule
sizes sequenced in an experiment. Further, note that
a consequence of the modeling in steps (a)–(c) above
produces the identity q(l) = r(l)p(l).

Some mapping programs (such as introduced in
Langmead et al., 2009) have options that take advan-
tage of a user specified expected insert size to help
improve mapping performance, which may lead to bi-
ases in the mapping. The mapping procedure described
in this manuscript performs each paired end alignment
by aligning the first and second read separately, which
does not bias the insert length model and allows for
the calculation of minimal sufficient statistics for the
model and to perform statistical inference on isoform
abundance without such bias.

3.4.1 Uniform sampling model. The uniform sam-
pling model is appropriate for single read data. It as-
sumes that during the sequencing process, each read
(regarded as a point) is sampled independently and uni-
formly from every possible nucleotide in the biolog-
ical sample. Uniform sampling is a good approxima-
tion to sampling from a Poisson fragmentation process

7In the traditional bioinformatics literature this is also called
alignment, while the nomenclature “mapping” is more often used
in the UHTS literature where the sequences being aligned are short
reads.
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and subsequent filtering step when the filtering func-
tion r(·) has support on a set that is small compared
to the transcript lengths; under these conditions, the
process is approximately stationary.

To investigate if the uniform sampling model satis-
factorily approximates the Poisson fragmentation and
filtering above for numerical regimes of transcript
length and fragmentation rate encountered in sequenc-
ing, the following three simulations were performed:
reads were generated from 10, 100 or 1,000 copies of
a transcript of length 2,000 bp with λ = 0.005. All the
fragments of length 200 ± 20 bp were retained and the
fragment ends were then compared to the sampled read
positions as modeled by the uniform sampling model
(see Figure 4). It can be seen that as the sample size
increases, the two models are very similar except at the
two ends of the transcript. At the two ends the Poisson
process has some boundary effects, and the sequencing

protocol cannot be explained by a simple model. For
most situations, these effects will be small, and hence
are ignored in the uniform sampling model.

Thus, the uniform sampling model is appropriate for
sequencing single short reads where the sequencing
process can be regarded as a simple random sampling
process, during which each read (regarded as a point)
is sampled independently and uniformly from every
possible nucleotide in the sample. The assumption of
uniformity implies that a constant sampling rate for all
ai,j > 0 is used. Specifically, let ai,j = 0 if transcript i

cannot generate read sj , and otherwise, ai,j = n, where
n is the total number of reads. As seen below, n serves
as a normalization factor.

To motivate this choice of ai,j , consider the in-
terpretation of {θi}Ii=1 induced by A. Under the uni-
form model, the (unobserved) counts from the j th nu-
cleotide which is generated from the ith transcript are

(a) (b)

(c)

FIG. 4. Uniform Q–Q plot with sampled read positions. (a), (b) and (c) are generated by simulations with 10, 100 and 1,000 copies of
transcripts, respectively.
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modeled as a Poisson random variable with paramete
ai,j θi , that is,

ni,j = Po(ai,j θi).

Computing E(ni,j ) using the uniform sampling
model with n total reads,

E(ni,j ) = nPr(j th nucleotide generated by transcript i)

= n
ci∑
i lici

,

where li is the length of the ith transcript and ci is the
number of copies of the ith transcript in the sample.
Thus, setting ai,j = n iff transcript i can generate read
j produces the identity

nθi = nci∑
i ci li

so the uniform sampling model has parameter

θi = ci∑
i lici

.

This choice of A has the property that it normalizes
{θi}Ii=1 so that

∑
i

θi li = 1,

that is, it normalizes θi as a fraction of the total nu-
cleotides sequenced, as shown in Jiang and Wong
(2009), making it conceptually compatible with the
RPKM (Reads Per Kilobase of exon model per Mil-
lion mapped reads) normalization scheme in Mortazavi
et al. (2008), which is widely used by the RNA-Seq
community. This normalization convention assumes
the number of nucleotides in the sequenced RNA of
each cell does not vary between samples. Modifying
these assumptions to be more realistic yields better
choices for normalizing constants (see, e.g., Bullard
et al., 2010) and can easily be incorporated into the
normalization of the sampling rate vector.

3.4.2 Insert length model. This model is applicable
to paired end sequencing data. In paired end sequenc-
ing, the insert length is usually controlled to have a
small range. Therefore, as suggested in Figure 3, be-
sides read positions, information can also be extracted
from insert lengths inferred from reads. By modeling
insert lengths properly, this piece of information can
be utilized and statistical inference can be improved.
Example 2 below illustrates this concept and Section 6
quantifies the gain in statistical efficiency using the
pairing information.

The insert length model models the sampling of tran-
scripts, conditional on insert length, as uniform. The
insert length model sets each ai,j using the empirical
distribution of the insert lengths of the sample (see Fig-
ure 5) such that conditional on the insert length, reads
are sampled from transcripts uniformly. This is speci-
fied mathematically as

ai,j = q(li,j )n,(3)

where li,j is the length of corresponding fragment of
sj on the ith transcript, n is the total number of read
counts and q(l) is the probability of a fragment of
length l in the sample after the filtering. In application,
for the insert length model, q(·) is taken as q̂(·), the
empirical probability mass function computed from all
the mapped read pairs. A typical mass function is il-
lustrated in Figure 5. Although usually this function is
unimodal (as in this case), which favors our isoform es-
timation approach, our approach is flexible enough to
allow other types of functions, such as bimodal func-
tions, etc.

To see the relationship between this choice of sam-
pling rate matrix and a model where reads are subject
to Poisson fragmentation and length dependent filter-
ing, suppose that paired end read sj is mapped to tran-
script 1 at coordinates (x1, y1) and transcript 2 at co-
ordinates (x2, y2) and both reads are in the forward di-
rection. Then, assuming none of x1, x2, y1, y2 is at the
boundary of a transcript, under the Poisson fragmenta-
tion model (a) and length dependent size selection (b),

Pr(read sj observed after

processing one copy of transcript i1)

/Pr(read sj observed after

processing one copy of transcript i2)

= Pr(cut at x1, y1, no intermediate cut,

and transcript of length x1 − y1 retained)

/Pr(cut at x2, y2, no intermediate cut,

and transcript of length x2 − y2 retained)

= Pr(tr. of length x1 − y1 retained |
cut at x1, y1, no int. cut)

· Pr(cut at x1, y1, no int. cut)

/Pr(tr. of length x2 − y2 retained |
cut at x2, y2, no int. cut)

· Pr(cut at x2, y2, no int. cut)
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FIG. 5. A typical empirical mass function of the insert length.

= r(|x1 − y1|)
r(|x2 − y2|)

p(|x1 − y1|)
p(|x2 − y2|)

= q(|x1 − y1|)
q(|x2 − y2|) .

Thus, the ratio
ai1,j

ai2,j

is approximately the same as defined by the sampling
rate matrix A for the insert length model, with the as-
sumption that none of x1, x2, y1 or y2 is on the bound-
ary of the transcript. As long as the insert length distrib-
ution has support which is small compared to transcript
length, relatively few transcripts map exactly to the
boundary, and little data is lost by ignoring them; doing
so allows the above conditions to be satisfied. Further,
the argument above shows that the insert length model
is consistent with assumptions (a)–(c) of the sample
preparation.

The insert length model yields a similar interpreta-
tion for the normalization of {θi}Ii=1 as in the uniform
sampling model, illustrated in the following computa-
tion: The paired end read model specifies that the reads
of type j from transcript i are Poisson with parameter

ni,j = Po(ai,j θi).

The insert length model assumes that reads are fil-
tered based on length independent of their sequence.
This produces a method of estimating the expectation
of ni,j . The following approximates E(ni,j ) under the
insert length model:

E(ni,j ) = nPr(read j observed after

processing one copy transcript i)

:= nPr(A ∩ B ∩ C),

where A, B and C are defined as follows. Let Y be a
random variable representing a read in the sample after
fragmentation. Let A be the event that Y is a fragment
of transcript i, B the event that Y is read j of transcript
i and C the event that Y is a fragment of length li,j and
is observed after filtering. Using the product rule,

Pr(A ∩ B ∩ C) = Pr(B|A ∩ C)Pr(C|A)Pr(A).

Each term is analyzed separately. Assuming uniform
fragmentation across the transcript and length depen-
dent filtering,

Pr(B|A ∩ C) = 1

li − li,j
.

The basic assumption of the insert length model is
that the probability of observing a transcript of length
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li,j does not depend on the transcript and is equal to the
empirical insert length, q(li,j ), hence

Pr(C|A)
·= q(li,j ).

To estimate Pr(A), consider the random variables
Xi , the number of fragments in the sample from tran-
script i, and X, the total number of transcript frag-
ments in the sample. Then, assuming transcript i is suf-
ficiently and not overly abundant in the sample,

Pr(A) = E
(

Xi

X

)
·= E(Xi)

E(X)
.

Assuming a Poisson fragmentation model, up to a
boundary effect which has small impact on the approx-
imation,

E(Xi)

E(X)

·= cili∑
i ci li

.

Combining these approximations yields

E(ni,j )
·= nq(li,j )

1

li − li,j

ci li∑
i ci li

.

Thus, if li
li−li,j

is close to 1, θi is identified in this
model as

θi
·= ci∑

i ci li
.

Thus, in both models, the choice of ai,j is consis-
tent with its definition in equation (1). To illustrate the
difference between the insert length and uniform sam-
pling models, consider the following example:

EXAMPLE 2. Consider a case of two isoforms la-
beled 1 and 2 with an alternative included exon as in
Figure 1. Suppose the middle exon 2 has length 50
for concreteness. Suppose pair end read sj has an im-
puted length of 50 when mapped to 2 and of 100 when
mapped to 1, as will be the case if one of the ends is in
exon 1 and one in exon 3. Suppose the empirical insert
length function is modeled as uniform [60,140). Then,
in the uniform model, because n total reads have been
sequenced and mapped,

a1j = a2j = n,

whereas in the insert length model,

a1j = n

80
and a2j = 0.

Note that although the denominator 80 in a1j in the
insert length model seems arbitrary, because there are
80 different paired end reads that start at the same posi-
tion as sj , having all of them in the model gives consis-
tent gene expression estimates as in the uniform model.

3.5 Maximum Likelihood Estimation

In this paper θ is estimated using the MLE. Standard
theory shows that the MLE of model (2) will be con-
sistent provided the parameters in the model are in the
interior of the parameter space (see Theorem 6.3.10 of
Lehmann, 1998). Computationally efficient procedures
are needed to solve for these estimates in practice.

The fact that the density (2) is Poisson allows for
a simplification of the calculation of the MLE by
regarding the parameter estimation as a generalized
linear model (GLM) problem with Poisson density
and identity link function (see McCullagh and Nelder,
1989) with extra linear constraints that require all the
parameters {θi}Ii=1 to be nonnegative. The optimization
problem in matrix form is

maximize nT log(AT θ) − sum(AT θ)
(4)

s.t. θ ≥ 0,

where n is a J × 1 column vector for the observed
read counts [n1, n2, . . . , nJ ], A is a I × J matrix for
the sampling rates {ai,j }I,Ji=1,j=1 and θ is the I × 1
isoform abundance vector [θ1, θ2, . . . , θI ]. log(·) takes
logarithm over each element of a vector and sum(·)
takes summation over all the elements of a vector.

As shown in Jiang and Wong (2009), the log-
likelihood function

log(L(θ)) = log(fθ (n1, n2, . . . , nJ ))

is always concave and, therefore, any linear constraint
convex optimization method can be used to solve this
nonnegative GLM problem.8

4. SUFFICIENCY AND MINIMAL SUFFICIENCY

Because J is usually very large, it is extremely ineffi-
cient to work with the statistics {ni}Ji=1 in (2) directly:
in single end sequencing of a human or mouse cell,
J can exceed 2,000 for a typical gene, and in paired
end sequencing with variable insert length, it can eas-
ily reach 100,000. For computational purposes, it is
therefore necessary to use sufficient statistics for the
likelihood function (2). Because these statistics have
an intuitive interpretation, they are referred to as a col-
lapsing. This section analyzes sufficiency and minimal
sufficiency in model (2) and its relation to collapsing.

8In our experiments we used the PDCO (Primal-Dual interior
method for Convex Objectives, http://www.stanford.edu/group/
SOL/software/pdco.html) package developed by M. A. Saunders
at Stanford University.

http://www.stanford.edu/group/SOL/software/pdco.html
http://www.stanford.edu/group/SOL/software/pdco.html
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4.1 Sufficient Statistics and Collapsing

As will be shown below, sufficient statistics have a
natural interpretation as collapsing read counts. Propo-
sition 2 shows that to group reads j and k into the same
category, it is sufficient that reads have the same nor-
malized sampling rate vector (i.e.,

aj

‖aj‖ = ak

‖ak‖ ,

where ‖ · ‖ is the vector 2-norm).
Such grouping of reads will be called (maximal) col-

lapsings: reads with the same normalized sampling rate
vector are grouped together. Intuitively, a maximal col-
lapsing reduces the number of such groups to be as
small as possible.

DEFINITION 1. Let Ck be a collection of mk reads
so

Ck = {sj1, . . . , sjmk
}1≤j1<j2<···<jmk

≤J .

A set C = {Ck}Kk=1 is called a collapsing, if for any
Ck ∈ C and any sj1, sj2 ∈ Ck ,

aj1 = caj2

for some positive number c.
Furthermore, if for any k1 �= k2 and any sj1 ∈

Ck1, sj2 ∈ Ck2 ,

aj1 �= caj2

for any positive number c, then {Ck}Kk=1 is called a
maximal collapsing. In a collapsing, each Ck is called
a category.

As will be seen in Theorem 3, the maximal col-
lapsing gives rise to a set of minimal sufficient statis-
tics, making it useful from a computational perspec-
tive. A real data example of such a collapsing is pro-
vided in Section 5. The collapsed read counts also have
a standard statistical interpretation as the sum of inde-
pendent Poisson random variables. Suppose categories

{Ck | k = 1,2, . . . ,K} with Ck ⊆ {s1, s2, . . . , sJ }
are nonoverlapping, that is, Ck1 ∩ Ck2 = ∅ when k1 �=
k2. Then, assuming each nj follows a Poisson distri-
bution with parameter θ · aj , nCk

, the number of ob-
served reads that belong to category Ck (i.e., nCk

=∑
sj∈Ck

nj ) follows a Poisson distribution with para-
meter

a(k) · θ,

where a(k) = ∑mk

j=1 a
(k)
j and for 1 ≤ j ≤ mk , a

(k)
j is the

sampling rate vector of the j th read in category k.

PROPOSITION 1. The maximal collapsing is
unique.

PROOF. The relation satisfied by two types of reads
in a category in the maximal collapsing is an equiv-
alence relation. This makes the maximal collapsing a
grouping of reads into equivalence classes which are
always uniquely determined. To show a relation is an
equivalence relation, it suffices to show that the reflex-
ivity, symmetry and transitivity hold.

Reflexivity: For any sj ,

aj = aj ,

that is, sj ∼ sj .

Symmetry: For any sj and sk ,

aj = cak ⇒ ak = 1

c
aj ,

that is, sj ∼ sk ⇒ sk ∼ sj .
Transitivity: For any sj , sk and sl ,

aj = c1ak

and

ak = c2al ⇒ aj = c1c2al,

that is, sj ∼ sk and sk ∼ sl ⇒ sj ∼ sl. �
To illustrate how maximal collapsing can be derived

from the choice of ai,j in the uniform model to pro-
duce the maximal collapsing, reads with the same nor-
malized sampling rate vector are grouped into one cat-
egory. Because ai,j is either 0 or n, two reads sj1 and
sj2 will have the same normalized sampling rate vector,
that is, aj1/‖aj1‖ = aj2/‖aj2‖, if and only if they can
be generated by the same set of transcripts.

EXAMPLE 3. Consider a continuation of the setup
in Example 2. Suppose a uniform sampling model and
suppose reads s1 and s2 can be generated by both tran-
scripts 1 and 2, whereas read s3 can only be generated
by transcript 1. Then

a1 = a2 = [n,n]
and

a3 = [n,0].
Grouping s1 and s2 together produces the maximal

collapsing C = {{s1, s2}, {s3}}, the first category con-
taining reads that can be produced by both transcripts
and the second category containing reads only gener-
ated by transcript 1.
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4.1.1 Collapsing and sufficiency. Analysis of the
likelihood function (2) shows that collapsing the reads
produces sufficient statistics and maximal collapsings
are equivalent to minimal sufficient statistics.

Recall that a statistic T (X) is sufficient for the para-
meter θ in a model with likelihood function fθ (x) if

fθ (X) = h(x)gθ (T (X)).

It is clear that the observed count vector n = [n1, n2,

. . . , nJ ] is sufficient for θ . The collapsed read count
vector is also sufficient for θ , as detailed in the next
proposition:

PROPOSITION 2. For any collapsing C = [C1,C2,

. . . ,CK ], the observed read count vector nC = [nC1,

nC2, . . . , nCK
] is a sufficient statistic for θ .

PROOF. From the definition of collapsing, con-
sider the kth category Ck with the re-enumerated reads
{s(k)

j }1≤k≤K,1≤j≤mk
, the reads in category k are enu-

merated

Ck = {
s
(k)
1 , s

(k)
2 , . . . , s(k)

mk

}
.

Define a
(k)
j to be the sampling rate vector for s

(k)
j ,

1 ≤ j ≤ mk . By definition, for all 1 ≤ j ≤ mk , for some
scalar c

(k)
j > 0,

a
(k)
j = c

(k)
j a

(k)
1 .

Therefore,

θ · a(k)
j = c

(k)
j θ · a(k)

1 .

Rearranging the product in the right-hand side of
equation (2) as a product over each read by the cat-
egory into which it falls, and denoting the ith read ni

and parameter θ ·ai as x
(k)
j with parameter θ ·a(k)

j when
it falls as the j th enumerated read in the kth category,

fθ(n1, n2, . . . , nJ )

=
J∏

i=1

(θ · ai)
ni e−θ ·ai

ni !

=
K∏

k=1

mk∏
j=1

(θ · a(k)
j )

x
(k)
j e

−θ ·a(k)
j

x
(k)
j !

(5)

=
K∏

k=1

mk∏
j=1

(c
(k)
j θ · a(k)

1 )
x

(k)
j e

−θ ·a(k)
j

x
(k)
j !

=
K∏

k=1

(
θ · a(k)

1

)∑mk
j=1 x

(k)
j e

−∑mk
j=1 θ ·a(k)

j

mk∏
j=1

(c
(k)
j )

x
(k)
j

x
(k)
j !

= h(n1, n2, . . . , nJ )gθ (nC1, nC2, . . . , nCK
),

where, since {ni}Ji=1 = {x(k)
j }1≤j≤mk, 1≤k≤K ,

h(n1, n2, . . . , nJ ) =
K∏

k=1

mk∏
j=1

(c
(k)
j )

x
(k)
j

x
(k)
j !

and

gθ (nC1, nC2, . . . , nCK
) =

K∏
k=1

(
θ · a(k)

1

)nCk e−θ ·a(k)

,

establishing the sufficiency of nC = [nC1, nC2, . . . ,

nCK
]. �

In addition to the sufficiency proved in Proposition 2,
nC is minimal sufficient if the corresponding collaps-
ing C is a maximal collapsing. This is detailed in the
next section.

4.2 Minimal Sufficiency

To prove that the read counts derived from a maximal
collapsing are minimal sufficient statistics, recall the
following:

DEFINITION 2 (Definition 6.2.13 of Casella and
Berger, 2002). For the family of densities fθ(·), the
statistic T (X) is minimal sufficient if and only if

fθ (x)

fθ (y)
does not depend on θ ⇔ T (X) = T (Y )

THEOREM 3. In the likelihood specified by equa-
tion (2), counts on maximally collapsed categories are
minimal sufficient statistics.

PROOF. Let T (X) be the collapsed vector of counts
xC1, xC2, . . . , xCK

and let T (Y ) be the vector of counts
yC1, yC2, . . . , yCK

, each of which are maximal collaps-
ings. If T (X) = T (Y ), equation (5) shows that the ratio
of densities

fθ (x)

fθ (y)

does not depend on θ . To show the reverse implication,
suppose T (X) �= T (Y ). To show that

fθ (x)

fθ (y)
must depend on θ,

it suffices to show that

gθ (x)

gθ (y)
must depend on θ .

It is possible to simplify this ratio as

gθ (x)

gθ (y)
=

∏
g∈G(θ · ag)

ng∏
h∈H(θ · ah)nh

,(6)
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where {ng}g∈G and {nh}h∈H are positive numbers and
G and H are subsets of the categories and are disjoint
since if G and H share a common j , the ratio in equa-
tion (6) can be reduced. Further, since the collapsings
are maximal, for any ai, aj appearing in any product
in the numerator or denominator, there is no c so that
ai = caj . Using these properties, it will be shown that
the ratio of densities must depend on θ by contradic-
tion.

Suppose for some (now fixed) T (X) �= T (Y ), equa-
tion (6) does not depend on θ and is equal to a con-
stant c. Note that since θ can be the vector of all 1’s,
if equation (6) does not depend on θ , c > 0 as when θ

is the vector of all 1’s both the numerator and denomi-
nator of equation (6) are positive. Then equation (6) is
equivalent to a polynomial equation

0 = c
∏
h∈H

(θ · ah)
nh − ∏

g∈G

(θ · ag)
ng(7)

∀θ ∈ (R+)I . By basic algebraic geometry, any polyno-
mial in θ which is identically zero in the space (R+)I

is identically zero in all of R
I . Therefore, the last step

is to show that the right-hand side of equation (7) is not
actually zero for some θ ∈ R

I . To proceed, fix h ∈ H .
The claim is that there exists v ∈ R

I with 〈v, ah〉 = 0
but ∀g ∈ G,

〈v, ag〉 �= 0.

This v will be the choice of θ producing the contra-
diction. For a vector z ∈ R

I , let z⊥ denote the (I − 1)-
dimensional subspace of vectors orthogonal to it. Then,
to finish the proof, it suffices to showing that there is
some vector in a⊥

h which is not in
⋃

g∈G a⊥
g . It is equiv-

alent to show there is a strict containment( ⋃
g∈G

a⊥
g

)
∩ a⊥

h = ⋃
g∈G

(a⊥
g ∩ a⊥

h ) ⊂ a⊥
h .

Strict containment follows since for any h ∈ H ,

a⊥
h ∩ a⊥

g

is a subspace of dimension at most I −2, thus, a count-
able union of such spaces cannot equal a subspace of
dimension I − 1. �

Using Theorem 3, the optimization problem [equa-
tion (4)] is reduced to

maximize nT log(AT θ) − sum(AT θ)
(8)

s.t. θ ≥ 0,

where n is a K × 1 column vector for the collapsed
read counts for categories C1,C2, . . . ,CK , A is a I ×

K matrix for the collapsed sampling rates and θ is the
isoform abundance vector.

The next section illustrates the relationship of min-
imal sufficient statistics to raw data observed in se-
quencing experiments.

5. APPLICATION

This section illustrates how minimal sufficient sta-
tistics are calculated in an example with real RNA-
Seq data from an experiment on cultured mouse B
cells. After the sequencing reads were generated, they
were mapped to a database of known mouse mRNA
transcripts using the RefSeq annotation database (see
Pruitt, Tatusova and Maglott, 2005) and the mouse ref-
erence genome (mm9, NCBI Build 37). The reads were
mapped using SeqMap, a short sequence mapping tool
developed in Jiang and Wong (2008). The two ends
of the paired end reads were mapped separately and
then a filtering step was applied during which only the
pair of reads which were mapped to the same transcript
and on the right direction were retained. Further, in
the analysis of this section, reads that map to multiple
genes were also discarded for computational ease. Be-
cause we are mapping the reads to transcript sequences
rather than the whole genome, the positions that can-
not be uniquely mapped are less than 1%, which is not
likely to change our results significantly. Of course, the
model presented in Section 3 can accommodate reads
which map to multiple genes because of the statistical
equivalence of this problem to that of deconvolving the
expression levels of multiple isoforms. We have chosen
not to implement this approach because only a small
number of genes are impacted and because as rapid
growth of the technology continues to produce longer
reads, the problem will become negligible. A total of
2,789,546 read pairs (32 bp for each end) passed the
filtering. The empirical distribution of the insert length
was inferred. This distribution has a mean of 251 bp
and a single mode of 234 bp (See Figure 5).

Because more than 99% of the data have an inferred
length between 73 bp and 324 bp, reads outside of this
range are not considered in subsequent analysis for this
example, as it is likely these reads come from unanno-
tated isoforms. This resulted in 27,118 (about 1%) read
pairs being excluded and the rest 2,762,428 (denoted as
n below) read pairs were used in the computation.

The mouse gene Rnpep is used to demonstrate the
computation of minimal sufficient statistics. Rnpep has
an alternatively spliced exon which gives rise to two
different isoforms (see Figure 6). The gene itself is an
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FIG. 6. Visualization of RNA-Seq read pairs mapped to the mouse gene Rnpep in the CisGenome Browser (see Jiang et al., 2010). From
top to bottom: genomic coordinates, gene structure where exons are magnified for better visualization, read pairs mapped to the gene. Reads
are 32 bp at each end. A read that spans a junction between two exons is represented by a wider box.

amino peptidase, meaning that it is used to degrade
proteins in the cell. After mapping, 116 read pairs were
assigned to this gene, out of which 113 read pairs were
used in the computation after outlier removal. Figure 6
presents the positions where the reads are mapped.
The gene was picked because it has two alternatively
spliced isoforms with a structure that makes distin-
guishing reads from each isoform challenging, and be-
cause the number of reads was small enough to visual-
ize all of them in a simple figure.

5.1 Uniform Sampling Model

Any paired end read experiment can be treated as a
single end read experiment by taking each paired end
read and treating it as two distinct single end reads, one

from each side of the pair. In this, the 113 paired end
reads become 226 single end reads (without pairing in-
formation).

In the uniform sampling model, for either isoform,
the sampling rate vector for each read sj can take at
most two values: 2n when the isoform can generate
read j and 0 when it cannot. Because there are only
two isoforms, one of which (isoform 2) excludes one
of the exons of the other (isoform 1), it is evident that
in the uniform sampling model, there are only three
categories for the two isoforms.

The total length of isoform 1 is 2,300. The total
length of isoform 2 is 2,183. Hence, computing ai,j by
summing over the sampling rate vectors of the reads
in the same category, the three categories can be rep-
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TABLE 2
Single end read categories for Rnpep

Category ID Sampling rate vector Read count

1 [4,242n,4,242n] 216
2 [296n,0] 10
3 [0,62n] 0

resented by their sampling vectors: [4,242n,4,242n],
[296n,0], [0,62n]. Using minimal sufficient statistics
reduces the data from a vector representing counts on
the 2,300 possible reads sj from the two isoforms to
the 3 minimal sufficient statistics which are counts on
these categories.

The three categories representing minimal sufficient
statistics are tabulated in Table 2. Each category refers
to a group of reads that is generated by a particular set
of isoforms. For example, category 1 consists of reads
generated by both isoforms and category 3 consists of
reads generated by isoform 2 only. Using these statis-
tics to solve the optimization problem (4), the MLE for
the two isoforms is [θ̂1, θ̂2] = [15.47,2.70].9 Bayesian
credible intervals for these estimates can be obtained
by sampling from the posterior space of the parameters
(as outlined in Jiang and Wong, 2009), the marginal
95% credible intervals for θ1 and θ2 are (7.89,18.81)

and (0.25,10.83), respectively.

5.2 Insert Length Model

To visualize how the insert length model can be used
to produce potentially stronger statistical inference as
compared to the uniform sampling model, consider
Figure 6. Each paired end read is depicted by two boxes
with arrows joining pairs of reads. The direction of the
arrows represent which side of the read was sequenced
first. For those interested, the direction of the arrows in
the Rnpep gene itself indicates the transcriptional di-
rection of the gene in genomic coordinates, although
this concept can be ignored for the purposes here. Note
that there is no direct evidence that isoform 2 is present
in the sample, as no read crosses the junction between
the two exons which are adjacent in isoform 2 but not
in isoform 1. There is direct evidence of the presence
of isoform 1, for example, as depicted in the fifth read
from the left in the first row which directly crosses a
junction between two exons only adjacent in isoform 1.

9All the expression estimates in this paper are in units compat-
ible with RPKM (Reads Per Kilobase of exon model per Million
mapped reads) (see Mortazavi et al., 2008).

Because of the small gap between exons in the
figure, reads spanning exons will be slightly longer
than reads not spanning exons. Also, some inserts are
very short, and absence of the arrow connecting two
reads indicates that the entire insert has been fully se-
quenced. Note that several of the reads spanning the
alternatively spliced exon are exceedingly long. This
suggests that such reads are actually generated from
isoform 2 rather than isoform 1. If such reads are gen-
erated from isoform 2, they would likely have a smaller
insert length than the inferred insert length when gen-
erated by isoform 1, which are the lengths depicted in
the figure. Because the empirical insert length distri-
bution has its only mode near 250 bp, conditional on
observing the 6th and 7th reads from the top of the fig-
ure spanning the alternatively spliced exon, the read
is more likely to come from isoform 2. Thus, there is
indirect evidence of the presence of isoform 2 in the
sample.

Such indirect evidence is utilized by the insert length
model; the model produces quantitative estimates of
the relative abundance of the two isoforms. As will be
seen in the next section, the abundance estimates from
the insert length model have larger Fisher information
than the estimates from the uniform sampling model.

In the insert length model, each of the possible insert
lengths where q(·) has support produce a unique read
sj yielding a total of 569,205 possible reads from the
two isoforms. The maximal collapsing produces a total
of 138 categories, some of which are represented in Ta-
ble 3. For intuition, all of the reads with a fixed insert
length where both ends fall in the leftmost 7 or right-
most 3 exons of Rnpep will be in the same category, as
they have the same probability of being sampled.

Using the minimal sufficient statistics, the MLE is
computed to be [θ̂1, θ̂2] = [16.73,3.43]. The marginal
95% credible intervals for θ1 and θ2 are (11.22,21.02)

and (1.03,9.29), respectively. The computed marginal
95% credible intervals for θ1 and θ2 are nonoverlap-
ping, whereas in the single end read model, one cannot

TABLE 3
Paired read categories for Rnpep

Category ID Sampling rate vector Read count

1 [1,681.82n,1,681.82n] 95
2 [294.60n,0] 10
3 [0,245.80n] 2
...

...
...

138 [0.0057n,0.0018n] 0
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conclude that the expression of isoforms 1 and 2 dif-
fer. Further, the insert length model has slightly smaller
marginal credible intervals for each parameter.

This example suggests that although the uniform
sampling model for single end reads has twice the sam-
ple size compared with the insert length model for
paired end reads, the insert length model actually pro-
vides estimates with smaller standard errors than those
generated by the uniform sampling model, because the
insert length model can utilize the extra information
from the insert sizes of the reads. This difference can
be quantified by analyzing the Fisher information of
each model, the subject of Section 6.

5.3 Practical Implementation Issues

In general, to apply Theorem 3, one needs to enu-
merate all the read types before collapsing, as shown
in the example of mouse gene Rnpep. This might be
a time consuming step, especially when the number of
read types is large. In practice, however, under some
suitable sampling rate models (which include both our
uniform model and insert length model), it is sufficient
to enumerate only the read types that have at least one
read being mapped. This can reduce the computation
when the number of mapped reads for the gene is small,
or, in other words, when the gene is lowly expressed.

To see how this works, rearrange the right-hand side
of equation (2) as follows:

fθ(n1, n2, . . . , nJ )

=
J∏

j=1

(θ · aj )
nj e−θ ·aj

nj !

= ∏
nj>0

(θ · aj )
nj

nj !
∏

nj=0

(θ · aj )
nj

nj !
J∏

j=1

e−θ ·aj

(9)

= ∏
nj>0

(θ · aj )
nj

nj !
J∏

j=1

e−θ ·aj

= ∏
nj>0

(θ · aj )
nj

nj !
J∏

j=1

e−∑I
i=1 θiai,j

= ∏
nj>0

(θ · aj )
nj

nj !
I∏

i=1

e
−θi

∑J
j=1 ai,j ,

where only the term
∑J

j=1 ai,j depends on the sam-
pling rates of read types with read counts nj = 0.
Therefore, if we can compute this term without know-
ing each particular sampling rate ai,j , the enumera-
tion of all the read types is no longer necessary. For-

tunately, it is possible under some suitable sampling
rate models, including both our uniform model and in-
sert length model. For example, in the uniform model,∑J

j=1 ai,j = n(li − r + 1), where n is the total number
of mapped reads, li is the length of transcript i and r

is the read length. Similarly, in the insert length model,∑J
j=1 ai,j = ∑

q(r)>0 nq(r)(li − r + 1).
Using this trick, we can take only the read types with

at least one read being mapped and collapse them to
categories C1,C2, . . . ,CK . Accordingly, the optimiza-
tion problem [equation (4)] is reduced to

maximize nT log(AT θ) − WT θ
(10)

s.t. θ ≥ 0,

where n is a K × 1 column vector for the collapsed
read counts for categories C1,C2, . . . ,CK , A is a I ×
K matrix for the collapsed sampling rates and θ is the
isoform abundance vector. W is a I × 1 vector with
the ith element Wi=

∑J
j=1 ai,j computed based on the

corresponding sampling rate model.
In a more complex sampling rate model, for exam-

ple, when ai,j depends on the particular nucleotide
sequence of read sj , the optimization problem [equa-
tion (10)] can still be solved. However, all the read
types (including the read types with nj = 0) will have
to be enumerated and each sampling rate ai,j will have
to be computed.

6. INFORMATION THEORETIC ANALYSIS

Many considerations impact the choice of sequenc-
ing protocol in an experimental design. One such
choice is relative cost of sequencing. In this case, the
experimentalist may be interested in choosing the se-
quencing protocol (paired end or single end) that pro-
vides the best estimate of isoform abundance at the
least relative cost. This section outlines the statisti-
cal argument for why, in typical situations, paired end
sequencing can produce better estimates of transcript
abundance compared to single end sequencing at a
fixed number of sequenced nucleotides (cost). The the-
oretical analysis aims to show that for the same number
of sequenced nucleotides, the Fisher information in the
insert length model is more than double the Fisher in-
formation in the single end read model. Since estimates
in RNA-Seq are maximum likelihood estimators, their
variance of the estimator converges to the reciprocal of
the Fisher information. Thus, larger Fisher information
produces estimators with improved accuracy.
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6.1 Theoretical Analysis

Consider the following quite simple example show-
ing the increase in information as the fraction of reads
unique to each isoform grows:

EXAMPLE 4. Continuing Example 1, suppose that
isoform 1 and isoform 2 have Poisson rate parameters
θ1 and θ2, respectively, where θ2 = 1 − θ1 and proba-
bility 0 < α,β < 1, respectively, of producing a read
unique to the isoform. Let n1 be the reads unique to 1,
n2 the reads unique to 2 and n3 the reads which cannot
be distinguished between the isoforms. Assume there
are n total reads in the sample, and assume there is
uniform fragmentation which gives rise to three cate-
gories:

n1 = Po(nαθ1),

n2 = Po(nβθ2),

n3 = Po
(
n
(
(1 − α)θ1 + (1 − β)θ2

))
.

Fix α < β as known and compute the information in
this distribution with θ1 as the unknown parameter as
a function of α using the definition that the informa-
tion is equal to the variance of the derivative of the log
likelihood with respect to θ1:

I (θ1) = var
(

n1

θ1
− n2

θ2
+ n3(ᾱ − β̄)

θ1(ᾱ − β̄) + β̄

)

= n

(
α

θ1
+ β

θ2
+ (ᾱ − β̄)

θ1(ᾱ − β̄) + β̄

)
,

where x̄ = 1 −x. Thus, ᾱ − β̄ = β −α, and δ := β −α

and α are re-parameterizations of β,α. The last equa-
tion shows that the partial derivatives of the informa-
tion with respect to α and with respect to δ are positive.

Note that in the example above, no generality is lost
by assuming β > α since θ1 and θ2 can be interchanged
with no effect on the model.

To see that for a fixed cost of sequencing (number
of sequenced nucleotides) the statistical model pro-
duced by paired end sequencing has more information
than single end sequencing, it is necessary to show
that the information obtained by twice as many sin-
gle end reads in a single end sequencing experiment is
smaller than that obtained by a paired end sequencing
experiment. Such a comparison necessarily depends on
each gene, its isoforms and their relative abundance.
The computation of the Fisher information for a typi-
cal such example is presented below, and the computa-
tion shows that the example easily generalizes to other
configurations of isoforms.

FIG. 7. A model gene for the study of Fisher information and
accuracy of the single end and insert length models.

EXAMPLE 5. Continuing the running example,
consider reads of length r = 100 bp and paired end
insert size x = 200 bp in the schematic of three exons
in Figure 1, where the length of exons 1 and 3 is 500 bp
and exon 2 is e = 50 bp (see Figure 7).

For a single end read experiment, αs is the prob-
ability that a read includes any part of the included
exon (i.e., uniquely identifies isoform 2), so for the read
length of r ,

αs = r − 1 + e

1,000 + e − r + 1
and βs is the probability that a read includes any part
of the spliced junction (i.e., uniquely identifies iso-
form 1) so

βs = r − 1

1,000 − r + 1
.

For a paired end read experiment, with x the insert
length, αp , the probability that a read uniquely identi-
fies the second isoform, is

αp = e + x − 1

1,000 + e − x + 1
,

and βp , the probability that a read uniquely identifies
the first isoform, is

βp = x − 1

1,000 − x + 1
.

For a concrete example, suppose θ1 = 2θ2. Assume
further that there are twice as many single end reads (a
sample size of 2n) compared to the n reads in a paired
end run:

Is := 2n

(
3

2
αs + 3βs + (ᾱs − β̄s)

(2/3)(ᾱs − β̄s) + β̄s

)
,

and the information in a paired end run for a fixed insert
size is

Ip := n

(
3

2
αp + 3βp + (ᾱp − β̄p)

(2/3)(ᾱp − β̄p) + β̄p

)
.

Plugging in numbers x = 200, e = 50, and r = 30
gives

Is

Ip

= 0.31

1.12
= 0.28.
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In other words, in the insert length model, the max-
imum likelihood estimator of θ1 has asymptotic vari-
ance roughly 3 times larger in the single end read ex-
periment than in the paired end experiment.

Of course, this ratio will change if the parameters
change. For instance, Is/Ip = 0.63 if x = 200, e = 50
and r = 70; Is/Ip = 0.47 if x = 200, e = 100 and r =
50.

The next section gives simulation results for a related
example.

6.2 Simulation Study

Simulations were used to study the following ques-
tions: (1) the quality of the proposed model at estimat-
ing isoform-specific gene expression, especially when
the insert length is variable, and (2) whether abundance
estimates from paired end reads are more reliable than
abundance estimates from single end reads.

To address these questions, reads were simulated
from a “hard case” where a gene has three exons of
lengths 500 bp, 50 bp and 500 bp, respectively (see Fig-
ure 7); the middle exon can be skipped, producing two
different isoforms of the gene. Since the middle exon
is short, this case has been shown to be difficult for
isoform-specific gene expression estimation in Jiang
and Wong (2009).

In the simulation, the two isoforms were assumed to
have equal abundance. Reads were simulated using dif-
ferent models and parameters described in detail below
and estimate isoform abundances as described in Sec-
tion 3.5. The relative error of estimation was computed
based on the empirical relative L2 loss:

‖θ − θ̂‖2

‖θ‖2
=

√
(θ1 − θ̂1)2 + (θ2 − θ̂2)2√

θ2
1 + θ2

2

=
√

(1/2 − θ̂1)2 + (1/2 − θ̂2)2

√
2/2

,

where θ = [θ1, θ2] = [1
2 , 1

2 ] is the true isoform abun-
dance vector, and θ̂ = [θ̂1, θ̂2] is the estimated iso-
form abundance vector after normalization so that
θ̂1 + θ̂2 = 1. Each simulation experiment was repeated
200 times to get the sample mean and standard error of
the relative error.

6.2.1 Simulating single end reads with uniform sam-
pling. To explore the quality of estimation in the uni-
form sampling approach, single end reads with length

30 bp using the uniform sampling model were gener-
ated. Five separated experiments were performed to in-
vestigate the effect of sample size on the estimation
procedure using sample sizes of 10, 50, 200, 1,000
and 5,000, respectively. The solid curve in Figure 8(a)
gives the sample mean and standard error of the rela-
tive error. It is clear that relative error decreases as the
sample size increases.

To examine whether longer reads can provide bet-
ter estimates, all the simulation experiments were re-
peated with read length 100 bp. Figure 8(a) shows the
comparison between read lengths of 30 bp and 100 bp.
As expected, 100 bp reads produce smaller error than
30 bp reads.

6.2.2 Simulating single end reads with nonuniform
sampling. In real UHTS data, the read distribution
is not uniform. To evaluate how well the RNA-Seq
methodology performs in this regime, simulations were
performed where the positions of reads were sampled
from a log-normal distribution. Specifically, up to a
scalar multiple, the true sampling rates ai,j are inde-
pendently and identically distributed random variables
which follow log-normal distribution with mean μ = 0
and standard deviation σ = 1.

Figure 8(b) gives the comparison between reads that
were sampled from uniform distribution and reads that
were sampled from log-normal distribution The figure
shows that nonuniform reads produce estimates which
appear consistent, albeit with larger error than with uni-
form reads.

6.2.3 Simulating paired end reads. This section in-
vestigates whether, in simulation, paired end reads can
provide more information than single end reads. When
insert lengths do not have a simple distribution, closed
form expressions for the information are difficult to ob-
tain. Simulation studies are thus important tools for an-
alyzing such situations. For this purpose, paired end
reads of length 30 bp with insert size following a nor-
mal distribution with mean μ = 200 bp and standard
deviation σ = 20 bp were generated. For a given in-
sert size, read pairs were generated using a uniform
sampling model. Figure 8(c) shows that the paired end
reads produce smaller errors than single end reads with
the same number of sequenced nucleotides: to make
the comparison comparable on the level of total se-
quenced bases, n/2 pairs of paired end reads were used
when compared with n single end reads.

When the insert size was generated using a uniform
distribution, for example, the effective insert size is
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(a) (b)

(c) (d)

FIG. 8. Relative error of different read generation models. X axis is the sample size, that is, the number of reads that is generated in each
simulation experiment. Y axis is the mean relative error based on 200 simulation experiments. The error bars give the standard errors of
the sample means. In the figures, single 30 bp reads generated with uniform sampling rate (solid curves) are compared to (dashed curves)
(a) single 100 bp reads, (b) single 30 bp reads generated with lognormal sampling rate, (c) paired end 30 bp reads generated with Gaussian
insert size and (d) paired end 30 bp reads generated with uniform insert size. When compared with n (e.g., 5,000) single end reads, n/2 (i.e.,
2,500) pairs of paired end reads were used.

uniform within 200 ± 20 bp, similar results were pro-
duced [see Figure 8(d)]. Comparing Figure 8(d) with
Figure 8(a) shows that paired end 30 bp reads produce
similarly accurate estimates as 100 bp single end reads,
which means that, on average, paired end reads provide
more information per nucleotide being sequenced.

6.2.4 Simulating with other parameters. We also
performed simulations with other settings of parame-
ters, for instance, with read length 70 bp, with true iso-
form expression vector (0.1,0.9) or with exon lengths
(500 bp, 200 bp, 500 bp). The results are shown in Fig-
ure 9. In all these simulations, the advantage of paired
end sequencing over single end sequencing is obvious

for moderate sampling (50 ≤ n ≤ 1,000), as in typical
cases for sequencing data.

7. DISCUSSION

The insert length model presented in this paper is
a flexible statistical tool. The model has the capac-
ity to accommodate oriented reads from Illumina data
and to model fragment specific biases in the probabil-
ity of each fragment being sequenced. In Section 3.2
the model has been derived when the experimental step
of fragmentation is assumed to be approximated by a
Poisson point process, and a transcript is assumed to
be retained in the sample in proportion to the fraction
of transcripts of its length estimated after sequencing.
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(a) (b)

c

FIG. 9. Relative error of single end reads (solid curves) and paired end reads (dashed curves) with different settings of parameters:
(a) 70 bp reads, true isoform expression vector (0.5,0.5) (b) 30 bp reads, true isoform expression vector (0.1,0.9) (c) 30 bp reads, true
isoform expression vector (0.5,0.5), exon lengths (500 bp, 200 bp, 500 bp). When compared with n (e.g., 5,000) single end reads, n/2 (i.e.,
2,500) pairs of paired end reads were used.

These assumptions are at once simplifying and realis-
tic. As experimental protocols improve, it is likely they
will better model RNA-Seq data.

At the current time, several improvements may be
made to the model to increase its accuracy. First, the
read sampling rate is undoubtedly nonuniform, as it
depends on biochemical properties of the sample and
fragmentation process as experimental studies have
highlighted (see Ingolia et al., 2009; Vega et al., 2009,
and Quail et al., 2008). This effect becomes more ap-
parent for longer fragments such as those used in paired
end library preparation. Explicit models for the sam-
pling rates are difficult to obtain, but doing so is an
area of future research. Recent research (see Hansen,
Brenner and Dudoit, 2010; Li, Jiang and Wong, 2010)
has shown that the nonuniformity can be modeled and

estimated quite well from the data. It may be possible
to combine these models with our approach to improve
the estimation performance.

Statistical tests of the reproducibility of the nonuni-
formity of reads shows a consistent sequence specific
bias across biological and technical replicates of a
gene. This effect could be due to bias in RNA fragmen-
tation, bias in other biochemical sample preparation
steps or boundary effects when a gene of fixed length is
fragmented. The last cause of bias can be modeled us-
ing Monte Carlo simulations of a fixed length mRNA
sequence subject to a Poisson fragmentation process
and incorporated into the insert length model.

Similarly, the fragmentation and filtering steps have
not been explicitly modeled in the insert length model
presented here. Rather, the probability mass function of
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read lengths, what is necessary for defining the model,
has been estimated empirically. Improvements to the
model could be made by increasing the precision of
the estimate of the probability mass function of read
lengths, for example, by simulating a fragmentation
and filtering process by Monte Carlo and matching the
output of the simulations to the empirical distribution
function q(·). If such modeling were desired, as de-
scribed in Section 3.2, the effects could be easily in-
corporated into the insert length model. On the other
hand, as experimental protocols improve, they may re-
duce this bias and increase the accuracy of the insert
length model as presented in this paper.

In reality, sequencing mapping is another step that
may affect the analysis. For instance, some reads can-
not be mapped because of sequencing errors and some
can be mapped to multiple places. We have not fo-
cused on the issue of mapping fidelity because we re-
strict attention to the reads which did map uniquely. We
are also not taking into account mapping errors which
themselves require statistical modeling. We have cho-
sen not to model these errors partly because some map-
ping errors are platform-dependent (i.e., different se-
quencing errors tend to be made by the Illumina vs.
other platforms).

In some applications, the parameters of interest to
biologists are not the RPKMs for isoforms 1 and 2,
but rather the relative expression ratio of both isoforms.
One way to estimate the ratio is to reparameterize the
problem with θ1 as a first parameter and a second pa-
rameter μ = θ1/θ2. The reparameterization will make
the model no longer linear in the parameters, therefore
harder to solve. Also, the choice of μ is not straightfor-
ward when there are 3 or more isoforms. An easier way
is to estimate μ indirectly after estimating θ1 and θ2.

We believe that technological improvements that
produce longer read lengths will not diminish the rel-
evance of the insert length model. Paired end models
will be relevant at least until read lengths are com-
parable to the length of each transcript, and perhaps
longer for reasons of cost. Since many transcripts are
larger than 104 nucleotides, and longer in some impor-
tant cases, such a time is unlikely to occur in the next
few years. Further, longer insert lengths and reads com-
bined with the insert length model in this paper will aid
in discrimination of complex isoforms and estimation
of isoform-specific poly-A tail lengths. Thus, we do not
foresee any imminent obsolescence of this model.

While the model developed in this paper has the po-
tential for great use and extends current methodology
for isoform-specific estimation, the model assumes that

the complete set of isoforms of a gene have been anno-
tated. De novo discovery of isoforms from a sample is
an important and difficult statistical problem that we
have not addressed in this paper. Another shortcoming
of the model is that in order for statistical inference
to be accurate, with the current short read technology,
the number of isoforms should be relatively small (e.g.,
2–5). We expect these challenges to motivate method-
ological development in the field of RNA-Seq in the
coming years.

In conclusion, this paper has presented a statistical
model for RNA-Seq experiments which provides es-
timates for isoform specific expression. Finding such
estimates is difficult using microarray technology, fo-
cusing interest in UHTS to address this question. In
addition to modeling, the paper has presented an in-
depth statistical analysis. By using the classical statis-
tical concept of minimal sufficiency, a computationally
feasible solution to isoform estimation in RNA-Seq
is provided. Further, statistical analysis quantifies the
perceived gain in experimental efficiency from using
paired end rather than single end read data to provide
reliable isoform specific gene expression estimates. To
the best of our knowledge, this is the first statistical
model for answering this question.
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