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This paper presents a Generalized Logistic (gLG) 

[l] distribution as a unified model for Log-domain 

Synthetic Aperture Radar (SAR) data. This model stems 

from a special case of the G-distribution [2] known as 

the Go -distribution. The G -distribution arises from a 

multiplicative SAR model and has the classical K - 
distribution as another special case. The Go -distribution, 

however, can model extremely heterogeneous clutter 

regions that the K -distribution cannot model. This 

flexibility is preserved in the unified gLG model, which 

capable of modeling non-polarimetric SAR returns from 

clutter as well as man-made objects. Histograms of these 

two types of SAR returns have opposite skewness. The 

flexibility of the gLG model lies in its shape and shift 

parameters. The shape parameter describes the differing 

skewness between target and clutter data while the shift 

parameter compensates for movements in the mean as the 

shape parameter changes. A Maximum Likelihood (ML) 

estimate of the shape parameter gives an 'optimal' 

measure of the skewness of the SAR data. This measure 

provides a basis for an optimal target detection algorithm. 
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I. Introduction 
The automatic recognition of targets in SAR 

imagery can be computationally intensive. One approach 

for reducing the computational load, applies a simple 

detection algorithm over the entire scene. The detector 

locates regions that may contain objects of interest. 

Following the detection process, the more 

computationally intensive target recognition process is 
performed on the regions located by the detector. 

The development of an optimal target detection 

algorithm depends on precise statistical modeling of the 

underlying clutter and target regions. Several models 

have been proposed in the past for clutter data. For 

example, Rayleigh [3] or Gaussian distributions are 

commonly used to model the backscatter associated with 

homogeneous regions such as bare ground surfaces, dense 

forest canopies or snow-covered ground. For other clutter 

types, such as sea surface backscatter, the Lognormal [3] 

and Weibull [3] have been used. In another example, the 
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Modified Beta [4] has been proposed as a model for 

backscatter from different ice types. 

For heterogeneous backgrounds many of these 

models are inadequate. Here, the K -distribution has 

been used extensively [5].  Also, since it was originally 

proposed by Jakeman and Pusey [6] to model microwave 

sea echoes, the K -distribution has become popular for 

modeling multilook [7] as well as polarimetric SAR 

signatures [SI. In addition, the K -distribution is 

attractive since it has been justified in terms of SAR 

backscattering processes. More recently, a new class of 

distributions known as the G-distribution [2] has been 

proposed to model SAR data. The classical K and the 

new G distributions are special cases of this new class. 

However, in contrast with the K -distribution, the G - 

distribution can model extremely heterogeneous clutter, 

such as urban regions, that the K -distribution cannot 

properly model [2]. 

0 

0 

Empirical measurements indicate that histograms of 

many naturally occurring clutter types have different 

skewness from those of man-made objects. Here, the 

Log-domain histograms of naturally occurring clutter 

exhibit broad left tails whereas those of man-made objects 

can exhibit a range of distributions which include 

symmetric to right-skewed distributions. Therefore, a 

likely measure of the skewness or shape of these 

distributions can distinguish between these classes of 

SAR returns. In one such example, Pearson's Second 

Coefficient of Skewness served as basis for this measure 

[91. 

An 'optimal' approach finds a probability density 

function whose parameters we can adjust and estimate to 

measure the shape of S A R  returns from naturally 

occurring clutter to man-made objects. Additionally, this 

measure should produce reduced false alarm rates over 

those associated with less optimal approaches including 

skewness-based measures. 

This paper proposes a Generalized Logistic or gLG 

[l] [lo] distribution as a model for Log-domain clutter 

and target data. We will derive this model from the Go - 
distribution. In particular, the single-look case of the 

Go -distribution reduces to the Generalized Beta-Prime 
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(gBP)  [l] distribution with two of its parameters set to 

one. We refer to this 2-parameter version as the Beta- 

Prime (BP)  distribution. When Log-transformed, this 

yields the gLG distribution. This paper shows that this 

model provides a good fit to both Log-domain target as 

well as clutter data. The gLG distribution possesses two 

fixed parameters (scaling and offset) resulting from the 

Log transformation in addition to the Beta-Prime 

distribution parameters. The latter are the shape and shift 

parameters known as a and b respectively. 

The gLG distribution lends itself, in part, to a 

Maximum Likelihood estimate of the shape parameter a. 

Here, we derive a closed form expression for the ML 

estimate of a. However, this expression is not only a 

function of the data samples, but also of the nuisance 

parameter b .  Therefore, it would seem appropriate to 

derive the closed form expression for ML estimate for b 

then solve the system of two equations and two 

unknowns. However, a closed form expression for b 

does not exist. An alternate approach is to use the 

method-of-moments (MOM) to estimate a. However, 

the MOM cannot estimate the full range of a.  This 

paper discusses one possible approach for estimating 

these parameters and contrasts it with a moment-based 

approach. Using the estimates resulting from the ML 

approach, we propose an ‘optimal’ detector whose 

performance can be determined analytically. 

11. Classical SAR Model 
SAR returns have been modeled as a distributed 

collection of radar scatterers each having a different 

amplitude and phase. The field strength from the i-th 

scatterer may be expressed as: 

where Ki is the system constant that accounts for radar 

system factors including propagation losses and antenna 

directivity gain, Ejo is the field strength, and ej is the 

instantaneous phase expressed as: 

4, I = m - 2 k R ,  +e.  (2) 
1 1  

In the above expression, Oi is the scattering phase, Ri is 

the antenna to the scatterer range, w is the carrier 

frequency and k is the wave number. 

Assuming statistically independent scatterers, the 

total instantaneous field due to N scatterers can be 

expressed as a coherent sum of the scatterers in the usable 

portion of the radar beam. If we further assume that the 

area on the ground is small compared to the range from 

the radar platform to the ground, and that the antenna gain 

is uniform across the area (i.e. Ki = K )  we can write the 

total instantaneous field as: 
N 

E = K C  Eioe j4i 
(3) 

i=l 

111. Classical Clutter Model 
For a large number of randomly range-distributed 

scatterers, applying the central limit describes the 

scattering amplitude and instantaneous phase as a 

complex process: 

EeJ’j = u + jv (4) 

where U and V are independent, normally distributed, 

zero-mean random variables. The SAR image formation 

process transforms the phase histories, z = U + jV , into 

a new random variable w = I + j Q ,  where I and Q are 

independent identically distributed N ( 0 ,  crG ) random 

variables. The received power of each pixel in the 

formed image can be described by: 

2 2  
p = I  +Q (5) 

whose statistics are described by the following 

exponential distribution: 

A Log-domain transformation, g = qLog, ( p )  + a’, of 

the exponential random variable yields: 

which is also known as the Gumbel distribution where q 

and a’ represent fixed scale and bias constants. This 

distribution typically models Log-domain homogeneous 

clutter regions. Here, the parameter oG is a function of 

the back-scattering characteristics of the given 

homogeneous clutter type. Similarly, by applying the 

transformation of variables rn = & we arrive at a 

Rayleigh distribution in the magnitude domain. Note that 

other models, such as the Weibull distribution can fit 

homogeneous clutter as well. This model approaches the 

Rayleigh distribution given an appropriate choice of 

parameters. 
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IV. Models for Man-Made Objects 
A coherent sum of individual scatterers can also 

model man-made object radar returns. Unlike clutter, a 

small number of scatterers typically dominate the total 

instantaneous field. Therefore, the central limit theorem 

is not valid and the resulting scattering amplitude and 

instantaneous phase EeJgi = U + j V  = z may not yield 

Gaussian ( U ,  V )  components. 

Empirically, Log-domain probability density 

functions from man-made objects have broader right tails 

than from homogeneous clutter. From the classical model 

described earlier, these should fit the Gumbel distribution. 

Figures 1 and 2 show histograms that demonstrate this. 

Here, the bright and diffuse parts of a T-72 tank at 

approximately 230 different aspects were used for the 

target histogram. The clutter was histogramed from the 

homogeneous grassy regions of a similar set of imagery. 

For these examples, we used one foot resolution, single- 

look, HH-polarized, X-band SAR data at 17 degrees 

depression collected for the MSTAR program. 
1 

V. Unified Model for Clutter and Targets 

Equations (8), (9) and (10) show the Go-  

distribution proposed by Frery, et. al. [2], for the 

complex, magnitude and power domains respectively. 

Where (8) gives the distribution of either Z or Q in 

w = Z + j Q  and n represents the number of looks. 

a,b>O,  ~ € 3 1  

2nnbar(n + a)m2n-1 

(9) 
fM (m)  = 2 n m  

a, b, n, m > 0 

r (n ) r (a ) (b  + nm ) 

nnb"r(n + a)p"-' 

(10) 
f P ( P )  = 

r (n ) r (a ) (b  + np)n+ol 

a ,b ,n ,p  > 0 

For the single look case ( n  = 1) , (10) reduces to (1 1) :  

aba 

(b  + p)"" 
f P ( P )  = 

1 
Publicly available data collected for DARPA's Moving 

and Stationary Target Acquisition and Recognition 

(MSTAR) program. 

where r(a + l ) / r ( a )  = a. This form for the power 

domain distribution is also known as the Generalized Beta 

Prime distribution gBP(b, 7 ,  p ,  a)  [ 13 with parameters 

y = p = l .  We refer to (11) as the Beta Prime 

distribution BP(b, a)  . Applying the transformation of 

variables g = qLog, ( p )  + a' to this expression, we 

obtain the gLG(a', q, qb, a )  distribution shown in (12): 

(n-d) 

II  orba e 

(12) 
fc(g> = - (n-d) 

77 
(b+e  ' )*+a 

a,b,q > 0, g,a'E 31 

Here, q and a' represent the fixed scaling and offset 

parameters whereas a and b affect the distribution 

shape and translation respectively. Figures 1 and 2 

demonstrate the fit achieved with the Generalized 

Logistic distribution using ML estimates of a and b .  

These estimates are discussed in more detail in section VI. 
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Figure 1. gLG distribution fitted to Log-domain 

histograms of T-72 Tanks. 
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Figure 2. gLG distribution fitted to Log-domain 

histograms of homogeneous grassy regions. 
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VI. Parameter Estimation 
Unfortunately, closed form parameter estimates for 

many popular distributions do not exist. For example, in 

both the Weibull and 3-parameter Lognormal [ l ]  

distributions, the ML approach yields a system of 

equations in which one of the parameters must be 

estimated numerically. One parameter estimation 

approach that leads to a closed form solution, is the 

method-of-moments. This technique has been proposed 

for the Go [2] and Modified Beta ( M B )  [4] distributions. 

The M B  distribution is similar to the gBP 

distribution. However, there are important differences 

between the two. For example, the M B  distribution 

encompasses only three parameters while the gBP 

distribution has four. Also, the gBP distribution cannot 

be transformed to the M B  distribution simply by 

choosing its parameters appropriately. However, an 

appropriate choice of the MB distribution parameters 

yields the BP distribution discussed in section V: 

BP(b, a)  = MB(1, a,l / b)  

Given this equivalency, we decided to examine the utility 

of the MOM approach proposed by Maffett and 

Wackerman [4]. This approach proposes the following 

moment combinations for estimating a and b : 

2 
w = p 2 / m  

6i = (4w - 3g’-  2) /(2w - g’) 

i = m ( & - 1 )  (17) 

Here, w and g’, defined as the “width“ and 

“modified skewness“, are calculated from SAR data. The 

moments include the sample mean (m), the sample 

variance ( p 2 ) ,  and the third central moment ( p 3 ) .  

Here, w must be greater than zero since the variance and 

the mean squared are both greater than zero for (13). In 

addition, there is good reason to believe that p 3  will also 

be positive for this distribution [ I l l .  Therefore, g’ 

should be positive as well. However, if we substitute the 

analytical expressions for m , p 2 ,  and p 3  from (1 1) into 

(14) and (15) we observe a conflict in the resulting 

expressions: 

(18) w = a /(a - 2) 

g ’ = 2 ( a + l ) / ( a - 3 )  

Namely, if a has a value less than two, the positive 

condition on both (18) and (19) is violated. This result 

tells us that the estimates produced by (16) and (17) will 

be invalid for Beta Prime distributed data whose inherent 

shape parameter has values less than two. This is 

problematic if we expect SAR data of this type. Here, the 

MOM approach has limitations that make it inapplicable 

to our problem. 

Alternately, using standard Maximum Likelihood 

estimation techniques and the marginal distribution 

described by ( 1  l ) ,  we can arrive at expressions that give 

& and 6 in terms of the samples from the marginal 

distribution. We use the Beta Prime distribution instead 

of the Generalized Logistic, since it is slightly easier to 

manipulate. However, either expression should give 

equivalent results, since a monotonically increasing 

transformation moves one to the other. Equation (20) 

describes the result of the ML estimate on a : 

However, a simple solution for the estimate of b in terms 

of a and the N data samples pi  is not possible as can 

be seen from (21): 

This expression results from the ML estimate on b .  

However, setting (21) equal to zero and solving for b 
h 

would require solving an id degree polynomial. Instead 

we chose to use Newton’s method to estimate b 

Table 1 shows example results for the ML and 

MOM approaches using data samples produced with a 

Monte-Carlo simulation for the Beta Prime distribution 

given typical parameters. These approaches were applied 

to 20 sets of N=100,000 data samples each. The average 

estimate is shown below: 

Table 1. Average parameter estimates for synthetic Beta 

Prime data. 
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Clearly, for these examples, the MOM approach is unable 

to estimate the parameters for Beta Prime distributed data 

whose a parameter is in the range discussed earlier. 

Outside this range, the MOM appears to be less accurate 

than ML. Based on these results and our analytical 

analysis, we conclude that ML is better at estimating the 

parameters for our data of interest. 

In Table 2, we present example results for the ML 

and MOM approaches on approximately N= IO0,OOO 

samples from the target and homogeneous grass data 

described in section IV. Given our earlier analysis, we 

expect the ML estimates to be more reliable. 

ML Estimate MOM Estimate 

REGION di b^ di i 
Target 1.177 0.0503 3.649 0.4174 

Grass 5.902 0.0142 9.362 0.0241 

Table 2. Parameter estimates for SAR target and 

homogeneous grassy regions. 

Here, the ML estimates give consistent results for a 
when the shape of the gLG distribution changes. That 

is, for O<a < 1 ,  a=l ,  and a > 1  we expect right- 

skewed, symmetric, and left-skewed distributions 

respectively. The histograms in Figures 1 and 2 

demonstrate this. Here, the target region histogram has a 

nearly symmetric shape whereas the clutter region 

histogram has a significantly left-skewed shape. Using 

these parameter estimates we can implement an ‘optimal’ 

detector as shown in Figure 3. 

Estimate: 
Regions 

Figure 3. Conceptual detector block diagram. 

VII. Conclusions 
We have presented the Generalized Logistic 

distribution as useful for modeling both man-made as 

well as natural clutter. We have based this model on the 

multilook G -distribution, which can model extremely 

heterogeneous clutter [2]. This model and the classic K - 
distribution both stem from the same parent G -  

distribution. An attractive quality of this distribution is its 

justification in terms of an established multiplicative 

model and physical backscattering processes. For the 

single-look case, this distribution fits homogeneous 

clutter as well as target data. We can compute the shape 

and shift parameters from data using Maximum 

Likelihood estimates augmented with numerical 

0 . .  

techniques. This estimation approach has been contrasted 

with a popular method-of-moments approach, which has 

problems in some cases. Finally, we have proposed the 

basis for a detector whose performance can be determined 

analytically. 
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