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Abstract

Objectives: This study aimed to apply three of the most important nonlinear growth models (Gompertz,

Richards, andWeibull) to study the daily cumulative number of COVID-19 cases in Iraq during the period from

13th of March, 2020 to 22nd of July, 2020.

Methods: Using the nonlinear least squares method, the three growth models were estimated in addition to

calculating some relatedmeasures in this study using the “nonlinear regression” tool available inMinitab-17,

and the initial values of the parameters were deduced from the transformation to the simple linear regression

equation. Comparison of these models was made using some statistics (F-test, AIC, BIC, AICc and WIC).

Results: The results indicate that the Weibull model is the best adequate model for studying the cumulative

daily number of COVID-19 cases in Iraq according to some criteria such as having the highest F and lowest

values for RMSE, bias, MAE, AIC, BIC, AICc andWICwith no any violations of the assumptions for themodel’s

residuals (independent, normal distribution and homogeneity variance). The overall model test and tests of

the estimated parameters showed that theWeibull model was statistically signi�cant for describing the study

data.

Conclusions: From the Weibull model predictions, the number of cumulative con�rmed cases of novel coro-

navirus in Iraq will increase by a range of 101,396 (95% PI: 99,989 to 102,923) to 114,907 (95% PI: 112,251

to 117,566) in the next 24 days (23rd of July to 15th of August 15, 2020). From the in�ection points in the

Weibull curve, the peak date when the growth rate will be maximum, is 7th of July, 2020, and at this time the

daily cumulative cases become 67,338. Using the nonlinear least squares method, the models were estimated

and some related measures were calculated in this study using the “nonlinear regression” tool available in

Minitab-17, and the initial values of the parameters were obtained from the transformation to the simple

linear regression model.

Keywords: COVID-19; Gompertz model; growth models; non-linear regression; Richards’ model; Weibull

model.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus

2 (SARS-COV-2) which is one of the biggest public health crises the world has ever faced. In this context, it

is important to have e�ective models to describe the di�erent stages of the epidemic’s evolution in order to

guide the authorities in taking appropriate measures to �ght the disease. Generally, there are three kinds

of methods to study the infectious of diseases. (i) Dynamic model establishing of infectious diseases; (ii)
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statistical modeling building based on random process with analyzing of time series and other statistical

methods; (iii) using data mining methodology to obtain the information in the data and then �nd the

epidemic law of infectious diseases (Jiang, Zhao, and Cao 2020).

The researchers have sought understanding of (COVID-19), and many of them undertaken statistical

models. And because the disease started to spread in China, so the �rst studies in this �eld was carried

out in China. A Markov Chain Monte Carlo (MCMC) stochastic process is used to evaluate the coronavirus

transmissibility in China with using the logistic model (Shen 2020). Majumder and Mandl (2020) studied the

incidence decreasing of COVID-19 using exponential adjustment model in Wuhan. Some of the researchers

adopted the exponential growthmodel for (SARS)usingdata-drivenanalysis in the early phaseof the outbreak

in China (Zhao et al. 2020). Generation of short-term forecasts for cumulative number of COVID-19 cases by

using some of the nonlinear regressionmodels in China (Roosa et al. 2020a). One of the statistical models has

developed a “susceptible, un-quarantined infected, quarantined infected and con�rmed infected” (SUQC)

model in order to characterize the dynamics of outbreaks (Zhao and Chen 2020). Forecasts of the COVID-19

epidemic in Guangdong and Zhejiang, in China were generated using Richards’ growth and a sub-epidemic

wave models (Roosa et al. 2020b).

We prefer to use such a growth models over other epidemiological models like SIR due to its simplicity

and for other many reasons like, �rstly, the SIR is a Compartmental Model and the data related to each

part not available in such a country like Iraq due to absence of strategic and scienti�c planning in many

governmental sectors. Secondly, the SIR model assumes homogeneous mixing of the population, meaning

that all individuals in the population are assumed to have an equal probability of coming in contact with one

another. This does not re�ect human social structures, in which the majority of contact occurs within limited

networks. The SIR model also assumes a closed population with no migration, births, or deaths from causes

other than the epidemic (Tolles and Luong 2020).

The use of models in public health decision making has become increasingly important in the study of

the spread of disease, designing interventions to control and prevent further outbreaks, and limiting their

devastating e�ects on a population. Iraq today reported over 101,258 cases with 4,122 deaths since the start of

the COVID-19 outbreak in the country in February 22nd, 2020. The main contribution of this work is that it is

very important for health authorities to know future expectations of the numbers of disease cases in order to

use the available capabilities that prevent the worsening of the pandemic, and this work can be considered as

the basis to comprehensive studies of this disease that deals with deaths, the necessary laboratory tests, and

building and equipping Hospitals for this purpose. In addition, the researcher did not �nd any work dealing

with mathematical and statistical modeling for Corona virus infections in Iraq.

The objective of this study is to describing ofwell-known growthmodels to a large extentwith application

to the daily cumulative numbers of con�rmed cases of infection by the novel coronavirus for the interval from

March 13th, 2020 to July 22nd, 2020.

Materials and methods

Statistical models

In many study �elds, the growth models had played signi�cant role, where many researchers have contributed in develop-

ing relevant models. There are several common models such as Gompertz, Weibull, negative exponential, Richards, logistic,

monomolecular, Brody, Mitcherlich, von Bertalan�y, S-shaped curves, etc. There are about 77 equations with the associated

parameter meanings, thesemodels (or curves) referred to as Sigmoidal GrowthModels which arise in various applications includ-

ing diseases epidemic, bioassay, agriculture, engineering �eld, tree diameter, height distribution in forestry (Dagogo, Nduka, and

Ogoke 2020). Nonlinear statistical models have been used to describe growth behavior, as it varies in time. The type of model

needed in a speci�c area and speci�c situation depends on the type of growth that occurs. A nonlinear model is one in which at

least one of the parameters appears nonlinearly. Three of the above models often used especially for the study of growth curves

in diseases epidemic and outbreak studies were analyzed: Gompertz, Richards, and Weibull. The formulas of these models are

showed in Table 1. In all concernedmodels, yt stands for COVID-19 cumulative cases recorded at time t, t stands for the time index
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Table 1: Nonlinear growth models presented in

the study.

Model Equation

Gompertz yt = �1e
−�2e

−�3 t + �t (1)

Richards’ yt =
�1

(1+�2e−�3 t)
1∕�4

+ �t (2)

Weibull yt = �1 − �2e
−�3t

�4 + �t (3)

(t = 1, 2, 3,… , n), �1 representmaximumvalue (asymptotic value) of yt when time (t) approaches+∞, �2 is the scale parameter, �3
is the shape parameter that is the intrinsic growth rate representing growth rate, �4 is the in�ection parameter, which determines

the function shape, and �t is a random error term such that �t ∼ NID(0, �2
�
). Note that all the parameters of these models are of

positive values.

Gompertz model: The Gompertz model is a type of mathematical model for a time series, named after Benjamin Gompertz

(1779–1865). Gompertz function describes growth that starts and ends slow of a given time period. The right-hand value (future

value) asymptotic of the function is approached much more gradually by the curve than the left-hand valued (lower value)

asymptotic. It is a special case of the generalized logistic model (GLM) (Draper and Smith 1981). For t=0, the initial value of yt is

y0 = �1e
−�2 , and as t→+∞, yt → �1 (the upper limit to growth).

Richards’ model: The Richards’ model also known as generalized logistic model, sometimes named a “Richards’ curve” after

F. J. Richards, who proposed the general form for the family of models in 1959 (Archontoulis and Miguez 2015). For t=0, the initial

value of yt is y0 =
�1

�4
√
1+�2

e−�2 , and as t→+∞, yt → �1 (the upper limit to growth).

Weibull model: TheWeibull model was �rst introduced byWaloddi Weibull (1951), which was initially described as a statistical

distribution. It has many applications in population growth, agricultural growth and is also used to describe survival in cases of

injury or disease or in population dynamic studies (Mahanta and Borah 2014). For t=0, the initial value of yt is y0=�1− �2, and as

t→+∞, yt → �1 (the upper limit to growth). The source of Eq. (3) is an extension of the Weibull cumulative distribution function:

F
(
t; �2, �4

)
= 1− e−(t∕�2)

�4
(4)

as a less restrictive upper limit to growth, “1” is replaced by �1; that is, lim
t→∞

yt = �1 hence �1 is termed the limit to growth parameter.

The complete derivation of the above three models is given by (Tran 2017).

Inflection points

Themathematical de�nition of in�ection point is: in�ection point of a continuous function f (t) is a point t=a, on an open interval

containing point t=a where the second derivative f ′′ (t) < 0 on one side and f ′′ (t) > 0 on the other side of t=a, and f ′′ (a) is

either 0 or does not exist. In practice, in�ection point is the point at which the rate of growth gets maximum value. There are some

interesting applications and practical uses of in�ection points in areas including demography, economics, computer science,

diseases epidemic, animal science, plant science, forestry and biology (Goshu and Koya 2013). The derivation of in�ection points

for above three models are shown in Appendix A1.

Model assumptions

In nonlinearmodels as in linearmodels, threemain assumptions related to themodel errorsmust be tested: errors are independent

normallydistributionwithcommonvariance.Deviations fromtheassumptionscouldresult inbias (inaccurateestimates),distorted

standard errors, or both (Ritz and Streibig 2008). Violations of these assumptions can be detected from analysis of the residuals

by graphical procedures and statistical tests.

Practically, to test whether the errors are follow normal distribution, (p–p) plot procedure can be used. The probabil-

ity–probability (p–p) plot is a graph of the model residuals values plotted against the normal CDF values. It is used to determine

howwell a normal distribution �ts to the residuals. This drawwill be approximately linear if the normal distribution is the correct

model. The standardized residual plot is commonly applied (Pinheiro and Bates 2000). The extreme values or outliers are common
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causes for deviations from normality. Also one of the frequent tests can be used, such as Anderson–Darling (AD) procedure uses

the cumulative distribution function to test if a data set comes from a speci�ed distribution or not by the following formula:

AD = −n−
1

n

n∑
i=1

(2i− 1)
[
ln F (xi)+ ln

(
1− F

(
xn−i+1

))]
(5)

where F (x) is the cumulative distribution function for the speci�ed distribution and i=the ith sample when the data are sorted

in ascending order. p-Value was given when running the software that compared with 5% level of signi�cance (Miller, Vandome,

and McBrewster 2011). It is important to refer that in dynamic models especially when the data is of the type counts, the more

appropriate distribution of residuals is Poisson and some previous studies have incorporated a Poisson error structure via

parametric bootstrapping (Chowell 2017).

Homogeneity of variance can be detected by looking at the plot of the explanatory variable over the standardized residuals,

when there is a trend (e.g., increasing variability as the explanatory variable increases), this means that the residuals variance

is a function of the explanatory variable. If variance heterogeneity is ignored, the parameter estimates might not be in�uenced

much, but this may result in severely misleading con�dence and prediction intervals (Carroll and Ruppert 1988).

The residuals are assumed to be independent, and when this assumption is violated it is visually evident in a plot of

correlations of residuals against “lag” (or units of separation in time or space), or by using the Ljung–BoxQ test (sometimes called

the Portmanteau test) is used to test whether or not errors over time are random and independent. The test statistic given by:

Qk = n (n+ 2)

k∑
j=1

�̂2
j

n− j
(6)

where �̂ j is the estimated autocorrelation of the series at lag j among �tted model residuals e1, e2,… , en, such that:

�̂ j =

(
1

n− j

) n− j∑
i=1

eiei+1

(
1

n

) n∑
i= j

e2
i

, j = 1, 2,… , k

Qk ∼ � 2
k−p

and k is the number of lags being tested such that k ≤ 0.5n, usually k ≈ 20. Some packages will give the Qk statistic for

several di�erent values of k (Brockwell and Davis 2016).

Model estimation

The frequently methods for the estimation of nonlinear models parameters are nonlinear ordinary least squares (OLS) which

minimizes the sum of squared error of estimated model and the maximum likelihood method (ML), which searches to �nd the

probability distribution that makes the actual data most likely. These methods are used in many statistical package software

like: MatLab, GenStat, SAS, Minitab, R, JMP, Sigmaplot, OriginLab, and SPSS. In general, when the response variable data are

not follows a normal distribution then the estimation results from (OLS) and (ML) methods will be di�erent. While when the

data are normally distributed, the estimates are approximately identical (Myung 2003). The main algorithms that implemented

in estimation methods belong to local optimization, like the Nelder–Mead, Gauss–Newton, and Newton–Raphson algorithms.

Local optimization algorithms are sensitive to the initial values of the model parameters. The convergence often failed due to

wrong choosing of initial values (Archontoulis and Miguez 2015).

The general form of the growth models or nonlinear models is:

yt = f (t;�)+ �t, t = 1, 2,… ,n (7)

where:

yt is the dependent or response variable,

t is the time (independent variable),

� is the vector of unknown p-parameters such that � =
(
�1, �2,… , �p

)′
,

�t is a random error term and �t ∼ NID(0, �2
�
).

The nature relation between yt and t is not linear, and the goal is to estimate � j
′
s by nonlinear (OLS) which minimizing the

sum of squares residual (SSRes) function:

SSRes =

n∑
i=1

[
yt − f (t;�)

]2
(8)
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When the values of � estimates are substituted into Eq. (8) this makes the SSRes a minimum, and then � can be founded by
�SSRes
��

= 0, this provides the p-normal equations that must be solved for �̂. The estimation steps are shown in Appendix A2.

Initial values of parameters

Themost di�cult problems encountered in estimating parameters of nonlinear models is the starting or initial value speci�cation

(Fekedulegn, Mac Siurtain, and Colbert 1999). However, the problem of specifying initial values of parameters can be solved with

proper understanding of the de�nition of the parameters in the context of the phenomenon beingmodelled.Wrong starting values

may be led to non-convergence of the parameters and SSRes. Regarding of the selection the initial values of parameters, there are

some practical methods (Archontoulis and Miguez 2015):

Use information from the literature when the model has parameters with meaning related to the studied phenomena.

Use graphical representation of the data.

Nonlinear model transformation to linear model.

Use pre-speci�ed algorithms.

All the iterative methods like Levenberg–Marquardt method requires that starting or an initial value for each parameter be

estimated of �1, �2, �3 and �4. In presented growth models, the parameter �1, which is simply to determine, is de�ned as the

maximum possible value of the dependent variable. Therefore, in modelling of the COVID-19 epidemic, �1 was speci�ed as the

maximum value of COVID-19 cumulative cases. The derivation of parameters initial values is shown in Appendix A3.

Model selection criteria

When we are �tting several models to certain sample data and the aim is to select the preferable model among these models, we

use F-test such that:

F-test:

F =
MSR

MSE
=

SSReg∕p

SSRes∕n− p− 1
(9)

where SSReg is the sum of squared regression and SSRes is the sum of squared residuals (errors), such that:

SSReg =

n∑
t=1

(
yt − y

)2
−

n∑
t=1

(
yt − ŷt

)2
(10)

SSRes =

n∑
t=1

e2
t
=

n∑
t=1

(
yt − ŷt

)2
(11)

A signi�cant and larger value of F indicates a preferable model.

In order to obtain a more complete evaluation of the performance of the models, three additional criteria based on the

information theory were applied to compare the models: the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC), such that (Teleken, Galvão, and Robazza 2017):

AIC = n ln (SSRes∕n)+ 2p (12)

BIC = n ln (SSRes∕n)+ n ln (n) (13)

A smaller value of AIC and BIC criteria indicate a preferable model, and if n∕p < 40 then the AIC might not be accurate,

therefore the corrected AIC (AICc) was used, such that (Burnham and Anderson 2002):

AICc = AIC+
2p(p+ 1)

n− p− 1
(14)

The weighted average information criterion (WIC) (Rinke and Sibbertsen 2016):

WIC = n ln (MSE)+
[2n(p+ 1)∕ (n− p− 2)]2 + [p ln (n)]2

[2n(p+ 1)∕ (n− p− 2)] + p ln (n)
(15)

Goodness of fit

There is no criterion or single method to best assess the goodness of �t, but there are many di�erent methods (graphical and

numerical) that highlight di�erent features of the data and the model. Graphical comparison provides a quick visual assessment
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of the goodness of �t. Numerical statistical indices like: bias, mean squared error (MSE), root mean squared error (RMSE), mean

absolute error (MAE), concordance correlation, and others. In our study, we use:

RMSE =
√
MSE =

√
SSRes

n− p− 1
(16)

Bias =
1

n

n∑
t=1

et (17)

MAE =
1

n

n∑
t=1

||et|| (18)

Innonlinearmodels analysis, it is important to test thehypotheses about themodels’ parametersbyevaluating the95%(1 − 	)

C.I. of these parameters. This approach is completely di�erent from linear models analysis. Our hypothesis H0: � j=0, j=1, 2,… ,p

was rejected when the C.I. of � j does not include zero, in this case the parameter estimator of the �tted model are statistical

signi�cant at 5% level (Fekedulegn, Mac Siurtain, and Colbert 1999).

Data

Thedaily con�rmednumber of cumulative COVID-19 cases for fourmonths ago starts fromMarch 13, 2020 (which the�rst COVID-19

case is recorded in Iraq) to July 22, 2020 were taken from the website of Public Health Directorate (PHD) at Iraqi Ministry of Health

http://phd.iq/CMS.php?CMS_P=293. The cumulative number of con�rmed cases has reached 101,258 in Iraq as shown in Table 2.

In addition, Figure 1 shows the con�rmed daily cases and tests for COVID-19 in Iraq during April, 6th to July, 22nd, 2020,

where the daily rate of cases reached (949), with an increasing rate of about (20) cases/day, while the daily average of tests reached

(7,958), with an increasing rate of about (150) tests/day.

Table 2: Confirmed cumulative daily cases of COVID-19 in Iraq for Mar. 13 to Jul. 22, 2020.

Date Cases Date Cases Date Cases Date Cases Date Cases Date Cases

13/3 15 04/4 857 26/4 1743 18/5 3,507 09/6 15,310 01/7 53,604

14/3 29 05/4 927 27/4 1824 19/5 3,620 10/6 16,571 02/7 55,916

15/3 35 06/4 1,018 28/4 1899 20/5 3,773 11/6 17,666 03/7 58,250

16/3 56 07/4 1,098 29/4 1981 21/5 3,860 12/6 18,846 04/7 60,375

17/3 62 08/4 1,128 30/4 2049 22/5 4,168 13/6 20,105 05/7 62,171

18/3 73 09/4 1,175 01/5 2,155 23/5 4,365 14/6 21,211 06/7 64,597

19/3 88 10/4 1,214 02/5 2,192 24/5 4,528 15/6 22,596 07/7 67,338

20/3 109 11/4 1,248 03/5 2,242 25/5 4,744 16/6 24,150 08/7 69,508

21/3 128 12/4 1,274 04/5 2,327 26/5 5,031 17/6 25,613 09/7 72,356

22/3 161 13/4 1,296 05/5 2,376 27/5 5,353 18/6 27,248 10/7 75,090

23/3 211 14/4 1,311 06/5 2,439 28/5 5,769 19/6 29,118 11/7 77,402

24/3 241 15/4 1,330 07/5 2,499 29/5 6,075 20/6 30,764 12/7 79,631

25/3 277 16/4 1,378 08/5 2,575 30/5 6,335 21/6 32,572 13/7 81,653

26/3 353 17/4 1,409 09/5 2,663 31/5 6,764 22/6 34,398 14/7 83,863

27/3 401 18/4 1,435 10/5 2,714 01/6 7,283 23/6 36,598 15/7 86,144

28/3 442 19/4 1,470 11/5 2,809 02/6 8,064 24/6 39,035 16/7 88,167

29/3 525 20/4 1,498 12/5 2,928 03/6 8,736 25/6 41,089 17/7 90,216

30/3 590 21/4 1,527 13/5 3,039 04/6 9,742 26/6 43,158 18/7 92,526

31/3 624 22/4 1,573 14/5 3,089 05/6 10,994 27/6 45,298 19/7 94,689

01/4 668 23/4 1,604 15/5 3,156 06/6 12,262 28/6 47,047 20/7 96,803

02/4 716 24/4 1,659 16/5 3,300 07/6 13,377 29/6 49,005 21/7 99,000

03/4 774 25/4 1716 17/5 3,450 08/6 14,164 30/6 51,420 22/7 101,258

http://phd.iq/CMS.php?CMS_P=293
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Figure 1: Confirmed daily cases and tests of COVID-19 in Iraq for Apr. 6 to Jul. 22, 2020.

Results and discussion

Starting values of parameters

For Gompertz model, as we explain above, we choose �1 as the maximum of daily cumulative COVID-19

cases, so �̂(0)
1

= 101, 259, and estimation of Eq. (30) yields ŷ∗
t
= 2.694− 0.031t, so �̂(0)

2
= e2.694 = 14.791 and

�̂(0)
3

= 0.031.

For Richards’model, we choose �1 as inGompertzmodel, �̂(0)
1

= 101, 259, and �̂(0)
4

= 1.00, then estimation

of Eq. (30) yields ŷ∗
t
= 7.260− 0.069t, so �̂(0)

2
= e7.260 = 1, 422.257 and �̂(0)

3
= 0.069.

For Weibull model, we choose �1 as in other models, �̂(0)
1

= �̂(0)
2

= 101, 259, and estimation of Eq. (31)

yields ŷ∗
t
= −11.675+ 2.233t, so �̂(0)

3
= e−11.675 = 0.000009 and �̂(0)

4
= 2.233.

Table 3 summarizes the estimation values of studied models.

Models estimation

The statistical package Minitab-17 was used to estimate the models to the daily cumulative COVID-19 cases

data and estimate the parameters. The Levenberg–Marquardt iterative method was chosen as it represents a

Table 3: Starting values for studied growth models.

Gompertz Richards’ Weibull

Parameter �1 �2 �3 �1 �2 �3 �4 �1 �2 �3 �4
Initial 101,259 14.791 0.031 101,259 1,422.257 0.069 1.000 101,259 101,259 0.000009 2.233
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compromise between the linearization Gauss–Newtonmethod and the steepest descent method and appears

to combine the best features of both while avoiding their most serious limitations. Using the above initial

values of parameters, the estimation of studied models are:

Gompertz estimated model:

ŷt = 249, 427.694e−28.975e
−0.026t

Richards’ estimated model:

ŷt =
131, 204.395

(1+ 4, 727.22e−0.073t)
− 1

0.969

Weibull estimated model:

ŷt = 115, 108.058− 114, 114.844e−(5.516×10
−15)t6.867

Figure 2 shows that plotting of predicated of cumulative COVID-19 cases with actual cumulative cases for

all above three models.
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Figure 2: Fitting growth models to the daily cumulative COVID-19 cases.

Estimated parameters, standard error and its 95% con�dence lower and upper bounds values are showed

in the following table (Table 4):

It is shown that all parameters’ estimations ofWeibullmodel are statistically signi�cant at 5% level, since

the con�dence interval of all model estimators does not include zero. While some parameters’ estimation

of other models are insigni�cant. This suggests that the Weibull model is the better than other models for

representation of daily cumulative COVID-19 cases in Iraq.

Model selection criteria

Table 5 presents the analysis of variance results of the three models. F-ratio values indicate that all three

models are statistically signi�cant at 	=1% level. When we compare the results of three models, we see that

the Weibull model have largest F-ratio, this explained that Weibull model is preferred to the data.
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Table 4: Estimation results of studied growth models.

Model Parameter Estimator Std. error 95% confidence interval

Lower bound Upper bound

Gompertz �1 249,427.694 12,392.964 225,563.268 279,408.115

�2 28.975 1.778 25.166 33.789

�3 0.026 0.001 0.003 0.069

Richards’ �1 131,204.395 4,043.747 124,534.456 139,425.209

�2 4,727.220 2,993.641 1,522.801 845,267,028.689

�3 0.073 0.005 0.019 0.276

�4 0.969 0.097 1.418 1.965

Weibull �1 115,108.058 1,221.911 112,690.298 117,525.819

�2 114,114.844 1,246.365 111,648.699 226,580.990

�3 5.516 × 10−15 3.216 × 10−15 2.559 × 10−15 8.472 × 10−15

�4 6.867 0.060 6.748 6.987

Table 5: ANOVA results of studied growth models.

Model Source Sum of squares df Mean squares F -ratio p-Value

Gompertz Regression 110,294,188,700.215 3 36,764,729,560.507 26,914.612∗∗ 0.000

Residual 176,210,976.086 129 1,365,976.559

Richards’ Regression 110,393,839,700.214 4 27,598,459,930.519 46,141.135∗∗ 0.000

Residual 76,559,935.925 128 598,124.499

Weibull Regression 163,337,624,202.681 4 40,847,817,114.231 97,393.322∗∗ 0.000

Residual 53,684,590.321 128 419,410.862

Uncorrected total 163,391,308,793.000 132

Corrected total 110,470,399,653.295 131

∗∗Statistically significant at 1% level.

The above result can be con�rmed through other criteria AIC, AICc, BIC and WIC as explain in Table 6.

The results showed that the AIC value ranged from 1,711.894 to 1,880.88 and the Weibull model was ranked

�rst in term of the lowest AIC value. The AICc, BIC and WIC of the three models have the same changes trend

as AIC.

Table 6: Goodness of fit and criterion results of studied growth models.

Criteria Gompertz model Richards’ model Weibull model

RMSE 1,168.750 773.385 647.619

Bias 605.602 284.401 0.000

MAE 955.205 616.621 531.753

AIC 1,880.880 1,772.010 1,711.894

AICc 1,881.066 1,772.322 1,712.207

BIC 1,889.551 1,783.582 1,723.425

WIC 1,877.155 1,772.173 1,725.274
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Goodness of fit

From Table 6, it was observed that the Weibull model provided the best �t since the model gives lowest value

of RMSE 647.619 which about 80% less than Gompertz model, and about 19% less than Richards’ model.

In other hand, Weibull model had lowest value of bias that is zero. This result re�ects that the predicted of

cumulative COVID-19 cases by Weibull model is very close (in mean) to actual cumulative cases. The MAE of

the three models have the same changes trend as RMSE.

Evaluation of model assumptions

We see form the results of Tables 5 and 6 that the Weibull model is more suitable than the Gompertz and

Richards’models to describe the growth of daily cumulative cases of COVID-19 in Iraq. The important question

here is: can this model generate e�cient forecasts of the cumulative COVID-19 cases? Any model �ts the data

and give e�cient and reliable forecasts when it had acceptable criteria as in Tables 5 and 6 andmust consider

the following assumptions: residuals must be independent, have the same variance and have the normal

distribution. The estimates may be biased and estimation of errors may be overestimated or underestimated

when these assumptions are not considered (Table 7).

Table 7: Normally and independent tests for

residuals (Weibull model).

Test name Test value p-Value

Anderson-Darling 0.580 0.129

Ljung–Box Q 38.064 0.203

When absolute values of Weibull model residuals are plotted against time as in Figure 3, we see that

no pattern relation between time and residuals, that’s mean the variance of residuals is homogeneous, in

other words, the residuals have the same variance. Also, Figure 4 and Table 8 indicates that the residuals are

normally distributed since the p–p normal plot of residuals shows that the points lie in the straight line and
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Abs.Residuals=512.8+0.11*Time Figure 3: Homoscedasticity of

Weibull model residuals.
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Figure 4: Normal distribution of Weibull model residuals.

Table 8: Absolute distance criterion for three models based on ‘‘out-sample’’ data.

Index, t Date yt
|||yt−ŷt,G

|||
|||yt−ŷt,R

|||
|||yt−ŷt,W

|||
133 July 23, 2020 103,743 36,908 66,500 2,287

134 July 24, 2020 106,228 36,785 61,257 3,325

135 July 25, 2020 109,090 36,254 55,832 4,838

136 July 26, 2020 111,549 36,095 50,992 6,047

137 July 27, 2020 114,102 35,810 46,226 7,449

138 July 28, 2020 116,849 35,298 41,423 9,141

139 July 29, 2020 119,817 34,532 36,544 11,148

140 July 30, 2020 122,780 33,737 31,806 13,242

141 July 31, 2020 126,126 32,526 26,810 15,806

142 Aug. 01, 2020 128,221 32,532 23,182 17,203

143 Aug. 02, 2020 130,668 32,151 19,310 19,030

144 Aug. 03, 2020 133,403 31,447 15,251 21,219

145 Aug. 04, 2020 136,239 30,607 11,184 23,578

146 Aug. 05, 2020 139,073 29,735 7,207 25,997

147 Aug. 06, 2020 142,120 28,615 3,097 28,687

148 Aug. 07, 2020 145,581 27,045 1,352 31,843

149 Aug. 08, 2020 148,906 25,577 5,595 34,909

150 Aug. 09, 2020 151,632 24,673 9,175 37,418

151 Aug. 10, 2020 155,116 22,976 13,452 40,721

152 Aug. 11, 2020 158,512 21,333 17,585 43,968

153 Aug. 12, 2020 161,953 19,610 21,711 47,287

154 Aug. 13, 2020 165,794 17,453 26,189 51,029

155 Aug. 14, 2020 169,807 15,090 30,794 54,963

156 Aug. 15, 2020 174,100 12,413 35,637 59,193

yt : Observed cumulative daily cases; ŷt,G: Predictions of Gompertiz model; ŷt,R: Predictions of Richards’ model; ŷt,W : Predictions

of Weibull model.

the p-value of A–D test is greater than 5%. Moreover, the Weibull model residuals are independent since the

p-value of Ljung–Box Q test with 30 lags is greater than 5%.
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‘‘Out-sample’’ data models’ performance

In order to verify the performance of the models based on “outside the sample” data, 24 subsequent obser-

vations for the period from July 23rd to August 15th were collected from the source of the study data. These

values have been compared with the corresponding predictions from the three previously estimated models

by using mean of absolute distance (MAD) criterion as in Table 8.

The mean absolute distance for the models Gompertz, Richards’ and Weibull are respectively 28,717,

27,421 and 25,430, so we conclude that the Weibull model is still the more appropriate than other models to

describing the con�rmed daily cumulative cases of COVID-9 in Iraq.

Forecasting

The prevalence of epidemics is usually accompanied by many chance variables that cannot be measured or

controlled, so the process of predicting the number of infected people resulting from these epidemics will not

be 100% accurate and cannot produce the same actual values, the model only approximates the number of

people infected. Table 8 and Figure 5 presents the predictions of con�rmed daily cumulative COVID-19 cases

in Iraq according to Weibull growth model. We believe that the number of con�rmed cumulative cases of

novel coronavirus in Iraq will rise with range from 101,396 to 114,907 cases in coming 24 days (form July 23rd

to August 15th, 2020). So, this will provide reference value for all levels of departments and hospitals in the

next few days to implement e�ective intervention and prevention of the spread of novel coronavirus.
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Figure 5: Forecasts of cumulative COVID-19 cases by Weibull model.

Regarding the physical interpretation of the in�ection point of theWeibullmodel that was found to be the

most suitable for thepresent data thanothermodels,weapplyEq. (21) thenweget:
(
tinf ⋅, ŷinf .

)
= (11, 766, 546),

the time index (t=117) gives the position of the point of in�ection, i.e. the time when the growth rate is

maximum, and at this date the peak growth rate will be (66,546) cases. And since ŷinf . = 66; 546 is close to

y117 = 67, 338. Therefore, we conclude that the incidence number of novel COVID-19 will be maximum at date

(Jul. 7, 2020).
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Conclusion

The Weibull model proved to be very e�ective in describing epidemic curve of Covid-19 and estimating

important epidemiological parameters, such as the time of the peak of the curve for daily cumulative cases,

thus allowing a practical and e�cient monitoring of the epidemic evolution.

In this study, the Weibull model gives the best results with zero bias, the lowest RMSE = 647.619 and

WIC = 1725.274 compared to the other applied growth models Gompertz and Richards. On this basis, the

daily cumulative of COVID-19 cases in Iraq can reach 114,907 at 15th of August, 2020 with 95% prediction

interval (from 112,251 to 117,566). The in�ection point of the Weibull curve indicates that the peak time when

the growth rate is maximum, is 7th of July, 2020, and at this time the daily cumulative incidence is 67,338

cases. The �tting models presented and some measures in this study were performed with the “Nonlinear

Regression” tool available in the Minitab-17 software.
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Appendix

A1 Inflection points of growth models

Gompertz model

To ascertain the shape of the Gompertz function, we �rst look to derivatives of Eq. (1):

dyt
dt

= �1�2�3e
−�3te−�2e

−�3 t = �2�3e
−�3tyt

d2yt
dt2

= �2�
2
3
e−�3t

(
�2e

−�3t − 1
)
yt

Therefore, when d2yt
dt2

= 0 we get t = ln �2
�3

substitution in Eq. (1) gives yt=0.36788�1 thus, the Gompertz model

has a point of in�ection at:

(tinf ⋅, yinf ⋅) =

(
ln �2
�3

,0.36788�1

)
(19)

and since �1 ≈ max(yt) that’s mean the ordinate yt at the point of in�ection is approximately, when 37% of

the �nal growth has been reached.

Richards’ model

The in�ection point of the Richards’ model can be founded as follows:

dyt
dt

=
�2�3
�4

e−�3t
(
1+ �2e

−�3t
)−1

yt

d2yt
dt2

=
�2�

2
3

�4
e−�3tyt

(
1+ �2e

−�3t
)−1{

�3

(
1+

1

�4

)
e−�3t

(
1+ �2e

−�3t
)−1

+ 1

}
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Therefore, when d2yt
dt2

= 0 we get t = − 1

�3
ln
(
�4∕�2

)
substitution in Eq. (2) gives yt =

�1
�4
√
�4+1

thus, the

Richards’ model has a point of in�ection at:

(tinf ⋅, yinf ⋅) =

(
−

1

�3
ln

(
�4
�2

)
,

�1
�4
√
�4 + 1

)
(20)

Weibull model

To �nd the in�ection point of the Weibull model, we have:

dyt
dt

= �3�4t
�4−1 (�1 − yt)

d2yt
dt2

= �3�4t
�4−1

{(
�4 − 1

)
t−1 (�1 − yt)− �3�4t

�4−1 (�1 − yt)
}

Therefore, when d2yt
dt2

= 0 we get t =
[(
�4 − 1

)
∕�3�4

]1∕�4 substitution in Eq. (3) gives yt = �1 − �2e
[−(�4−1)∕�4]

thus, the Weibull model has a point of in�ection at:

(tinf ⋅, yinf ⋅) =

([
�4 − 1

�3�4

] 1

�4

, �1 − �2e
−
(
�4−1

�4

))
(21)

A2 Estimation method of growth models

These normal equations take the form:

n∑
i=1

[
yt − f (t;�)

] [� f (t;�)
�� j

]
= 0, j = 1, 2,… ,p (22)

For the nonlinear models like Gompertz, Richards’ and Weibull it is very di�cult to solve Eq. (22) to

obtain the vector �̂ of p-parameters, in this case we used the iterative methods (Draper and Smith 1981).

The Gauss–Newton modi�ed method is one of the important and frequently method that used in the case

of growth models. According to this method, �rstly we write f (t;�) in terms of Taylor’s expansion formula

(Bates and Watts 2007):

f (t;�) = f
(
t;�(0)

)
+
(
�1 − �(0)

1

)[
� f (t;�)
��1

]
+
(
�2 − �(0)

2

)[
� f (t;�)
��2

]
+ · · · +

(
�p − �(0)

p

)[
� f (t;�)
��p

]
(23)

⇒ f (t;�)− f
(
t;�(0)

)
= 
1w1t + 
2w2t + · · · + 
pwpt (24)

where

w jt =
� f (t;�)
�� j

and 
 j = � j − �(0)
j
, t = 1, 2,… ,n; j = 1, 2,… ,p (25)

such that �(0) is the vector of initial values of parameter, i.e. �(0) =
(
�(0)
1
, �(0)

2
,… , �(0)p

)′
substitute Eq. (7) in

Eq. (24), we get:

yt − f
(
t;�(0)

)
= 
1w1t + 
2w2t + · · · + 
pwpt + �t (26)

by using ordinary least squaresmethod to estimate the linearmodel in Eq. (22) to get the estimates 
̂ 1,
̂2,… 
̂p,

and since the initial values of the parameters are known then form Eq. (22) we have:

�̂ j = 
̂ j − �̂(0)
j
, j = 1, 2,… ,p (27)

Now, we return to Eq. (8) to use the estimators from Eq. (27) to get new the vector of new estimators �̂(1)

(�rst iteration). This process will be repeated until the convergence in estimators was hold, i.e. at (s− 1) and

(s) iterations we have:
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|||�̂(s) − �̂(s−1)
||| ≤∈ for some small positive∈ error

This means also that SSRes will be stabilized after (s) iteration, and then we have the lowest value of

SSRes and the �nal parameters estimation vector will be �̂(s) =
(
�̂(s)
1
, �̂(s)

2
,… , �̂(s)p

)′
which is computed from

(Ratkowsky 1983):

�̂(s) = �̂(s−1) +
(
w(s−1)′w(s−1)

)−1
w(s−1)′

[
y − f

(
t; �̂(s−1)

)]

= �̂(s−1) +
(
w(s−1)′w(s−1)

)−1
w(s−1)′y(s−1) (28)

wherew(s−1) is a (n × p) of partial derivatives matrix, i.e.:

w(s−1) =
⎡⎢⎢⎣
� f

(
t; �̂

)

��̂

⎤⎥⎥⎦�̂=�̂(s−1)
(29)

A3 Initial values of growth models parameters

Gompertz model

In order to estimate the Gompertz model by above estimation method, we need the starting values of Eq. (1).

We can transform Eq. (1) to the following linear form:

y∗
t
= �∗

2
+ �∗

3
t + �t (30)

where:

y∗
t
= ln

[
ln

(
�1
yt

)]
, �∗

2
= ln (�2) , �∗

3
= −�3

The initial values of �1 is �̂
(0)
1

≥ max(yt), and estimation of Eq. (30) yields other initial values, such that:

�̂(0)
2

= e�̂
∗
2 , �̂(0)

3
= −�̂∗

3

Richards’ model

To �nd the starting values of the Eq. (2), we can transform it to the linear form as in Eq. (20), where:

y∗
t
= ln

[(
�1
yt

)�4

− 1

]
, �∗

2
= ln (�2) , �∗

3
= −�3

The initial values of �1 is �̂
(0)
1

≥ max(yt), and of �4 is �̂
(0)
4

which can be take it according to the in�ection

point such that �2 ≥ �4 ≥ 1, to make the calculation easy, we can takes �̂(0)
4

= 1. Estimation of Eq. (30) yields

other initial values, such that:

�̂(0)
2

= e�̂
∗
2 , �̂(0)

3
= −�̂∗

3

Weibull model

To �nd the starting values of the Eq. (3), we can transform it to the following linear form:

y∗
t
= �∗

3
+ �∗

4
t∗ + �t (31)

where:

y∗
t
= ln

[
− ln

(
� 1 − yt

�2

)]
, t∗ = ln (t) , �∗

3
= ln

(
�3
)
, �∗

4
= �4
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The initial values of �1 is �̂
(0)
1

≥ max(yt), and since y0=�1 − �2 so �1=�2, therefore �̂
(0)
1

= �̂(0)
2
. Estimation

of Eq. (31) yields other initial values, such that:

�̂(0)
3

= e�̂
∗
3 , �̂(0)

4
= �̂∗

4
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