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Abstract: Functional magnetic resonance imaging (fMRI) activation detection within stimulus-based exper-
imental paradigms is conventionally based on the assumption that activation effects remain constant over
time. This assumption neglects the fact that the strength of activation may vary, for example, due to habitu-
ation processes or changing attention. Neither the functional form of time variation can be retrieved nor
short-lasting effects can be detected by conventional methods. In this work, a new dynamic approach is
proposed that allows to estimate time-varying effect profiles and hemodynamic response functions in
event-related fMRI paradigms. To this end, we incorporate the time-varying coefficient methodology into
the fMRI general regression framework. Inference is based on a voxelwise penalized least squares proce-
dure. We assess the strength of activation and corresponding time variation on the basis of pointwise confi-
dence intervals on a voxel level. Additionally, spatial clusters of effect curves are presented. Results of the
analysis of an active oddball experiment show that activation effects deviating from a constant trend coexist
with time-varying effects that exhibit different types of shapes, such as linear, (inversely) U-shaped or fluc-
tuating forms. In a comparison to conventional approaches, like classical SPM, we observe that time-
constant methods are rather insensitive to detect temporary effects, because these do not emerge when
aggregated across the entire experiment. Hence, it is recommended to base activation detection analyses
not merely on time-constant procedures but to include flexible time-varying effects that harbour valuable
information on individual response patterns. Hum Brain Mapp 36:731–743, 2015. VC 2014 Wiley Periodicals, Inc.

Key words: functional magnetic resonance imaging; time-varying activation and hemodynamic
response function; varying coefficient model; penalized least squares estimation; event-related func-
tional magnetic resonance imaging; auditory oddball
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INTRODUCTION

Most functional imaging experiments use the repeated
presentation of event-related stimuli and averaging of
resulting stimulus-related brain responses to increase the
signal-to-noise-ratio over the experiment to detect
stimulus-induced activation patterns. Aggregating the
response across all stimulus occurrences relies on the
assumption of a steady response over time—which may
be superimposed by different sources of noise. It has, how-
ever, been shown by target detection paradigms that the
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positive electrophysiological deflection with latency 300
ms (ref. to as P300) underlies habituation, as, for example,
obvious during an auditory oddball experiment in which
regular nontarget tones alternate with fewer target tones
[Ivey and Schmidt, 1993; Koelega et al., 1992; Lammers
and Badia, 1989; Wesensten et al., 1990]. This standard
paradigm has also been studied by functional magnetic
resonance imaging (fMRI) blood oxygenation level
dependent (BOLD) imaging to map the spatial pattern of
this response and the exact areas in which habituation
occurs [Kiehl and Liddle, 2003; Kiehl et al., 2005]. Atten-
tion is another neuropsychological factor that leads to
time-on-task effects on the P300, for example, demon-
strated by combined electroencephalography (EEG) and
fMRI studies that correlated intertrial-variability of the
P300 with the BOLD status of attention networks [B�enar
et al., 2007; Mantini et al., 2009]. Indeed, there is general
converging evidence that intrinsic fluctuations of cortical
activity predict or “bias” the response to individual stimuli
[Coste et al., 2011; Sadaghiani et al., 2009]. Mostly, in these
studies, single-trial-BOLD responses in the peristimulus
time-window are simply quantified through stratification,
using an external criterium, for example, behavioral detec-
tion versus nondetection of a stimulus [Sadaghiani et al.,
2009].

In typical activation studies that pursue the goal to
derive generalizable maps of stimulus-induced activation,
it is common practice to include the stimulus onset time
point as stick function or neural activation of defined
length and convolute this with the presumed hemody-
namic response function (HRF) within the framework of a
general linear model (GLM) [Friston et al., 1995]. As
described in more detail below, modeling and estimation
of the HRF still receives much attention, but it is usually
assumed that its functional form as well as activation
effects are time invariant and do not change during the
course of an experiment. Although detection of activation
changes caused by varying attention, habituation or other
factors, is often of direct interest, reports on flexible mod-
els for capturing time-varying activation effects and HRFs
are sparse or basic from a technical point of view. Most
existing approaches specify deviations from time-constant
activation effects through prechosen, simple parametric
functions, such as an exponential decay or increase, see,
for example, B€uchel et al. [1998] or Rodriguez [2010] as
well as some further references given there. Grindband
et al. [2008] shares a similar problem, making an assump-
tion about the course of time variation, that is, dependent
on the globally (not space varying) measured reaction
time. It is generally difficult, however, to choose adequate
functional forms prior to some preliminary data analysis
or some biomathematical model, in particular because acti-
vation patterns are spatially varying across brain regions.
Moreover, inclusion of unknown hyperparameters leads to
a nonlinear regression problem with possible problems of
convergence due to nonconvexity and multiple modes.

Another choice would be to approximate time-varying
effects through step functions. A typical case is reported in
a recent study of human olfaction at the individual level
[Morrot et al., 2013]. To measure olfactory habituation,
fMRI time series are split into four consecutive periods
and standard SPM analyses with the canonical HRF were
applied within each period. It turned out that there are
significantly different effects between these periods in cer-
tain regions of interest (ROIs). Similarly, we observed
time-varying effects in our own experiments (Results sec-
tion) when dividing fMRI time series into consecutive
periods. Obviously, such step functions to account for
time variation of activation effects and HRFs are only a
very coarse approximation to underlying, smoothly vary-
ing temporal patterns. Therefore, more flexible approaches
for modeling and recovering time-varying activation
effects and HRFs are desirable. Such an attempt, based on
smoothed step functions and Kalman filtering has been
previously suggested in G€ossl et al. [2000]. Other
approaches for estimating trial-specific response estimates
(e.g., based on Ridge Regression) have recently been pro-
posed by Mumford et al. [2012] for optimizing classifica-
tion tasks, however, the temporal proximity of consecutive
stimuli is not exploited in their approaches.

Here, we present a novel method that models time-
varying effects nonparametrically, allowing for the extrac-
tion of trial-specific response estimates, and exemplify
how these coefficients may serve as incoming information
for secondary analyses, such as functional clustering of
activation patterns. In more technical terms, within the
regression framework of the GLM approach, the stimulus
effect at a certain voxel is usually modeled as the convolu-
tion of the observed stimulus function uðtÞ where t
denotes time starting with the beginning of the experi-
ment, and a HRF hrfðsÞ, where s denotes time after stimu-
lus onset, see the description of the fMRI regression
model with time-constant effects in the Method section. In
many studies, hrfðsÞ is assumed to have a fixed shape,
such as SPMs canonical HRF which is the difference of
two gamma functions [Worsley and Friston, 1995]. How-
ever, to increase flexibility, the HRF is often modeled as a
linear combination of p basis functions Bk sð Þ; k51; :::; p,
that is,

hrf sð Þ5
Xp

k51

bkBkðsÞ; (H)

where the unknown basis function coefficients bk; k51; :::; p,
have to be estimated from the fMRI time series yðtÞ
observed at a specific voxel. For p51, HRFs with a fixed
shape B1 sð Þ and amplitude b1 are a special case of (H). A
popular alternative is to choose a small to moderate num-
ber of basis functions, such as p53 gamma densities with
prechosen shape and scale parameters [Friston et al., 1998]
or the canonical basis function set, including the canonical
HRF plus its temporal and dispersion derivatives [Friston
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et al., 2008, pp. 181]. In some cases, the basis functions con-
tain additional unknown parameters, such as the inverse
logit model, which consists of the superposition of three

inverse logit functions [Descamps et al., 2012; Lindquist

and Wager, 2007].
The most flexible HRF models are finite impulse

response (FIR) models. They are step functions, allowing
estimation of the height of the HRF at each time point
within a window of time following stimulation. FIR mod-
els can be written in the form ðhrfÞ with 021 basis func-
tion Bk tð Þ at every time point s and bk as the height of the
HRF at s, see, for example, Ollinger et al. [2001]. However,
the increased flexibility comes at the cost of a large num-
ber p of parameters, with the risk of overfitting the data,
fewer degrees of freedom, and decreased power [Lindquist
et al., 2009]. Therefore, additional constraints are intro-
duced, for example, in the time-event separable model of
Kay et al. [2008] or in form of regularization or smoothing
techniques [Badillo et al., 2013; Makni et al., 2008; Zhang
et al., 2008; Zhang et al., 2012].

Lindquist et al. [2009] investigate the performance of
several HRF models ðHÞ and the recent review of Monti
[2011] on the GLM approach also provides information
about the current state of modeling and estimating
HRFs. HRFs of the form ðHÞ are also used beyond the
GLM framework, for example, in spatial-temporal hid-
den process models [Hutchinson et al., 2009; Shen et al.,
2014].

So far, however, in all HRF models the basis function
coefficients b1; :::;bp are assumed to be time constant
during the experiment, relying on the assumption of a
steady brain response over time. This induces a time
constant shape of the HRF during the experiment as
visualized in Figure 1a. To incorporate flexible, but still
smoothly varying time patterns, it is necessary to replace
time-constant coefficients through time-varying coeffi-

cients bðtÞ5 b1 tð Þ; :::;bpðtÞ
� �

, inducing time-varying
shapes of the HRF as visualized in Figure 1b. To avoid
too restrictive parametric functional forms, such as sim-
plistic step functions, exponential functions, or low-
dimensional polynomials, we follow a flexible semipara-
metric approach for specifying and estimating bðtÞ. We
approximate time-varying coefficients through flexible
penalized regression splines, introduced in Eilers and
Marx [1996] and meanwhile often preferred to smooth-
ing splines, see Fahrmeir et al. [2013] for a recent
review. We show in our methodological derivation that
this leads to a linear model with penalized least squares
estimation. We outline the proposed method in the con-
text of event-related experiments and apply it to SPMs
canonical basis function set. However, it is important to
note that our approach is quite general and extends any
fMRI model (H) by replacing time-constant coefficients
through time-varying coefficients.

In the Result section, we use exploratory tools, such as
confidence bands and functional clustering to capture flex-
ible activation patterns. The development of more formal
tests or model choice tools—on the voxel and in particular
on the whole brain level—are subject of current research
and beyond the scope of this article.

The time-varying fMRI activation effects algorithm
described in the Methods section has been implemented in
a user-friendly software package. The software is freely
available as add-on package RfmriVC to the R system of
statistical computing [R Core Team, 2013].

The remainder of the article is organized as follows: In
the Methods section, we first describe the basic fMRI GLM
used conventionally for activation detection. This model
relies on the assumption that the activation effects are
time constant. Next, we show how this model can be
extended to incorporate time-varying effect coefficients
and give an outline to model inference. After providing

Figure 1.

Comparison of time-constant and time-varying activation effects. On the left side, the underlying

effect curve b(t) is plotted over time where dots denote the b(sm) values to presented stimuli

51; :::;M (blue stick functions). On the right side, the corresponding hrf(sm) functions in

response to the presented stimuli are shown.
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the methodological background, we present results
obtained on an event-related fMRI dataset from an acous-
tic two-tone oddball design. In the Discussion section, we
outline the main qualities and findings of our model and
suggest starting points for further work.

METHODS

An fMRI Regression Model with Time-Constant

Effects

fMRI data consist of signal time series yit; t51; :::;T;
recorded at each voxel i51; :::;N of a three-dimensional
brain image. Detection of brain activity is usually based on
voxelwise regression models of the form

yit5fbaseði; tÞ1fconði; tÞ1fstimði; tÞ1Eit: (1)

In (1), fbaseði; tÞ is the baseline trend, fconði; tÞ is the effect
of confounding covariates, fstimði; tÞ is the effect of the
(transformed) stimulus, and Eit is the random error term at
voxel i and time t. In the following, we discuss the compo-
nents of the fMRI regression model (1) in detail.

The baseline term fbaseði; tÞ corrects for slow periodic
variations and drift either inherent to the scanning proce-
dure or connected to nonparadigm correlated periodic var-
iations. Thus, fbaseði; tÞ serves as a highpass filter. In this
work, it is chosen to consist of a discrete cosine transform
set [Friston et al., 2008, p. 123) as in SPM. In contrast to
SPM, but conceptually equivalent, the highpass filter in
our modeling approach enters the regression stage directly
as a linear combination of basis functions fbaseði; tÞ5wðbÞðtÞ’
a
ðbÞ
i with basis functions wðbÞðtÞ5 w

ðbÞ
k ðtÞ; k51; :::; pb

� �
’ and

weights a
ðbÞ
i 5 a

ðbÞ
ik ; k51; :::; pb

� �
’:

The second term fconði; tÞ accounts for further confound-
ing effects like, for example, movement related artifacts
or brain tissue-specific properties capturing effects from
cardiac and respiratory cycles, which are not captured by
the highpass filter. It is assumed, that according informa-
tion is available in form of several univariate, global vari-

ables with value wðcÞðtÞ5 w
ðcÞ
k ðtÞ; k51; :::; pc

� �
’ at time t.

The corresponding voxelspecific effect vector

a
ðcÞ
ik ; k51; :::; pc

� �
’ is denoted as aðcÞi , so that

fconði; tÞ5wðcÞðtÞ’aðcÞi :

The regression component fstim i; tð Þ includes the trans-
formed stimulus time series of a given type. The fMRI sig-
nal represents aggregated and time delayed neuronal
activity, which in turn has a close correspondence to the
stimulus presentation. Therefore, the stimulus time series
has to be transformed to the level of the fMRI response to
obtain models that more closely resemble the observed
fMRI signal, thus, yielding a better fit. In this work, the
focus is on modeling event related stimuli, although exten-
sions to block designs are conceivable for the proposed
methodology.

We follow an approach proposed by Josephs et al.
[1997] using the concept of mathematical convolution:

fstimði; tÞ5
ðsmax

0

hrf i; sð Þu t2sð Þds

where the function u tð Þ describes the given time course of
stimulation and hrf i; sð Þ is the unknown HRF at voxel i. To
estimate hrf i; sð Þ, a flexible modeling strategy with basis
functions Bk and corresponding voxelspecific weights bik is
applied:

hrf i; sð Þ5
Xp

k51

Bk sð Þbik:

This approach leads to a flexible and data driven estima-
tion of the voxelspecific functional form of the hemody-
namic response. Different choices of basis sets exist
[Henson et al., 2001]. In the application, we focus on the
canonical basis function set [Friston et al., 2008, pp. 181],
which is the default choice in SPM.

The time series of neuronal activity u tð Þ is set equal to
the signal time series, which is modeled as follows: Sup-
pose we have event related stimuli of one type at times
s1; s2; :::; sM. A stimulus at time sm is modeled via a dirac
delta function d t2smð Þ, that is, a stick-function, so that

uðtÞ5
XM

m51
d t2smð Þ.

With this modeling strategy, the stimulus predictor for
all presented stimuli is linearized with respect to unknown
HRF effects:

fstimði; tÞ5
Xp

k51

XM
m51

Bk t2smð Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

5zkðtÞ

bik5zðtÞ0bi; (2)

where zðtÞ05 zkðtÞ; k51; :::; pð Þ and bi5 bik; k51; :::; pð Þ0.
Linearization of additive regression components leads to

a reformulation of model (1) into voxelwise linear models

yit5wðbÞðtÞ0aðbÞi 1wðcÞðtÞ0aðcÞi 1zðtÞ0bi1Eit

5wðtÞ0ai1zðtÞ0bi1Eit

(3)

where wðtÞ05 wðbÞðtÞ0;wðcÞðtÞ0
� �

and a
0

i5 a
ðbÞ’
i ; a

ðcÞ’
i

� �
are

concatenated vectors. Collecting all observations and
design vectors for voxel i in observation vectors and
design matrices, we obtain a voxelwise linear model
with time-constant stimulus effects of the form

yi5Wai1Zbi1Ei:

Our model depends on the assumption Ei � NT 0;r2
i I

� �
where I is the identity matrix of size T. So far, our model does
not account for serial correlations, because the added value is
expected to be low. That is, our explorative postprocessing
analysing strategy does not rely on the exact modeling of the
error process traditionally needed for significance testing.
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An fMRI Regression Model with Time-Varying

Effects

A basic assumption in modeling the stimulus predictor
in (2) is that the effect bi5 bi1; :::;bip

� �0
is time constant

and does not vary during the experiment. This implies
that hrf smð Þ is the same for all M presented stimuli in the
experiment (cf. Fig. 1a). This may be questionable and we
relax it by allowing the stimulus effect vector to be a func-
tion of time, that is, biðtÞ5 bi1ðtÞ; :::;bipðtÞ

� �0
. To avoid too

restrictive parametric forms, we assume that each effect
component can be expressed as a flexible linear combina-
tion of spline basis functions sjðtÞ; j51; :::; q, defined on a
prechosen grid of time points, that is,

bikðtÞ5
Xq

j51

sjðtÞgik;j5s tð Þ0cik: (4)

We choose a cubic B-spline basis with a generous num-
ber q of basis functions (10–30) to guarantee flexibility of
the unknown functions of time.

We now replace the time-constant effects bik in the stim-
ulus predictor in (2) with the values of time-varying effects
at stimulus times sm, leading to an extension of the fMRI
model (3) into

yit5wðtÞ0ai1
Xp

k51

XM
m51

Bk t2smð Þbik smð Þ1Eit (5)

with time-varying stimulus effects. With this, we allow the
stimulus effect—and thus the hemodynamic response—to vary
smoothly over time (cf. Fig. 1b for an exemplified decreasing
effect). Inserting the spline representation (4) leads to

yit5wðtÞ0ai1
Xp

k51

XM
m51

Bk t2smð Þs smð Þ0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5xkðtÞ0

cik1Eit

5wðtÞ0ai1
Xp

k51

xkðtÞ0cik1Eit5wðtÞ0ai1xðtÞ0ci1Eit

with design vectors xðtÞ05 x1ðtÞ0; :::; xpðtÞ0
� �

and according
effect vectors c’

i 5 c’
i1; :::; c

’
ip

� �
.

Collecting all observations and design vectors for voxel i in
observation vectors and design matrices, we obtain a voxelwise
linear model with time-varying stimulus effects of the form

yi5Wai1
Xp

k51

Xkcik1Ei

5Wai1Xci1Ei:

However, estimation of ai and ci will not be based on
the common least squares criterion for two related reasons:
First, the dimension p of basis function coefficients,
cik; k51; :::; p, is comparably high to enhance flexibility of
spline representation for the time-varying effects bikðtÞ.

Unrestricted least squares estimation would suffer from
instability. Second, the time-varying effects are assumed to
be smooth, excluding rough functions with abrupt, local
changes. This requires that neighboring coefficients gik;j

and gik;j21 in the spline representation (4) do not differ too
much from each other. Both goals, reduction of the effec-
tive dimension and smoothness, can be achieved through
penalized least squares estimation outlined in the
following.

Penalized Least Squares Estimation

The least squares criterion is replaced by the penalized
least squares criterion

LSpen ai; cið Þ5 yi2Wai2Xgi

� �0
yi2Wai2Xgi

� �
1
Xp

k51

kkc
0

ikPkcik

The smoothing parameters kk control the trade-off
between the least squares criterion as a measure of
goodness-of-fit and the quadratic roughness penalty term
with penalty matrix Pk. We follow the P(enalized)-spline
approach of Eilers and Marx [1996], where Pk is chosen
such that the penalty is the sum of squares of first or sec-
ond order differences of successive basis function coeffi-
cients. For first order differences, we have

c
0

ikPkcik5
X

gik;j2gik;j21

� �2
;

with Pk5D’
1D1 and D1 the matrix of first order differences.

For given smoothing parameters kk, the penalized least
squares estimators âi; ĉi are obtained by minimizing LSpen

ai; cið Þ with respect to ai; ci: The smoothing parameters,
kk; k51; :::; p, can be estimated from the data through gen-
eralized cross-validation or restricted maximum likelihood.
Furthermore, the (estimated) covariance matrices dCov baið Þ
and dCov bcið Þ are also available from the algorithm solving
the penalized least squares minimization problem. More
details are described in Ruppert et al. [2003], Wood [2006]
and in Fahrmeir et al. [2013], and algorithms are imple-
mented in the R-package mgcv(). P-splines assume only that
the true underlying beta time course has no jumps and is
differentiable, otherwise their shape can take arbitrary forms.
To avoid oversmoothing in regions with very high curvature
so-called adaptive splines [Krivobokova et al., 2008] may be
applied as an extension of our proposed model.

Inserting the estimated basis coefficients bcik into the
spline representation (4), estimated effect curves bbikðtÞ
together with (pointwise) confidence bands with signifi-
cance level a

b̂ ikðtÞ6z12a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar bb ikðtÞ
� �r

are available. Note that, z12a=2 denotes the 12a=2 quantile
of the standard Gaussian distribution. In addition, the
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stimulus predictor as well as predictors for the fMRI sig-
nals yit are available by plugging the stimulus effects b̂ ik

into (5).
Simultaneous confidence bands are available by replac-

ing the quantiles of the standard Gaussian distribution
with the quantiles of the maximum absolute standardized
deviation between the true effect curves and their esti-
mates, see Ruppert et al. [2003, Ch. 6.5]. Since these quan-
tiles are difficult to obtain analytically, even
asymptotically, they are typically approximated through
simulation, increasing computation times substantially.

Formal tests on the functional form of effect curves, for
example, to decide whether an effect biðtÞ is really nonlin-
ear or just linear, or constant as in model (2), or even zero,
are still an area of active research, in particular for additive
models which are closely related to time-varying coefficient
models considered here. They are mostly based on
(restricted) likelihood ratio tests derived from the mixed
model representation of penalized splines. The null distri-
bution of the test statistics is generally rather difficult to
obtain, even asymptotically, see Greven and Crainiceanu
[2013] and references given there. Therefore—as with simul-
taneous confidence bands—computation of (approximate)
P-values is usually simulation-based, see Greven et al.
[2008] and Scheipl et al. [2008]. Transferring these tests to
varying coefficient models is conceptually easy, but we feel
that more experience with artificial and real data is needed
before relying on them in our framework. A particular issue
is that for significance maps, P-values would have to be
adjusted to take into account spatial correlation in a similar
fashion as in SPM for time-constant activation effects.

Here, we are primarily interested in detecting specific
patterns of stimulus effects, such as increasing or decreas-
ing or non-monotonical effects, where no formal tests are
available anyway. Therefore, we apply more exploratory
tools, such as confidence bands or functional clustering (see
Results section) to detect brain regions with such patterns.

RESULTS

In this section, we present results obtained from an
event-related fMRI dataset. The fMRI data were acquired
on a clinical 3-Tesla scanner (General Electric MR750) from
nine healthy male volunteers during an active two-tone-
oddball paradigm [Kiehl et al., 2005]. In this paradigm, rare
(high-pitched) odd tones (1500 Hz, duration 50 ms)
appeared with 10% probability against the background of
frequent (low-pitched) tones (1,000 Hz, duration 50 ms).
The interstimulus interval was set to an average of 1,000
ms. The subjects were instructed to continuously pay atten-
tion to the tones and press the response button with their
right index finger immediately after recognizing an odd
(high-pitched) tone. Whole brain fMRI time series were
acquired using an echoplanar imaging (EPI) sequence (time
of repetition 2,000 ms, time of echo 40 ms, slice orientation
according to anterior-commissure/posterior-commissure

landmarks, 28 slices, slice thickness 3.5 mm, 0.5 mm gap,
in-plane resolution 3.125 3 3.125 mm2) while the acoustic
oddball paradigm was applied. A total of 307 image vol-
umes per subject were recorded over 10.4 minutes with the
first five images being disregarded due to unequilibrated
T1 effect, leaving 302 images for the further analysis.

The dataset was postprocessed using the SPM software
(http://www.fil.ion.ucl.ac.uk/spm, version SPM8). First, data
were corrected for slice-timing effects caused by the bottom-
up-interleaved acquisition scheme over 2 s. Second, motion
correction was performed using rigid-body realignment with
transformation parameters stored for each file. Third, images
were spatially normalized using linear and nonlinear transfor-
mations to an EPI wholehead template in standard Montreal
Neurological Institute (MNI) space with default settings of the
SPM8 distribution. Intrinsic to the spatial normalization step is
an interpolation step that was set to gain voxels sized 3 3 3 3

3 mm3. Eventually, images underwent edge-preserving non-
linear spatial filtering (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki,
SUSAN) with a kernel comparable to a 3D-Gaussian kernel
sized 6 3 6 3 6 mm3 full width half maximum.

For the time-varying fMRI activation analysis, we set the
highpass filter threshold for fbaseði; tÞ to a low value (20 s) to
remove as many nonparadigm related fluctuations as possi-
ble. Additionally, a set of movement parameters from the
rigid-body realignment were included as confounders to
ensure that resulting activation effects are not motion-related.

In total, the voxelwise time-varying effects of M 5 60
presented odd stimuli (per subject) were estimated. For
this, we chose a B-spline basis with q 5 10 basis functions
to capture habituation and attention effects. Preruns with
a larger number q of basis functions (not shown here) did
not add value to the present analysis.

To detect voxels that are at least partly activated or deacti-
vated over time, the following heuristic was used: Per voxel,
an equally spaced grid T of 30 pointwise confidence inter-
vals (cf. Penalized least squares estimation section) with sig-
nificance level a50:001 was calculated. As a measure of
activation strength over time, we then computed the relative
frequency of points that do not cover zero

ji5
j t 2 Tj0 =2CIðtÞf gj

jTj ; i51; :::;N

where |.| denotes the cardinality of the according set and
j is the corresponding map of voxelwise ji-values. In
Figure 2, an exemplary j slice is plotted together with the
effect trajectories and confidence intervals for three
selected voxels located temporally within the oddball net-
work. The red dots denote confidence intervals that do
not cover zero and black dots vice versa. The voxel trajec-
tory on the top is located inside the activation focus. It
has a strong constant effect, whereas bðtÞ curves of
boundary voxel indicate time variation, that is, a decreas-
ing effect for the middle time series (red voxel square on
the right/top) and an inverse U-shaped effect for the time
series on the bottom (red voxel square on the right/
bottom).
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In Figure 3, selected j-slices for all subjects of the sam-
ple are plotted to give an overview over individual activa-
tion patterns. Generally, we observe substantial variation
between the individual activation maps. In six of nine
cases, temporolateral, frontoinsular, and left motor cortex
activation can be detected. In contrary, dorsal anterior cin-
gulate activation is more heterogeneous over the group.
Yet, there are subgroups that share common stimulus-
response pattern, for example, in frontotemporal areas
(subjects 2, 5, 6, 8, and 9). Closer inspection demonstrated
that, for example, in subject 3, this pattern was evenly
present, yet with more unstable or time-varying responses
(dark gray).

In the following, we illustrate the gain in knowledge,
which one can achieve by examining time-varying effect
trajectories, on results from subject 2. For simplicity, we
refer to methods relying on time-constant effect estimation
as conventional. On the one hand, voxels with time-
varying activation profiles that are not found by conven-
tional activation detection methods (based on time-
constant effect estimation) are of special interest. On the
other hand, the form of time-varying effect profiles is
worth to be examined. From Figure 4a, we observe the fol-
lowing: SPM activation foci (middle column) are rather
small and contain voxels with time-varying effect profiles.
Further, SPM-based activation foci are surrounded by light
gray areas which suggests that in these areas, time-varying
effects are too short-lasted as to be detected by conven-
tional methods. The activation foci found by iMRF (a

Bayesian activation detection model proposed by Kalus
et al., 2014 utilizing a spatial regularization scheme based
on an intrinsic Gaussian Markov Random field) are larger
compared with SPM activation foci, likely by borrowing
strength from spatial information. Hence, most iMRF acti-
vation foci mostly cover the corresponding time-varying
effect foci, still, with less mismatch left compared with
SPM (light gray areas). Note that there is an artifact in
j-maps that seems to be spurious at the first sight. There
are clusters of voxels with reasonable sized, time-constant
effect trajectories that are non-zero over the whole time
range (e.g., cluster shown in slices 10 and 22) but still not
detected by either of the conventional methods. One likely
reason for this is that the statistical threshold criteria of
the heuristic analysis method cannot be directly compared
to the multiple test corrected and hence, more rigorous
thresholds of the conventional procedures. In line with
this, application of a more stringent threshold for the heu-
ristic procedure would lead to the disappearance of these
clusters (data not shown).

In Figure 5, the bðtÞ-trajectories of two ROIs sized 4 3 4
voxels from a single subject (subject 2, as in Fig. 3) are
depicted: one located in the attention network (see Fig. 4b,
top) and one within the oddball network (see Fig. 4b, bot-
tom). The zoom into the bðtÞ-trajectories reveals that SPM
and iMRF reliably declare voxels as significant that display
mostly constant effect profiles or time-varying effect pro-
files that are reasonable strong for most parts of the time
window (dark orange voxels). The iMRF algorithm is

Figure 2.

Exemplary j slice plotted together with selected effect trajectories b(t) and confidence intervals

of three voxels located temporally within the oddball network. The red dots denote pointwise

confidence intervals that do not cover zero, and black dots vice versa. The corresponding gray-

scale value in j visualizes the relative frequency of red dots ranging from black (ji50) to white

(ji51).
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more sensitive in detecting effects that appear over a
shorter time range (light orange voxels). Especially, SPM
does not detect voxels with shorter but still strongly peak-
ing activation as, for example, seen in voxel [44, 11] in Fig-
ure 5a. Both methods do not detect adjacent voxels that
exhibit a substantial response at the beginning with steady
decrease over time as, for example, seen in voxel [45, 10].

The display of a limited number of spatial clusters of
functions on a map provides a convenient summary of
results from a time-dependent fMRI analysis. The develop-
ment of functional cluster algorithms, which cluster curves
according to the similarity of their functional form in high-
dimensional settings, is subject of current research. A basic
approach, however, is the following [Abraham et al.,
2003]: For each voxel-specific curve a basis function
decomposition can be calculated. Then, given a prespeci-
fied number of clusters, the K-Means algorithm can be
applied to the voxelwise basis function coefficients. These
coefficients are directly available as ĉi5ĉi;1; i51; :::;N from
Eq. (4) from our analysis. To decrease the computational
burden, we preselected voxels with constant curves that
have standard deviations that are numerically equal to
zero. These preselected voxels were split into two clusters:
one with ji values equal to one (“significant curves”) and
another with ji values equal to zero (“nonsignificant
curves”). Note, that ji has a binary outcome when curves
are constant. Then, we clustered remaining ĉ

0

is requesting
a solutions with five clusters, because this configuration
resulted in interpretable and stable clusters—whereby sta-
bility was measured by the Rand-Index for cluster solu-

tions 2 to 12 [derived via Bootstrapping as described in
Hubert and Arabie, 1985; Leisch, 2006]. It should be
emphasized that, other than usually used in brain map-
ping reports, the term “cluster” as used refers to the result
of the K-Means-clustering algorithm. That is, clusters are
not necessarily spatially coherent but consist of areas dis-
parate in anatomical space.

In Figure 6, the 7-cluster solution (2 preselected plus 5
K-Means clusters) is plotted with corresponding center
curves and cluster sizes. C1 denotes the preselected cluster
with constant significant curves and C7 denotes the cluster
with constant nonsignificant curves. In addition to C1, C2
also contains voxels with constant activation over the
whole analysis window, yet with some minor fluctuations.
C1 and C2, when taken together, represent activations typ-
ically elicited by an active acoustic oddball experiment.
The areas (light and dark yellow) comprise temporolateral
areas (secondary acoustic cortex) and the cingulate cortex
and bordering medial premotor cortex. In these areas
effects are (approximately) time constant. Therefore, these
areas largely match the pattern known from conventional
SPM analyses. C7, as mentioned, and C6 represent areas
of no activation. Of most interest for our methodology are
clusters C3 to C5 that exhibit temporally variant activation
patterns. A strong deactivation pattern, although not pre-
sented as enduringly as the activation patterns of C1 and
C2, is seen in cluster C5 (dark blue) with a slow turn to
activation later in the experiment. The areas of C5 match
the default mode network (DMN) (comprising a posterior
midline node, two parietal lateral nodes (slices 26–28), a

Figure 3.

Selected j slices for all examined subjects.
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midline frontopolar node and further more lateral prefron-
tal areas) that typically deactivates in terms of amplitude
during the performance of goal-directed tasks. Cluster C4
is particular in that it shows high fluctuations over the
experiment (about one every 2 min) that are slower than
typical resting state network activity [Auer, 2008], yet not
representing simple up- or down-drifts. Also, its location
in the posterior midline area of the DMN render it func-
tionally neighbored to the DMN (see also Discussion sec-
tion). Last, cluster C3 (red) exhibits a temporal course
mostly mirroring that of C5, with activation at the begin-
ning and a turn to deactivation later. Anatomically, it is a
complex assembly of medial parietal, lateral parietal,
medial and lateral prefrontal and insular areas, possibly
representing a higher order frontoparietal control network,
parts of a general task positive network [Fox et al., 2006]
or inconstant (e.g., habituating) elements of the acoustic
oddball network [Kiehl et al., 2005].

DISCUSSION

Although we have seen that the proposed model is suf-
ficiently sophisticated to reveal time-varying effects, the
procedure can be renewed in several ways. For the time
being, spatial dependencies are ignored. To borrow
strength from the spatial neighborhood, the development
of a Bayesian extension of the model that incorporates a
suitable spatial prior seems conceivable. This spatial prior
should enhance similarities of curves within one brain
cluster, but it has to be ensured that it provides sufficient
edge preserving properties as well. Hence, development of
such a spatial model is not straightforward and an issue
for future research.

Beyond these options for an optimization of the estima-
tion itself, the extraction of voxelwise time-varying coeffi-
cients as such is a valuable intermediate result level. This
type of information on the course of the experiment is
novel as current widely used GLM approaches still
assume that the basis function coefficients are constant
over the experiment—although offering different ways of
modeling and estimating the HRF. As demonstrated, vari-
ation in the coefficients can be detected and may serve as
input for different types of clustering algorithms. Here, we
have exemplified that the coefficients, which contain the
full information on the temporal development of the
stimulus-associated HRF response, can be forwarded to a
clustering algorithm. By this, groups of voxels can be iden-
tified that share a common dynamical pattern. Alterna-
tively, similar to BOLD raw signals, spatial [Beckmann
and Smith, 2004, 2005] or temporal [Smith et al., 2012]
independent component analysis (ICA) in its extension to
probabilistic group ICA may be utilized in this respect.
These methods have proven to be helpful to extract ana-
tomical areas that combine to functional units [Damoi-
seaux et al., 2006; Smith et al., 2012]. In contrast to
standard models that focus on the mapping of a stimulus-
specific response, the possibility to explore time-varying
effects may, therefore, help to elucidate regulatory net-
works of processes that modulate stimulus response.

We have presented the time-varying effect curves in (5)
through flexible spline functions defined in (4). A concep-
tually different strategy might be functional principal
component analysis (FPCA), expanding the effect curves
in (5) into an orthogonal series of eigenfunctions (the Kar-
hunen–Loeve expansion) and extracting the main direc-
tions of time-variability of effect curves. FPCA has been
recently developed as a framework for high-dimensional
imaging data, see Greven et al. [2010], Zipunnikov et al.
[2011], and Zipunnikov et al. [in press], and appears to be
a promising alternative to explore time-varying activation
effects.

Our approach can be extended to include time-varying
effects for additional conditions as separate regressors:
Time-constant effects in conventional regression models
for this situation are replaced through time-varying effect
curves based on penalized splines in the same way as in

Figure 4.

Left: Single subject comparison of j map (left column) with con-

ventional time-constant activation detection methods (middle and

right column for SPM and iMRF, respectively). In the left column, j

is plotted with the gray-white intensity indicating the degree of

activation over time. The middle and right columns depict time-

varying effects within areas of activation as detected by SPM and

iMRF, respectively. Conventionally active voxels are depicted in

hot colors, with red indicating partial nonactivation and orange

indicating full activation. Light gray represents voxels with partial

activation in the j map but no activation in the respective conven-

tional approach. Right: ROIs for further result presentations.
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Figure 5.

Selected effect trajectories for two different ROIs (cf. Fig. 4b) for subject 2. White backgrounds

denote voxels that are not found to be activated by either of the two constant detection mod-

els, light orange backgrounds denote voxels that are found solely by iMRF, dark orange back-

grounds denote voxels found by both iMRF and SPM. Numbers in the figure margins indicate the

voxel IDs in x and y direction in one slice.



our model for a single condition. However, it has to be

checked whether multicollinearity issues are introduced

by the experimental design. For example, in the presented

auditory oddball design, odd and even tones present an

almost regular series of stimuli. If modeled simultane-

ously, the odd and even regressors are highly collinear

with the intercept. Hence, strategies for coping with this

have to be applied.
A straightforward way to perform group-level analysis

can follow SPMs approach of second level analysis to yield
mean beta time series-estimates for a given group of sub-
jects. However, it must be ensured that aggregation over a
group is sensible at the first place. Time-variation profiles
may possess a large intersubject variability so that mean
profiles are not interpretable.

Besides this, it is of interest to identify factors that cause

the variation in effect strengths. For the time variable that

may represent a surrogate for other unobserved variables,

putative causes for the variation can be examined by

incorporating other types of varying effects, for example,

vigilance levels as determined from parallel EEG-

measurements. Then, effect strength variations can directly

be associated with a hypothesized factor at the voxel level.

Such incorporation of EEG-based varying coefficients is sub-

ject of current work [Bothmann, 2012]. One ideal application

of such technique is pharmacological MRI in which modula-

tory effects of pharmacological substances on signal proc-

essing are expected [Jenkins, 2012]. Another application

area is the clinical field in which habituation patterns to cer-

tain stimuli may be pathologically altered [Gordeev, 2008].

Figure 6.

Results of functional clustering algorithm (slices 10–39).
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In our analyses, we have seen that the time-varying effect
trajectories still contain a low amount of default state fluctua-
tions that are not directly caused by the experimental para-
digm and could not be regressed out by the conventional form
of the highpass filter (although set to a very low value). There-
fore, it is quite likely that some of the identified dynamical
response patterns (see Fig. 6, K-Means clustering result) repre-
sent true modulations of the task response over time, whereas
others may represent remaining effects of very low frequency
components of resting state networks that would be equally
detected in task-free data. As the DMN is deactivated during
all kinds of cognitive stimuli and as it is also intrinsically anti-
correlated to a task positive network during rest [Fox et al.,
2005], both reactive patterns of the DMN and detection of
spontaneous DMN patterns are well conceivable. Separating
intrinsic activity from stimulus response is an important but
complex problem, as the brain’s responses to stimuli are not
independent from ongoing, intrinsic activity. Statistical model-
ing of this issue, for example, based on P-splines or wavelets,
is a challenging task for future research.

In conclusion, we present a new statistical model that allows

for the identification of time-varying effects in event-related
fMRI. Based on an acoustic oddball experiment, we observed

that both stable and unstable, that is, temporally dynamic,

response patterns can be separated. Direct comparisons with

SPM demonstrate that the assumption of time-constant effects
only applies for some of the typically retrieved activation

maps. Consideration of time-varying effects may increase the

sensitivity to detect individual response patterns, which is use-

ful for applications in several domains of clinical neuroscience
including pharmacological fMRI.
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