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Abstract 

Computer experiments are popular techniques adopted in modern businesses, 

engineering, scientific and technological applications in the recent years. Its flexibility 

and wide applicability has made it more accepted than the classical physical experiments. 

The Design and Analysis of Computer Experiments (DACE) is fast growing in statistical 

experimental designs. In this work, an Orthogonal Array-based Latin Hypercube Design, 

that is, OA (N, k) LHD was applied for the development of borehole computer experiment. 

A computer experiment was conducted based on the OA (49, 8) LHD using a borehole 

computer model. The borehole computer model was used to simulate the real life 

borehole experiment. The Gaussian stochastic process (Gasp) model was employed to 

mimic the computer model in order to save time that may be required by a complex 

computer code and for the purpose of predictions of the flow rate of water at untried 

inputs. The Maximum Likelihood Estimation technique was used to estimate the 

parameters of the Gasp model. The results obtained using the Gasp model indicated that 

the radius (rw ) and the hydraulic conductivity (Kw) of the borehole were the most 

important factors that influenced the flow rate of water from an upper aquifer to a lower 

one. The fitted Gasp model was found to be very efficient since it yielded exact results on 

the test data cases. The model development and analysis were performed in MATLAB 

package. 
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1. Introduction 

An experimental design is the selection of inputs by which to compute the output of 

computer experiments in order to achieve specific aims. It has a matrix of input variable 

(X), where each column of X depicts a variable and each row is the combination of input 

variable values for a single experimental run. Conventional experimental designs 

originate from the theory of Design of Experiments (DOE) when physical experiments are 

performed [8] while space-filling designs are associated with computer experiments. 

Computer experiments are distinct from physical experiments because they have no 

random error and they deal with functions that are considered to have more complex 

behaviour. Properly designed experiments are essential for effective computer utilization. 

Deterministic computer experiments are more commonly employed in engineering, 

science and technology because the conventional physical experiments could require 

more time, money and some other resources to conduct. In some instances, the physical 

experiments could be difficult to perform. A computer experiment is an experiment 

performed using data obtained from a computer model instead of the physical process. 
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The rapid growth in computer power has now made it possible to conduct deterministic 

experiments on simulators. The first computer experiment was reported to have been 

conducted by Enrico Fermi and colleagues [14] in Los Alamos in 1953 and since then, 

scientists in different disciplines have turned to computer experiments as a useful tool to 

understand their respective processes. 

In this present work, a borehole computer experiment that utilizes a model which is a 

simple example of flow rate of water through a borehole from an upper aquifer to a lower 

aquifer that is separated by an impermeable rock layer was developed. The orthogonal 

array-based Latin hypercube design (OALHD) originally constructed by [12] is used to 

develop a borehole computer experiment and the Gasp model is employed to emulate a 

borehole computer model. 

 

2. Material and Methods 

The model development and analysis in this work were performed using MATLAB 

package. Orthogonal array Latin hypercube design (OALHD) was used to develop a 

borehole computer experiment through a model of flow rate of water and the Gasp model 

was subsequently used to emulate a borehole computer model. The results of OA (49, 8) 

LHD and its plot for bivariate projections among the eight input variables are provided in 

Table 1 and Figure 1 as constructed by the author in [13]. The approach employed by the 

author in [13] is different from the one employed in the construction of OALHD for three 

input variables computer experiment [10]. The borehole model has been investigated by 

several researchers including [16], [11], [7], [5] and [1] among others. 

Table 1. OA (49, 8) LHD Constructed for Borehole Computer Experiment 

OA (49, 8) LHD 

Design Points 

0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 

0.0306 0.1531 0.1531 0.2959 0.4388 0.7245 0.1531 0.8673 

0.0510 0.2959 0.2959 0.5816 0.8673 0.4388 0.2959 0.7245 

0.0714 0.4388 0.4388 0.8673 0.2959 0.1531 0.4388 0.5816 

0.0918 0.5816 0.5816 0.1531 0.7245 0.8673 0.5816 0.4388 

0.1122 0.7245 0.7245 0.4388 0.1531 0.5816 0.7245 0.2959 

0.1327 0.8673 0.8673 0.7245 0.5816 0.2959 0.8673 0.1531 

0.1531 0.0306 0.1735 0.1735 0.3163 0.4592 0.7449 0.1735 

0.1735 0.1735 0.3163 0.4592 0.7449 0.1735 0.8878 0.0306 

0.1939 0.3163 0.4592 0.7449 0.1735 0.8878 0.0306 0.8878 

0.2143 0.4592 0.6020 0.0306 0.6020 0.6020 0.1735 0.7449 

0.2347 0.6020 0.7449 0.3163 0.0306 0.3163 0.3163 0.6020 

0.2551 0.7449 0.8878 0.6020 0.4592 0.0306 0.4592 0.4592 

0.2755 0.8878 0.0306 0.8878 0.8878 0.7449 0.6020 0.3163 

0.2959 0.0510 0.3367 0.3367 0.6224 0.9082 0.4796 0.3367 

0.3163 0.1939 0.4796 0.6224 0.0510 0.6224 0.6224 0.1939 

0.3367 0.3367 0.6224 0.9082 0.4796 0.3367 0.7653 0.0510 

0.3571 0.4796 0.7653 0.1939 0.9082 0.0510 0.9082 0.9082 

0.3776 0.6224 0.9082 0.4796 0.3367 0.7653 0.0510 0.7653 

0.3980 0.7653 0.0510 0.7653 0.7653 0.4796 0.1939 0.6224 

0.4184 0.9082 0.1939 0.0510 0.1939 0.1939 0.3367 0.4796 

0.4388 0.0714 0.5000 0.5000 0.9286 0.3571 0.2143 0.5000 

0.4592 0.2143 0.6429 0.7857 0.3571 0.0714 0.3571 0.3571 

0.4796 0.3571 0.7857 0.0714 0.7857 0.7857 0.5000 0.2143 

0.5000 0.5000 0.9286 0.3571 0.2143 0.5000 0.6429 0.0714 
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0.5204 0.6429 0.0714 0.6429 0.6429 0.2143 0.7857 0.9286 

0.5408 0.7857 0.2143 0.9286 0.0714 0.9286 0.9286 0.7857 

0.5612 0.9286 0.3571 0.2143 0.5000 0.6429 0.0714 0.6429 

0.5816 0.0918 0.6633 0.6633 0.2347 0.8061 0.9490 0.6633 

0.6020 0.2347 0.8061 0.9490 0.6633 0.5204 0.0918 0.5204 

0.6224 0.3776 0.9490 0.2347 0.0918 0.2347 0.2347 0.3776 

0.6429 0.5204 0.0918 0.5204 0.5204 0.9490 0.3776 0.2347 

0.6633 0.6633 0.2347 0.8061 0.9490 0.6633 0.5204 0.0918 

0.6837 0.8061 0.3776 0.0918 0.3776 0.3776 0.6633 0.9490 

0.7041 0.9490 0.5204 0.3776 0.8061 0.0918 0.8061 0.8061 

0.7245 0.1122 0.8265 0.8265 0.5408 0.2551 0.6837 0.8265 

0.7449 0.2551 0.9694 0.1122 0.9694 0.9694 0.8265 0.6837 

0.7653 0.3980 0.1122 0.3980 0.3980 0.6837 0.9694 0.5408 

0.7857 0.5408 0.2551 0.6837 0.8265 0.3980 0.1122 0.3980 

0.8061 0.6837 0.3980 0.9694 0.2551 0.1122 0.2551 0.2551 

0.8265 0.8265 0.5408 0.2551 0.6837 0.8265 0.3980 0.1122 

0.8469 0.9694 0.6837 0.5408 0.1122 0.5408 0.5408 0.9694 

0.8673 0.1327 0.9898 0.9898 0.8469 0.7041 0.4184 0.9898 

0.8878 0.2755 0.1327 0.2755 0.2755 0.4184 0.5612 0.8469 

0.9082 0.4184 0.2755 0.5612 0.7041 0.1327 0.7041 0.7041 

0.9286 0.5612 0.4184 0.8469 0.1327 0.8469 0.8469 0.5612 

0.9490 0.7041 0.5612 0.1327 0.5612 0.5612 0.9898 0.4184 

0.9694 0.8469 0.7041 0.4184 0.9898 0.2755 0.1327 0.2755 

0.9898 0.9898 0.8469 0.7041 0.4184 0.9898 0.2755 0.1327 

 

 

Figure 1. Projection Properties of OA (49, 8) LHD 

The OA (49, 8) LHD given in Table 1 contained 49 runs and 8 input variables and was 

scaled according to the assumed range for design variables using Equation 1:  

 

      (1) 
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Table 2. Input Variables for Borehole Model 

Variable Variable name Minimum Maximum 

X1 (rw) Radius of Borehole (metre)   0.05      0.1 

X2 (r ) Radius of Influence (metre)   100      25050 

X3 (Tu) Transmissivity of Upper Aquifer (m2/yr)   63070      89335 

X4(Hu) Potentiometric Head of Upper Aquifer (metre)   990      1045 

X5(Tl) Transmissivity of Lower Aquifer (m2/yr)   63.1      89.55 

X6(Hl) Potentiometric Head of Lower Aquifer(metre)   700      760 

X7(L) Length of Borehole (metre)   1120      1400 

X8(Kw) 

Y 

Hydraulic Conductivity of Borehole (metre/yr) 

Flow Rate of Water (m3/yr) 

  9855      10950 

 

 

The scaled OALHD was used to develop a borehole computer experiment using the 

simulator in Equation 2: 
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where 

rw(m)  = radius of borehole 

r(m)        =  radius of influence  

Tl(m2/yr) =  transmissivity of lower aquifer 

Tu(m2/yr) =  transmissivity of upper aquifer 

Hl (m)     = potentiometric head of lower aquifer 

Hu(m)     = potentiometric head of upper aquifer 

L (m)  = length of borehole and 

Kw(m/yr) = hydraulic conductivity of borehole 

 

The scale input variables and the output from a borehole computer model constitute the 

experimental results for the training data sets as provided in Table 3. 

Table 3. Experimental Data for Borehole Computer Experiment (Training 
Data Sets) 

 

rw R Tu Hu Tl Hl L Kw Y 

 

0.055 1397.057 63922.849 991.247 63.556 700.833 1123.256 9957.012 24.111 

 

0.056 2113.633 64202.654 991.357 63.561 700.834 1123.256 10086.946 25.194 

 

0.056 2830.210 64482.458 991.468 63.557 700.834 1123.256 10216.880 26.309 

 

0.057 3546.786 64762.263 991.320 63.562 700.833 1123.256 10346.814 27.433 

 

0.058 4263.362 64062.752 991.431 63.558 700.834 1123.256 10476.748 28.613 

 

0.059 4979.939 64342.556 991.284 63.563 700.834 1123.256 10606.682 29.801 

 

0.060 5696.515 64622.361 991.394 63.560 700.833 1123.256 10736.616 31.047 

 

0.061 2216.001 64082.738 991.289 63.557 700.833 1123.256 9975.574 29.671 

 

0.061 2932.578 64362.542 991.399 63.562 700.834 1123.256 10105.508 30.911 

 

0.062 3649.154 64642.347 991.252 63.559 700.834 1123.256 10235.442 32.156 

 

0.063 4365.731 63942.835 991.362 63.563 700.834 1123.256 10365.376 33.464 

 

0.064 5082.307 64222.640 991.473 63.560 700.833 1123.256 10495.310 34.806 

 

0.065 5798.883 64502.445 991.326 63.556 700.834 1123.256 10625.244 36.152 

 

0.066 1499.425 64782.249 991.436 63.561 700.834 1123.256 10755.178 37.583 

 

0.067 3034.946 64242.626 991.331 63.559 700.834 1123.256 9994.136 35.816 

 

0.067 3751.522 64522.431 991.441 63.563 700.833 1123.256 10124.070 37.219 

 

0.068 4468.099 64802.235 991.294 63.560 700.834 1123.256 10254.004 38.624 
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0.069 5184.675 64102.724 991.405 63.556 700.834 1123.256 10383.938 40.099 

 

0.070 5901.251 64382.528 991.257 63.561 700.833 1123.256 10513.872 41.575 

 

0.071 1601.793 64662.333 991.368 63.558 700.834 1123.256 10643.806 43.146 

 

0.072 2318.369 63962.821 991.478 63.562 700.834 1123.256 10773.740 44.730 

 

0.073 3853.890 64402.514 991.373 63.560 700.834 1123.256 10012.698 42.546 

 

0.073 4570.467 64682.319 991.483 63.557 700.833 1123.256 10142.632 44.119 

 

0.074 5287.043 63982.807 991.336 63.561 700.834 1123.256 10272.566 45.691 

 

0.075 6003.619 64262.612 991.447 63.558 700.834 1123.256 10402.500 47.341 

 

0.076 1704.161 64542.417 991.299 63.562 700.834 1123.256 10532.434 49.016 

 

0.077 2420.737 64822.221 991.410 63.559 700.833 1123.256 10662.368 50.740 

 

0.078 3137.314 64122.710 991.263 63.564 700.834 1123.256 10792.302 52.459 

 

0.078 4672.835 64562.403 991.415 63.561 700.834 1123.256 10031.260 49.861 

 

0.079 5389.411 64842.207 991.268 63.558 700.834 1123.256 10161.194 51.567 

 

0.080 6105.988 64142.696 991.378 63.563 700.833 1123.256 10291.128 53.358 

 

0.081 1806.529 64422.500 991.489 63.559 700.834 1123.256 10421.062 55.225 

 

0.082 2523.106 64702.305 991.341 63.564 700.834 1123.256 10550.996 57.044 

 

0.083 3239.682 64002.793 991.452 63.560 700.833 1123.256 10680.930 58.955 

 

0.084 3956.258 64282.598 991.305 63.557 700.834 1123.256 10810.864 60.855 

 

0.084 5491.779 64722.291 991.457 63.563 700.834 1123.256 10049.822 57.763 

 

0.085 6208.356 64022.779 991.310 63.559 700.834 1123.256 10179.756 59.648 

 

0.086 1908.897 64302.584 991.420 63.564 700.833 1123.256 10309.690 61.668 

 

0.087 2625.474 64582.389 991.273 63.560 700.834 1123.256 10439.624 63.628 

 

0.088 3342.050 64862.193 991.383 63.557 700.834 1123.256 10569.558 65.687 

 

0.089 4058.626 64162.682 991.494 63.562 700.834 1123.256 10699.492 67.791 

 

0.089 4775.203 64442.486 991.347 63.558 700.833 1123.256 10829.426 69.879 

 

0.090 6310.724 64882.179 991.499 63.564 700.834 1123.256 10068.384 66.253 

 

0.091 2011.265 64182.668 991.352 63.561 700.834 1123.256 10198.318 68.372 

 

0.092 2727.842 64462.472 991.462 63.557 700.834 1123.256 10328.252 70.538 

 

0.093 3444.418 64742.277 991.315 63.562 700.833 1123.256 10458.186 72.687 

 

0.094 4160.994 64042.765 991.426 63.558 700.834 1123.256 10588.120 74.945 

 

0.095 4877.571 64322.570 991.278 63.563 700.834 1123.256 10718.054 77.181 

 

0.095 5594.147 64602.375 991.389 63.559 700.833 1123.256 10847.988 79.530 

 

3. Modelling Borehole Computer Experiment 

A borehole computer model is a model of a physical process to be emulated using a 

metamodel. A metamodel is referred to as a model used to emulate a borehole computer 

model. A wide variety of techniques have been discussed in the literature for creating the 

metamodels [14]. These techniques include response surface modelling [9], Radial Basis 

Functions ([2]; [3]), Multivariate Adaptive Regression Splines [4] and Support Vector 

Machine [15]. In this study, a Gaussian stochastic process (Gasp) model was investigated 

as an alternative technique for approximating a borehole computer model. The Gasp 

model allows a wide range of correlation functions  to be used. A Gaussian 

correlation function was chosen in this study. The output of the borehole computer 

experimental data was modelled using a Gaussian stochastic process model as described 

below: 
 

      (3) 
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where  are  known regression functions and , …, are their 

corresponding (unknown) parameters and   is a stochastic process which is assumed 

to have mean zero and variance-covariance structure 

      (5) 

 is the process variance and  is the Gaussian correlation function that can be 

tuned to the data . The Gaussian correlation function is given as 

2

1

( , ') exp( | ' | )
d

j j j

j

R X X x x 



 
      (6) 

where
0j 

. The parameter  is important in the correlation structure of Z. When  

is large there is a small correlation between observations and therefore prediction is more 

difficult whereas there is a large correlation between observations and prediction is much 

simpler when  is small. The selection of the correlation function is very useful in the 

prediction process. The author in [6] discussed the effects of  on the prediction of output 

of a computer experiment.  The correlation matrix, R is given as an (n x n) matrix given in 

Equation 7: 

 

    (7) 

 

The matrix R is symmetric since R (xi, xj) = R (xj, xi) and the diagonal consists of all 

ones because R (xi ,xi)= 1. The correlation between an unknown point x and the n known 

sample points is given by the vector: 

 1( , ),..., ( , )x n

T
r R x x R x x

       (8) 

The best Linear Unbiased Predictor (BLUP) is obtained by minimizing the mean 

square error of the predictions. The BLUP at an untried point x is therefore given as: 

1( ) ( ) ( )T T

xy x f r x R y F 
  

  
         (9) 

where F is the expanded design matrix n x k given by 
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f x

F

f x

 
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  
 
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 1( ) ( ),..., ( )k
T

f x f x f x
       (11) 

The Maximum Likelihood Estimation (MLE) method was used to estimate the Gasp model 

parameters (β, θ and ) and it is an objective estimator that is most consistent with the 
observed data. The MLE assumes the residuals have a known probability distribution shape, 
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that is, the Gaussian probability distribution. The correlation parameter θ was found using 

mlegp package in R software. The MLE estimation of β equals its least-squares estimate and 

is given by 

1 1 1( )T TF R F F R y


  
       (12) 

and the MLE of the process variance is also given by 

2 11
T

z y F R y F
n

  
  

   
     

          (13) 

4. Analysis of Borehole Computer Experiment 

The training datasets given in Table 3 showed that the eight input variables involved in 

the borehole computer experiment were of different scales. These variables were 

normalized by subtracting their means and multiplying by the reciprocal of their standard 

deviations before the analysis. This is required to lessen the dimension effect of each 

design variable and avert the Gasp model from being inconsistent in prediction. The 

normalized experimental data based on the borehole computer experiment and the 

estimated results are given in Table 4 and Table 5, respectively.  

Table 4. Normalized Experimental Data for Borehole Computer Experiment 

x1 x2 x3 x4 x5 x6 x7 x8 Y 

-1.680 -1.680 -1.680 -1.680 -1.680 -1.680 -1.680 -1.680 -1.565 

-1.610 -1.190 -0.700 -0.210 0.280 0.770 1.260 -1.190 -1.495 

-1.540 -0.700 0.280 1.260 -1.190 -0.210 0.770 -0.700 -1.424 

-1.470 -0.210 1.260 -0.700 0.770 -1.190 0.280 -0.210 -1.353 

-1.400 0.280 -1.190 0.770 -0.700 1.260 -0.210 0.280 -1.277 

-1.330 0.770 -0.210 -1.190 1.260 0.280 -0.700 0.770 -1.201 

-1.260 1.260 0.770 0.280 -0.210 -0.700 -1.190 1.260 -1.122 

-1.190 -1.120 -1.120 -1.120 -1.120 -1.120 -1.120 -1.610 -1.210 

-1.120 -0.630 -0.140 0.350 0.840 1.330 -1.610 -1.120 -1.131 

-1.050 -0.140 0.840 -1.610 -0.630 0.350 1.330 -0.630 -1.051 

-0.980 0.350 -1.610 -0.140 1.330 -0.630 0.840 -0.140 -0.968 

-0.910 0.840 -0.630 1.330 -0.140 -1.610 0.350 0.350 -0.882 

-0.840 1.330 0.350 -0.630 -1.610 0.840 -0.140 0.840 -0.796 

-0.770 -1.610 1.330 0.840 0.350 -0.140 -0.630 1.330 -0.705 

-0.700 -0.560 -0.560 -0.560 -0.560 -0.560 -0.560 -1.540 -0.818 

-0.630 -0.070 0.420 0.910 1.400 -1.540 -1.050 -1.050 -0.728 

-0.560 0.420 1.400 -1.050 -0.070 0.910 -1.540 -0.560 -0.638 

-0.490 0.910 -1.050 0.420 -1.540 -0.070 1.400 -0.070 -0.544 

-0.420 1.400 -0.070 -1.540 0.420 -1.050 0.910 0.420 -0.450 

-0.350 -1.540 0.910 -0.070 -1.050 1.400 0.420 0.910 -0.350 

-0.280 -1.050 -1.540 1.400 0.910 0.420 -0.070 1.400 -0.249 

-0.210 0.000 0.000 0.000 0.000 0.000 0.000 -1.470 -0.388 

-0.140 0.490 0.980 1.470 -1.470 -0.980 -0.490 -0.980 -0.288 

-0.070 0.980 -1.470 -0.490 0.490 1.470 -0.980 -0.490 -0.187 

0.000 1.470 -0.490 0.980 -0.980 0.490 -1.470 0.000 -0.082 

0.070 -1.470 0.490 -0.980 0.980 -0.490 1.470 0.490 0.025 

0.140 -0.980 1.470 0.490 -0.490 -1.470 0.980 0.980 0.135 

0.210 -0.490 -0.980 -1.470 1.470 0.980 0.490 1.470 0.244 

0.280 0.560 0.560 0.560 0.560 0.560 0.560 -1.400 0.079 

0.350 1.050 1.540 -1.400 -0.910 -0.420 0.070 -0.910 0.188 

0.420 1.540 -0.910 0.070 1.050 -1.400 -0.420 -0.420 0.302 

0.490 -1.400 0.070 1.540 -0.420 1.050 -0.910 0.070 0.421 
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0.560 -0.910 1.050 -0.420 1.540 0.070 -1.400 0.560 0.537 

0.630 -0.420 -1.400 1.050 0.070 -0.910 1.540 1.050 0.659 

0.700 0.070 -0.420 -0.910 -1.400 1.540 1.050 1.540 0.780 

0.770 1.120 1.120 1.120 1.120 1.120 1.120 -1.330 0.583 

0.840 1.610 -1.330 -0.840 -0.350 0.140 0.630 -0.840 0.703 

0.910 -1.330 -0.350 0.630 1.610 -0.840 0.140 -0.350 0.832 

0.980 -0.840 0.630 -1.330 0.140 1.610 -0.350 0.140 0.957 

1.050 -0.350 1.610 0.140 -1.330 0.630 -0.840 0.630 1.089 

1.120 0.140 -0.840 1.610 0.630 -0.350 -1.330 1.120 1.223 

1.190 0.630 0.140 -0.350 -0.840 -1.330 1.610 1.610 1.356 

1.260 1.680 1.680 1.680 1.680 1.680 1.680 -1.260 1.125 

1.330 -1.260 -0.770 -0.280 0.210 0.700 1.190 -0.770 1.260 

1.400 -0.770 0.210 1.190 -1.260 -0.280 0.700 -0.280 1.398 

1.470 -0.280 1.190 -0.770 0.700 -1.260 0.210 0.210 1.535 

1.540 0.210 -1.260 0.700 -0.770 1.190 -0.280 0.700 1.679 

1.610 0.700 -0.280 -1.260 1.190 0.210 -0.770 1.190 1.822 

1.680 1.190 0.700 0.210 -0.280 -0.770 -1.260 1.680 1.972 

Table 5. Results of the Estimated Model for Borehole Computer Experiment 

Model Parameters Estimated Values P-values 

0̂  
0.8150  

1̂  

0.9425 

 
<0.001 

2̂  
-4.6449e-04 0.9692 

3̂  
-7.9773e-06 0.9401 

4̂  
8.3103e-04 0.1442 

5̂  
-1.1769e-05 0.9841 

6̂  
-1.5467e-04 0.9475 

7̂  
1.0115e-05 0.9281 

8̂  
0.0727 0.0540 

 0.1018  

 

The estimated linear main effects i, i = 1, 2,3,4,5,6,7 and 8 (corresponding to rw , r, 

Tu, Hu,Tl, Hl, L and Kw, respectively) of the borehole computer model were presented in 

Table 5 with their respective p-values for the t-test for i = 1,…, 8 and . The linear main 

effects for rw (0.9425) and Kw (0.0727) are relatively large while their respective p-values 

<0.001 and 0.0540 are quite small. This implies that, the radius of borehole (rw ) is highly 

significant and its hydraulic conductivity (Kw) is also significant with p-value = 0.0540. 

The estimated values for the radius (rw ) and the hydraulic conductivity of borehole (Kw) 

have the same signs, indicating that rw and Kw have the same  effects on the flow rate of 

water.  

For the sake of prediction, additional simulations were performed to verify the 

accuracy of the Gasp model since the goodness of fit obtained from the training datasets 

may not be sufficient to assess the accuracy of newly predicted points. The additional 

simulations constitute the test datasets. The assumed range for the test data is given in 

Table 6 and the normalized experimental data is also given in Table 7. 
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Table 6. Input and Output Variables for Borehole Model (Test data) 

Variable          Variable Name Minimum Maximum 

X1 Radius of Borehole (metre) 0.11  0.15 

X2 Radius of Influence (metre) 25051  50e3 

X3 Transmissivity of Upper Aquifer (m2/yr.) 89336 115600 

X4 Potentiometric Head of Upper Aquifer (metre) 1046  1100 

X5 Transmissivity of Lower Aquifer (m2/yr.) 89.56  116 

X6 Potentiometric Head of Lower Aquifer(metre) 761  820 

X7 Length of Borehole (metre) 1401  1680 

X8 Hydraulic Conductivity of Borehole (metre/yr.) 10951  12045 

Y Flow Rate of Water (m3/yr.) - - 

Table 7. Normalized Experimental Data for Borehole Computer Experiment 

x1 x2 x3 x4 x5 x6 x7 x8 y 

-1.680 -1.680 -1.680 -1.680 -1.680 -1.680 -1.680 -1.680 -1.725 

-1.610 -1.190 -0.700 -0.210 0.280 0.770 1.260 -1.190 -1.611 

-1.540 -0.700 0.280 1.260 -1.190 -0.210 0.770 -0.700 -1.496 

-1.470 -0.210 1.260 -0.700 0.770 -1.190 0.280 -0.210 -1.383 

-1.400 0.280 -1.190 0.770 -0.700 1.260 -0.210 0.280 -1.265 

-1.330 0.770 -0.210 -1.190 1.260 0.280 -0.700 0.770 -1.149 

-1.260 1.260 0.770 0.280 -0.210 -0.700 -1.190 1.260 -1.027 

-1.190 -1.120 -1.120 -1.120 -1.120 -1.120 -1.120 -1.610 -1.316 

-1.120 -0.630 -0.140 0.350 0.840 1.330 -1.610 -1.120 -1.195 

-1.050 -0.140 0.840 -1.610 -0.630 0.350 1.330 -0.630 -1.077 

-0.980 0.350 -1.610 -0.140 1.330 -0.630 0.840 -0.140 -0.953 

-0.910 0.840 -0.630 1.330 -0.140 -1.610 0.350 0.350 -0.827 

-0.840 1.330 0.350 -0.630 -1.610 0.840 -0.140 0.840 -0.704 

-0.770 -1.610 1.330 0.840 0.350 -0.140 -0.630 1.330 -0.574 

-0.700 -0.560 -0.560 -0.560 -0.560 -0.560 -0.560 -1.540 -0.889 

-0.630 -0.070 0.420 0.910 1.400 -1.540 -1.050 -1.050 -0.761 

-0.560 0.420 1.400 -1.050 -0.070 0.910 -1.540 -0.560 -0.636 

-0.490 0.910 -1.050 0.420 -1.540 -0.070 1.400 -0.070 -0.504 

-0.420 1.400 -0.070 -1.540 0.420 -1.050 0.910 0.420 -0.376 

-0.350 -1.540 0.910 -0.070 -1.050 1.400 0.420 0.910 -0.240 

-0.280 -1.050 -1.540 1.400 0.910 0.420 -0.070 1.400 -0.103 

-0.210 0.000 0.000 0.000 0.000 0.000 0.000 -1.470 -0.445 

-0.140 0.490 0.980 1.470 -1.470 -0.980 -0.490 -0.980 -0.310 

-0.070 0.980 -1.470 -0.490 0.490 1.470 -0.980 -0.490 -0.177 

0.000 1.470 -0.490 0.980 -0.980 0.490 -1.470 0.000 -0.038 

0.070 -1.470 0.490 -0.980 0.980 -0.490 1.470 0.490 0.098 

0.140 -0.980 1.470 0.490 -0.490 -1.470 0.980 0.980 0.242 

0.210 -0.490 -0.980 -1.470 1.470 0.980 0.490 1.470 0.381 

0.280 0.560 0.560 0.560 0.560 0.560 0.560 -1.400 0.016 

0.350 1.050 1.540 -1.400 -0.910 -0.420 0.070 -0.910 0.154 

0.420 1.540 -0.910 0.070 1.050 -1.400 -0.420 -0.420 0.299 

0.490 -1.400 0.070 1.540 -0.420 1.050 -0.910 0.070 0.447 

0.560 -0.910 1.050 -0.420 1.540 0.070 -1.400 0.560 0.590 

0.630 -0.420 -1.400 1.050 0.070 -0.910 1.540 1.050 0.741 

0.700 0.070 -0.420 -0.910 -1.400 1.540 1.050 1.540 0.888 

0.770 1.120 1.120 1.120 1.120 1.120 1.120 -1.330 0.495 

0.840 1.610 -1.330 -0.840 -0.350 0.140 0.630 -0.840 0.640 

0.910 -1.330 -0.350 0.630 1.610 -0.840 0.140 -0.350 0.794 

0.980 -0.840 0.630 -1.330 0.140 1.610 -0.350 0.140 0.943 

1.050 -0.350 1.610 0.140 -1.330 0.630 -0.840 0.630 1.100 

1.120 0.140 -0.840 1.610 0.630 -0.350 -1.330 1.120 1.259 
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1.190 0.630 0.140 -0.350 -0.840 -1.330 1.610 1.610 1.414 

1.260 1.680 1.680 1.680 1.680 1.680 1.680 -1.260 0.991 

1.330 -1.260 -0.770 -0.280 0.210 0.700 1.190 -0.770 1.145 

1.400 -0.770 0.210 1.190 -1.260 -0.280 0.700 -0.280 1.306 

1.470 -0.280 1.190 -0.770 0.700 -1.260 0.210 0.210 1.463 

1.540 0.210 -1.260 0.700 -0.770 1.190 -0.280 0.700 1.628 

1.610 0.700 -0.280 -1.260 1.190 0.210 -0.770 1.190 1.788 

1.680 1.190 0.700 0.210 -0.280 -0.770 -1.260 1.680 1.958 

 

Based on the data in Table 7, the predicted flow rate of water, y is calculated using 

Equation 9 and the Gasp model interpolates the test data, that is, the predicted values at 

untried inputs gave the same results as the simulated values. This quality makes Gasp 

model approximately an exact interpolator. The graph of the predicted versus simulated 

output of the borehole model is given in Figure 2 as shown below: 

 

 

Figure 2. Graph of the Predicted y (Flow Rate of Water- Dotted Points) 
against Simulated Output (Solid Blue Line) over 49 Experimental Runs 

5. Discussion of Results 

The constructed OA(49, 8) LHD was used to develop a borehole computer experiment 

by scaling OA(49, 8) LHD and then simulate the experimental output using Equations 1 

and 2, respectively. The scaled input variables and the output simulated from a computer 

model form the experimental results for the training datasets. The training datasets were 

used to fit a Gasp model. The fitted Gasp model showed that the radius (rw) and Hydraulic 

Conductivity of Borehole (Kw) are important variables in modelling borehole experiment 

as given in Table 5.  

The test data was also simulated using a 49-run experimental design in order to assess 

the accuracy of the Gasp model. These test data were used on the fitted Gasp model to 

predict the flow rate of water of a borehole. The predicted results interpolated the test data 

as shown in Figure 2. This, therefore, shows that the fitted Gasp model is very efficient.  

 

6. Conclusion 

A method for the statistical modelling and analysis of borehole computer experiment 

has been presented in this work. It is an exposition of the current trend in the design and 

analysis of experiments where a computer model was used to mimic a borehole 
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experiment and results were obtained within the shortest possible time without having to 

wait for physical experimental results. This is simply called a computer experimentation 

approach. 

The fitted Gasp model emulated the borehole computer model perfectly well and it also 

interpolated the test data. This work showed that the radius (rw) and hydraulic 

conductivity of borehole (Kw) are important variables in modeling and predicting the flow 

rate of water of a borehole using a 49-run experimental design and Gasp model as an 

emulator of a borehole computer model. The estimated values for the radius (rw ) and the 

hydraulic conductivity of borehole (Kw) have the same signs, indicating that rw and Kw 

have the same  effects on the flow rate of water of a borehole. This study also showed that 

the p-values for the estimated parameters for r(m), Tl (m2/yr), Tu (m2/yr), Hl (m), Hu (m) and 

L (m) are very large as shown in Table 5. These six factors do not have significant linear 

main effects on the flow rate of water through the borehole. 

The computer experimentation approach has opened up a new area in Design and 

Analysis of Experiments which is referred to as Design and Analysis of Computer 

Experiments. This area of study has permitted both greater complexity and more 

extensive use of mathematical models as computer models in scientific and engineering 

experimentations as well as in industrial processes. A Gasp model with correlation 

functions different from the Gaussian correlation function employed in this work could 

also be considered in order to compare the performance of Gasp model under different 

correlation functions and predict the output of the borehole computer experiment at 

untried inputs for future research. 
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