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Abstract

Computer experiments are popular techniques adopted in modern businesses,
engineering, scientific and technological applications in the recent years. Its flexibility
and wide applicability has made it more accepted than the classical physical experiments.
The Design and Analysis of Computer Experiments (DACE) is fast growing in statistical
experimental designs. In this work, an Orthogonal Array-based Latin Hypercube Design,
that is, OA (N, k) LHD was applied for the development of borehole computer experiment.
A computer experiment was conducted based on the OA (49, 8) LHD using a borehole
computer model. The borehole computer model was used to simulate the real life
borehole experiment. The Gaussian stochastic process (Gasp) model was employed to
mimic the computer model in order to save time that may be required by a complex
computer code and for the purpose of predictions of the flow rate of water at untried
inputs. The Maximum Likelihood Estimation technique was used to estimate the
parameters of the Gasp model. The results obtained using the Gasp model indicated that
the radius (rw ) and the hydraulic conductivity (Kw) of the borehole were the most
important factors that influenced the flow rate of water from an upper aquifer to a lower
one. The fitted Gasp model was found to be very efficient since it yielded exact results on
the test data cases. The model development and analysis were performed in MATLAB
package.

Keywords: Computer experiment, Gasp model, Orthogonal array-based Latin
hypercube design, Borehole computer model, Space-filling design

1. Introduction

An experimental design is the selection of inputs by which to compute the output of
computer experiments in order to achieve specific aims. It has a matrix of input variable
(X), where each column of X depicts a variable and each row is the combination of input
variable values for a single experimental run. Conventional experimental designs
originate from the theory of Design of Experiments (DOE) when physical experiments are
performed [8] while space-filling designs are associated with computer experiments.
Computer experiments are distinct from physical experiments because they have no
random error and they deal with functions that are considered to have more complex
behaviour. Properly designed experiments are essential for effective computer utilization.
Deterministic computer experiments are more commonly employed in engineering,
science and technology because the conventional physical experiments could require
more time, money and some other resources to conduct. In some instances, the physical
experiments could be difficult to perform. A computer experiment is an experiment
performed using data obtained from a computer model instead of the physical process.
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The rapid growth in computer power has now made it possible to conduct deterministic
experiments on simulators. The first computer experiment was reported to have been
conducted by Enrico Fermi and colleagues [14] in Los Alamos in 1953 and since then,
scientists in different disciplines have turned to computer experiments as a useful tool to
understand their respective processes.

In this present work, a borehole computer experiment that utilizes a model which is a
simple example of flow rate of water through a borehole from an upper aquifer to a lower
aquifer that is separated by an impermeable rock layer was developed. The orthogonal
array-based Latin hypercube design (OALHD) originally constructed by [12] is used to
develop a borehole computer experiment and the Gasp model is employed to emulate a
borehole computer model.

2. Material and Methods

The model development and analysis in this work were performed using MATLAB
package. Orthogonal array Latin hypercube design (OALHD) was used to develop a
borehole computer experiment through a model of flow rate of water and the Gasp model
was subsequently used to emulate a borehole computer model. The results of OA (49, 8)
LHD and its plot for bivariate projections among the eight input variables are provided in
Table 1 and Figure 1 as constructed by the author in [13]. The approach employed by the
author in [13] is different from the one employed in the construction of OALHD for three
input variables computer experiment [10]. The borehole model has been investigated by
several researchers including [16], [11], [7], [5] and [1] among others.

Table 1. OA (49, 8) LHD Constructed for Borehole Computer Experiment

OA (49,8) LHD
Design Points
0.0102 | 0.0102 | 0.0102 | 0.0102 | 0.0102 | 0.0102 | 0.0102 | 0.0102
0.0306 | 0.1531 | 0.1531 | 0.2959 | 0.4388 | 0.7245 | 0.1531 | 0.8673
0.0510 | 0.2959 | 0.2959 | 0.5816 | 0.8673 | 0.4388 | 0.2959 | 0.7245
0.0714 | 0.4388 | 0.4388 | 0.8673 | 0.2959 | 0.1531 | 0.4388 | 0.5816
0.0918 | 0.5816 | 0.5816 | 0.1531 | 0.7245 | 0.8673 | 0.5816 | 0.4388
0.1122 | 0.7245 | 0.7245 | 0.4388 | 0.1531 | 0.5816 | 0.7245 | 0.2959
0.1327 | 0.8673 | 0.8673 | 0.7245 | 0.5816 | 0.2959 | 0.8673 | 0.1531
0.1531 | 0.0306 | 0.1735 | 0.1735 | 0.3163 | 0.4592 | 0.7449 | 0.1735
0.1735 | 0.1735 | 0.3163 | 0.4592 | 0.7449 | 0.1735 | 0.8878 | 0.0306
0.1939 | 0.3163 | 0.4592 | 0.7449 | 0.1735 | 0.8878 | 0.0306 | 0.8878
0.2143 | 0.4592 | 0.6020 | 0.0306 | 0.6020 | 0.6020 | 0.1735 | 0.7449
0.2347 | 0.6020 | 0.7449 | 0.3163 | 0.0306 | 0.3163 | 0.3163 | 0.6020
0.2551 | 0.7449 | 0.8878 | 0.6020 | 0.4592 | 0.0306 | 0.4592 | 0.4592
0.2755 | 0.8878 | 0.0306 | 0.8878 | 0.8878 | 0.7449 | 0.6020 | 0.3163
0.2959 | 0.0510 | 0.3367 | 0.3367 | 0.6224 | 0.9082 | 0.4796 | 0.3367
0.3163 | 0.1939 | 0.4796 | 0.6224 | 0.0510 | 0.6224 | 0.6224 | 0.1939
0.3367 | 0.3367 | 0.6224 | 0.9082 | 0.4796 | 0.3367 | 0.7653 | 0.0510
0.3571 | 0.4796 | 0.7653 | 0.1939 | 0.9082 | 0.0510 | 0.9082 | 0.9082
0.3776 | 0.6224 | 0.9082 | 0.4796 | 0.3367 | 0.7653 | 0.0510 | 0.7653
0.3980 | 0.7653 | 0.0510 | 0.7653 | 0.7653 | 0.4796 | 0.1939 | 0.6224
0.4184 | 0.9082 | 0.1939 | 0.0510 | 0.1939 | 0.1939 | 0.3367 | 0.4796
0.4388 | 0.0714 | 0.5000 | 0.5000 | 0.9286 | 0.3571 | 0.2143 | 0.5000
0.4592 | 0.2143 | 0.6429 | 0.7857 | 0.3571 | 0.0714 | 0.3571 | 0.3571
0.4796 | 0.3571 | 0.7857 | 0.0714 | 0.7857 | 0.7857 | 0.5000 | 0.2143
0.5000 | 0.5000 | 0.9286 | 0.3571 | 0.2143 | 0.5000 | 0.6429 | 0.0714
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0.5204 | 0.6429 | 0.0714 | 0.6429 | 0.6429 | 0.2143 | 0.7857 | 0.9286
0.5408 | 0.7857 | 0.2143 | 0.9286 | 0.0714 | 0.9286 | 0.9286 | 0.7857
0.5612 | 0.9286 | 0.3571 | 0.2143 | 0.5000 | 0.6429 | 0.0714 | 0.6429
0.5816 | 0.0918 | 0.6633 | 0.6633 | 0.2347 | 0.8061 | 0.9490 | 0.6633
0.6020 | 0.2347 | 0.8061 | 0.9490 | 0.6633 | 0.5204 | 0.0918 | 0.5204
0.6224 | 0.3776 | 0.9490 | 0.2347 | 0.0918 | 0.2347 | 0.2347 | 0.3776
0.6429 | 0.5204 | 0.0918 | 0.5204 | 0.5204 | 0.9490 | 0.3776 | 0.2347
0.6633 | 0.6633 | 0.2347 | 0.8061 | 0.9490 | 0.6633 | 0.5204 | 0.0918
0.6837 | 0.8061 | 0.3776 | 0.0918 | 0.3776 | 0.3776 | 0.6633 | 0.9490
0.7041 | 0.9490 | 0.5204 | 0.3776 | 0.8061 | 0.0918 | 0.8061 | 0.8061
0.7245 | 0.1122 | 0.8265 | 0.8265 | 0.5408 | 0.2551 | 0.6837 | 0.8265
0.7449 | 0.2551 | 0.9694 | 0.1122 | 0.9694 | 0.9694 | 0.8265 | 0.6837
0.7653 | 0.3980 | 0.1122 | 0.3980 | 0.3980 | 0.6837 | 0.9694 | 0.5408
0.7857 | 0.5408 | 0.2551 | 0.6837 | 0.8265 | 0.3980 | 0.1122 | 0.3980
0.8061 | 0.6837 | 0.3980 | 0.9694 | 0.2551 | 0.1122 | 0.2551 | 0.2551
0.8265 | 0.8265 | 0.5408 | 0.2551 | 0.6837 | 0.8265 | 0.3980 | 0.1122
0.8469 | 0.9694 | 0.6837 | 0.5408 | 0.1122 | 0.5408 | 0.5408 | 0.9694
0.8673 | 0.1327 | 0.9898 | 0.9898 | 0.8469 | 0.7041 | 0.4184 | 0.9898
0.8878 | 0.2755 | 0.1327 | 0.2755 | 0.2755 | 0.4184 | 0.5612 | 0.8469
0.9082 | 0.4184 | 0.2755 | 0.5612 | 0.7041 | 0.1327 | 0.7041 | 0.7041
0.9286 | 0.5612 | 0.4184 | 0.8469 | 0.1327 | 0.8469 | 0.8469 | 0.5612
0.9490 | 0.7041 | 0.5612 | 0.1327 | 0.5612 | 0.5612 | 0.9898 | 0.4184
0.9694 | 0.8469 | 0.7041 | 0.4184 | 0.9898 | 0.2755 | 0.1327 | 0.2755
0.9898 | 0.9898 | 0.8469 | 0.7041 | 0.4184 | 0.9898 | 0.2755 | 0.1327
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Figure 1. Projection Properties of OA (49, 8) LHD

The OA (49, 8) LHD given in Table 1 contained 49 runs and 8 input variables and was
scaled according to the assumed range for design variables using Equation 1:

Ydata ~Ndata(min)

Yoarep = e
¥dataimax)— ¥Ydata(min) (1)

Ydata = }?GALH.D{}?dﬂtEI:mEx} - }?dﬂtm:min}} + Ydataimin)
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Table 2. Input Variables for Borehole Model

Variable Variable name Minimum Maximum
X1 (rw) Radius of Borehole (metre) 0.05 0.1
Xa(r) Radius of Influence (metre) 100 25050
X3 (Tu) Transmissivity of Upper Aquifer (m?/yr) 63070 89335
Xa(Hy) Potentiometric Head of Upper Aquifer (metre) 990 1045
Xs(Ty) Transmissivity of Lower Aquifer (m?/yr) 63.1 89.55
Xe(H1) Potentiometric Head of Lower Aquifer(metre) 700 760
X7(L) Length of Borehole (metre) 1120 1400
Xs(Kw) Hydraulic Conductivity of Borehole (metre/fyr) 9855 10950

Y Flow Rate of Water (m®/yr)

24

The scaled OALHD was used to develop a borehole computer experiment using the
simulator in Equation 2:

27ﬂ-u (Hu — HI )
y =
n(r/ rw){l-i- LTUZ-F T“}
In(r/r)rk, T,
where
rw(m) radius of borehole
r(m) = radius of influence
Ti(m?/yr) = transmissivity of lower aquifer
Tu(m?lyr) = transmissivity of upper aquifer
Hi (m) = potentiometric head of lower aquifer
Hu(m) = potentiometric head of upper aquifer
L (m) = length of borehole and
Ku(mlyr) = hydraulic conductivity of borehole

)

The scale input variables and the output from a borehole computer model constitute the
experimental results for the training data sets as provided in Table 3.

Table 3. Experimental Data for Borehole Computer Experiment (Training
Data Sets)

Iw

R

Tu

H.

T

Hi

L

Kw

Y

0.055

1397.057

63922.849

991.247

63.556

700.833

1123.256

9957.012

24.111

0.056

2113.633

64202.654

991.357

63.561

700.834

1123.256

10086.946

25.194

0.056

2830.210

64482.458

991.468

63.557

700.834

1123.256

10216.880

26.309

0.057

3546.786

64762.263

991.320

63.562

700.833

1123.256

10346.814

27.433

0.058

4263.362

64062.752

991.431

63.558

700.834

1123.256

10476.748

28.613

0.059

4979.939

64342.556

991.284

63.563

700.834

1123.256

10606.682

29.801

0.060

5696.515

64622.361

991.394

63.560

700.833

1123.256

10736.616

31.047

0.061

2216.001

64082.738

991.289

63.557

700.833

1123.256

9975.574

29.671

0.061

2932.578

64362.542

991.399

63.562

700.834

1123.256

10105.508

30.911

0.062

3649.154

64642.347

991.252

63.559

700.834

1123.256

10235.442

32.156

0.063

4365.731

63942.835

991.362

63.563

700.834

1123.256

10365.376

33.464

0.064

5082.307

64222.640

991.473

63.560

700.833

1123.256

10495.310

34.806

0.065

5798.883

64502.445

991.326

63.556

700.834

1123.256

10625.244

36.152

0.066

1499.425

64782.249

991.436

63.561

700.834

1123.256

10755.178

37.583

0.067

3034.946

64242.626

991.331

63.559

700.834

1123.256

9994.136

35.816

0.067

3751.522

64522.431

991.441

63.563

700.833

1123.256

10124.070

37.219

0.068

4468.099

64802.235

991.294

63.560

700.834

1123.256

10254.004

38.624
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0.069 | 5184.675 | 64102.724 | 991.405 | 63.556 | 700.834 | 1123.256 | 10383.938 | 40.099
0.070 | 5901.251 | 64382.528 | 991.257 | 63.561 | 700.833 | 1123.256 | 10513.872 | 41.575
0.071 | 1601.793 | 64662.333 | 991.368 | 63.558 | 700.834 | 1123.256 | 10643.806 | 43.146
0.072 | 2318.369 | 63962.821 | 991.478 | 63.562 | 700.834 | 1123.256 | 10773.740 | 44.730
0.073 | 3853.890 | 64402.514 | 991.373 | 63.560 | 700.834 | 1123.256 | 10012.698 | 42.546
0.073 | 4570.467 | 64682.319 | 991.483 | 63.557 | 700.833 | 1123.256 | 10142.632 | 44.119
0.074 | 5287.043 | 63982.807 | 991.336 | 63.561 | 700.834 | 1123.256 | 10272.566 | 45.691
0.075 | 6003.619 | 64262.612 | 991.447 | 63.558 | 700.834 | 1123.256 | 10402.500 | 47.341
0.076 | 1704.161 | 64542.417 | 991.299 | 63.562 | 700.834 | 1123.256 | 10532.434 | 49.016
0.077 | 2420.737 | 64822.221 | 991.410 | 63.559 | 700.833 | 1123.256 | 10662.368 | 50.740
0.078 | 3137.314 | 64122.710 | 991.263 | 63.564 | 700.834 | 1123.256 | 10792.302 | 52.459
0.078 | 4672.835 | 64562.403 | 991.415 | 63.561 | 700.834 | 1123.256 | 10031.260 | 49.861
0.079 | 5389.411 | 64842.207 | 991.268 | 63.558 | 700.834 | 1123.256 | 10161.194 | 51.567
0.080 | 6105.988 | 64142.696 | 991.378 | 63.563 | 700.833 | 1123.256 | 10291.128 | 53.358
0.081 | 1806.529 | 64422.500 | 991.489 | 63.559 | 700.834 | 1123.256 | 10421.062 | 55.225
0.082 | 2523.106 | 64702.305 | 991.341 | 63.564 | 700.834 | 1123.256 | 10550.996 | 57.044
0.083 | 3239.682 | 64002.793 | 991.452 | 63.560 | 700.833 | 1123.256 | 10680.930 | 58.955
0.084 | 3956.258 | 64282.598 | 991.305 | 63.557 | 700.834 | 1123.256 | 10810.864 | 60.855
0.084 | 5491.779 | 64722.291 | 991.457 | 63.563 | 700.834 | 1123.256 | 10049.822 | 57.763
0.085 | 6208.356 | 64022.779 | 991.310 | 63.559 | 700.834 | 1123.256 | 10179.756 | 59.648
0.086 | 1908.897 | 64302.584 | 991.420 | 63.564 | 700.833 | 1123.256 | 10309.690 | 61.668
0.087 | 2625.474 | 64582.389 | 991.273 | 63.560 | 700.834 | 1123.256 | 10439.624 | 63.628
0.088 | 3342.050 | 64862.193 | 991.383 | 63.557 | 700.834 | 1123.256 | 10569.558 | 65.687
0.089 | 4058.626 | 64162.682 | 991.494 | 63.562 | 700.834 | 1123.256 | 10699.492 | 67.791
0.089 | 4775.203 | 64442.486 | 991.347 | 63.558 | 700.833 | 1123.256 | 10829.426 | 69.879
0.090 | 6310.724 | 64882.179 | 991.499 | 63.564 | 700.834 | 1123.256 | 10068.384 | 66.253
0.091 | 2011.265 | 64182.668 | 991.352 | 63.561 | 700.834 | 1123.256 | 10198.318 | 68.372
0.092 | 2727.842 | 64462.472 | 991.462 | 63.557 | 700.834 | 1123.256 | 10328.252 | 70.538
0.093 | 3444.418 | 64742.277 | 991.315 | 63.562 | 700.833 | 1123.256 | 10458.186 | 72.687
0.094 | 4160.994 | 64042.765 | 991.426 | 63.558 | 700.834 | 1123.256 | 10588.120 | 74.945
0.095 | 4877.571 | 64322.570 | 991.278 | 63.563 | 700.834 | 1123.256 | 10718.054 | 77.181
0.095 | 5594.147 | 64602.375 | 991.389 | 63.559 | 700.833 | 1123.256 | 10847.988 | 79.530

3. Modelling Borehole Computer Experiment

A borehole computer model is a model of a physical process to be emulated using a
metamodel. A metamodel is referred to as a model used to emulate a borehole computer
model. A wide variety of techniques have been discussed in the literature for creating the
metamodels [14]. These techniques include response surface modelling [9], Radial Basis
Functions ([2]; [3]), Multivariate Adaptive Regression Splines [4] and Support Vector
Machine [15]. In this study, a Gaussian stochastic process (Gasp) model was investigated
as an alternative technique for approximating a borehole computer model. The Gasp

model allows a wide range of correlation functions R(X.X') to be used. A Gaussian
correlation function was chosen in this study. The output of the borehole computer
experimental data was modelled using a Gaussian stochastic process model as described
below:

Y(x) = Ty (1) + Z() -
B;f; () = Byfy (1) + Bafy () + - Prfi(x)
= [fy (=) + £, () + - fi.(x) 1B
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= f(x)TB (4)
where fi(x), -, (%) are k known regression functions and ‘gl, Bi are their

; Zlx). . L
corresponding (unknown) parameters and (x) is a stochastic process which is assumed
to have mean zero and variance-covariance structure

Cov {E{I},Z(xlj) = o7 R(X, X") (5)

92 is the process variance and R(X.X') is the Gaussian correlation function that can be
tuned to the data . The Gaussian correlation function is given as

d
R(X, X ) =] [exp(=0il xi-%'F)
= (6)
> . . .
where 0;=0 . The parameter ¢ is important in the correlation structure of Z. When 0
is large there is a small correlation between observations and therefore prediction is more
difficult whereas there is a large correlation between observations and prediction is much

simpler when 0 is small. The selection of the correlation function is very useful in the

prediction process. The author in [6] discussed the effects of ¢ on the prediction of output
of a computer experiment. The correlation matrix, R is given as an (n x n) matrix given in
Equation 7:

R(x1,%) - R(x,x,)
R = : :

R(xﬂ Jxl) - R(xﬂ :xﬂ) (7)

The matrix R is symmetric since R (Xi, X;) = R (x;, i) and the diagonal consists of all
ones because R (xi ,xi)= 1. The correlation between an unknown point x and the n known
sample points is given by the vector:

I’X :[R(Xl,x)y--'iR(Xn’X)]T (8)

The best Linear Unbiased Predictor (BLUP) is obtained by minimizing the mean
square error of the predictions. The BLUP at an untried point x is therefore given as:

V0O = £ B+1T (OR™(y=F 5) o)

where F is the expanded design matrix n x k given by

" (10)

f(x)=[ fu(x),..., fk(X)]T (11)

The Maximum Likelihood Estimation (MLE) method was used to estimate the Gasp model
parameters (B, 6 and o) and it is an objective estimator that is most consistent with the
observed data. The MLE assumes the residuals have a known probability distribution shape,
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that is, the Gaussian probability distribution. The correlation parameter 8 was found using
mlegp package in R software. The MLE estimation of 3 equals its least-squares estimate and
is given by

B=(F'RF)IFR Yy 12)

and the MLE of the process variance is also given by
AZ 1 A T 4 A
ol =~|y=FB| R¥|y-Fp

4. Analysis of Borehole Computer Experiment

The training datasets given in Table 3 showed that the eight input variables involved in
the borehole computer experiment were of different scales. These variables were
normalized by subtracting their means and multiplying by the reciprocal of their standard
deviations before the analysis. This is required to lessen the dimension effect of each
design variable and avert the Gasp model from being inconsistent in prediction. The
normalized experimental data based on the borehole computer experiment and the
estimated results are given in Table 4 and Table 5, respectively.

(13)

Table 4. Normalized Experimental Data for Borehole Computer Experiment

X1 X2 X3 Xg X5 X6 X7 Xsg Y
-1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.565
-1.610 | -1.190 | -0.700 | -0.210 | 0.280 [ 0.770 | 1.260 | -1.190 | -1.495
-1.540 | -0.700 | 0.280 | 1.260 | -1.190 | -0.210 | 0.770 | -0.700 | -1.424
-1.470 | -0.210 | 1.260 | -0.700 | 0.770 | -1.190 [ 0.280 | -0.210 | -1.353
-1.400 | 0.280 | -1.190 | 0.770 | -0.700 | 1.260 | -0.210 | 0.280 | -1.277
-1.330 | 0.770 | -0.210 | -1.190 | 1.260 [ 0.280 | -0.700 | 0.770 | -1.201
-1.260 | 1.260 | 0.770 | 0.280 | -0.210 | -0.700 | -1.190 | 1.260 | -1.122
-1.190 | -1.120 | -1.120 | -1.120 | -1.120 | -1.120 | -1.120 | -1.610 | -1.210
-1.120 | -0.630 | -0.140 | 0.350 | 0.840 [ 1.330 | -1.610 | -1.120 | -1.131
-1.050 | -0.140 | 0.840 | -1.610 | -0.630 | 0.350 [ 1.330 | -0.630 | -1.051
-0.980 | 0.350 | -1.610 | -0.140 | 1.330 | -0.630 [ 0.840 | -0.140 | -0.968
-0.910 | 0.840 | -0.630 | 1.330 | -0.140 | -1.610 | 0.350 | 0.350 | -0.882
-0.840 | 1.330 | 0.350 | -0.630 | -1.610 | 0.840 [ -0.140 | 0.840 | -0.796
-0.770 | -1.610 | 1.330 | 0.840 | 0.350 | -0.140 | -0.630 | 1.330 | -0.705
-0.700 | -0.560 | -0.560 | -0.560 | -0.560 | -0.560 | -0.560 | -1.540 | -0.818
-0.630 | -0.070 | 0.420 | 0.910 | 1.400 | -1.540 | -1.050 | -1.050 | -0.728
-0.560 | 0.420 | 1.400 | -1.050 | -0.070 | 0.910 | -1.540 | -0.560 | -0.638
-0.490 | 0.910 | -1.050 | 0.420 | -1.540 | -0.070 | 1.400 | -0.070 | -0.544
-0.420 | 1.400 | -0.070 | -1.540 | 0.420 | -1.050 | 0.910 | 0.420 | -0.450
-0.350 | -1.540 | 0.910 | -0.070 | -1.050 | 1.400 [ 0.420 | 0.910 | -0.350
-0.280 | -1.050 | -1.540 | 1.400 | 0.910 [ 0.420 | -0.070 | 1.400 | -0.249
-0.210 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 | -1.470 | -0.388
-0.140 | 0.490 | 0.980 | 1.470 | -1.470 | -0.980 | -0.490 | -0.980 | -0.288
-0.070 | 0.980 | -1.470 | -0.490 | 0.490 | 1.470 [ -0.980 | -0.490 | -0.187

0.000 | 1.470 [ -0.490 | 0.980 | -0.980 | 0.490 | -1.470 [ 0.000 | -0.082
0.070 | -1.470 | 0.490 | -0.980 | 0.980 | -0.490 | 1.470 | 0.490 [ 0.025
0.140 [ -0.980 | 1.470 | 0.490 | -0.490 | -1.470 | 0.980 | 0.980 [ 0.135
0.210 | -0.490 | -0.980 | -1.470 | 1.470 | 0.980 | 0.490 | 1.470 | 0.244
0.280 [ 0.560 | 0.560 | 0.560 | 0.560 | 0.560 | 0.560 | -1.400 [ 0.079
0.350 [ 1.050 | 1.540 | -1.400 | -0.910 | -0.420 | 0.070 | -0.910 | 0.188
0.420 | 1.540 | -0.910 | 0.070 | 1.050 | -1.400 | -0.420 | -0.420 | 0.302
0.490 | -1.400 | 0.070 | 1.540 | -0.420 | 1.050 | -0.910 | 0.070 [ 0.421

Copyright © 2017 SERSC Australia 27



International Journal of Advanced Science and Technology
Vol.107 (2017)

0.560 | -0.910 | 1.050 | -0.420 | 1.540 [ 0.070 | -1.400 [ 0.560 | 0.537
0.630 | -0.420 | -1.400 | 1.050 | 0.070 | -0.910 | 1.540 [ 1.050 | 0.659
0.700 | 0.070 | -0.420 | -0.910 | -1.400 | 1.540 | 1.050 [ 1.540 | 0.780
0.770 | 1120 | 1.120 | 1.120 | 1.120 | 1.120 | 1.120 [ -1.330 | 0.583
0.840 | 1.610 | -1.330 | -0.840 | -0.350 | 0.140 | 0.630 [ -0.840 | 0.703
0.910 | -1.330 | -0.350 | 0.630 | 1.610 | -0.840 | 0.140 [ -0.350 | 0.832
0.980 | -0.840 | 0.630 | -1.330 | 0.140 | 1.610 ) -0.350 [ 0.140 | 0.957
1.050 | -0.350 | 1.610 | 0.140 | -1.330 [ 0.630 | -0.840 { 0.630 | 1.089
1.120 { 0.140 | -0.840 | 1.610 | 0.630 | -0.350 | -1.330 | 1.120 [ 1.223
1.190 { 0.630 | 0.140 | -0.350 | -0.840 | -1.330 | 1.610 | 1.610 [ 1.356
1.260 [ 1.680 | 1.680 | 1.680 | 1.680 | 1.680 | 1.680 | -1.260 [ 1.125
1.330 | -1.260 | -0.770 | -0.280 | 0.210 | 0.700 | 1.190 | -0.770 [ 1.260
1.400 { -0.770 | 0.210 { 1.190 | -1.260 | -0.280 | 0.700 | -0.280 [ 1.398
1.470 { -0.280 | 1.190 | -0.770 | 0.700 | -1.260 | 0.210 | 0.210 [ 1.535
1.540 { 0.210 | -1.260 | 0.700 | -0.770 | 1.190 | -0.280 | 0.700 [ 1.679
1.610 { 0.700 | -0.280 | -1.260 | 1.190 | 0.210 | -0.770 | 1.190 [ 1.822
1.680 { 1.190 | 0.700 | 0.210 | -0.280 | -0.770 | -1.260 | 1.680 [ 1.972

Table 5. Results of the Estimated Model for Borehole Computer Experiment

Model Parameters Estimated Values P-values
By 0.8150
B, 0.9425 <0.001
B, -4.6449e-04 0.9692
B -7.9773¢-06 0.9401
B, 8.3103e-04 0.1442
2 -1.1769¢-05 0.9841
B -1.5467e-04 0.9475
B 1.0115e-05 0.9281
A, 0.0727 0.0540
g2 0.1018

The estimated linear main effects }5’“ i=1,234,5,6,7 and 8 (corresponding to ry , I,

Tu, Hu, Ty, Hi, L and K, respectively) of the borehole computer model were presented in

Table 5 with their respective p-values for the t-test fori = 1,..., 8 and %= . The linear main
effects for ry (0.9425) and Ky (0.0727) are relatively large while their respective p-values
<0.001 and 0.0540 are quite small. This implies that, the radius of borehole (ry ) is highly
significant and its hydraulic conductivity (Ky) is also significant with p-value = 0.0540.
The estimated values for the radius (rw ) and the hydraulic conductivity of borehole (Ku)
have the same signs, indicating that r, and K. have the same effects on the flow rate of
water.

For the sake of prediction, additional simulations were performed to verify the
accuracy of the Gasp model since the goodness of fit obtained from the training datasets
may not be sufficient to assess the accuracy of newly predicted points. The additional
simulations constitute the test datasets. The assumed range for the test data is given in
Table 6 and the normalized experimental data is also given in Table 7.
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Table 6. Input and Output Variables for Borehole Model (Test data)

Variable Variable Name Minimum Maximum
X1 Radius of Borehole (metre) 0.11 0.15
Xa Radius of Influence (metre) 25051 50e3
X3 Transmissivity of Upper Aquifer (m2/yr.) 89336 115600
Xa Potentiometric Head of Upper Aquifer (metre) 1046 1100
Xs Transmissivity of Lower Aquifer (m2/yr.) 89.56 116
X Potentiometric Head of Lower Aquifer(metre) 761 820
X7 Length of Borehole (metre) 1401 1680
Xs Hydraulic Conductivity of Borehole (metre/yr.) 10951 12045
Y Flow Rate of Water (m®/yr.) - -

Table 7. Normalized Experimental Data for Borehole Computer Experiment

X1 X2 X3 X4 X5 X6 X7 X8 y
-1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.680 | -1.725
-1.610 | -1.190 | -0.700 | -0.210 | 0.280 | 0.770 | 1.260 | -1.190 | -1.611
-1.540 | -0.700 | 0.280 | 1.260 | -1.190 | -0.210 | 0.770 | -0.700 | -1.496
-1.470 | -0.210 | 1.260 | -0.700 | 0.770 | -1.190 | 0.280 | -0.210 | -1.383
-1.400 | 0.280 | -1.190 | 0.770 | -0.700 | 1.260 | -0.210 | 0.280 | -1.265
-1.330 | 0.770 | -0.210 | -1.190 | 1.260 | 0.280 | -0.700 | 0.770 | -1.149
-1.260 | 1.260 | 0.770 | 0.280 | -0.210 | -0.700 | -1.190 | 1.260 | -1.027
-1.190 | -1.120 | -1.120 | -1.120 | -1.120 | -1.120 | -1.120 | -1.610 | -1.316
-1.120 | -0.630 | -0.140 | 0.350 | 0.840 | 1.330 | -1.610 | -1.120 | -1.195
-1.050 | -0.140 | 0.840 | -1.610 | -0.630 | 0.350 | 1.330 | -0.630 | -1.077
-0.980 | 0.350 | -1.610 | -0.140 | 1.330 | -0.630 | 0.840 | -0.140 | -0.953
-0.910 | 0.840 | -0.630 | 1.330 | -0.140 | -1.610 | 0.350 | 0.350 | -0.827
-0.840 | 1.330 | 0.350 | -0.630 | -1.610 | 0.840 | -0.140 | 0.840 | -0.704
-0.770 | -1.610 | 1.330 | 0.840 | 0.350 | -0.140 | -0.630 | 1.330 | -0.574
-0.700 | -0.560 | -0.560 | -0.560 | -0.560 | -0.560 | -0.560 | -1.540 | -0.889
-0.630 | -0.070 | 0.420 | 0.910 | 1.400 | -1.540 | -1.050 | -1.050 | -0.761
-0.560 | 0.420 | 1.400 | -1.050 | -0.070 | 0.910 | -1.540 | -0.560 | -0.636
-0.490 | 0.910 | -1.050 | 0.420 | -1.540 | -0.070 | 1.400 | -0.070 | -0.504
-0.420 | 1.400 | -0.070 | -1.540 | 0.420 | -1.050 | 0.910 | 0.420 | -0.376
-0.350 | -1.540 | 0.910 | -0.070 | -1.050 | 1.400 | 0.420 | 0.910 | -0.240
-0.280 | -1.050 | -1.540 | 1.400 | 0.910 | 0.420 | -0.070 | 1.400 | -0.103
-0.210 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -1.470 | -0.445
-0.140 | 0.490 | 0.980 | 1.470 | -1.470 | -0.980 | -0.490 | -0.980 | -0.310
-0.070 | 0.980 | -1.470 | -0.490 | 0.490 | 1.470 | -0.980 | -0.490 | -0.177
0.000 | 1.470 | -0.490 | 0.980 | -0.980 | 0.490 | -1.470 | 0.000 | -0.038
0.070 | -1.470 | 0.490 | -0.980 | 0.980 | -0.490 | 1.470 | 0.490 | 0.098
0.140 1 -0.980 | 1.470 | 0.490 | -0.490 | -1.470 | 0.980 | 0.980 | 0.242
0.210 1 -0.490 | -0.980 | -1.470 | 1.470 [ 0.980 | 0.490 | 1.470 | 0.381
0.280 ] 0.560 | 0.560 | 0.560 | 0.560 [ 0.560 | 0.560 | -1.400 | 0.016
0.350 | 1.050 | 1.540 | -1.400 | -0.910 | -0.420 | 0.070 | -0.910 | 0.154
0.420 | 1.540 | -0.910 | 0.070 | 1.050 | -1.400 | -0.420 | -0.420 | 0.299
0.490 | -1.400 | 0.070 | 1.540 | -0.420 | 1.050 | -0.910 | 0.070 | 0.447
0.560 | -0.910 | 1.050 | -0.420 | 1.540 | 0.070 | -1.400 | 0.560 | 0.590
0.630 | -0.420 | -1.400 | 1.050 | 0.070 | -0.910 | 1.540 | 1.050 | 0.741
0.700 | 0.070 | -0.420 | -0.910 | -1.400 | 1.540 | 1.050 | 1.540 | 0.888
0.770 | 1.120 | 1.120 | 1.120 | 1.120 | 1.120 | 1.120 | -1.330 | 0.495
0.840 | 1.610 | -1.330 | -0.840 | -0.350 | 0.140 | 0.630 | -0.840 | 0.640
0.910 | -1.330 | -0.350 | 0.630 | 1.610 | -0.840 | 0.140 | -0.350 | 0.794
0.980 | -0.840 | 0.630 | -1.330 | 0.140 | 1.610 | -0.350 | 0.140 | 0.943
1.050 | -0.350 | 1.610 | 0.140 | -1.330 | 0.630 | -0.840 | 0.630 [ 1.100
1.120 | 0.140 | -0.840 | 1.610 | 0.630 | -0.350 | -1.330 | 1.120 [ 1.259
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1.190 { 0.630 | 0.140 { -0.350 | -0.840 | -1.330 | 1.610 | 1.610 [ 1.414
1.260 [ 1.680 | 1.680 | 1.680 | 1.680 | 1.680 | 1.680 | -1.260 [ 0.991
1.330 { -1.260 | -0.770 { -0.280 | 0.210 | 0.700 | 1.190 | -0.770 [ 1.145
1.400 { -0.770 | 0.210 { 1.190 | -1.260 | -0.280 | 0.700 | -0.280 [ 1.306
1.470 { -0.280 | 1.190 | -0.770 | 0.700 | -1.260 | 0.210 | 0.210 [ 1.463
1.540 { 0.210 | -1.260 { 0.700 | -0.770 | 1.190 | -0.280 | 0.700 [ 1.628
1.610 { 0.700 | -0.280 | -1.260 | 1.190 | 0.210 | -0.770 | 1.190 [ 1.788
1.680 [ 1.190 | 0.700 | 0.210 | -0.280 | -0.770 | -1.260 | 1.680 [ 1.958

Based on the data in Table 7, the predicted flow rate of water, y is calculated using
Equation 9 and the Gasp model interpolates the test data, that is, the predicted values at
untried inputs gave the same results as the simulated values. This quality makes Gasp
model approximately an exact interpolator. The graph of the predicted versus simulated
output of the borehole model is given in Figure 2 as shown below:

Scatter Plot
E T T T T T

Testing Data
©  Fitted Data

) 1 1 | | | | | 1 1

0 5 10 15 20 25 30 35 40 45 50

Figure 2. Graph of the Predicted y (Flow Rate of Water- Dotted Points)
against Simulated Output (Solid Blue Line) over 49 Experimental Runs

5. Discussion of Results

The constructed OA(49, 8) LHD was used to develop a borehole computer experiment
by scaling OA(49, 8) LHD and then simulate the experimental output using Equations 1
and 2, respectively. The scaled input variables and the output simulated from a computer
model form the experimental results for the training datasets. The training datasets were
used to fit a Gasp model. The fitted Gasp model showed that the radius (rw) and Hydraulic
Conductivity of Borehole (Ky) are important variables in modelling borehole experiment
as given in Table 5.

The test data was also simulated using a 49-run experimental design in order to assess
the accuracy of the Gasp model. These test data were used on the fitted Gasp model to
predict the flow rate of water of a borehole. The predicted results interpolated the test data
as shown in Figure 2. This, therefore, shows that the fitted Gasp model is very efficient.

6. Conclusion

A method for the statistical modelling and analysis of borehole computer experiment
has been presented in this work. It is an exposition of the current trend in the design and
analysis of experiments where a computer model was used to mimic a borehole
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experiment and results were obtained within the shortest possible time without having to
wait for physical experimental results. This is simply called a computer experimentation
approach.

The fitted Gasp model emulated the borehole computer model perfectly well and it also
interpolated the test data. This work showed that the radius (rw) and hydraulic
conductivity of borehole (Kw) are important variables in modeling and predicting the flow
rate of water of a borehole using a 49-run experimental design and Gasp model as an
emulator of a borehole computer model. The estimated values for the radius (rw ) and the
hydraulic conductivity of borehole (Kw) have the same signs, indicating that r, and Ky
have the same effects on the flow rate of water of a borehole. This study also showed that
the p-values for the estimated parameters for r(m), T (m?/yr), Ty (m?/yr), Hi(m), Hy (m) and
L (m) are very large as shown in Table 5. These six factors do not have significant linear
main effects on the flow rate of water through the borehole.

The computer experimentation approach has opened up a new area in Design and
Analysis of Experiments which is referred to as Design and Analysis of Computer
Experiments. This area of study has permitted both greater complexity and more
extensive use of mathematical models as computer models in scientific and engineering
experimentations as well as in industrial processes. A Gasp model with correlation
functions different from the Gaussian correlation function employed in this work could
also be considered in order to compare the performance of Gasp model under different
correlation functions and predict the output of the borehole computer experiment at
untried inputs for future research.
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