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SUMMARY 
For a geological feature to be resolved in a seismic reflection profile its size must be 
comparable with the dimensions of the Fresnel zone for its depth and the frequency-content 
of the seismic wavefield. Since the diameter of the Fresnel zone is over 5 km for lower-crustal 
reflections, the effects of variations of the crust on smaller length scales must be considered 
when interpreting deep reflection profiles. 

Modelling the seismic wavefield using first-order scattering theory shows how the reflections 
observed in a small-offset profile are affected by the statistical distribution of elastic vanations 
within the crust. Crustal heterogeneities on length-scales smaller than the seismic wavelength 
cause frequency-dependent attenuation which can be comparable with the losses due to 
anelastic absorption. Larger scale elastic variations cause rapid loss of coherence in the 
seismic field. The observation of deep seismic reflections can thus be used to constrain the 
degree to which the crustal elasticity varies on small length scales. Coherent seismic 
reflections from the lower crust limit the fractional variation of elasticity averaged over the 
entire crust to a few percent on a wide range of length-scales. 

Key words: deep seismic reflection, lower-crustal reflection, statistical crustal model, first- 
order scattering, Born scattering 

INTRODUCTION 

An observed seismic reflection is made up of a superposition 
of components that have travelled along a range of paths 
within the crust (Hagedoorn 1954). The finite crustal volume 
sampled by a reflection limits the lateral resolution of a 
seismic reflection profile to the order of the Fresnel zone 
radius, r,. Since r, is over 2.5 km for near-normal-incidence 
reflections from the lower crust, the effects of crustal 
variations which are too small to be independently resolved 
must be considered when interpreting the structure of the 
lower crust from deep reflection profiles. A distribution of 
small-scale variations of crustal elasticity can affect an 
observed reflection if, in total, the variations affect a large 
proportion of the wavefield components that are transmitted 
through the sampled volume. 

Provided the fractional variations of the elastic medium 
are small, the effects on elastic waves of small-scale 
variations of the ,medium can be modelled by perturbation 
theory. Either first-order (Born) scattering or multiple- 
scattering theories may be appropriate depending on the 
severity of the scattering effects. 

The main formula of the first-order theory, giving the 
expectation of the scattered field intensity as a function of 
direction, was first derived by Pekeris (1947). Chernov 
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(1960) used first-order scattering to derive a number of 
statistical properties of the acoustic field in a heterogeneous 
medium including the attenuation and loss of coherence 
caused by scattering. Knopoff & Hudson (1964, 1967) 
applied first-order theory to the elastic case showing that the 
acoustic approximation is valid at high frequencies, but that 
the degree of scattering is underestimated at low frequencies 
due to the neglect of P-S conversions. 

First-order scattering has been used to interpret a variety 
of seismic experiments. It has been applied to the 
attenuation of the high-frequency components of teleseismic 
events (e.g. Aki & Chouet 1975; Aki 1981) and to estimate 
the variations of the earth’s crust immediately below Large 
Seismic Arrays (e.g. Aki 1973; Capon 1974). It has also 
been applied to the study of the core-mantle boundary 
(Haddon & Cleary 1974) and used as the basis of a method 
for processing deep reflection sections (Phinney & Jurdy 
1979). 

This paper considers the effects on deep reflection profiles 
of small-scale variations of crustal elasticity by applying 
first-order scattering theory to statistical crustal models. 
First-order scattering is described briefly in the next section 
[a full derivation is given in chapter 13 of Aki & Richards 
(1980)] and is then applied to constrain the range of elastic 
impedance variations within the crust. The theory is 
illustrated by examples generated by a computer program 
which calculates the scattered field for statistically defined 
crustal models. 
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ELASTIC WAVES IN MILDLY 
HETEROGENEOUS MEDIA 

A mildly heterogeneous medium can be described by writing 
the elastic constants in terms of mean values, po, ,lo and yo, 
which are for simplicity assumed independent of position, 
and small spatially varying perturbations, p’, A’ and p1 

A = A0 + A1 
p = po+ pl  

y = y*+ y1. 

To apply perturbation theory, the wavefield, u ( x , t ) ,  is 
considered as the superposition of two components: a 
‘primary’ field, uo(x, t), which is the field for the 
unperturbed medium, and a ‘scattered’ field, u’(x,  t), which 
is due to the perturbations of the medium. Aki & Richards 
(1980) show that the scattered field at s due to an 
inhomogeneous crustal volume, V ,  centred on 0 is given to 
a first-order , linear-phase approximation by 

A exp -i(wt - kn) 
d X > t ) =  2fi 

x I(.$+ k2E) exp -i[(kIN - ksc) . x ]  dV,, 

in which x is the distance OS, A, w and k are the amplitude, 
angular frequency and wavenumber of the incident 
wavefield, k,, and ksc are the wavevectors of the incident 
and scattered field respectively, xi is the component of x 
parallel to the direction of incidence and E ( X )  is the 
fractional variation of the elasticity at a point Q in V 
(Fig. 1). 

a 

b 

,,/ Scattored Fhld 

Fm 1. (a) The geometry for deriving first-order scattering theory 
(see text for details). (b) The definition of the scattering vector, I, 
(c) The linear phase approximation for scattered components. 

Defining I as the scattering vector and u as the Fourier 
transform of the fractional perturbation, E ( X )  

I = k,, - ksc (1) 

and 

a(1) = E ( X )  exp ( - i l -  x )  dV, I 
gives the amplitude of the plane component of the scattered 
field at S with wavevector k,, in the form 

in which 8 is the angle between k,, and ksc. 

from (2) 
The intensity of the scattered field at S, Z(x), is obtained 

(3) 

in which Z(I) is the Fourier transform of E ( x ) ,  the 
autocorrelation function of the crustal variations 

E ( x )  = ( E ( X ) E * ( X + X ) )  (4) 
(the angled brackets represent an average over V). 

The key factor in the expressions for the amplitude and 
intensity of the scattered field is a(l), the component of the 
Fourier transform of the elastic perturbations with 
wavevector equal to the scattering vector, 1. Fig. 2 shows 
that the scattering vector for backscattering is approximately 
parallel to the incident wavevector with twice the 
magnitude. Thus backscattering is caused by variations of 
the medium close to the direction of incidence with a 
length-scale of A/2 where A is the wavelength of the incident 
wavefield. 

Since the magnitude of the scattering vector cannot be 
greater than twice that of the incident wavevector, the 
wavefield only ‘sees’ variations of the structure with a 
wavelength comparable with A/2 or greater. Variations on 

Figure 2. The scattering vector for large-angle scattering has 
approximately twice the magnitude of the incident wavevector and 
is approximately parallel to it. 
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Figure 3. A variety of distributions of elastic variations, e(x), can 
have similar autocorrelation functions, E ( x ) .  

wavelengths much greater than A cause small-angle 
scattering. 

Very different distributions of structural variations can 
have similar forms of E(x) (Fig. 3). The intensities of the 
scattered components produced by different distributions 
with the same E(x) are indistinguishable. 

COMPUTATION OF THE SCATTERED 
FIELD 

A computer program has been written to calculate the field 
scattered by an arbitrary 2-D perturbation distribution 
according to (3). The medium is defined for the calculation 
by a description of the elastic properties of a 4 km square of 
material which represents a typical ( x ,  2) cross-section of the 
crust between an upper and lower depth limit. This consists 
of a grid of impedance values every 40m in the vertical 
direction and every lOOm in the horizontal direction. The 
structures at opposite sides of the structure must match 
because calculating the finite Fourier transform for (3) 
effectively assumes that the structure is repeated on a square 
grid. 

The correlation length of the crustal structure parallel to 
the y-axis is assumed to be very large. It is shown below that 
many results of first-order scattering theory are independent 

of the horizontal length-scale of the heterogeneity provided 
that it is greater than the seismic wavelength. 

The 2-D discrete Fourier transform of this structure is 
calculated and the components of the Fourier transformed 
autocorrelation function, X(I), are found. The intensity of 
any scattered component can be estimated from these 
components according to (3). Values of X(1) lying between 
the discrete values of the Fourier transform are estimated by 
linear interpolation since it is assumed that the magnitudes 
of the Fourier components vary smoothly for random 
structures. The scattered field for an extended heteroge- 
neous volume is estimated by dividing the extended volume 
into smaller parts and superposing the fields scattered by 
each of these. 

Figure 4 shows ( x ,  z )  cross-sections of three heteroge- 
neous structures and the intensities of the scattered field 
components scattered by them through angles greater than 
90" for a vertically incident field. The vertical correlation 
length of these structures is approximately 200m and the 
impedance values of the shaded and unshaded regions differ 
by 10 per cent. The field Components scattered by the 
coherent layering in Fig. 4(a) are the most concentrated in 
the vertical direction. The scattered components in Fig. 4(b 
and c) have a similar degree of vertical concentration 
showing that a distribution of intrusions can produce a 
scattered field with a degree of coherence comparable to 
that scattered by deformed continuous layering. 

ATTENUATION D U E  TO SCATTERING 

From conservation of energy, the production of a scattered 
field must be accompanied by a reduction of the flux of the 
primary field. This process represents a form of attenuation 
of the seismic field which acts in addition to anelastic 
absorption to give the observed attenuation (Wu 1982, 
1985). 

Aki & Richards (1980) find the attenuation due to 
scattering by summing the flux of the scattered field 
produced in all directions by a cube of heterogeneous crust 
of side L. However, since components scattered through 
small angles remain mixed with the transmitted field they 
should not be included in the calculation of flux loss (Sato 
1982a, b). 

To estimate the attenuation produced by scattering in a 
heterogeneous crust requires a description of the distribu- 
tion of elastic variations. As the lower crust is likely to have 
different correlation lengths in the horizontal and vertical 
directions (Meissner 1973), the following autocorrelation 
function is used to represent a structure characterized by an 
anisotropic distribution of perturbations with correlation 
lengths a and c,  in the horizontal and vertical directions 
respectively. 

3 Z(1) = I13'2a2~Hz exp 
4 

It is useful to assume that u k > > l ,  i.e. the horizontal 
correlation length of the structure is greater than the seismic 
wavelength. This implies that for a vertically-incident 
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Figure 4. The scattered components produced when a vertically incident plane-wave travels for 1 km through three different distributions Of 

crustal elasticity variations. 
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Figure 5. A set of perturbations with ak >> 1 produces scattered components in two small angular ranges due to the concentration of Z(I) close 
to the vertical axis. (b) A set of components scattered in directions close to the wavevector for specular reflection. (c) A second set of 
components which is scattered through small angles and propagates in directions close to the incident wavevector with altered phase. 
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wavefield X(1) is small except for 8 close to 0 and n and the 
scattered field is concentrated into small angular ranges 
around two directions representing small-angle scattering 
and backscattering (Fig. 5). Considering only the backscat- 
tered components gives a conservative estimate of the 
attenuation caused by scattering. 

Substituting (6) into (3) and integrating over all directions 
with 8 >90° shows that if ak >> 1 the total flux of the 
scattered field is almost independent of the lateral 
correlation length. The proportion of energy backscattered 
by a cube of heterogeneous crust of side L is given by 

BBK = I I ’ ~ C ~ ’ H ’ L  exp ( -k2c2) .  (7) 

For the Gaussian distribution of variations used to calculate 
(7) the backscattered flux is peaked for values of 
c = A/(23/21T) = A/9 because the longest wavelength pertur- 
bations cause scattering through small angles and the 
shortest wavelength perturbations are not seen by the 
seismic field. 

If propagation through a distance L causes a small 
fractional attenuation of fiBK due to scattering the 
frequency-dependent Q-’ value for this mode of attenua- 
tion can be approximated by 

QiAn 2: PBKJkL. 

Since modes of flux loss are additive the effective crustal Q 
including both anelastic absorption and scattering is given by 

Q& = a&,, + lI”*kcH2 exp ( -k2cZ). (8) 

It is difficult to obtain an accurate estimate of Q for the 
crystalline crust and to determine any variation of Q with 
frequency because most methods for measuring Q give poor 
results when measuring low degrees of attenuation in noisy 
data (Meissner 1986). The observation of normal-incidence 
reflections from the lower crust indicates a relatively low 
degree of attenuation and Clowes & Kanasewich (1972) 
estimate that Q for the crystalline crust is in the range of 

Figure 6 shows the variation of Q& as a function of c J A  
for media with H = 5  per cent and various values of 
anelastic attenuation. For a range of frequencies the 
attenuation due to scattering alone is comparable to the 
mid-range of Clowes and Kanasewich’s estimate of crustal 
attenuation. With an anelastic Q of 2000 the scattering for a 
crust with H = 5 per cent produces a Q that is less than 1000 
for c values in the range 1/60 to Al4. 

Figure 7 shows the variance, H 2 ,  of a crust consisting of 
two components differing in their elastic impedances by a 
fraction h. The greatest variance, h2J4, is given by equal 
proportions of the two components. Fig. 6 thus shows that a 
crustal Q of 1000 implies that the crust cannot consist of a 
mixture of two components in approximately equal 
proportions that differ in their elastic properties by more 
than 10 per cent if the components are on length-scales 
between A130 and A/5. In particular, this constrains the 
impedance contrast of the highly reflective laminated 
structures that have been proposed for the lower crust 
(Meissner 1986). The high reflectivity and significant 

300-2000. 

CIA 
Figure 6. The variation with frequency of Q& due to scattering attenuation and anelastic absorption from (8). The 
anelastic absorption modelled by QAmL values of 1000, 2000, loo00 and (i.e. no anelastic absorption). The indicated 
2000. 

curves correspond to 
Q values are 500 and 
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Figure 7. The variation of H2, the variance of the elasticity of a 
two-phase crust, on /3, the proportion of phase A. The fractional 
difference of the elasticity of phases A and B is h. 

attenuation due to scattering of these structures are different 
descriptions of the same phenomena. 

The frequency-dependent attenuation due to scattering 
can be computed for a specified heterogeneous structure by 
summing the scattered components. The frequency variation 
of Q for the three structures shown in Fig. 8 shows that 
higher-frequency components are generally more severely 
scattered, but that superimposed on this variation the 
attenuation is peaked for the frequency at which the vertical 
length scale of the perturbations is of the order of A16 where 
A is the seismic wavelength. It should be noted that by 
analogy to the Gaussian distribution defined in (5) the 
correlation lengths of these structures are the distances at 
which the correlation of the variations drops to around 40 

a 

FREQUENCY (HZ) 

b 

per cent is its maximum value. This length scale is smaller 
than the apparent length scales of the structures by a factor 
of around 3.5. 

Figure 9 shows the attenuation for the layered structures 
shown in Fig. 4. Both structures show a high degree of 
attenuation due to scattering at around 10 Hz: the tuning of 
this notch is more accentuated in Fig. 9(a) which represents 
less deformed layering. Fig. 9(b) shows a greater degree of 
flux loss due to small-angle scattering. 

INCOHERENCE C A U S E D  BY SCATTERING 

The components of the wavefield scattered through small 
angles remain mixed with the primary field and do not 
reduce the transmitted Aux. Components scattered through 
very small angles produce constant phase retardation in the 
transmitted field which can also be described by refraction 
(Sato 1982a, b). Components scattered through slightly 
larger angles produce lateral variations in the phase and 
amplitude of the primary field and reduce its lateral 
coherence. 

Chernov (1960) derived expressions for the variance of 
the fluctuations of the phase, A y ,  and the natural logarithm 
of the amplitude, A In A, of a wavefield that has propagated 
a distance 1 through a heterogeneous medium. Assuming an 
isotropic, Gaussian perturbation distribution, with variance 
H2 and correlation length a > I, he obtains 

n1/2 

2 ( lAqI2) = - H2k2aL 

n1/2 

2 
( ) A  In A\' )  = - H2k2aL, (9b) 

C 

FREQUENCY (HZ) FREQUENCY (HZ) 

Figure 8. The variation with frequency of the attenuation due to scattering for three heterogeneous structures with differing values of c, the 
vertical correlation length. These structures are defined by a matrix of constant impedance with randomly distributed inclusions for which the 
impedance is 10 per cent higher. The anelastic Q is given a high value of loo00 to demonstrate the scattering effects clearly. Bold lines show 
the attenuation due to components scattered through angles 390": dashed lines include all components scattered through angles 210". 
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Figure 9. The variation with frequency of the attenuation due to 
scattering for the structures shown in Fig. 4(a and b). Bold lines 
indicate the loss due to components scattered through angles 290”: 
dashed lines include components scattered through angles 310”. 

in which r, is the Fresnel zone radius and D, the wave 
parameter, is defined by D = 4L/ka2 and is proportional to 
the ratio of the area of the first Fresnel zone to that of the 
inhomogeneities. Due to the large area of the Fresnel zones 
for the lower crust D is much greater than 1 for all but the 
largest perturbations and (9) can be approximated to give 
the following simpler expressions 

Chernov also shows that the correlation length of the 
wavefield fluctuations produced by the components scat- 
tered by a heterogeneous structure is of the order of a, the 
horizontal length scale of the heterogeneities (Fig. 10). 

These results can be extended to a medium described by 
an anisotropic Gaussian distribution of perturbations as 
defined in (5). For k a > > l  the isotropic and anisotropic 
distributions produce the same angular distribution of 
small-angle scattered components implying that they cause 
similar wavefield fluctuations. 

Comparing the fields scattered by the isotropic and 
non-isotropic distributions indicates the following expres- 
sions for the variances of the wavefield phase and amplitude 
after propagation for a distance L through a medium 
characterized by an anisotropic, Gaussian distribution of 

Modelling of lower-crustal reflections 

1.0 

0 . 8  
c 
0 

\ 

v a 0 .6  

n 

2 0.4 
X 
U 

0.2 

0 . 0  

1 1 . 
x l a  

1 2 3 

117 

Figure 10. The normalized autocorrelation functions for (1) 
amplitude and (3) phase fluctuations along the wavefront for large 
D (after Chernov 1960). (2) shows a Gaussian variation of width a 
for comparison. 

perturbations 

( IAq12) = (1 + a’/r$)II”’H’k’cL 

( ) A  In AI’) = (1 - u2/r$)Il”’H2kzcL. 

(11a) 

(1lb) 

and 

The observation of coherent reflections from the lower crust 
constrains the average degree of crustal heterogeneity. For a 
plane reflector in a heterogeneous medium the observed 
reflection will have fluctuations of phase and amplitude 
given by these equations with L equal to the total path 
length in the heterogeneous medium. The observation of 
coherent reflections from the lower crust implies that 
two-way travel through the crust has not generated sufficient 
small-angle scattered components to produce large fluctua- 
tions of phase and amplitude. 

If (lAq12) and (Id lnA1’) are both less than 1 for a path 
length L and a <<rF, ( l l a )  and ( l l b )  give the following 
condition: 

H 2  < l/(II”2k2cL), (12) 
Fig. 11 shows the variation with c of the limits placed on H, 
the fractional standard deviation of the crustal elasticity, by 
the visibility of coherent reflections transmitted through 
various thicknesses of heterogeneous material. For example, 
assuming a seismic wavelength of 440m and a crust 
characterised by c = A/4, a coherent reflection from a depth 
of 25 krn (L = 50 km) indicates that the average crustal H is 
less than 2.4 per cent. 

This constraint complements the limits on the crustal 
heterogeneity calculated for crustal attenuation because the 
attenuation caused by large-angle scattering peaks for 
c < h / 4  and the incoherence caused by small-angle scattering 
is greatest for c>A/4. There is an upper limit on the c 
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Figure 11. Plots showing the variation with c of the limits of H, the 
fractional standard deviation of the crustal elasticity, that are 
compatible with the observation of coherent reflections through 
thickness of heterogeneous crust of 15, 20 and 25 km respectively. 
These plots assume the seismic field is centred on 16 Hz. 

values to which (12) applies because large heterogeneities 
which individually alter the phase of the wavefield by an 
amount comparable to IZ can, in theory, be individually 
resolved and the seismic field can be corrected for their 
presence. 

To visualize the effect of wavefield fluctuations on the 
resolution of the seismic experiment, a program has been 
written to calculate and display wavefields with variations of 
phase and amplitude given by (11). For simplicity, the 
wavefield autocorrelation functions in (11) are approximated 
by Gaussian variations with correlation length a, i.e. 

M , ( x )  = (1 + a2/r~)ZI”2H2k2cL exp ( -x2 /a2 )  

M,nA(x) = (1 - a2/rt)Z11/2H2k2cL exp ( - x 2 / u z ) .  

(13a) 

( 13b) 

and 

Particular phase and amplitude functions, q ( x )  and A ( x ) ,  
are calculated exhibiting these autocorrelation functions and 
the wavefield displacement, v ( x ,  t), is formed using the 
following relationship 

V ( X ,  t )  = A ( x )  . ~ [ t  - 1, - q(x)/wJ, (14) 
in which u ( t )  is the source function, wo is the peak 
frequency of the wavefield and to is the travel time, L/a.  

This is not a complete model of the physics described by 
Chernov as, apart from the approximation of the 
autocorrelation functions, it also neglects the cross- 
correlations between A q  and A In A. It does, however, heip 
estimation of the depth at which the primary wavefield 
becomes disrupted to the extent that resolution of the most 
prominent geological features becomes impossible. 

Fig. 12 shows the development of incoherence in a 
wavefield centred on 16 Hz propagating through a structure 
with 5 per cent standard deviation and correlation lengths of 

X ( K M )  
Figure U. The development of fluctuations in a plane reflection 
centred on 16Hz after it has propagated two ways through a 
heterogeneous structure characterized by 5 per cent standard 
deviation and correlation lengths a = loo0 m and c = 50 m. 

1000 m horizontally and 50 m vertically. The wavefronts 
represent two-way travel through a heterogeneous crust and 
planar reflection. Fig. 12 shows that these crustal variations 
would make it difficult to recognize a plane reflector at a 
depth greater than 16 km. The development of incoherence 
due to small angle scattering is independent of both the 
amplitude of the field incident on the reflector and its 
reflectivity. 

Figure 13 represents wavefronts after propagation through 
a structure characterized by 5 per cent standard deviation 
with horizontal and vertical correlation lengths of 100 and 
50 m respectively. Fig. 13(a-c) is calculated for wavefields 
centred on 10,16 and 25 Hz respectively and show the rapid 
increase in the degree of incoherence for components of 
increasing frequency. Fig. 14 wavefronts after propagation 
through a structure characterized by 5 per cent standard 
deviation with horizontal and vertical correlation lengths of 
200 and 100m respectively. Comparison of Figs 13b and 14 
shows the increased degree of incoherence caused by larger 
scale perturbations. 

Fig. 15 shows a sample of a deep reflection profile with a 
very high degree of reflectivity but lacking identifiable 
coherent reflections. This very common type of lower- 
crustal reflectivity could be caused by the effects described 
in this section. Although scattering theory based on (3) 
provides useful results relating properties of the seismic field 
to the statistical properties of the crust it cannot be readily 
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Fipre 13. The plane reflections shown are centred on 10, 16 and 25 Hz respectively and have propagated two ways through a heterogeneous 
medium characterized by 5 per cent standard deviation and correlation lengths a = 100 m and c = 50 m. The incoherence caused by scattering 
increases rapidly with increasing frequency. 

applied to the interpretation of real seismic data because it 
cannot handle the possibility of unknown spatial variations 
of the statistical crustal properties. The block of data shown 
may contain components which have sampled volumes of 
crust characterized by very different distributions of elastic 
variations. 

THE VALIDITY OF FIRST-ORDER 
SCATTERING THEORY 

According to Chernov (1960), first-order scattering theory is 
applicable when a small proportion of the primary flux is 

scattered. This is because the theory assumes that the 
primary field is unchanged by the variations of the medium 
and because the effects of multiple-scattering are neglected. 
A small proportion of primary-scattering ensures an 
insignificant degree of multiple-scattering. 

Hudson & Heritage (1981) subsequently derived a new 
condition for the validity of the first-order approximation by 
considering it as the first term of an infinite series the 
subsequent terms of which represent multiply-scattered 
components. The new condition ensures the accuracy of the 
solution at all points and times and is far more difficult to 
satisfy than Chernov’s condition which refers to statistical 

0 2 4 6 8 ~ ( ~ ~ )  10 

F w e  14. The wavefield shown is centred on 16 Hz and has propagated two ways through a heterogeneous medium characterized by 5 per 
cent standard deviation and correlation lengths a = 200 m and c = 100 m. 
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Figure 15. A typical sample of highly reflective lower crust which lacks clearly defined individual reflectors taken from the Southern end of the 
SWAT 8 profile collected by BIRPS (BIRPS & ECORS 1986) 

field properties only (i.e. Chernov’s condition allows 
solutions which may be locally inaccurate if the scattered 
components are in some respect organized). 

Chernov’s limit is more suitable for the work presented 
here because we are concerned with statistical averages of 
the scattered field rather than specific solutions. Also, there 
is no a priori reason to expect any strong organisation of the 
components of the wavefield scattered by variations of the 
lower crust. 

Applying Chernov’s validity test to a reflection from a 
depth of 12.5 km (i.e. a path length of 25 km) in a crust 
characterized by H = 5 per cent the fraction of incident flux 
scattered is less than 20 per cent, i.e. mid-crustal reflections 
are close to the limit of validity of first-order scattering. For 
a reflection from a depth of 25 km (path length 50 km) in a 
similar crust the scattered fraction rises to almost 40 per cent 
implying that multiple scattering must be taken into account 
for reflections from the lower crust. 

However, first-order scattering can be applied to the 
calculation of the attenuation due to scattering because Q is 
calculated by summing the components scattered by a small 
crustal volume. Using first-order scattering to estimate the 
wavefield incoherence gives a conservative estimate of the 
effect of all scattering processes because the multiply- 
scattered components cause further loss of coherence. 

CONCLUSIONS 

The effect on the seismic wavefield of mild variations of 
crustal elasticity can be modelled using first-order scattering 
theory. This model shows that statistically defined 

distributions of crustal variations that are too small to be 
resolved individually can affect the reflections observed in a 
deep seismic reflection profile. 

Crustal heterogeneities on length scales smaller than the 
seismic wavelength cause components of the seismic 
wavefield to be scattered through large angles. These 
components are removed from the transmitted wavefield 
causing frequency-dependent attenuation that is comparable 
with the low degree of attenuation measured for the crust 
for fractional variations of the elasticity of a few percent. 
Large scale variations of the crustal elasticity produce 
wavefield components scattered through small angles. These 
reduce the coherence of the seismic field causing fluctuations 
of phase and amplitude on a length-scale comparable with 
the horizontal length-scale of the crustal variations. 

The observation of coherent seismic reflections from the 
lower crust and the high Q value exhibited by the crust both 
constrain the fractional variations of the crustal elasticity 
measured on a wide range of vertical length scales to a few 
percent. This very low degree of heterogeneity represents an 
average over the whole of the crust. Our knowledge of the 
physical properties of the shallower parts of the crust can be 
used to further constrain the properties of the lower crust. 

The constraints placed on crustal heterogeneity by 
scattering theory do not exclude the large variations of 
crustal elasticity indicated by the reflectivity of the lower 
crust. The limits on the range of elasticity derived in this 
paper represent a statistical average over the whole crust. 
Individual contacts with large elastic contrasts do not 
significantly alter the statistics of the whole crust. However, 
scattering theory does limit the degree to which the crust 
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can consist of laminated structures with alternating layers of 
higher and lower acoustic impedance on the scale of the 
seismic wavelength because the high reflectivity of these 
structures would be accompanied by a very rapid 
attenuation of the seismic field. 
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