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1 INTRODUCTION

Social network analysis is a branch of social science which seems for a long time

to have resisted the integration of empirical research with statistical modeling

that has been so pervasive, and fruitful, in other branches. This is perhaps

not surprising in view of the nature of social networks. Networks are relational

structures, and social networks represent structures of dyadic ties between social

actors: examples are friendship between individuals, alliances between firms, or

trade between countries. The nature of networks leads to dependence between

actors, and also to dependence between network ties. Statistical modeling on the

other hand is normally based on assumptions of independence. The complicated

nature of network dependencies has delayed the development of statistical models

for network structures.

This article is concerned with statistical models for networks as outcome vari-

ables, with a focus on models relevant for social networks. This is an area in vig-

orous current development and intimately embedded in a larger domain, which

makes it impossible to approximate a complete overview in a limited number

of pages. Some neighboring topics that are not covered are models for the co-

evolution of networks and individual outcomes; models that are not probabilistic

in nature, or for which methods of statistical inference (such as estimation and

testing of parameters) have not been developed; and event networks. The last
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section provides some pointers to other literature.

This review is concerned with the models, not with the statistical methods

for estimating and testing parameters, assessing goodness of fit, etc. The cited

literature contains the details of the statistical procedures necessary for applying

these models in practice.

1.1 Notation

A social network is a structure of ties, or relational variables, between social

actors. We shall consider mainly a fixed set {1, . . . , n} of actors, and variables

Xij representing how actor i is tied to actor j. In some cases these will be directed

in nature, so that Xij and Xji are different variables which may assume the same

or different values; in other cases they will be nondirectional in nature, so that

Xij is necessarily equal to Xji. The most frequently employed and most strongly

developed data structure is for binary variables Xij , where the value 1 (or 0)

represents that there is (or there is not) a tie from i to j. Then the mathematical

object constituted by the set {1, . . . , n} and the variables Xij is called a graph

in the nondirected, and a digraph in the directed case. The actors are called the

nodes and the ties are usually called arcs or edges, depending on whether the

graph is directed or not. It is usual to exclude the possibility of self-ties, so that

the variables Xii may be considered to be structural zeros.

The matrix with elements Xij is called the adjacency matrix of the graph. The

adjacency matrix as well as the graph or digraph will be denoted by X.

Replacing an index by a plus sign will denote summation over that index:

thus, the number of outgoing ties of actor i, also called the out-degree of i, is

denoted Xi+ =
∑

j Xij , and the in-degree, which is the number of incoming ties,
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is X+i =
∑

j Xji.

1.2 Network dependencies

Social networks are characterized by a number of dependencies which have been

found empirically as well as theoretically.

1. Reciprocation of directed ties is a basic feature of social networks, found

already by Moreno (1934). This will be reflected by dependencies between

Xij and Xji. Theoretical accounts have been made for it from the points of

view of social exchange theory (Emerson, 1972) and game theory (Axelrod,

1984). Reciprocation need not be confined to pairs, but can circulate in

larger groups, see, e.g., Molm et al. (2007). This then can lead to depen-

dence in longer cycles such as Xij , Xjh, Xhi.

2. Homophily, the tendency of similar actors to relate to each other, was dis-

cussed and coined by Lazarsfeld and Merton (1954) and has been the subject

of much research, reviewed by McPherson et al. (2001). Theoretical argu-

ments can be based, e.g., on opportunity, affinity, ease of communication,

reduced transaction costs and break-off risks, and organizational foci (Feld,

1982) composed of similar individuals. This leads to a higher probability of

ties being formed between actors with similar values on relevant covariates.

3. Transitivity of ties is expressed by the saying ‘friends of my friends are my

friends’, and was proposed as an essential element of networks by Rapoport

(1953a,b). Davis (1970) found large-scale empirical support for transitivity

in networks. Transitivity is rooted deeply in sociology, going back to authors

such as Simmel (1950) and elaborated more recently by Coleman (1990).

If there is a tendency toward transitivity, the existence of the two ties
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Xij = Xjh = 1 will lead to an increased probability of the tie Xih = 1, the

closure of the triangle. Concatenation of such closure events then can lead

also to the existence of larger connected groups. Transitivity therefore also

has been called clustering (Watts, 1999).

A natural measure for the transitivity in a graph is the number of transitive

triangles,
∑

i,j,h xijxjhxih (to be divided by 6 in the case of nondirected

graphs). A natural normalization is to divide by the number of potentially

closed triads, as proposed by Frank (1980),∑
i,j,h xijxjhxih∑
i,j,h xijxjh

. (1)

In directed graphs, transitivity can have two faces: it may point to a hierar-

chical ordering or to a clustered structure. These two can be differentiated

by the aid of the number of 3-cycles,
∑

i,j,h xijxjhxhi. A relatively high

number of 3-cycles points toward clustering, a relatively low number to-

ward hierarchy. Davis (1970) found empirically that social networks tend

to contain a relatively low number of 3-cycles, indicating the pervasiveness

of hierarchies in social networks.

4. Degree differentials, some actors being highly connected and others hav-

ing few connections, was studied since the last 1940s for communication

networks by Leavitt, Bavelas, and others, and this led to models for node

centrality reviewed by Freeman (1979). An important theoretical account

was the rich-get-richer phenomenon, or Matthew effect, elaborated in the

context of bibliographic references by de Solla Price (1976). This will lead

to a high dispersion of the nodal degrees, which then may further lead

to core-periphery structures (Borgatti and Everett, 1999) or various other

types of hierarchical structures.
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5. Hierarchies in directed networks, as exhibited by high transitivity and few

3-cycles, may be local or global. A global hierarchy will be indicated by

the ordering of the in-degrees and/or out-degrees, where the typical pattern

e.g., in esteem or advice asking, is directed from low to high. In a purely

global hierarchy, which can be seen, e.g., in some advice networks, in a

statistical model the degree differentials will be sufficient to explain the low

number of 3-cycles. But local hierarchies are possible in directed networks

even when the in-degrees and out-degrees exhibit rather little variability.

There are many other important types of dependencies between ties in networks,

not mentioned here because it would require too much space.

The literature contains various ways to represent network dependencies in sta-

tistical models. Three broad approaches may be distinguished.

Incorporating network structure through covariates A first approach is

to employ a model with independent residuals and to try and represent network

dependence in explanatory variables. To the extent that this is feasible, it can

be done mainly in longitudinal settings where earlier observations of the network

can be used to produce covariates, as for example in Gulati and Gargiulo (1999).

Controlling for network structure A second approach is to control for cer-

tain aspects of network dependencies while not explicitly modeling them. The

best known example of this approach is a permutational procedure, where nodes

in the network are being permuted – one may say also that the rows and columns

in the adjacency matrix are permuted simultaneously in such a way that the

network structure is left intact. This is called the QAP (Quadratic Assign-

ment Procedure) approach, proposed by Krackhardt (1987) and elaborated to
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permutation of regression residuals (Multiple Regression QAP, or MRQAP) by

Krackhardt (1988) and Dekker et al. (2007).

Another method was recently developed by Lindgren (2010). He used the idea

of a heteroscedasticity-consistent estimator for a covariance matrix elaborated by

White (1980) and which has been very fruitful for getting asymptotically correct

standard errors for clustered data. It is also known by the affectionate name

of sandwich variance estimator. Lindgren (2010) applied this idea to clustering

in two dimensions – rows as well as columns of the adjacency matrix – as is

seen in network data. The assumption then is that elements Xij and Xhk in the

adjacency matrix with {i, j} ∩ {h, k} = ∅ are independent. Below we shall make

a remark about this assumption.

A third method in the second approach is to condition on statistics that express

network dependencies. Within the set of networks satisfying these constraints,

the distribution is assumed to be uniform, hence the name conditionally uniform

models. In other words, standard deviations, p-values, etc., are calculated in

a reference set of networks that obey the same network dependencies as the

observed data. This method is explained in Section 2.1.

The MRQAP and heteroscedasticity-consistent approaches are useful where

research interest focuses exclusively on the effects of explanatory variables (‘pre-

dictors’, ‘covariates’) and not on modeling the network as such or on structural

dependencies. Conditionally uniform models are useful to provide a statistical

control for a few relatively simple network dependencies while testing more com-

plicated structural properties.
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Modeling network structure The third approach is to explicitly model the

structural dependencies between tie variables. In contrast to the traditionally well

known linear and generalized linear models which are the backbone of statistical

modeling, such models need a potentially considerable number of parameters to

express network structure, as we shall see below. This requires a change of vantage

point for researchers because hypotheses may have to be formulated in terms

not of relations between variables, such as the regression coefficients, correlation

coefficients, or path coefficients of the more commonly used statistical models,

but in terms of parameters representing more complex dependencies, such as

transitive closure which is a dependency involving three variables at a time.

Of these three approaches, the first may now be regarded as a relict from

an earlier period. Models expressing network structure only through covariates

while further employing independence assumptions may have had their use in

a time when more suitable methods were not available, but are likely to lead

to suspicious results because of misspecification and therefore should now be

avoided. The MRQAP and heteroscedasticity-consistent approaches are useful,

but are further not treated here because they regard network structure as nuisance

rather than substance and do not attempt to model network dependencies. The

conditionally uniform approach will be treated briefly in Section 2.1. This article

will be concerned mainly with models having the aim to model networks by

representing network dependency explicitly in a stochastic model.

1.3 The use of probability and statistics to model networks

Many network studies are only about one single network and in that sense are

N = 1 studies, and it should be argued why statistical methods are applicable at
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all to such a kind of data.

The use of probability models in statistical inference can be motivated generally

in two ways: based on plausible model assumptions: model-based inference; or

based on the sampling mechanism used: design-based inference. This distinction

is explained at length by Sterba (2009), who also shows how the discussion about

these traditions goes back to debates in the 1920s and 1930s between two of the

founding fathers of statistics, Ronald Fisher and Jerzy Neyman, of whom the

former championed model-based and the latter design-based inference.

In model-based inference the researcher – explicitly or implicitly – constructs

a probability model, makes the assumption that the observed data can be re-

garded as the outcome of a random draw from this model, and uses this model to

derive statistical procedures and their properties. In social science applications,

the model will be a stylized representation of social and behavioral theories or

mechanisms, and the probabilistic components express behavioral, individual, or

other differences of which the precise values are not explicitly determined by

the model, and that would assume different values in independent replications

of the research. Multiple linear regression models are an example. Molenaar

(1988) gives an illuminating discussion of how to link the statistical model to

substantive and theoretical considerations, and of different types of replication:

for example, new measurements of the same individuals? or a new sample of

respondents? and/or other measurement instruments? This idea of replication

is linked to the idea of inference from the data to a population. The population

is mathematically a probability distribution on the outcome space of the entire

data set, and substantively (given that we are discussing statistics in the social

sciences) a social and/or behavioral process in some set of individuals in some
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social setting. The population of individuals may be described in a very precise

or in more general and hypothetical terms. From multilevel analysis (Snijders

and Bosker, 2011) we have learned that a given piece of research may general-

ized simultaneously to several populations, e.g., a population of individuals and

a population of workplaces.

Probabilistic statements and properties in design-based inference are based on

the sampling mechanism which is, in principle, under the control of the researcher.

Usually there is some finite population of which the sample is a subset, drawn

according to a known probability mechanism. One of the desiderata is that each

population element have a positive probability to be included in the sample. The

probability distribution of the sample as a subset of the population is known,

but the values of the variables of non-sampled population elements are unknown.

Statistical inference is from the sample to only this finite population. If the whole

population has been observed, statistical inference has become superfluous.

The nice thing about design-based inference is that the probability distribu-

tion is under control of the researcher, while in model-based inference it is an

assumption which must be based on plausible reasoning, some basic insights into

the population and phenomena being studied, and of which the approximate va-

lidity should be checked by diagnostic methods. Because of the different nature

of the populations to which the data is being generalized, design-based inference

often is called descriptive, while model-based inference is called analytical; but

mixed forms do exist. Since most of social science aims at studying mechanisms

rather than describing specific populations, statistical methods used in the social

sciences are mainly design-based. However, textbooks and teaching of statistics

often found their probability models on design-based arguments, which leaves
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some researchers with the incorrect impression that statistical inference should

always be based on a probability sample or a good approximation to such a

procedure.

The distinction between model-based and design-based inference applies di-

rectly to statistical modeling of networks. This was stressed, e.g., in Frank (2009)

(section on Probabilistic Network Models). Design-based methods can be used

when a sample is drawn from a larger graph. An important class of designs

are link-tracing designs, where the sample uncovers nodes in waves, and the ties

found for the nodes uncovered in a given wave will in some way determined the

nodes uncovered in the next wave. Examples are snowball designs and random

walk designs (Frank, 2009). Such methods are used, e.g., to try and find members

of hard-to-reach populations and to get information about their characteristics

and the network structure of such populations. An overview of the earlier litera-

ture is in Spreen (1992). An overview of the recent method of respondent-driven

sampling is given by Gile and Handcock (2010). Model-based inference can be

used in the regular case in social network analysis where an entire network has

been observed, and it is natural or plausible to consider that the observed network

data could also have been different, in the sense of Molenaar’s (1988) “what would

happen if you did it again?”. It could have been observed on a different moment,

the individuals could have been different while the social and institutional con-

text could have remained the same, external influences could have been different,

etc. The idea of model-based inference is that in such a population of different

networks, even though vaguely described, the systematic patterns as expressed in

the parameters of the probability model would be the same, while the particular

outcome observed (in this case the outcome would be the whole network) could
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have been different. Like in all model-based inference, there would thus be a

distinction between systematic properties of the social system and random vari-

ability, one could say, between signal and noise. The aim of the statistical model

is to represent the main features of the data set – in this case, the network – by

a small number of parameter estimates, and to express the uncertainty of those

estimates by standard errors, posterior distributions, p-values, etc., which give

an indication of how different these estimates might be if indeed the researcher

would “do it again”. Checking the assumptions of the model is important to

guard against overlooking important features of the network data set, which also

could bias the features that are indeed being reported; and to have confidence in

the measures of variability that are being reported.

Inference for networks is potentially even more precarious because the tradi-

tional research design is to collect data on N = 1 network. The inferential issue

here has an internal and an external aspect, corresponding to what Cornfield and

Tukey (1956) call the two spans of the bridge of inference. The internal issue

is that although we have only one ‘system’ in the sense that potentially every-

thing depends on everything else, we do have large numbers of actors and tie

variables, and we can carry out statistical inference because reasonable assump-

tions of conditional independence or exchangeability can be made. We return to

this issue in Section 2.4. The external issue is that from the N = 1 observed

network we would like to say something about social processes and mechanisms

more generally. Whether this is reasonable depends on how ‘representative’ this

network is for other networks – a dirty word in statistics because, as Cornfield

and Tukey (1956) argued, this is a question outside of statistics. In some cases it

may be argued that indeed one particular network tells us a lot about how social
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structure and social constraints operate more generally. But nobody will deny

that such knowledge only can be solid if there is a cumulation of results over

replications, i.e., studies of broadly the same phenomenon or process in different

groups and contexts. (By the way, doing statistical inference for N = 1 is not

unusual; similar issues arise, e.g., in the economic analysis of long time series.)

More scientific progress can be made when data is available for several net-

works that may be regarded, in some sense, as replications of each other: several

schools, several companies, several villages, etc. Such data sets still are rare

but not exceptional. For example, Coleman (1961) collected friendship data for

10 schools, and more recent examples of networks collected in larger numbers

of schools are the Add Health data (Harris et al., 2003) and the ASSIST study

(Steglich et al., 2011). Such data sets with multiple networks call for a multilevel

study, or meta-analysis, of social networks, enabling generalization to a popu-

lation of networks. A first step into this direction was made by Snijders and

Baerveldt (2003), but as yet this is a thoroughly underdeveloped area of network

modeling.

2 SINGLE NETWORKS

This section treats the main various types of statistical models for single, i.e.,

cross-sectionally observed, networks.

2.1 Conditionally Uniform Models

Conditionally uniform models consider a set of statistics that the researcher

wishes to control for, and then assume that the distribution of networks is uni-

form, conditional on these statistics. Thus, each network satisfying the con-



14 Tom A.B. Snijders

straints of leading to the desired statistic has the same probability; each network

not satisfying these constraints has probability 0. This reflects the notion that

the conditioning statistics contain that which is relevant in the studied phenom-

ena, and the rest is randomness. Conditionally uniform distributions are typically

used as straw man null hypotheses. They are used in a strategy where network

properties that the researchers wishes to control for are put in the conditioning

statistic, and the theory that is put to the test is expressed by a different statistic,

for which then the p-value is calculated under the conditionally uniform distribu-

tion. This strategy has a mathematical basis in the theory of statistical tests that

are ‘similar’ (i.e., have constant rejection probability) on the boundary between

null hypothesis and alternative hypothesis, see Lehmann and Romano (2005).

Holland and Leinhardt (1976) initiated the study and application of this type

of model, emphasizing the uniform model for directed graphs conditional on the

dyad count, i.e., the numbers of mutual, asymmetric, and null dyads, denoted the

U | M,A,N distribution. They elaborated the strategy where the test statistic

is a linear function of the triad census, the vector of counts of all possible triads

(subgraphs of three nodes contained in the network). A further elaboration is

given by Wasserman (1977).

This strategy has two limitations. One is that conditionally uniform models

become very complicated, when richer sets of conditioning statistics are consid-

ered. For example, since in-degrees and out-degrees are basic indicators of actor

position, it is relevant to condition on the in-degrees as well as the out-degrees

in the network, leading to the so-called U | (Xi+), (X+i) distribution. This is

a distribution with difficult combinatorial properties. Ways to simulate it were

developed by Snijders (1991), Rao et al. (1996), Roberts (2000), and Verhelst
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(2008). McDonald et al. (2007) studied ways to simulate the U | (Xi+), (X+i),M

distribution, which also conditions on the number of mutual ties in the network.

But in practice one would like to go even further in conditioning, which however

leads to self-defeating attempts because of combinatorial complexity.

Another limitation is that the rejection of the null hypothesis does not provide

a first step toward constructing a model for the phenomenon being studied –

the only conclusion is that the observed value for the test statistic is unlikely

given the conditioning statistics if all else would be random. Because of these

limitations, conditionally uniform distributions are not used a lot currently.

2.2 Latent Space Models

A general strategy to represent dependencies in data is the latent space model

of Lazarsfeld and Henry (1968). This model assumes the existence of latent

(i.e., unobserved) variables, such that the observed variables have a simple prob-

ability distribution given the latent variables. The specification of the latent

variables is called the structural model, and the specification of the distribution

of the observed variables conditional on the latent variables is the measurement

model. Examples are factor analysis (a model proposed long before Lazarsfeld

and Henry’s book of 1968), item response theory, latent class analysis, and mix-

ture models. In these examples the data are independent across individuals, and

the aim of the latent space model is to parsimoniously represent dependencies

between multiple variables within individuals.

A number of models for social networks can be subsumed under this category.

These models all have latent variables defined for the nodes in the graph which

represent the social actors, and assume that the dyads (Xij , Xji) are conditionally
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independent, given these nodal variables. In many of them it is assumed even that

the tie variables Xij are conditionally independent, given the nodal variables.

This section reviews a number of latent space models, defining them by the

type of latent structure and the conditional distribution of the network given the

latent structure. The latent variables will be denoted by Ai for node i, with A

denoting the vector A = (A1, . . . , An). The space of values for Ai is denoted

A. In all latent structure models, this space will have some topological structure

defining the model. In all these models, the assumption is made that the dyads

(Xij , Xji) are independent given the vector A in space A. For some models

the ‘locations’ Ai of the nodes are regarded as random variables, in others as

estimable deterministic parameters, and in some cases they may be regarded as

either and the choice between random and fixed is rather a matter of estimation

strategy.

2.2.1 Discrete Space The stochastic block model of Holland et al. (1983),

Snijders and Nowicki (1994),Nowicki and Snijders (2001), and Daudin et al.

(2008) is a model in which there is a node-level categorical latent variable Ai with

K possible values for some K ≥ 2. Hence the latent space is A = {1, . . . ,K} hav-

ing no further structure; topologically, it is a discrete space. In the spirit of graph

theory, Nowicki and Snijders (2001) refer to these values as colors, leading to a

model of a colored graph with unobserved colors; one could also call this a latent

class model for the nodes. The conditional distribution of the dyads (Xij , Xji) is

assumed to depend only on Ai and Aj , the colors (or classes) of i and j. Thus for

each pair of colors (c, d) ∈ A2, there is a probability vector for the four outcomes

(0, 0), (0, 1), (1, 0), (1, 1) of the dyad (Xij , Xji). This is a stochastic version of the

concept of structural equivalence of Lorrain and White (1971). Such a model
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can represent cohesive subgroups but also very different, noncohesive subgroup

structures, such as social roles. This model has been extended by Airoldi et al.

(2008) to mixed membership models, where each node can be a member of several

classes, describing situations where the actors may play multiple roles.

2.2.2 Distance models Several variants have been developed of distance

models. A function d : N → [0,∞) is called an metric, or distance function, if it

satisfies the following axioms:

1. d(i, i) = 0 for all i ∈ N ;

2. d(i, j) = d(j, i) > 0 for all i, j ∈ N with i 6= j ;

3. d(i, j) ≤ d(i, k) + d(j, k) for all i, j, k ∈ N (triangle inequality).

In the latent metric space models, it is assumed that the nodes are points in some

metric space A = {1, . . . , n} with distance function d(i, j), and the probability

of a tie depends as a decreasing function on the distance between the points,

P{Xij = 1} = π(d(i, j)). The closer the points, the larger the probability that

they are tied.

The general definition of metric spaces is so wide that it does not lead to very

useful models; more constraints are necessary (Hoff et al., 2002). Such more

specific latent metric models are defined in the following paragraphs by posing

further restrictions on the metric.

It may be noted that the symmetry of distance functions (axiom (2) above)

implies here that the tie from i to j has the same probability as the tie in the

reverse direction, but the latent distance model does not imply a special tendency

to reciprocity.
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Ultrametric Space Freeman (1992) proposed ultrametric models as a repre-

sentation of group structure in social networks. A function d : N → [0,∞) is

called an ultrametric, or ultrametric distance, if the triangle inequality is replaced

by the stronger requirement

d(i, j) ≤ max{d(i, k), d(j, k)} for all i, j, k ∈ N .

This condition is called the ultrametric inequality. For ultrametric distances on

finite spaces, it is not a restriction to assume that the set of values of the distance

is a set of consecutive integers {0, 1, . . . ,K} for k ≥ 1.

Ultrametric distances have the property that for every cut-off point k, the

graph with edge set Ek{(i, j) | 0 < d(i, j) ≤ k} is a perfectly transitive graph,

meaning that it consists of a number of mutually disconnected cliques. Therefore

ultrametrics are useful structures for representing the transitivity of social net-

works. Schweinberger and Snijders (2003) proposed a latent ultrametric model

for nondirected graphs as a stochastic implementation of Freeman’s (1993) idea of

ultrametric spaces for representing networks, and of Pattison and Robins’ (2002)

concept of social settings. Almost the same model was proposed later by Clauset

et al. (2008). For each ‘level’ k, the graph with edge set Ek can be regarded as

a ‘smoothed’ version of the observed graph, representing the setting structure at

level k, where k = 1 represents the most fine-grained and the maximum value

k = K the most coarse settings structure.

Euclidean Space Hoff et al. (2002) proposed to specify the latent metric as a

Euclidean distance – in practice with a dimension K = 2, sometimes K = 3. For

K = 2 this means that each node is represented by two real-valued coordinates
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(Ai1, Ai2) and the distance between the two nodes is defined as

d(i, j) =
√

(Ai1 −Aj1)2 + (Ai2 −Aj2)2 .

This model is in line with the graphical representations of networks in two-

dimensional pictures, where the points are arranged in the plane in such a way

that nearby points are linked more often than points separated by large distances.

This model also represents transitivity, following from the triangle inequality and

further from the specific structure of Euclidean space.

The model of Hoff et al. (2002) accommodates explanatory variables in addition

to the latent distance, letting the probability of a tie between i and j depend

on the distance and on explanatory variables through a logistic (or other) link

function:

logit
(
P{Xij = 1}

)
= β′zij − d(i, j) , (2)

where zij is a vector of explanatory variables for the pair (i, j) and β is a vector

of regression coefficients.

To represent further group structure in addition to the transitivity already

implied by the latent Euclidean distance model, Handcock et al. (2007) comple-

mented this model with the assumption that the locations Ai are outcomes of a

mixture model of normal distributions. This is a double-layer latent structure: a

first layer consisting of the locations, a second layer consisting of the (normally

distributed) subgroups.

2.2.3 Sender and receiver effects Two generations of models have

been proposed representing actor differences with respect to sending and receiv-

ing ties as well as reciprocation. Holland and Leinhardt (1981) proposed the p1

model for directed graphs; the name p1 was chosen because they considered this
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the first plausible and viable statistical model for directed networks. In this model

dyads (Xij , Xji) are independent; each actor has two parameters αi, βi responsi-

ble, respectively, for the tendency of the actor to send ties (‘activity’, influencing

the out-degrees) and the tendency to receive ties (‘popularity’, influencing the

in-degrees); in addition there are parameters influencing the total number of ties

and the tendency toward reciprocation. The large number of parameters, two

for each actor, is a disadvantage of this model, and Fienberg and Wasserman

(1981) proposed a model in which this number is reduced by making the param-

eters dependent on categorical nodal attributes. Various other modifications and

extensions have been proposed, as reviewed in Wasserman and Faust (1994).

Another way to reduce the dimensionality of the parameter of this model,

without however postulating that actors with the same attributes have identical

distributions of their incoming and outgoing ties, was proposed by van Duijn et al.

(2004), calling this the p2 model. In this model the activity and popularity pa-

rameters are regressed on nodal and/or dyadic covariates and in addition include

random residuals, making this a random effects model. The actor-dependent

residuals for the activity and popularity effects are assumed to be correlated.

The major advantage of this model over the p1 model is the possibility to include

sender and receiver covariates, which is impossible in the p1 model because such

effects are totally absorbed by the αi and βj parameters.

This was generalized by Hoff (2005) by including in the model for the log-odds

of a tie not only random sender effects Ai, receiver effects Bj and reciprocity

effects Cij = Cji, but also bilinear effects DiDj where the Di variables again

have multivariate normal distributions.
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2.2.4 Ordered Space Hierarchical ordering is another feature that can be

exhibited by networks; a linear order, as is usual in the well-known phenomenon

of pecking orders of chickens, or more generally a partial order. Procedures

for finding linear orders, applied to dominance relations between animals, are

reviewed by De Vries (1998). In a partial order not all pairs of points are required

to be ordered. The definition of a partial order � on N is the following:

1. i � j and j � i if and only if i = j (‘antisymmetry’);

2. i � j and j � k implies i � k (‘transitivity’).

In the model proposed by Mogapi (2009), it is assumed that the nodes i are

points in a latent partially ordered apace, and probabilities of ties depend on

how the points are ordered, together with covariates. Given the partial ordering

and covariates zij , the probability of a tie is assumed to be given by

logit
(
P{Xij = 1}

)
=


π1 + β′zij if i � j

π2 + β′zij if j � i

π3 + β′zij if i 6� j and j 6� i .

(3)

2.3 Exponential Random Graph Models

A different type of model represents dependencies between ties directly, rather

than by conditioning on latent attributes. This line of modeling started with

Frank and Strauss (1986). They defined Markov dependence for distributions

on network in analogy to distributions for stochastic processes: conditioning on

the other random variables, two random variables are independent unless they

are tied (where a tie in the stochastic process case would be defined as direct

sequentiality in time). For the network case, the definition is given more precisely

as follows. The array X = (Xij) of random variables, which can also be regarded
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as a stochastic graph, is a Markov graph if for each set of four distinct nodes

{i, j, h, k}, the random variablesXij andXhk are conditionally independent, given

all the other random variables in X. This seems a plausible kind of conditional

independence, suitable for social networks.

Frank and Strauss (1986) proved that this Markov dependence for a random

nondirected graph, with the additional requirement that the probability distribu-

tion is invariant under permutation of the nodes, is equivalent to the possibility

to express the probability distribution of the graph by

P{X = x} =
exp

(
θL(x) +

∑n−1
k=2 σkSk(x) + τT (x)

)
κ(θ, σ, τ)

(4)

where L(x) =
∑

i<j xij is the edge count, T =
∑

i<j<h xijxjhxih is the triangle

count, and Sk =
∑

i

∑
j1<j2<...<jk

xij1xij2 . . . xijk is the k-star count (with S1(x) =

L(x)).

transitive triangle 6-star

Figure 1. Examples of subgraph structures.

The statistical parameters in this model are θ, σ2, . . . , σn−1, and τ . Finally,

κ(θ, σ, τ) is a normalization constant to let the probabilities sum to 1. The fact

that the logarithm of the probability is a linear combination of parameters and

statistics makes this into an exponential family of distributions (Lehmann and

Romano, 2005), an important class of statistical models for which many theoret-

ical properties are known. The statistics are the so-called sufficient statistics, as

they contain all information in the data about the values of the parameters. The

sufficient statistics here are subgraph counts, the frequency in the graph of small
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configurations: here, edges, k-stars, and triangles. The number of k-stars can be

expressed as

Sk(x) =
n∑
i=1

(
xi+
k

)
, (5)

which implies that the vector of k-star counts Sk(x) for k = 1, . . . ,K are a linear

combination of the first K moments

1

n

n∑
i=1

Xk
i+ (k = 1, . . . ,K)

of the degree distribution. Thus, if σk = 0 for all k larger than some value K,

in a distribution of graphs according to (4) each graph with the same moments

of order up to K of the degree distribution, and the same number of triangles,

is equiprobable. Often this model is used while including only a few of the σk

parameters for low k, so that the degree distribution is characterized by a few

low-order moments such as the mean, variance, and skewness.

Frank (1991) and Wasserman and Pattison (1996) generalized the Markov

graph model by proposing that the exponent in (4) could contain in principle

any statistic, thus allowing any kind of dependence between the tie variables:

Pθ{X = x} =
exp

(∑
k θksk(x)

)
κ(θ)

, (6)

where the sk(x) can be any statistics depending on the network and observed

covariates. They can be specified so as to reflect the research questions and

to obtain a good fit between model and data. This model can represent in

principle any distribution on the space of graphs that gives positive probability

to each possible graph – although such a representation will not necessarily be

parsimonious or tractable. This model was called the p∗ model by Wasserman and

Pattison (1996); more recently it has also been called the Exponential Random

Graph Model (‘ERGM’). An important subclass is obtained when the sufficient
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statistics sk(X) are subgraph counts (such as is the case for the Markov model).

Such models can be obtained from conditional independence assumptions (of

which, again, Markovian dependence is one example) based on an application of

the Hammersley-Clifford theorem, as proved in Wasserman and Pattison (1996).

Examples are the neighbourhood models of Pattison and Robins (2002) and the

models excluding ‘action at a distance’ discussed by Snijders (2010). An overview

of the Exponential Random Graph Model is presented in Robins et al. (2007) and

in the monograph Koskinen et al. (2011).

Back to the Markov model The two main virtues of the Markov model

are its possibility to represent transitivity and the distribution of degrees, as

reflected by the parameters τ and σk; and its interpretation as being equivalent

to the Markovian conditional independence property. One difficulty is related to

parameter estimation. The normalizing factor κ in (4) cannot be easily calculated

except for uninteresting special cases, which is an impediment for the calculation

of likelihoods and for traditional procedures for parameter estimation. Frank and

Strauss (1986) proposed a pseudo-likelihood estimation procedure, maximizing

the pseudo-log-likelihood defined as

∑
i,j

log
(

Pθ,σ,τ{Xij = xij | X(−ij) = x(−ij)}
)
,

where X(−ij) is the random graph X without the information about the tie vari-

able Xij . The pseudo-log-likelihood can be seen to have the same structure as

the log-likelihood for a logistic regression model, so that standard software can

be used to compute the pseudo-likelihood estimator. The dependence between

the tie variables, however, creates problems for this procedure and it later was

shown that this procedure and the correspondingly calculated standard errors are
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quite unreliable; see, e.g., van Duijn et al. (2009). When Markov chain Monte

Carlo procedures for maximum likelihood estimation were developed (Dahmström

and Dahmström, 1993; Snijders, 2002), however, a second difficulty came to the

surface. This relates to the probability distributions and is not restricted to a par-

ticular procedure for parameter estimation. Handcock (2002) found that these

distributions can be nearly degenerate in the sense that they concentrate the

probability in one or a quite small number of possible outcomes. Snijders (2002)

found that these distributions can have a bimodal shape, with the two modes

being totally different networks. Such properties are undesirable given that this

is a model for a single observation. They will occur when the transitivity param-

eter τ approaches values required to represent the tendencies toward transitivity

observed in real-world networks, unless the number of nodes is quite low (e.g., less

than 30) or the average degree is small (less than 2). These degeneracy problems

can occur even in models with τ = 0.

The conclusion of these findings is that the Markov model is not a reasonable

representation for most empirically observed social networks when they have more

than 30 nodes, average degrees more than 2, and transitivity index (1) more than

.2. Further elaborations of this problem and relevant references can be found in

Snijders et al. (2006) and Rinaldo et al. (2009).

The social circuit model As a less restrictive model, Snijders et al. (2006)

proposed the social circuit assumption, and a set of statistics satisfying this prop-

erty. This assumption states that for four distinct nodes i, j, h, k, tie indicators

Xij and Xhk are conditionally independent, given the rest of the graph, unless

the existence of these two ties would imply a 4-cycle in the graph (see Figure 2).
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An interpretation (cf. Pattison and Robins, 2002) is that in the latter case, e.g.

if Xih = Xjk = 1 as in Figure 2, the existence of the tie i − j would imply that

the four nodes i, j, h, k are jointly included in a social setting, which would affect

the conditional probability that also the tie h− k exists.

i

j

h

k

Figure 3. Creation of a 4-cycle by edges i− j and h− k.

There are many statistics satisfying the social circuit assumption that could

be chosen to represent tendencies toward transitivity as observed in social net-

work data sets. The statistics of the Markov specification (4) are not suitable

because for larger n they do not allow probability distributions concentrated

around graphs with transitivity indices having any values clearly larger than the

density of the graph, and smaller than 1. Snijders et al. (2006) propose statis-

tics that do satisfy this requirement, and that correspond to the social circuit

assumption (although they are by no means the only statistics obeying this as-

sumption). Wide experience collected since this proposal has confirmed that

these statistics allow to represent quite a large variety of observed social net-

work data sets. Two mathematically equivalent versions have been proposed,

indicated by the epithets ‘alternating’ and ‘geometrically weighted’, respectively.

The relations between these two versions is elaborated by Hunter (2007). Here

we give the geometrically weighted versions. There are three statistics: the ge-

ometrically weighted degree statistic (‘GWD’), the geometrically weighted edge-

wise shared partner statistics (‘GWESP’), and the geometrically weighted dyadic
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shared partner statistics (‘GWDSP’). The GWD is a function of the degree counts

Dr = Dr(X) defined as the number of nodes in X with degree r. The GWESP is

a function of the edgewise shared partner statistics EPr defined as the number

of unordered linked pairs (i, j) that are both connected to exactly r other nodes,

EPr =
∑
i<j

Xij I
{∑

k

XikXjk = r
}
.

Here I{A} is the indicator function of the event A, equal to 1 if A is true and 0

if it is false. The GWDSP is a function of the dyadwise shared partner statistics

DPr defined as the number of unordered pairs (i, j), irrespective of whether they

are linked, that are both connected to exactly r other nodes,

DPr =
∑
i<j

I
{∑

k

XikXjk = r
}
.

The edgewise and dyadwise shared partner statistics reflect tendencies toward

transitivity. If there is a tendency toward transitive closure, then for any given

pair (i, j), if there are many shared partners, i.e.,
∑

kXikXjk is large, then the

conditional probability of the edge i − j will be high. The problem with the

Markov specification is that the conditional log-odds of this edge increases lin-

early with the number of shared partners, which is a too strong dependence.

The exponentially weighted statistics depend on a so-called weighting parame-

ter, denoted here by α, and which attenuates the effects of high degrees, or high

numbers of shared partners. Usual values of α are nonnegative, and higher values

mean stronger attenuation. The exponentially weighted statistics are defined as

follows:

GWD(X) =
∑
r

wr(α)Dr(X)

GWESP(X) =
∑
r

wr(α)EPr(X)

GWDSP(X) =
∑
r

wr(α)DPr(X) ,
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where wr(α) is given by

wr(α) = eα
{

1−
(
1− e−α

)r}
.

This is an increasing function of r which is nearly linear in r if α is close to 0, and

more and more strongly concave is α gets larger. Therefore, for α tending to 0,

the model with these statistics approximates the Markov specification, and the

degeneracy problems may be expected to become weaker as α becomes larger.

The Exponential Random Graph Models with these sufficient statistics are further

discussed in Snijders et al. (2006); Hunter (2007); Robins et al. (2007). In data

analysis, the value of α can be set at a predetermined value or it can be estimated,

as treated in Handcock and Hunter (2006).

There is an empirical interpretation to the fact that Exponential Random

Graph Models with the Markov specification cannot be fitted to realistic so-

cial network data (assuming that the number of nodes is more than 30, average

degree more than 2, and the transitivity coefficient clearly higher than the den-

sity), whereas models with the alternating/geometrically weighted specification

can. The equivalence of the Markov specification with the conditional indepen-

dence assumption implies that this assumption must be unrealistic. Thus, it is

not reasonable to assume for social networks (under the stated extra conditions)

that for any four distinct nodes i, j, k, h, the edge indicators Xij and Xhk are

conditionally independent, given the rest of the graph; whereas the social circuit

assumption, that these edge indicators may be conditionally independent under

the additional assumption that the existence of these two edges would not create

a 4-cycle, is a more tenable approximation to networks observed in practice. It

may be noted that this calls into question the robust standard error estimates of

Lindgren (2010) discussed above, these being based on precisely this assumption.
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It is unknown whether in practice this is a restriction for the validity of these

standard errors.

2.4 Overview; Conditional Independence Assumptions

The three principles presented here for constructing network models all are based

on conditionality, but in totally different ways.

Conditionally uniform models condition on observed statistics, and try to as-

sess whether these are sufficient to represent the observed network. One very

successful application of this principle, although applied in a statistically infor-

mal way, is Bearman et al. (2004). These authors investigated the dating network

of an American high school and found that to represent the structure of the large

connected component of this network it is sufficient to condition on the degree

distribution, the restriction to heterosexual dating, the homophilous preference

for dating somebody with similar partnership experience, and a social taboo on

4-cycles. However, the conditionally uniform approach is successful only in rare

cases, because of the combinatorial complexity of the resulting distributions.

Latent space models postulate the existence of a space in which the nodes

occupy unobserved (latent) positions, such that the tie indicators are indepen-

dent conditionally on these positions. The estimation of these positions yields

a representation of the network which can give a lot of insight, comparable to

other visualizations, but with the extra element of a probabilistic interpretation.

These models have a combination of rigidity and flexibility – the assumption of a

particular type of space is rigid and limits the kinds of dependencies that can be

represented, whereas the possibility to position the points anywhere in the space

can give a lot of flexibility. The latter flexibility is mirrored by the multimodality



30 Tom A.B. Snijders

of the likelihood, which may lead to difficulties in estimation and ambiguity of

the results. These models have the property that nodes can be dropped from the

observations, without affecting the validity of the model assumptions for the re-

maining nodes. This is convenient for modeling, for example to handle randomly

missing data, but may be an unlikely assumption for networks because taking

out an actor could well have an impact on the relations between the other actors.

Exponential Random Graph Models, when using subgraph counts as sufficient

statistics, are based on conditional independence assumptions between the ob-

served tie variables. There is a large flexibility in specifying the sufficient statis-

tics, and this can give insights in dependence structures between the ties in the

network. An example is the elaboration of this type of model for directed net-

works by Robins et al. (2009), where many different dependence structures are

possible because directions of ties can be combined in so many ways. One of the

examples treated is a network of negative ties (difficulties in working with the

other person), where the specific dependence structures may be of great interest.

The latent space models for categorical and Euclidean spaces, as well as Expo-

nential Random Graph Models, now have been applied in a variety of empirical

research articles and may be regarded as being part of the advanced toolkit of

the currently up-to-date social scientist. As to choosing between these two types

of model, researchers who are interested in detailed dependence structures might

profit more from applying Exponential Random Graph Models while those inter-

ested in positions of actors might profit more from an appropriate latent space

model. For both these types of model, estimation may be difficult for large net-

works, where “large” could be operationalized as a number of nodes of the order

of one thousand or more. For latent space models the difficulty will reside in the
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multimodality of the likelihood, and for Exponential Random Graph Models in

the difficulty to achieve convergence of the algorithm. This may change as better

computational methods become available. On the other hand, the complexity of

dependencies in networks is so high that modeling large networks in a way that

passes the high requirements of a good statistical fit seems intrinsically difficult

to achieve.

3 NETWORK DYNAMICS

Longitudinal social network data, which can also be called data about network

dynamics, can be of many different kinds. Some examples, with their salient

restrictions, are the following. Friendship networks in a class of school children

may be recorded at a few moments in time, but are sure to have been changed

in between. Alliances between firms may have their starting points registered,

but not their termination dates. Large data sets of email or other electronic

communications have been registered, but often with little additional information

about the senders and receivers.

Here also there are fundamental questions about dependencies, but now the

dependencies are spread out in time, with changes in network ties depending

on structures of earlier ties in the network. The arrow of time can make the

dependencies much easier to handle, however, than for networks observed at one

time point.

Three basic distinctions can be made between statistical models for network

dynamics. First, the ties may have the nature of changeable states, like friend-

ship or enduring collaboration, or of events, like sending a message or spending

an evening together. Second, there is a distinction between models where the
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changes are being driven by the network itself (which is meaningful only for net-

works of states, not for networks of events) or by a different, perhaps unobserved,

entity. Third, the time variable indexing the dynamic network may be discrete

or continuous.

A probabilistic model for network dynamics can be represented generally as a

stochastic process X(t) (t ∈ T ), where X(t) is the value of the process at time

t and the time domain T may be discrete, such as an interval of consecutive

integers, or continuous, such as an interval of real numbers. All proposed models

for network dynamics all are based in some way on Markov chains, which are

stochastic processes X(t) for which the earlier past can be considered forgotten

in the sense that for any ‘present’ moment t0 ∈ T , the conditional probability

distribution of X(t) for all future times t > t0, given its values for the entire past

t0 ≤ t, depends only on the current value X(t0).

In some of the models proposed for network dynamics the network itself is

a Markov chain. This is applicable to networks of states, not to networks of

events; for example, it would hardly be meaningful to entertain a model where the

network of all phone calls going on at one particular moment depend as a Markov

chain on the network of past phone calls. Other models for network dynamics

can be represented as Hidden Markov Models (HMM). These are defined (Cappé

et al., 2005) as stochastic processes X(t) for which there exists another stochastic

process A(t) which itself is a Markov chain, and such that for any fixed t0, the

conditional probability distribution of X(t0), given A(t) for all t and given X(t)

for all t 6= t0, depends only on A(t0) and on nothing else.

The three distinctions mentioned above can be related in the following way to

these definitions. First, dynamic state networks can be represented in principle
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by Markov chains as well as by HMMs, whereas dynamic event networks can

be represented by HMMs. In the latter case the underlying network A(t) could

either be constructed by aggregating the past observations (and hence be directly

observable) or be unobserved. Second, for Markov chains the changes in the

network are driven by the network itself, as the most direct representation of

the network dynamics being a feedback process or a self-organizing system; for

HMMs the changes in the network are being driven by the entity A(t). Third,

the time domain T may be discrete or continuous.

OVERVIEW OF THE FOLLOWING

Many longitudinal social network data sets are network panel data, i.e., two or

more repeated measurements on the social network existing between a fixed group

of social actors (perhaps give or take a few actors who enter into the network

or leave it during the period of study). In this overview attention will be given

mainly to network panel data, for networks consisting of states.

3.1 Continuous-time models

Holland and Leinhardt (1977) had the important insight that to represent the

feedback occurring in network dynamics, generated by, for example, reciproca-

tion, transitive closure, and degree-related processes such as the Matthew effect,

it is fruitful to employ a continuous-time Markov process even though the ob-

servations are done at a few discrete time points, and to use only the creation

and termination of single ties as the basic events in such a process, with the

exclusion of simultaneous changes of more than one tie variable. This allows to

reduce complicated observations of network change to a few basic processes. The

same principle was proposed for non-network data by Coleman (1964). For dis-
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crete data it was elaborated by Kalbfleisch and Lawless (1985) and for continuous

data in the literature reviewed by Singer (2008).

With continuous-time processes one can explain, for example, the change from

a set of isolated points to a highly connected subgroup as a result of the three

basic processes of random tie creation, reciprocation, and transitive closure, op-

erating as a feedback process according to a Markov chain. This was applied

by Wasserman (1977, 1979); Leenders (1995, 1996) in models where dyads are

assumed to be independent, implying that only reciprocation and homophily are

the processes that can be represented. Wasserman (1980) presented a model

which represents degree-related processes.

3.2 Actor-oriented models

A model which allows the simultaneous representation of an arbitrary array of

processes is the actor-oriented model proposed by Snijders and van Duijn (1997)

and Snijders (2001), with a recent tutorial presentation in Snijders et al. (2010).

The term ‘actor-oriented’ refers to the idea of constructing the model as the

result of context-dependent choices made by the actors, following up the sugges-

tion by Emirbayer and Goodwin (1994) to combine structure and agency. Actors

are thought to control their outgoing ties. In line with the principles of Holland

and Leinhardt (1977), the model is a continuous-time model in which ties are

changed only one at a time, and the probabilities of changes depend on the total

current network configuration. The frequency of tie changes is modeled by the

so-called rate function λi(x;α), which indicates the frequency per unit of time

with which actor i gets the opportunity to change an outgoing tie, given the

current network state x. The choice of which tie variable to change is modeled
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using the objective function fi(x;β) which can be interpreted as a measure of how

attractive the network state x is for actor i. α and β are statistical parameters.

To define the probability of a change, we denote, for a given network x, by x(ij±)

the network which is identical to x in all tie variables except those for the ordered

pair (i, j), and for which the tie variable i→ j in x(ij±) is just the opposite of this

tie variable in x, in the sense that x
(ij±)
ij = 1 − xij . Further we formally define

x(ii±) = x.

The model operates as follows. Suppose that the current network is x. All

actors have independent, exponentially distributed waiting times until the next

time point where they are allowed to change one of their outgoing tie variables.

Let i be the actor with the shortest waiting time, who therefore is the one to

make the next change. Then the probability that the change is from network x

to network x(ij±) is given by

P{X changes to x(ij±)} =
exp

(
fi(x

(ij±);β)
)∑n

h=1 exp
(
fi(x(ih±);β)

) . (7)

In Snijders (2001) this formula is motivated based on myopic stochastic opti-

mization of the objective function, as is often used in game-theoretical models

of network formation (e.g., Bala and Goyal, 2000). When this change has been

made (if there was a change, which in this model has probability less than 1),

the process starts all over again but now from the new state.

Model specification The choice of the rate function λi(x;α) and the objec-

tive function fi(x;β) will reflect the research questions, underlying theory, and

substantive knowledge. The rate function often is constant, or dependent on

measures of the amount of activity and resources put by actor i in determining

or optimizing her network position. The objective function is usually specified as
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a linear combination

fi(x;β) =
∑
k

βk ski(x) , (8)

where the ski(x), called ‘effects’, are functions of the personal network of i. Ex-

amples are

• ski(x) =
∑

j xij (out-degree), reflecting average degrees;

• ski(x) =
∑

j xij xji (number of reciprocated dyads of actor i), reflecting

reciprocation;

• ski(x) =
∑

j,h xij xjh xih (number of transitive triplet of actor i), reflecting

transitivity;

• ski(x) =
∑

j xij x+j (sum of in-degrees of actor i’s network contacts), re-

flecting the Matthew effect.

Extensive list of possible effects are given in Snijders (2001) and Snijders et al.

(2010).

Use of continuous-time models to represent network panel data Given

an initial network for, say, time t1 = 0, the process described above defines a

continuous-time Markov chain with time parameter {t ≥ 0}. When network

panel data have been observed at time points t1 = 0 < t2 < . . . < tM , for some

M ≥ 2, the dynamics of the process between consecutive time points tm and

tm+1 is unobserved, which can be accounted for in the estimation procedure by

simulating this dynamics, cf. Snijders (2001). The distribution of X(t) does not

need to be stationary, but the transition probability distribution is assumed to

be stationary except for any time-changing parameters that may be incorporated

in the parameter vectors α and β. It is usual always to include in the rate

function a multiplicative parameter that depends on the time interval (tm, tm+1),
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to reflect the total amount of change observed when going from observation x(tm)

to observation x(tm+1).

3.3 Dynamic Exponential Random Graph Models

Discrete-time extensions of the Exponential Random Graph Model for observa-

tions x(t1), x(t2), . . . , x(tM ) can be formulated by the model

Pθ{X(t1) = x(t1), . . . , X(tM ) = x(tM )} =

exp
(∑

k θ1ks1k (x(t1)) +
∑M−1

m=1

∑
k θ2k s2k(x(tm), x(tm+1))

)
κ(θ)

,

where the effects s1k(x(t1)) and parameters θ1k are used to represent the distri-

bution of the network at X(t1), while s2k(x(tm), x(tm+1)) and θ2k represent the

conditional distribution of X(tm+1) given X(tm). Here again the distribution of

X(t) is not necessarily stationary in t, but the conditional distribution of X(tm+1)

given X(tm) is stationary, unless some of the components in s2k depend also on

m.

This model was proposed by Robins and Pattison (2001) and further elaborated

by Hanneke et al. (2010). It has in principle the same generality and the same dif-

ficulties as the Exponential Random Graph Model for single observed networks.

It does not have the parsimonious approach of the actor-oriented model which,

due to its definition in continuous time, represents network change in terms of

its most simple building block: simple tie changes. This will lead to greater

model complexity to obtain a good fit, and hence more complicated interpreta-

tion, unless the successive networks x(tm) and x(tm+1) are very close to each

other.
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3.4 Hidden Markov Models

Several kinds of discrete-time Hidden Markov Models have been proposed where

the underlying variables A(tm) are Markov chains for which the marginal dis-

tributions as well as the conditional distributions of A(tm+1) given A(tm) are

multivariate normal.

One type of such a model is proposed by Xing et al. (2010). This is a dynamic

version of the mixed membership model of Airoldi et al. (2008). Their model has

two sets of latent variables: probabilities of class membership which may change

over time, and probabilities of ties between various classes, which also may change

over time. For both of these multivariate normal distributions are being assumed,

which are transformed to the required domain of probability vectors.

Sarkar and Moore (2005) generalize the latent Euclidean distance model of Hoff

et al. (2002) to longitudinal network data. They use a random walk model for

the changes in the latent locations of the nodes.

Another Hidden Markov Model was proposed by Westveld and Hoff (2011)

(although they do not use this term). They extend the random effects model

with sender, receiver, and reciprocity effects of van Duijn et al. (2004) and Hoff

(2005) to a dynamic model with random effects also for sender, receiver, and

reciprocity effects over time. For the random effects an autoregressive normal

model is assumed – since this is a Markov chain, the resulting model is a HMM.

4 REVIEW AND FORWARD LOOK

During the last 10 years, tremendous developments have taken place in network

modeling in general, including statistical inference for network modeling. Most

of the models reviewed here have been applied fruitfully in diverse areas of social
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science. The challenge of dealing with complex network dependencies in statis-

tical inference now is starting to be met by the models and methods developed

recently – of which the models were reviewed here, but not the methods.

This article has focused on two of the basic types of network data: single and

longitudinal observations of graphs (directed or nondirected, but this is not a

major distinction), interpretable as states. This limitation is argued by noting

that this already covers a large domain, it allows illustrating important issues in

the representation of network dependencies, and it has many applications. In this

last section some connections to other models and other literature are mentioned.

4.1 Other network models

A closely related stream of network models have been developed by researchers

with a background in statistical physics and computer science. Widely known

models are the Watts-Strogatz small world model (Watts, 1999), which is a model

for large networks that combines the features of transitivity, limited degrees, and

limited path lengths (geodesics); and the scale-free network model (de Solla Price,

1976; Barabási and Albert, 1999) which yields networks where the degree distri-

bution has a power law distribution, implying that some nodes will have very

large degrees – the ‘hubs’ in the network. This stream of literature is reviewed,

e.g., in Newman et al. (2002), Watts (2004), and more recently in Toivonen et al.

(2009). These models may be regarded as micro-macro models in the sense that

they are built on simple rules for the formation of ties and study the network-

level structures that are generated. The resulting insights have percolated into

the literature on statistical modeling of social networks, as illustrated by Robins

et al. (2005) who showed how models with small world properties can be ob-
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tained from Exponential Random Graph Models, and the importance attached

to degree-related effects in stochastic actor-oriented models in Snijders et al.

(2010). Models from the physics as well as statistical backgrounds are treated in

depth by Kolaczyk (2009).

Network modeling in economics has focused on optimal network structures

when actors have relatively simple utility functions, e.g., with a cost on links

and a benefit for reaching other nodes indirectly. A review of network formation

models in economics is given by Jackson (2005), and the extensive work in this

area has led to three recent books: Goyal (2007), Vega-Redondo (2007), and

Jackson (2008). The book by Vega-Redondo also contains much material on the

techniques from statistical mechanics that are used extensively in the physics

literature on networks.

A particular feature of many published models for network dynamics assume

that nodes are added sequentially, making some ties to earlier created nodes,

while ties remain forever once they exist. This helps tractability for deriving

mathematical properties, but makes them unsuitable for modeling dynamics of

networks involving tie creation as well as tie deletion on a given, fixed node set.

There exist many more statistical models for data with a network structure.

A part of this literature is labeled ‘machine learning’, which is the name used by

computer scientist when referring to inferential problems. Extensive reviews are

given in Kolaczyk (2009) and Goldenberg et al. (2009).

4.2 Further work

The field reviewed here is in a state of vigorous development, and the models

treated are being extended in various ways. One type of extension is for other
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types of network structure: valued graphs, signed graphs, bipartite graphs, etc.

For bipartite networks, for example, Exponential Random Graph Models were

developed by Wang et al. (2009) and actor-oriented models by Koskinen and

Edling (2010). Multivariate Exponential Random Graph Models were discussed

in Koehly and Pattison (2005), while actor-oriented models for multivariate net-

works were proposed by Snijders et al. (2011). Network structure can also be

combined with other structures as dependent variables, as in the actor-oriented

model for the co-evolution of networks and behavior of Steglich et al. (2010).

Another type is the combination of several of the principles reviewed here.

An example is the combination by Krivitsky et al. (2009) of latent Euclidean dis-

tances, latent sender and receiver effects, and covariate effects, which are different

elements in the framework of latent space models. Latent space elements could

also be combined with Exponential Random Graph Models or actor-oriented

models.
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