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Abstract

Skewed data is the main issue in statistical models in healthcare costs. Data transformation is a conventional

method to decrease skewness, but there are some disadvantages. Some recent studies have employed generalized

linear models (GLMs) and Cox proportional hazard regression as alternative estimators.

The aim of this study was to investigate how well these alternative estimators perform in terms of bias and

precision when the data are skewed. The primary outcome was an estimation of population means of healthcare

costs and the secondary outcome was the impact of a covariate on healthcare cost. Alternative estimators, such as

ordinary least squares (OLS) for Ln(y) or Log(y), Gamma, Weibull and Cox proportional hazard regression models,

were compared using Monte Carlo simulation under different situations, which were generated from skewed

distributions.

We found that there was not one best model across all generated conditions. However, GLMs, especially the

Gamma regression model, behaved well in the estimation of population means of healthcare costs. The results

showed that the Cox proportional hazard model exhibited a poor estimation of population means of healthcare

costs and the β1 even under proportional hazard data. Approximately results are consistent by increasing the

sample size. However, increasing the sample size could improve the performance of the OLS-based model.

Keywords: Skewed data; Generalized linear models (GLMs); Cox proportional hazard regression; Ordinary least

squares (OLS) model; Transformation; Healthcare cost; Monte Carlo simulation

Background
Statistical models are often used in many healthcare

economics and policy studies. The main issues in such

studies are the estimation of mean population healthcare

costs and finding the best relationship between costs

and covariates through regression modeling [1]. How-

ever, these cannot be implemented by simple statistical

models as the healthcare costs data have specific charac-

terizations [2]. Healthcare costs data demonstrate the

substantial positive skewness and are sometimes charac-

terized by the use of large resources with zero cost [3].

These specifications of data impose a number of difficul-

ties in using standard statistical analysis, such as imple-

menting linear regression causes unreliable results [2].

Two-part models based on mixture models are per-

formed when excess zeroes are present in data [3]. Fur-

ther, logarithmic (or other) transformations are commonly

used to decrease the skewness and drive them close

to normal distribution, in order to implement linear

regression models. The logarithmic transformation with

ordinary least squares (OLS) regression is a very common

approach in applied economics. However, it also presents

several drawbacks. One of these drawbacks is that the

predictions are not robust enough to detect the heterosce-

dasticity in the transformed scale [1,4]. The general

consensus is that estimating the mean cost using a

logarithmic regression model leads to biased estimation

[2,4-6].

An alternative approach is using nonlinear regression

models, of which exponential conditional mean (ECM)

models in generalized linear models (GLMs) are exam-

ples [7]. Generally, GLMs extend the linear modeling

framework to allow response variables that are not

normally distributed. In healthcare studies, generalized

linear modeling through log-link function avoids the

weakness and problems of OLS regression. In addition,

the Cox proportional hazards model has been a controversial
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Table 1 Simple statistics of y

Mean Std. Dev. Coefficient of skewness Coefficient of kurtosis

Log normal σ2=0.5 1.000 0.827 1.615 5.890

Log normal σ2=1 1.000 1.200 2.070 7.684

Log normal σ2=1.5 1.000 1.524 2.368 9.017

Log normal σ2=2 1.000 1.813 2.585 10.057

n=25
Gamma α=0.5 1.000 1.402 1.962 6.885

Gamma α =1 1.000 1.022 1.544 5.400

Gamma α =2 1.000 0.760 1.247 4.565

Gamma α =4 1.000 0.576 1.040 4.051

Wiebull α=0.5 1.000 1.939 2.592 9.902

Wiebull α =1 1.000 1.028 1.565 5.488

Wiebull α =5 1.000 0.363 0.668 3.131

Log normal σ2=0.5 1.000 0.841 1.992 8.305

Log normal σ2=1 1.000 1.251 2.669 12.101

Log normal σ2=1.5 1.000 1.626 3.132 15.086

Log normal σ2=2 1.000 2.060 3.476 17.481

n=50
Gamma α=0.5 1.000 1.433 2.350 9.558

Gamma α =1 1.000 1.049 1.824 7.064

Gamma α =2 1.000 0.769 1.459 5.691

Gamma α =4 1.000 0.579 1.192 4.788

Wiebull α=0.5 1.000 2.073 3.334 16.015

Wiebull α =1 1.000 1.047 1.846 7.182

Wiebull α =5 1.000 0.361 0.666 3.234

Log normal σ2=0.5 1.000 0.868 2.339 11.213

Log normal σ2=1 1.000 1.307 3.293 18.377

Log normal σ2=1.5 1.000 1.736 3.983 24.446

Log normal σ2=2 1.000 2.159 4.512 29.521

n=100
Gamma α=0.5 1.000 1.466 2.681 12.454

Gamma α =1 1.000 1.071 2.064 8.819

Gamma α =2 1.000 0.781 1.615 6.665

Gamma α =4 1.000 0.588 1.292 5.328

Wiebull α=0.5 1.000 2.178 4.095 24.487

Wiebull α =1 1.000 1.074 2.074 8.861

Wiebull α =5 1.000 0.370 0.626 3.054

Log normal σ2=0.5 1.000 0.888 2.892 18.063

Log normal σ2=1 1.000 1.364 4.667 40.650

Log normal σ2=1.5 1.000 1.880 6.206 65.574

Log normal σ2=2 1.000 2.420 7.508 89.605

n=500
Gamma α=0.5 1.000 1.492 3.106 17.456

Gamma α =1 1.000 1.076 2.320 11.267

Gamma α =2 1.000 0.789 1.764 7.819

Gamma α =4 1.000 0.594 1.369 5.826

Wiebull α=0.5 1.000 2.293 5.650 51.600

Wiebull α =1 1.000 1.077 2.317 11.208

Wiebull α =5 1.000 0.374 0.573 2.884
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issue for healthcare data modeling. It has been used as a

special flexible model for skewed healthcare data in many

studies [8,9].

In recent years, extensive research efforts have been

done to propose suitable regression methods for the ana-

lysis of skewed healthcare data [1,3,10,11]. Many studies

also set out a clear framework for comparing these

methods from a variety of aspects [5,6,12,13]. Moreover,

a few have provided prominent reviews of the statistical

methods for analyzing healthcare data [2,7].

However, there is no comparative study that investi-

gates the different methods using different sample sizes.

This paper was conducted to compare the proposed stat-

istical models in the available literature using different

sample sizes. We specifically focused on comparing pro-

posed statistical models for positive skewed healthcare

costs, but not zero mass problems. It was developed

based on a Monte Carlo simulation to find appropriate

methods to get the unbiased and precise estimates of the

mean costs. This aspect is particularly important in the

literature [5,13]. Furthermore, in this paper, the coeffi-

cient estimations of covariates are also evaluated in our

simulations using different sample sizes.

Methods
Let yi denote healthcare expenditures for person i, and

xi denote the set of covariates, including the intercept.

We estimated the following models.

Ordinary least square based on log transformation

It is common to use linear regression models for the log

of costs in healthcare expenditures. Logarithmic trans-

formation is most commonly used to decrease skewness

and to make the distribution more symmetric and closer

to normality. The log regression model is as follows:

ln yið Þ ¼ xiβþ εi

Where it was assumed that E(xε) = 0 and E(ε) = 0, since

predicting costs on the original scale is primary objective so:

yi ¼ exp xiβþ εið Þ

E yið jxiÞ ¼ E exp εið Þ xiÞ exp xiβð Þjð

If the error term is N 0; σ2ε
� �

distribution, it is a log-

normal case, and then:

E yið jxiÞ ¼ exp xiβþ 0:5σ2
ε

� �

However, if the error term is not normally distributed, but

is homoscedastic, then the smearing estimator is applied.

Generalized linear models

GLMs are a broad class of statistical models for relating

non-normal dependent variables to linear combinations

of predictor variables. An invertible link function (g (.))

converts the expectation of the response variable, E (Yi),

to the linear predictor:

ɡ E yið Þð Þ ¼ ɡ μið Þ ¼ xiβ

The ECM model is a special type of GLM with log-

link function, and can be viewed as a nonlinear regres-

sion model:

E yið jxiÞ ¼ exp xiβð Þ

Weibull and Gamma regression models are assumed as

two special types of ECM model; β values were estimated

here using quasi-maximum likelihood estimation. The

exponential distribution was considered to be a special

case of the Weibull and Gamma regression models when

the shape parameter was equal to 1.

Cox proportional hazard model

The Cox proportional hazard model is based on hazard

and survival functions, instead of ECM or direct estimation

Table 1 Simple statistics of y (Continued)

Log normal σ2=0.5 1.000 0.882 3.030 20.532

Log normal σ2=1 1.000 1.387 5.167 53.191

Log normal σ2=1.5 1.000 1.914 7.197 94.542

Log normal σ2=2 1.000 2.492 9.016 137.859

n=1000
Gamma α=0.5 1.000 1.495 3.192 18.720

Gamma α =1 1.000 1.078 2.367 11.805

Gamma α =2 1.000 0.791 1.786 8.018

Gamma α =4 1.000 0.597 1.381 5.909

Wiebull α=0.5 1.000 2.313 6.179 65.070

Wiebull α =1 1.000 1.078 2.360 11.684

Wiebull α =5 1.000 0.373 0.575 2.872
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Table 2 Alternative estimator results for log-normal, gamma and weibull distributions for n=25

Data Estimator MPE MAPE MSE(β) 95% CI AIC Prob.
H.Lsignif

Lower upper

Log normal σ2=0.5

OLS for Ln(y) -0.13903 0.58026 0.28579 0.798 1.214 56.527 0.0484

Gamma -0.00070 0.53623 0.24738 0.765 1.221 43.796 0.0453

Weibull -0.11815 0.57319 0.25534 0.742 1.236 45.032 0.0493

Cox -1.45570 3.85240 6.77976 -1.823 -1.089 114.191 0.0522

Log normal σ2=1

OLS for Ln(y) -0.14087 0.80071 0.57158 0.715 1.303 73.856 0.0467

Gamma -0.00259 0.74803 0.47688 0.637 1.332 49.636 0.0432

Weibull -0.02790 0.75177 0.51067 0.635 1.333 49.889 0.0451

Cox -1.02151 3.67692 4.79504 -1.374 -0.670 115.543 0.0581

Log normal σ2=1.5

OLS for Ln(y) -0.14266 0.96247 0.85736 0.651 1.371 83.992 0.0481

Gamma -0.00667 0.90470 0.69826 0.523 1.427 48.094 0.0440

Weibull 0.08439 0.85470 0.76599 0.553 1.407 47.547 0.0442

Cox -0.83058 3.61682 4.04647 -1.179 -0.483 116.007 0.0544

Log normal σ2=2

OLS for Ln(y) -0.14384 1.08909 1.14315 0.597 1.429 91.184 0.0485

Gamma -0.01478 1.03115 0.91562 0.420 1.514 43.316 0.0429

Weibull 0.19665 0.91580 1.02132 0.484 1.470 42.107 0.0414

Cox -0.71755 3.58418 3.63860 -1.06 -0.373 116.245 0.0536

Gamma α=0.5

OLS for Ln(y) -0.30508 1.10870 4.184 0.327 1.646 112.098 0.1269

Gamma -0.00608 0.93533 1.831 0.514 1.405 40.684 0.0468

Weibull 0.22314 0.86661 2.132 0.509 1.426 41.359 0.0455

Cox -0.70630 3.61984 3.532 -1.054 -0.359 116.236 0.0534

Gamma α =1

OLS for Ln(y) -0.16364 0.76291 1.424 0.626 1.380 85.253 0.0727

Gamma -0.00141 0.70474 0.854 0.687 1.289 51.104 0.0470

Weibull -0.01889 0.70780 0.858 0.686 1.290 51.072 0.0481

Cox 1.07902 3.67304 4.794 -1.412 -0.714 115.454 0.0546

Gamma α =2

OLS for Ln(y) -0.14447 0.55706 0.567 0.779 1.240 62.351 0.0545

Gamma -0.00064 0.51805 0.422 0.760 1.203 45.250 0.0461

Weibull -0.11319 0. 54472 0.406 0.773 1.202 45.302 0.0485

Cox 1.52397 3.95791 6.794 -1.887 -1.161 113.989 0.0583

Gamma α =4

OLS for Ln(y) -0.13872 0.40613 0.248 0.847 1.166 42.011 0.0479

Gamma -0.00020 0.37338 0.208 0.851 1.150 32.861 0.0431

Weibull -0.12969 0.40265 0.200 0.840 1.151 33.311 0.0471

Cox -2.18196 4.31535 10.402 -2.572 -1.792 111.303 0.0486

Wiebull α=0.5

OLS for Ln(y) -0.34517 1.36816 3.73002 0.251 1.761 119.821 0.1253

Gamma -0.02216 1.15326 1.73985 0.296 1.600 22.472 0.0448

Weibull 0.43461 0.95799 2.23442 0.349 1.581 22.094 0.0408

Cox -0.51486 3.57624 2.98777 -0.948 -0.082 116.549 0.0531

Wiebull α =1

OLS for Ln(y) -0.16807 0.76539 0.93251 0.626 1.380 85.164 0.0702

Gamma -0.00210 0.70482 0.56343 0.676 1.290 51.009 0.0492

Weibull -0.01845 0.70757 0.55860 0.675 1.291 50.971 0.0502

Cox -1.04789 3.75803 4.92479 -1.489 -0.607 115.443 0.0526

Wiebull α =5

OLS for Ln(y) -0.13691 0.20584 0.03730 0.926 1.076 4.692 0.0526

Gamma -0.00006 0.17590 0.03153 0.930 1.068 0.040 0.0412

Weibull -0.08524 0.18546 0.02234 0.935 1.059 -2.112 0.0470

Cox -5.24388 7.34860 40.76941 -5.785 -4.703 96.674 0.0526
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Table 3 Alternative estimator results for log-normal, gamma and weibull distributions for n=50

Data Estimator MPE MAPE MSE(β) 95% CI AIC Prob.
H.Lsignif

Lower upper

Log normal σ2=0.5

OLS for Ln(y) -0.06472 0.56174 0.14414 0.901 1.109 110.247 0.0403

Gamma -0.00024 0.54325 0.12915 0.880 1.112 84.882 0.0377

Weibull -0.11401 0.58013 0.13512 0.865 1.119 87.987 0.0416

Cox -1.37774 3.67486 5.99725 -1.550 -1.206 292.456 0.0507

Log normal σ2=1

OLS for Ln(y) -0.06560 0.77896 0.28826 0.861 1.153 144.905 0.0375

Gamma -0.00084 0.75579 0.24681 0.809 1.169 97.178 0.0332

Weibull -0.01498 0.75773 0.27025 0.809 1.169 97.694 0.0344

Cox -0.96876 3.53907 4.20450 -1.135 -0.803 295.126 0.0536

Log normal σ2=1.5

OLS for Ln(y) -0.06646 0.93700 0.43240 0.830 1.188 165.178 0.0346

Gamma -0.00204 0.91116 0.35880 0.743 1.219 94.667 0.0309

Weibull 0.10499 0.85852 0.40537 0.766 1.206 93.005 0.0298

Cox -0.78847 3.49213 3.52210 -0.952 -0.624 296.053 0.0556

Log normal σ2=2

OLS for Ln(y) -0.06989 1.10461 0.57653 0.803 1.217 179.5625 0.0347

Gamma -0.00465 1.07701 0.46796 0.680 1.266 89.735 0.0307

Weibull 0.23242 0.95573 0.54049 0.730 1.238 86.227 0.0281

Cox -0.68152 3.46853 3.14852 -0.846 -0.520 296.522 0.0504

Gamma α=0.5

OLS for Ln(y) -0.13425 1.01591 2.105 0.675 1.334 222.881 0.1086

Gamma -0.00197 0.94922 0.891 0.772 1.208 77.941 0.0351

Weibull 0.24545 0.87554 1.055 0.770 1.219 79.168 0.0346

Cox -0.70741 3.51983 3.211 -0.871 -0.544 296.415 0.0531

Gamma α =1

OLS for Ln(y) -0.07705 0.47464 0.702 0.813 1.190 168.791 0.0608

Gamma -0.00047 0.28527 0.426 0.847 1.144 100.154 0.0388

Weibull -0.00937 0.28340 0.428 0.847 1.145 100.134 0.0389

Cox 1.03789 0.33563 4.397 -1.198 -0.871 294.821 0.0531

Gamma α =2

OLS for Ln(y) -0.06760 0.54581 0.278 0.886 1.125 122.363 0.0498

Gamma -0.00026 0.53020 0.212 0.896 1.106 87.850 0.0438

Weibull -0.11172 0.55696 0.201 0.893 1.106 88.214 0.0470

Cox 1.47746 3.80179 6.397 -1.648 -1.307 291.826 0.0504

Gamma α =4

OLS for Ln(y) -0.06486 0.39403 0.123 0.927 1.087 81.482 0.0456

Gamma -0.00003 0.38221 0.106 0.928 1.079 63.053 0.0424

Weibull -0.13114 0.41234 0.103 0.923 1.080 64.471 0.0471

Cox -2.09719 4.10274 9.736 -2.282 -1.912 286.445 0.0496

Wiebull α=0.5

OLS for Ln(y) -0.15405 1.25405 1.89494 0.638 1.396 237.978 0.1004

Gamma -0.00678 1.16471 0.84376 0.652 1.304 43.032 0.0352

Weibull 0.47033 0.96587 1.14195 0.690 1.296 41.454 0.0333

Cox -0.50825 3.47052 2.60197 -0.754 -0.264 297.097 0.0504

Wiebull α =1

OLS for Ln(y) -0.07916 0.74709 0.47373 0.819 1.199 168.664 0.0625

Gamma -0.00076 0.72112 0.28681 0.845 1.147 99.360 0.0416

Weibull -0.00859 0.72241 0.28548 0.844 1.148 99.339 0.0418

Cox -1.02239 3.63137 4.43438 -1.272 -0.776 294.819 0.0521

Wiebull α =5

OLS for Ln(y) -0.06425 0.18584 0.01895 0.964 1.040 7.720 0.051

Gamma -0.00003 0.18068 0.01658 0.967 1.035 -1.858 0.0452

Weibull -0.08750 0.19046 0.01142 0.969 1.029 -6.490 0.0534

Cox -5.11234 6.96179 38.13497 -5.360 -4.864 256.001 0.0493
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Table 4 Alternative estimator results for log-normal, gamma and weibull distributions for n=100

Data Estimator MPE MPAE MSE(β) 95% CI AIC Prob.
H.Lsignif

Lower upper

Log normal σ2=0.5

OLS for Ln(y) -0.03144 0.56088 0.06312 0.953 1.049 217.5766 0.0391

Gamma -0.00007 0.55234 0.05761 0.942 1.052 168.199 0.0361

Weibull -0.11282 0.58936 0.06098 0.935 1.057 175.260 0.0417

Cox -1.34295 3.32199 5.63414 -1.423 -1.263 716.154 0.0481

Log normal σ2=1

OLS for Ln(y) -0.03161 0.77499 0.12623 0.933 1.069 286.891 0.0365

Gamma -0.00020 0.76419 0.10963 0.907 1.081 192.904 0.0333

Weibull -0.00812 0.76533 0.12196 0.908 1.080 193.907 0.0330

Cox -0.94387 3.19872 3.91711 -1.020 -0.868 722.133 0.0479

Log normal σ2=1.5

OLS for Ln(y) -0.03195 0.93383 0.18935 0.917 1.085 327.438 0.0335

Gamma -0.00038 0.92175 0.15884 0.873 1.107 189.222 0.0300

Weibull 0.11681 0.86782 0.18295 0.887 1.099 185.001 0.0294

Cox -0.76851 3.15738 3.26405 -0.844 -0.694 724.207 0.0531

Log normal σ2=2

OLS for Ln(y) -0.03217 1.05939 0.25247 0.904 1.098 356.206 0.0320

Gamma -0.00068 1.04672 0.20674 0.840 1.132 172.665 0.0283

Weibull 0.23968 0.92933 0.24393 0.869 1.113 163.925 0.0276

Cox -0.66436 3.13647 2.90548 -0.738 -0.590 725.262 0.0544

Gamma α=0.5

OLS for Ln(y) -0.06210 0.98793 0.924 0.842 1.149 444.474 0.1015

Gamma -0.00071 0.95946 0.382 0.899 1.099 151.970 0.0366

Weibull 0.25749 0.88296 0.456 0.896 1.102 154.259 0.0380

Cox 0.69973 3.18874 2.997 -0.700 -0.626 724.990 0.050

Gamma α =1

OLS for Ln(y) -0.03843 0.74577 0.307 0.915 1.093 335.557 0.0569

Gamma -0.00026 0.73384 0.185 0.934 1.072 196.691 0.0391

Weibull -0.00460 0.73458 0.185 0.934 1.072 196.682 0.0395

Cox -1.02065 3.27855 4.182 -1.095 -0.947 721.285 0.0518

Gamma α =2

OLS for Ln(y) -0.03271 0.54277 0.120 0.946 1.057 242.168 0.0504

Gamma -0.00011 0.53579 0.092 0.950 1.494 171.847 0.0434

Weibull -0.11069 0.56268 0.087 0.949 1.049 172.908 0.0471

Cox -1.44678 3.44580 6.080 -1.525 -1.369 714.645 0.0503

Gamma α =4

OLS for Ln(y) -0.03138 0.39126 0.053 0.966 1.040 160.228 0.0436

Gamma -0.00001 0.38627 0.046 0.967 1.037 122.262 0.0403

Weibull -0.13163 0.41676 0.044 0.964 1.038 125.708 0.0515

Cox -2.05432 3.72857 9.359 -2.138 -1.970 702.730 0.0506

Wiebull α=0.5

OLS for Ln(y) -0.07169 1.20997 0.82955 0.830 1.186 473.993 0.0833

Gamma -0.00180 1.16992 0.36191 0.839 1.145 83.622 0.032

Weibull 0.48656 0.96925 0.50264 0.856 1.138 79.302 0.0345

Cox -0.49779 3.13454 2.38376 -0.668 -0.330 726.558 0.0485

Wiebull α =1

OLS for Ln(y) -0.03853 0.74709 0.20739 0.915 1.093 335.3635 0.0574

Gamma -0.00025 0.73522 0.12587 0.928 1.068 196.7417 0.0399

Weibull -0.00400 0.73582 0.12566 0.928 1.068 196.7316 0.0397

Cox -1.00326 3.28425 4.16180 -1.176 -0.834 721.3257 0.0505

Wiebull α =5

OLS for Ln(y) -0.03115 0.18335 0.00829 0.983 1.019 13.476 0.0480

Gamma -0.00001 0.18277 0.00738 0.984 1.016 -7.0357 0.0437

Weibull -0.08850 0.19266 0.00503 0.986 1.014 -16.598 0.0639

Cox -5.04559 6.57363 36.88155 -5.160 -4.932 636.392 0.0472
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Table 5 Alternative estimator results for log-normal, gamma and weibull distributions for n=500

Data Estimator MPE MPAE MSE(β) 95% CI AIC Prob.
H.Lsignif

Lower upper

Log normal σ2=0.5

OLS for Ln(y) -0.00617 0.55823 0.01166 0.991 1.011 1075.552 0.0438

Gamma -0.000002 0.55662 0.01079 0.989 1.011 830.756 0.0405

Weibull -0.11093 0.59335 0.01155 0.987 1.011 870.429 0.0538

Cox -1.31086 3.10119 5.36566 -1.326 -1.296 5157.713 0.0490

Log normal σ2=1

OLS for Ln(y) -0.00625 0.76743 0.02331 0.987 1.015 1422.125 0.0444

Gamma -0.00002 0.76539 0.02041 0.981 1.017 953.996 0.0380

Weibull -0.00211 0.76577 0.02309 0.982 1.016 958.951 0.0382

Cox -0.92086 3.01376 3.71427 -0.935 -0.907 5189.630 0.0543

Log normal σ2=1.5

OLS for Ln(y) -0.00646 0.92875 0.03497 0.985 1.019 1624.858 0.0406

Gamma -0.00004 0.92652 0.02935 0.974 1.022 945.716 0.0338

Weibull 0.12644 0.87192 0.03464 0.978 1.020 919.644 0.0351

Cox -0.74999 2.98739 3.08671 -0.764 -0.736 5200.723 0.0474

Log normal σ2=2

OLS for Ln(y) -0.00665 1.05164 0.04662 0.983 1.021 1768.699 0.0407

Gamma -0.00006 1.04944 0.03788 0.966 1.028 867.320 0.0316

Weibull 0.25187 0.93223 0.04619 0.974 1.024 813.451 0.0371

Cox -0.64857 2.97510 2.74186 -0.663 -0.635 5206.363 0.0500

Gamma α=0.5

OLS for Ln(y) -0.01173 0.97145 0.170 0.966 1.026 2218.380 0.0814

Gamma -0.00010 0.96635 0.069 0.981 1.019 745.079 0.0395

Weibull 0.26621 0.88808 0.082 0.979 1.018 756.009 0.0613

Cox -0.69386 3.04111 2.896 -0.999 -0.388 5204.358 0.050

Gamma α =1

OLS for Ln(y) -0.00739 0.73625 0.056 0.984 1.018 1669.842 0.0582

Gamma -0.00001 0.73405 0.034 0.987 1.014 960.724 0.0431

Weibull -0.00095 0.73423 0.034 0.987 1.014 960.723 0.0438

Cox -1.00444 3.10634 4.035 -1.019 -0.990 5184.427 0.0468

Gamma α =2

OLS for Ln(y) -0.00643 0.54150 0.022 0.999 1.013 1202.164 0.0452

Gamma -0.00002 0.54021 0.017 0.992 1.011 844.867 0.0403

Weibull -0.10982 0.56708 0.016 0.992 1.011 851.287 0.0546

Cox -1.42736 3.23880 5.909 -1.442 -1.413 5148.590 0.0461

Gamma α =4

OLS for Ln(y) -0.00606 0.39091 0.010 0.993 1.007 792.221 0.0443

Gamma 0.000004 0.39006 0.008 0.993 1.007 598.026 0.0416

Weibull -0.13200 0.42060 0.008 0.993 1.007 617.434 0.1017

Cox -2.01502 3.48489 9.092 -2.031 -1.999 5086.403 0.0486

Wiebull α=0.5

OLS for Ln(y) -0.01379 1.18150 0.15321 0.962 1.032 2362.321 0.0606

Gamma -0.00012 1.17416 0.06475 0.965 1.025 411.304 0.0338

Weibull 0.49762 0.97207 0.09307 0.969 1.025 384.861 0.0693

Cox -0.49022 2.99166 2.25145 -0.563 -0.421 5213.082 0.0495

Wiebull α =1

OLS for Ln(y) -0.00741 0.73714 0.03830 0.980 1.016 1669.173 0.0530

Gamma -0.00002 0.73494 0.02327 0.984 1.012 961.400 0.0421

Weibull -0.00082 0.73506 0.02326 0.984 1.012 961.376 0.0418

Cox -0.99154 3.11589 4.00036 -1.066 -0.922 5184.367 0.0473

Wiebull α =5

OLS for Ln(y) -0.00605 0.18346 0.00153 0.996 1.004 59.7355 0.0453

Gamma -0.000003 0.18362 0.00138 0.997 1.003 -51.535 0.0447

Weibull -0.08896 0.19356 0.00093 0.997 1.003 -101.476 0.2244

Cox -5.00813 6.36391 36.15827 -5.029 -4.987 4737.774 0.0530

Malehi et al. Health Economics Review  (2015) 5:11 Page 7 of 16



Table 6 Alternative estimator results for log-normal, gamma and weibull distributions for n=1000

Data Estimator MPE MPAE MSE(β) 95% CI AIC Prob.
H.Lsignif

Lower upper

Log normal σ2=0.5

OLS for Ln(y) -0.00311 0.55282 0.00586 0.996 1.006 2147.649 0.0488

Gamma -0.00001 0.55202 0.00543 0.994 1.006 1642.073 0.0436

Weibull -0.10959 0.58828 0.00583 0.994 1.006 1722.864 0.0701

Cox -1.30433 3.10889 5.32271 -1.312 -1.296 11694.099 0.0467

Log normal σ2=1

OLS for Ln(y) -0.00326 0.77307 0.01172 0.995 1.009 2840.796 0.0488

Gamma -0.00001 0.77202 0.01028 0.990 1.008 1924.378 0.0419

Weibull -0.00120 0.77225 0.01166 0.990 1.008 1934.411 0.0417

Cox -0.91650 3.02844 3.68525 -0.923 -0.909 11757.613 0.0467

Log normal σ2=1.5

OLS for Ln(y) -0.00339 0.92803 0.01759 0.994 1.010 3246.261 0.0477

Gamma -0.00002 0.92689 0.01477 0.986 1.010 1893.638 0.0393

Weibull 0.12788 0.87225 0.01749 0.988 1.010 1839.946 0.0433

Cox -0.74664 3.00457 3.06286 -0.754 -0.740 11779.664 0.0479

Log normal σ2=2

OLS for Ln(y) -0.00351 1.05067 0.02344 0.993 1.013 3533.943 0.0463

Gamma -0.00002 1.04957 0.01904 0.981 1.013 1738.981 0.0354

Weibull 0.25118 0.92331 0.02331 0.987 1.011 1607.688 0.0480

Cox -0.64582 2.99362 2.72102 -0.653 -0.639 11790.872 0.0543

Gamma α=0.5

OLS for Ln(y) -0.00551 0.96948 0.085 0.978 1.007 4435.972 0.0845

Gamma -0.00001 0.96709 0.034 0.989 1.008 1487.309 0.0417

Weibull 0.26721 0.88856 0.041 0.989 1.007 1508.951 0.0931

Cox -0.69278 3.06113 2.881 -0.700 -0.686 11786.66 0.0505

Gamma α =1

OLS for Ln(y) -0.00374 0.73620 0.028 0.992 1.009 3337.268 0.0540

Gamma -0.000001 0.73511 0.017 0.993 1.006 1919.125 0.0420

Weibull -0.00042 0.73519 0.017 0.993 1.006 1919.131 0.0417

Cox -1.00124 3.1238 4.015 -1.008 -0.994 11747.09 0.0529

Gamma α =2

OLS for Ln(y) -0.00318 0.54246 0.011 0.995 1.006 2401.279 0.0481

Gamma -0.00001 0.54183 0.009 0.995 1.005 1691.20 0.0447

Weibull -0.10998 0.56877 0.008 0.995 1.005 1704.418 0.0785

Cox -1.42245 3.24810 5.882 -1.430 -1.415 11675.63 0.0533

Gamma α =4

OLS for Ln(y) -0.00305 0.39286 0.005 0.996 1.003 1581.076 0.0455

Gamma -0.000004 0.39244 0.004 0.997 1.003 1203.85 0.0435

Weibull -0.13273 0.42318 0.004 0.997 1.004 1243.481 0.2093

Cox -2.00825 3. 48492 9.047 -2.016 -2.000 11551.56 0.0518

Wiebull α=0.5

OLS for Ln(y) -0.00654 1.17692 0.07707 0.978 1.014 4722.98 0.0643

Gamma -0.00004 1.17347 0.03245 0.980 1.012 819.453 0.0378

Weibull 0.49853 0.97136 0.04682 0.983 1.011 765.204 0.1416

Cox -0.48930 3.01307 2.23645 -0.543 -0.439 11804.08 0.0492

Wiebull α =1

OLS for Ln(y) -0.00361 0.73627 0.01926 0.989 1.007 3336.686 0.0560

Gamma -0.00001 0.73520 0.01171 0.991 1.006 1919.109 0.0426

Weibull -0.00042 0.73527 0.01170 0.991 1.005 1919.06 0.0432

Cox -0.99001 3.13384 3.98134 -1.044 -0.940 11746.65 0.0509

Wiebull α =5

OLS for Ln(y) -0.00301 0.18367 0.00077 0.998 1.002 117.810 0.0397

Gamma -0.000001 0.18377 0.00069 0.998 1.002 -105.433 0.0393

Weibull -0.08904 0.19371 0.00047 0.998 1.002 -205.982 0.6238

Cox -5.00343 6.35876 36.0715 -5.014 -4.992 10855.17 0.0485
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of E (y|x). It is a semi-parametric model because it does not

specify the baseline hazard function:

h yið jxiÞ ¼ h0 yð Þ exp xiβð Þ

Where h0(y) is the baseline hazard, estimated using the

Breslow method. The main issue in this model, which

should be considered, is the proportional hazard assump-

tion. This means that the hazard ratio of two individuals is

independent of time [14]. Note that the interpretation of

the estimated coefficients in this model is based on hazard

ratio rather than the covariate effect on the mean.

Comparing model performance

The interested estimations are evaluated as follows:

Two statistics were calculated to evaluate the quality

of cost predictions using above mentioned models. The

first was the mean prediction error (MPE), which measures

the bias and predictive accuracy, and the second was the

mean absolute prediction error (MAPE):

MPE ¼ 1

n

X

n

i¼1

yi−ŷið Þ

MAPE ¼ 1

n

X

n

i¼1

yi−ŷij j

Actually, MPE indicates how the mean of predicted

healthcare expenditures from a particular model compares

with the mean of healthcare costs. Models with lower

values of MPE have smaller biases than models with higher

values. However, MAPE indicates how values of individual

predicted healthcare expenditures from a particular model

compare with values of actual healthcare expenditures in

the sample [6].

Mean square of error (MSE) and 95% confidence interval of

the estimate of β1 coefficient were calculated to evaluate the

accuracy and precision of the estimated parameter. A more

precise estimator should be closer to the true value. A

Goodness of fit test provided by Hosmer-Lemeshow test and

the Akaike information criteria (AIC) used as an aid to choos-

ing between competingmodels. Lower values of the AIC indi-

cate the preferred model criterion were also used to evaluate.

The mean of the residuals across deciles of x was also plotted

in order to assess a systematic bias in the predictions.

Simulation study

To compare the performance of the alternative models,

a Monte Carlo simulation was used to show how each

estimator behaves under different conditions of skewness

that are common in healthcare expenditure studies.

To determine the effect of the level of skewness on the

estimated outcome, some skewed probability density

function (pdf), such as log-normal, Gamma and Weibull

distribution, was used as a data-generating mechanism.

a b c d

Figure 1 Mean residual from different estimators across deciles of ‘X’ for log-normal data (n=25) with variance a: 0.5, b: 1.0, c: 1.5, d: 2.0.

Figure 2 Mean residual from different estimators across deciles of ‘X’ for Gamma data (n=25) with shape parameter a: 0.5, b: 1, c: 2, d: 4.
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To assess how the sample size affects the estimations,

10,000 times batch samples (n = 25, 50, 100, 500 and

1,000) were examined by comparing all models men-

tioned in the previous section. All generated data were

standardized according to Basu et al., in which β0 was

considered as intercept, estimated assuming E(y) = 1.

Log-normal data generation

The true model assumed is as follows:

ln yð Þ ¼ β0 þ β1 þ ε

Where x is uniform (0, 1), ε ∼N(0, σ2), in which σ2 =

0.5, 1.0, 1.5, and β1 = 1 were used. β0 was estimated

based on E(y) =1:

E y xÞ ¼ exp β0 þ β1xþ 0:5σ2
� �

�

�

�

The skewness of log-normal models is an increasing

function of the variance as follows:

exp σ2
� �

þ 2
� �

exp σ2
� �

−1
� �0:5

We considered σ2 = 0.5, 1, 1.5 and 2.

Gamma data generation

The pdf of Gamma distribution is:

f yð Þ ¼ 1

Γ αð Þbα y
α−1e−y=b

Where b = exp(β0 + β1x) and α are the scale and shape

parameters, respectively. The mean is equal to αb and

the skewness is a decreasing function of the shape par-

ameter, as follows:

2
ffiffiffi

α
p

Where x is uniform (0, 1), β1 = 1 and β0 was estimated

so that E(y) = 1. Also, we used the assumption that α =

0.5, 1, 2 and 4 in the data generating process.

Weibull data generation

Weibull data generation is considered as a function of

the data-generating mechanism, which has proportional

hazard properties. It was used to generate proportional

a b c

Figure 3 Mean residual from different estimators across deciles of ‘X’ for Weibull data (n=25) with shape parameter a: 0.5, b: 1, c: 5.

a b c d

Figure 4 Mean residual from different estimators across deciles of ‘X’ for log-normal data (n=50) with variance a: 0.5, b: 1.0, c: 1.5, d: 2.0.
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hazard data, since the Cox proportional hazards model

is based on this assumption:

f yð Þ ¼ α

b

y

b

� �αþ1

e −y=bð Þα

Where b = exp(β0 + β1x) and α are the scale and shape

parameters, respectively. The mean is equal to bΓ 1þ 1
α

� �

and the skewness is also a decreasing function of the

shape parameter, as follows:

b3Γ 1þ 3

α

� 	

−3Γ 1þ 1

α

� 	

Γ 1þ 2

α

� 	

þ 2 Γ 1þ 1

α

� 	� 	3

Shape parameter was considered as 0.5, 1 and 5 in this

scenario. The proportional hazards assumption was eval-

uated in all of the simulations.

Results
Mean, standard deviation, skewness and kurtosis for the

y in various data-generating mechanisms are presented

in Table 1. Based on this result, the log-normal and

Weibull models provided greater skewness than the

Gamma model. It should be noted that the skewness of

data from the log-normal and Gamma models increased

monotonically as the sample size increased.

The results in Tables 2, 3, 4, 5 and 6 were based on

10,000 times batch replication, in sample sizes of 25, 50,

100, 500 and 1,000, respectively. These tables show the

results of the estimates of population means and β1 for

each model under the various data-generating processes.

Minimum deviance (MPE) and absolute deviance (MAPE)

of predicting the value of the response variable (health-care

costs) considered as adequacy of methods.

Generally, entire models exhibited lower MPE by declin-

ing skewness and increasing sample size. However, the

Gamma regression model had the smallest biases across all

data-generating processes. Moreover, our results indicated

that its ability to predict the expenditures in a small sample

size was as good as for large sample sizes. Furthermore,

OLS for Ln(y) and Weibull regression models showed a

lower bias than the Cox proportional hazard model, even

in proportional hazard data-generating process (Figure 1).

Figure 5 Mean residual from different estimators across deciles of ‘X’ for Gamma data (n=50) with shape parameter a: 0.5, b: 1, c: 2, d: 4.

a b c

Figure 6 Mean residual from different estimators across deciles of ‘X’ for Weibull data (n=50) with shape parameter a: 0.5, b: 1, c: 5.
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In addition, evaluating MAPE as an accuracy measure

showed that Gamma and Weibull regression models

have almost equal MAPE values. In many conditions,

such as the log-normal model with σ2 = 1.5, 2, the

Gamma model with shape equal to 0.5 (monotonically

declining pdf ) and the Weibull model with shape equal

to 0.5 (linearly increasing hazard), as higher skewness

data-generating mechanisms, the MAPE from Weibull

regression model was always lower than Gamma regres-

sion model.

Interestingly, as the sample size increased, the MAPE

of OLS for Ln(y) became very similar to that of the

Gamma regression model. However, the MAPE of all

models had an insignificant upward trend as the sample

size increased.

Since there was also a concern about consistency and

precision in the estimates of β1 coefficients, MSE and

95% simulation intervals were investigated. All three

regression Gamma and Weibull and OLS for Ln(y)

models provided approximately similar MSEs of β1 as

data generated using log normal. However, the Gamma

regression model showed minimum MSE values. We

also found that MSE decreased by reducing skewness

and increasing sample size. For the Weibull-generated

data, Gamma and Weibull regression models exhibited

similar and minimum values of MSE. Under all data-

generating mechanisms, 95% simulation intervals were

closer to true values in all three regression models. Sur-

prisingly, the Cox proportional hazard model revealed

maximum MSE and less accurate 95% simulation inter-

vals, even within proportional hazards data-generating

scenario.

Comparison goodness of fit tests (Hosmer-Lemeshow

test and AIC criterion) revealed that, under a different

range of data conditions, Gamma and Weibull regres-

sion models were better behaved. Finally, investigation

of the pattern of the residuals as a function of X, which

have been implemented by the mean of the residuals

across deciles of X, showed more bias for the Cox pro-

portional hazard model across all generated data and

sample sizes (see Figures 2-15).

Discussion
Although there are many substantial studies addressing

the statistical issues in healthcare cost analysis over the

last few decades, it is still an important issue that needs

further evaluation. In this paper, we assessed the per-

formance of various well-known statistical regression-

based models in healthcare expenditure analysis,

through different sample sizes and data-generating pro-

cesses, using a Monte Carlo simulation. Each model was

evaluated on 10,000 batch random samples, with 25, 50,

a b c d

Figure 7 Mean residual from different estimators across deciles of ‘X’ for log-normal data (n=100) with variance a: 0.5, b: 1.0, c: 1.5, d: 2.0.

a b c d

Figure 8 Mean residual from different estimators across deciles of ‘X’ for Gamma data (n=100) with shape parameter a: 0.5, b: 1, c: 2, d: 4.
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a b c

Figure 9 Mean residual from different estimators across deciles of ‘X’ for Weibull data (n=100) with shape parameter a: 0.5, b: 1, c: 5.

dcba

Figure 10 Mean residual from different estimators across deciles of ‘X’ for log-normal data (n=500) with variance a: 0.5, b: 1.0, c: 1.5,

d: 2.0.

Figure 11 Mean residual from different estimators across deciles of ‘X’ for Gamma data (n=500) with shape parameter a: 0.5, b: 1, c: 2,

d: 4.
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a b c

Figure 12 Mean residual from different estimators across deciles of ‘X’ for Weibull data (n=500) with shape parameter a: 0.5, b: 1, c: 5.

a b c d

Figure 14 Mean residual from different estimators across deciles of ‘X’ for Gamma data (n=1000) with shape parameter a: 0.5, b: 1,

c: 2, d: 4.

dcba

Figure 13 Mean residual from different estimators across deciles of ‘X’ for log-normal data (n=1000) with variance a: 0.5, b: 1.0, c: 1.5,

d: 2.0.
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100, 500 and 1,000 sample sizes. Other studies were per-

formed using just one large sample size (such as 10,000)

[5,10], while we know the sample size is an important

issue in healthcare studies and in precision of model-

based estimators.

We found that, by considering the different interest

points of various research and various data conditions,

different model-based estimators could be used. Indeed,

no estimator is considered to be the best across all

ranges of data-generating processes. In addition, the ac-

curacy of the results was almost the same in all sample

sizes.

However, the GLMs estimated population means more

precisely in all data-generating processes and sample

sizes. In this respect, our results are consistent with

other studies [2,5,6,10]. Comparative studies between log

models were evaluated on 1,000 random samples, with a

sample size of 10,000. They found almost identical re-

sults in estimating the slope β1, but the GLMs were sub-

stantially more precise than OLS-based model [5]. In

this paper, as the sample size increased, the precision of

estimating the mean population and the β1 using an

OLS-based model became closer to that of GLMs.

Based on our result, the Gamma regression model

provided more accurate estimates of population mean.

In other studies, which compare log and Cox propor-

tional hazard models, the Gamma regression model was

introduced as the reasonable model across all of the

simulation processes [13]. They have also found that the

Cox proportional hazard model exhibited good perform-

ance when data were generated by distribution with a

proportional hazards assumption [13]. In this paper, a

Weibull distribution was selected as the proportional

hazard data-generating mechanism. In addition, investi-

gating proportional hazards assumption detected that

gamma generation process also has produced data with

proportional hazard properties but the Cox proportional

hazard model showed a poor result within these data

generation process. We also found that the Cox propor-

tional hazard model behaved poorly in other data gener-

ation scenarios.

Our study has some limitations, including the fact that

our focus was on generating skewed data, while kurtosis

may have affected the results. Furthermore, the study

was limited to fixed covariates.

Conclusions
Selecting the best model is dependent on the interest

point of research, which could be the estimated mean of

the population or covariate effects. There is no best

model among all data conditions. It seems that the

GLMs, especially the Gamma regression model, behave

well regarding the estimation of population means of

healthcare costs in most of the conditions. The results

are consistent among all sample sizes; however, increas-

ing sample size leads to improvement in the perform-

ance of the OLS-based model.

Based on estimation of the β1, GLMs seems to provide

plausible estimations and as the sample size increased,

estimated the β1 more precisely in all data-generating

processes. Under all data generation, process even propor-

tional hazard data generation scenarios the Cox propor-

tional hazard model provided a poor estimation of mean

population and the β1.
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Malehi et al. Health Economics Review  (2015) 5:11 Page 15 of 16



Acknowledgements

This study is part of biostatistics MS degree thesis of Fatemeh Pourmotahari

and it was supported by the Ahvaz Jundishapur University of Medical Sciences.

Received: 13 August 2014 Accepted: 6 March 2015

References

1. Gregori D, Petrinco M, Bo S, Desideri A, Merletti F, Pagano E. Regression

models for analyzing costs and their determinants in health care: an

introductory review. Int J Qual Health Care. 2011;23(3):331–41.

2. Mihaylova B, Briggs A, O’Hagan A, Thompson SG. Review of statistical

methods for analysis healthcare resources and costs. Health Econ.

2011;20:897–916.

3. Gilleskie DB, Mroz TA. A flexible approach for estimating the effects of

covariates on health expenditures. J Health Econ. 2004;23:391–418.

4. Cantoni E, Ronchetti E. A robust approach for skewed and heavy-tailed

outcomes in the analysis of health care expenditures. J Health Econ.

2006;25(2):198–213.

5. Manninga WG, Mullahy J. Estimating log models: to transform or not to

transform? J Health Econ. 2001;20:461–94.

6. Deb P, Burgess JF. A quasi-experimental comparison of econometric models

for health care expenditures. New York: Hunter College Department of

Economics; 2003. Report No.: 212.

7. Basu A, Manning WG. Issues for the next generation of health care cost

analyses. Med Care. 2009;47(7):S109–14.

8. Ravangard R, Arab M, Rashidian A, Akbarisari A, Zare A, Zeraati H.

Comparison of the results of cox proportional hazards model and

parametric models in the study of length of stay in a tertiary teaching

hospital in Tehran. Iran Acta Med Iran. 2011;49(10):650–8.

9. Jain AK, Strawderman RL. Flexible hazard regression modeling for medical

cost data. Biostatistics. 2002;3(1):101–18.

10. Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk

adjustment of skewed outcomes data. J Health Econ. 2005;24:465–88.

11. Faddy M, Graves N, Pettitt A. Modeling length of stay in hospital and other

right skewed data: comparison of phase-type, gamma and log-normal

distributions. Value Health. 2009;12(2):309–14.

12. Griswold M, Parmigiani G, Potosky A, Lipscomb J. Analyzing health care

costs: a comparison of statistical methods motivated by Medicare colorectal

cancer charges. Biostatistics. 2004;1(1):1–23.

13. Basu A, Manning WG, Mullahy J. Comparing alternative models: log vs Cox

proportional hazard? Health Econ. 2004;13:749–65.

14. Lee ET, Wang JW. Statistical methods for survival data analysis. 3rd ed. New

Jersey: John Wiley & Sons; 2003.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Malehi et al. Health Economics Review  (2015) 5:11 Page 16 of 16


	Abstract
	Background
	Methods
	Ordinary least square based on log transformation
	Generalized linear models
	Cox proportional hazard model
	Comparing model performance
	Simulation study
	Log-normal data generation
	Gamma data generation
	Weibull data generation

	Results
	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

