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Abstract—We offer a novel representation scheme for view-based motion analysis
using just the change in the relational statistics among the detected image features,
without the need for object models, perfect segmentation, or part-level tracking. We
model the relational statistics using the probability that a random group of features
in an image would exhibit a particular relation. To reduce the representational
combinatorics of these relational distributions, we represent them in a Space of
Probability Functions (SoPF), where the Euclidean distance is related to the
Bhattacharya distance between probability functions. Different motion types sweep
out different traces in this space. We demonstrate and evaluate the effectiveness of
this representation in the context of recognizing persons from gait. In particular, on
outdoor sequences 1) we demonstrate the possibility of recognizing persons from
not only walking gait, but running and jogging gaits as well, 2) we study recognition
robustness with respect to view-point variation, and 3) we benchmark the
recognition performance on a database of 71 subjects walking on soft grass
surface, where we achieve around 90 percent recognition rates in the presence of
viewpoint variation.

Index Terms—Biometrics, gait recognition, relational statistics, probabilistic
modeling.
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1 INTRODUCTION

IN computer vision, the focus on identification from gait, unlike gait
analysis or human motion recognition, is relatively new, except for a
few demonstrations on small data sets [13], [12] in the 1990s. Over
the last two years, a variety of techniques have been employed for
gait-based recognition, i.e., using static body and stride parameters
[4], view normalized silhouette part-based approach [19], shape
symmetry [7], velocity moments [20], model-based approach [21],
self-similarity plots [1], stride-length/cadence [2], silhouette width
coupled with HMMs [11], and body shape [5]. The contributions of
our present work lies in that it does not require part-level tracking,
correspondence, alignment, part labeling, or near perfect segmenta-
tion. Most works rely on at least part-level tracking/correspondence
[4], partlabeling [19], require alignment of silhouettes across frames
[2] or are sensitive to the quality of the silhouette [19], [7], [5], or
require optic flow computations [12]. In addition, we demonstrate
results on a database of 71 subjects taken outside, which is
competitive with respect to the present state of art that uses five to
25 to 44 subjects, in most cases, imaged indoors.

We propose a novel strategy that emphasizes the change of the
feature spatial relationships with motion, rather than the attributes
of the individual features. With motion, the statistics of the
relationships among the image features change. This change or
nonstationarity in relational statistics is not random, but follow the
motion pattern. The shape of the probability function governing the
distribution of the interfeature relations that can be estimated by the
normalized histogram of observed values, changes as parts of the
object move. We have developed the concept of a space over these
probability functions, which we refer to as the SoPF (Space of
Probability Functions), to study the trend of change in their shapes.
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Distances in this space are related to the Bhattacharya distance
between probability mass functions. Each motion type creates a
trace in this space. By focusing on the change in relational
parameters over time, we bring the dynamic aspects of the motion
into fore. The use of feature attribute histograms is not new,
however, the only use of relational histograms that we are aware of
is by Huet and Hancock [8], who use it for image database indexing.
The novelty of the present contribution lies in that we offer a strategy
for incorporating dynamic aspects and use it for motion-based
recognition of humans.

In the context of gait-based recognition, the specific questions that
we explore in this paper are: 1) Can we identify persons from not just
walking gait but jogging and running as well? 2) Is gait viewed
frontal-parallel (which is the current practice) the only possibility?
Can we identify humans from gait viewed at 22.5 degrees and
45degrees? 3) Can weidentify persons from alarge gallery of persons
walking on soft surfaces with partial occlusion of the feet?

2 RELATIONAL DISTRIBUTIONS

We view an image as an assemblage of low-level features. The
structure perceived in an image is determined more by the
relationships among features than by the individual feature
attributes. Our goal is to devise a mechanism to capture this
structure so that we can use its change with time to model high-
level motion patterns. We avoid the need for feature correspon-
dences by focusing on the statistical distribution of the relational
attributes observed in the image.

Definition 1. Let 1) F = {f1,-- -, fn} represent the set of N features in
an image, 2) Fy represent a random k-tuple of features, and 3) the
relationship among these k-tuple features be denoted by Ry.

Thus, 2-ary relationships between features is represented by Rj.
Low-order spatial dependencies are captured by small values of
and higher-order dependencies are captured by larger values of k.

Definition 2. Let the relationships Ry, be characterized by a set of M
attributes Ay = {Ap1,- -, Agar }. Then, the shape of the object can be
represented by joint probability functions: P(Ax = ax), also denoted
by P(aj,---,arn) or Plax), where ay; is the value taken by the
relational attribute Ay;.

We term these probabilities as the Relational Distributions. One
possible interpretation of these distributions is: Given an image, if
you randomly pick k-tuples of features, what is the probability that
it will exhibit the relational attributes ax? Or, what is P(Ax = ax)?
The representation of these relational distributions can be in
parametric forms or in nonparametric, histogram, or bin-based
forms. The advantage of parametric forms, such as mixture of
Gaussians, is the low representational overhead. However, we
have noted that these relational distributions exhibit complicated
shapes that do not readily afford modeling using a combination of
simple shaped distributions. So, we adopt the nonparametric
histogram-based form. To reduce the size that is associated with a
histogram-based representation, we propose the Space of Prob-
ability Functions that is described after we look at the following
concrete example of a relational distribution.

2.1 Moving Edge-Based Features

We illustrate the concept of Relational Distributions by considering
moving edge pixels as the features. We consider moving pixels, as
they are ones most likely to belong to moving objects. To identify
these edge pixels in motion, we first apply the Canny edge detector
over each image frame and select only those edge pixels that fall in or
within a small distance from a motion mask created by background
subtraction.

Each motion edge pixel, f;, is associated with the gradient
direction, 6;, estimated using the Gaussian smoothed gradient. To
capture the structure between two edge pixels, we use the
difference in edge orientations and the distance between them as
the attributes, { A9, A22}, of Ry. These attributes are invariant with
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Fig. 1. Edge pixel-based 2-ary relational distribution. (a) The two attributes characterizing relationship between two edge pixels. (b) Edge pixels in an image. (c) The
relational distribution P(d/D, ), where D is a scaling constant. P(0,0) is the top left corner of the image. Brighter pixels denote higher probabilities. (d) The relational

distribution shown as a 3D bar plot.

respect to image plane rotation and translation. To impart some
amount of scale invariance in the representation, we normalize the
distance between the pixels by a distance (D) that is an estimate of
the projected height of the person. We base this estimate on the
straight line fit to the variation of the silhouette height with time,
s0 as to overcome errors in height estimate in any particular frame
due to segmentation errors. Fig. la depicts the computed
attributes. And, Fig. 1c shows the P(as,ag) for the edge image
shown in Fig. 1b. Fig. 1d shows a 3D bar plot of the probability
values. Note the concentration of high values in certain regions of
the probability event space. In the experiments of this paper, the
2-ary representations are 30 by 30 sized, each taking about
seven seconds to compute on a 246 MHz Sun workstation.

3 SPACE OF PROBABILITY FUNCTIONS (SOPF)

As the parts of an articulated object move, the relational
distributions will change. Motion will introduce nonstationarity
in the relational distributions. Is it possible to establish identity of
the object (i.e., person) in motion? In order to enable us to answer
this question, we first set up a representational scheme for these
relational distributions that is easier to manipulate and is more
compact than just plain histograms.

Definition 3. Let P(ax,t) represent the relational distribution at time t.

Definition 4. Let /P(ax,t) = >.i; ¢;(t)®;(ax) + p(ax) + nax) de-
scribe the square root of each relational distribution as a linear
combination of orthogonal basis functions where ®;(ax)s are
orthonormal functions, the function p(ay) is a mean function defined
over the attribute space, and n(ax) is a function capturing small
random noise variations with zero mean and small variance. We refer
to this space as the Space of Probability Functions (SoPF).

Given a set of relational distributions, {P(ax,t;)[i =1,---,T},
the SoPF can be arrived at by using the Karhunen-Loeve (KL)
transform or, for the discrete case, by principal component analysis
(PCA). The dimensions of the SoPF are given by the eigenvectors of
the covariance of the square root of the given relational distribu-
tions. The variance along each dimension is proportional to the
eigenvalues associated with it. In practice, we can consider the
subspace spanned by a few (N << n) dominant vectors associated
with the large eigenvalues. We have found that, for human motion,
just N = 10 eigenvectors are sufficient. Thus, a relational distribu-
tion can be represented using these N coordinates (c;(t)s), which is
more compact representation than a normalized histogram-based
representation.

We use the square root function so that we arrive at a space
where the distances are not arbitrary ones but are related to the

Bhattacharya distance between the relational distributions, which
is an appropriate distance measure for probability distributions.

Theorem 1. The Euclidean distance between the square root of the two
relational distributions, dg(\/P(ax, t1), v/ Plax, t2)), is monotoni-
cally related to the Bhattacharya distance between relational
distribution, dp(P(ak,t1), P(ax, t2)), as captured by

dE(\/P(ak, t), \/P(ak,tg)) — 9 — 9¢d(Plat).Plat2)).

Theorem 2. In the SoPF representation, the Euclidean distance between
the coordinates, {c;(t1)} and {c;(t2)}, is monotonically related to the
Bhattacharya distance between the corresponding relational distribu-
tions P(ay,t1) and P(a,ts).

For the proofs of the theorems, the reader can refer to [14], [17],
[15]. Note that, this use of the PCA is different from previous uses in
motion tracking, e.g., [3], they use PCA over the image pixel space
whereas we use it over relational probability functions. Unlike
Sclaroff and Pentland [18], who use PCA for shape descriptions of
deformable objects, we neither require prior shape model nor
assume perfect segmentation of object from background.

4 DISTANCE MEASURES

There are various sophisticated techniques, such as those based on
hidden Markov models, dynamic Bayesian networks, and state
space trajectories that can be used to model and compute distances
between trajectories in the SoPF. In this paper, however, we adopt
a simpler distance measure between two traces to demonstrate the
viability of using the traced paths for inferring personal identity.
We show in our experiments that, even with a simple distance
measure, we are able to obtain good discrimination.

When comparing gait of the same type (walking or running or
jogging) and with similar speed (normal), we just compute the
Euclidean distance between the two traces, S; = {c!(¢;),i = 1---n}
and Sg = {c(t;),i=1---m} :

m_ N
o (€1 €2) = %Z S (et — At + K).
t=1 j=1
If the speed of motion is not controlled, i.e., slow or fast walk, or
when we have to compare between walking and running gaits, we
temporally normalize the two traces using dynamic time warping
(DTW), allowing for just constant stretching or contraction:
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(a) (b) (c)
Fig. 2. Sample frames of a person (a) walking, (b) jogging, and (c) running.
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Fig. 3. Ten most dominant dimensions of the SoPF, with the corresponding eigenvalues quantifying the associated variation shown below each image. This is for the data

of different motion types.
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The warped distance measure responds to changes in shapes of the
traces over each motion cycle but does not change with the speed
with which each cycle is executed. Thus, the distance between a
fast walk and a slow walk would tend to be small as compared to
the distance between a walk and a run cycle.

The above two distances can be directly computed from the traces
if they arealigned, i.e., the starting and ending states of the two traces
match. If this is not the case, then we compute a temporal correlation-
based measure as follows. We partition S into disjoint subsequences
of K contiguous frames each, such that each subsequence contains
roughly one cycle, denoted by S1(k : k+ K) = {c' (), -, c' (trsi) }-
We then compare each of these subsequences with S, :

Corr(Sq1(k: k+ K),S3) = mlaxd(Sl(k: k+ K),S2(l: 1+ K)).

The distance, d, may be the time normalized or unnormalized
version of the distance between the two subsequences. The
similarity is chosen to be the median value of the distance of S,
with each of these S; subsequences. This method of computing the
similarity between two sequences is robust with respect to noise
that distorts the motion information in a small set of contiguous
frames: Similarity(S1,S2) = Mediany, (Corr(Sy(k: k + K), S2)).

5 IDENTIFYING PERSONS FROM WALKING, JOGGING,

AND RUNNING GAIT

The data for the experiments described in this paper was acquired
using consumer grade digital video cameras with DV compression
artifacts. For this section, the image sequence database consists of
10 people performing three motion types, walking, jogging, and
running, in an outdoor setting. The viewpoint is frontal-parallel and
the distance from the camera is eight meters. Some example frames
areshown in Fig. 2 for a person 1) walking, 2) jogging, and 3) running.
From these images, we can see that the inclination of the body is
different, specially the upper body. Arms position and movement
are also different. Each person performed these three different

motion types in two different directions, left-to-right and right-to-
left. This gives us six different types of sequences (Walking-Left,
Walking-Right, Jogging-Left, Jogging-Right, Running-Left, Run-
ning-Right) for each person, resulting in a total of 60 sequences.

5.1 Analysis of Covariates

The three covariates present in the 10 person database are: motion
type, walking direction, and the identity of the person. In this
section, we quantify the strength of the variations in gait due to these
covariates. For our analysis, from each of the 60 sequences, we
manually extracted two motion cycles: One was used to build the
SoPF (training set) and the other was used for analysis (testing set).
The dimensions of the trained SoPF are shown in Fig. 3 as gray-level
images. Variation of distances seems to be important for the top
eigenvectors and the orientation variations are emphasized by later
eigenvectors.

We computed the time-normalized distances (d,o-m) between
each pair of the 60 training and 60 testing sequence cycles. We then
used analysis of variance (ANOVA [16]) to study the effect of person,
motion type, and direction of motion on the computed distance. Each
covariate can have two possible values: same or different, i.e., same
person or different persons, same motion type or different motion
types, and same motion direction and different motion directions.
The computed ANOVA table is shown in Table 1, from which we can
see that differences due to the subject is, by far, the largest source of
variation as compared to motion type or direction. The subject effect
could be a combination of the identity of the person and his/her
clothing. We investigate this issue in some depth later.

TABLE 1
ANOVA Table with Results for Different Motion Types Experiments
Source | DF| SS F-value | P-value
Person 1 | 79392 | 114.22 | < 0.0001
Angle 1 9.53 1.37 0.2419
Direction | 1 12.06 1.74 0.1879
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TABLE 2
Number of People Correctly Identified for Different Motion Types Experiments
At Experiment
Rank || Gallery: Walking Left || Gallery: Jogging Left || Gallery: Running Left
Probe: Walking Right || Probe: Jogging Right | Probe: Running Right
1 10of 10 10 of 10 8of 10
2 100f 10 10 of 10 90of 10

OCTOBER 2003

(a)

(c)

Fig. 4. Sample frames from the same person walking (a) frontal-parallel, (b) 22.5 degrees, and (c) 45 degrees with respect to the image plane.

5.2 Gait-Based Recognition Experiments

Given that the subject is the largest source of variation in the
distances out of the three factors, it is natural to ask what kind of
recognition rates we can get based on gait, be it walking, jogging, or
running. We conducted three gait recognition experiments based on
walking, jogging, and running gaits. For each experiment, we
separated the sequences with the corresponding motion type into
gallery and probe sets, adopting the defacto standard FERET (Face
Recognition Technology) evaluation methodology [9]. One cycle
from each sequence with the person going left formed the gallery set
and one cycle from each sequence with the person going right
formed the probe sets. Basically, we are using the left profile of the
person as gallery and the right profile as probe. The specific gallery
and probe sets for each experiment are listed in the second row of
Table 2. The gallery set of images was also the training set used to
form the SoPF.

For each probe, we compute its distance from all the gallery
images. If the identity of the gallery image with the smallest
distance to the probe matches the identity of the probe, then we
have successful identification. Table 2 shows the results of the
recognition experiments. We have perfect identification at rank 1
for walking and jogging gaits. The rate for running gait is also not
too bad: 8 out of 10 at rank 1 and 9 out of 10 at rank 2. It is
interesting to note that Yam et al. [21] also observed in their
experiments with image data of persons on a treadmill that
running gait is also a potential source of biometric.

6 WALKING GAIT-BASED IDENTIFICATION UNDER
DIFFERENT VIEW ANGLES

In this section, we investigate the relationship of the achieved
recognition rates with viewing angle. For this, we imaged 20 persons
walking frontal-parallel, 22.5 degrees, and 45 degrees with respect to
the image plane. The distance from the camera to the frontal-parallel
path was 12 meters. Each person walks each of the three slanted paths
in two different directions, left-to-right and right-to-left, resulting in
six sequences per person at 0 degrees (frontal-parallel) going left
(OL), 0 degrees (frontal-parallel) going right (OR), 22.5 degrees going
left (22L), 22.5 degrees going right (22R), 45 degrees going left (45L),
and 45 degrees going right (45R). The abbreviations in parentheses
will be used in the following discussion to refer to these conditions.
Fig. 4 shows three sample frames from the same person walking the
three differently angled paths. The frame size is 280 x 130. We stop at
45 degrees because for view angles greater than this, leg and arm

motion becomes more difficult to be captured in 2D projected images
and other aspects like body shape (height and weight) become more
important than gait information.

6.1 Analysis of Covariates

The three covariates present in the database for this experiment
are: walking direction, angle of motion path, and the person. We
quantify the strength of effect of these factors on the variations in
the distance values computed between two cycles from each of the
120 sequences (20 persons x 3 covariates x 2 conditions per
covariates). One cycle from each of the 120 sequences form the
training set of images that is used to construct the SoPF. As before,
we quantify the effect of the covariates on the distances using
ANOVA, whose output is shown in Table 3. We see that the person
is the largest and most significant source of variation. In fact, as the
F-values suggest, the variation due to the persons is at least three
orders of magnitude larger than due to angle or walking direction.

6.2 Gait-Based Recognition Experiments

Given that the person is the largest source of gait variation; as
measured in the SoPF, how do the recognition rates vary with view
angle? To answer this, we separated our database into five sets of
gallery and probe combinations. The going-left sequences form the
galleries and the going-right sequences form the probes. The
training set of images used to create the SoPF, consists of the union
of the gallery sets. In the first set of experiments, we study if
recognition can be possible from views other than frontal-parallel
ones. In the second set of experiments, we study how recognition
varies with change in view angle. Table 4 lists the identification
rates at ranks 1 and 2 for these two sets of experiments. From the
first set of experiments, we see that when the gallery and probes

TABLE 3
ANOVA Table with Results for Different View Angle Experiments
Source | DF SS F-value | P-value
Person 1 |4624.33 | 1208.97 | < 0.0001
Angle 1 0.74 0.19 0.6604
Direction | 1 4.51 1.18 0.2775
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TABLE 4
Identification Rates for Experiments Studying (a) Possibility of
Recognition from Different View Points, but the Gallery and Probes
Are from the Same Viewpoint, and (b) Fall of Recognition Rates
as the View Angle of the Probe Differ from the Gallery

Gallery | OL | 22L || 45L Gallery | OL || OL | OL

Probe || OR | 22R || 45R Probe OR || 22R || 45R

Rank 1 || 80% | 75% | 80% Rank 1 || 80% | 75% | 55%

Rank 2 || 90% | 95% | 85% Rank 2 || 90% | 80% | 80%
(a) (b)

are from the same view angle, the rates are similar. We can conclude
that gait-based recognition is possible from nonfrontal-parallel views,
such as those viewed at 22.5 degrees or 45 degrees. From the second set
of experiments, where we progressively varies the view angle of
the probe with respect to the gallery, we see that the identification
rate drops to 75 percent when the probe is from 22.5 degrees
viewpoint. But, the fall is drastic, to 55 percent, with a 45 degrees
viewpoint probe set. Thus, it appears that the gait-based recogni-
tion using the SoPF framework seems to be robust with respect to
viewpoint change up to 22.5 degrees.

One might argue that, on a small data set, one should get near
100 percent identification rates. To this, we point out the complex-
ity of the outdoor imaging conditions in the data set and the fact
that we have a clear separation of train and test sets; we use the left
profile for training (or as gallery) and try to identify people from
their right profiles (the probe sets). Thus, the recognition rates also
reflect the inherent variation in gait due to opposite profile
viewpoints in addition to any other factor that might be different
between the probe and gallery sets in each of the experiments.

7 WALKING GAIT-BASED RECOGNITION ON
SOFT SURFACE

In this section, we present results on a larger data set of 71 subsets
on a soft surface, i.e., grass that is usually not considered. This data
set is a subset of the recently formulated HumanID Gait Challenge
problem [10]. Subject demographics were as follows: 75 percent
male, age: 19 to 54 years, height: 1.47 to 1.91 meters, and weight:
43.1 to 122.6 kilograms. Subjects walked five to six laps around an
elliptical path in front of two cameras verged at about 30 degrees
and about 16-18 meters away from the subject. So, as to factor out
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gait changes due to the subjects knowing that they are being video
taped, we considered only the last lap, from which only the back
(farthest) portion of the lap was considered. This contained about
280 and 350 frames per subject containing over four to five gait
cycles. Fig. 5 shows two sample views.

We use this database to investigate how well the SoPF
representation performs on a large database and on a soft surface
that occludes part of the feet. In a first experiment, we used
sequences from the right camera (Right View) as our training/
Gallery set to build the SoPF and the sequences from the left camera
(Left View) as the Probe. Then, in a second experiment, we repeated
the study by reversing the Gallery and Probe sets. In a third
experiment, we randomly mixed the sequences from the Right View
with those from the Left View to generate the Gallery and Probe sets
with the purpose of showing the bias effects that could be produced
by the partitions generated in the previous experiments. For these
experiments, we used the sequence correlation strategy to measure
distances between sequences containing multiple gait cycles that
was discussed earlier. Table 5 lists the obtained identification rates of
90 percent, 89 percent, and 82 percent that are comparable with
previous results. These experiments also demonstrate that manual
segmentation of gait cycles and part tracking are not necessary.

In an attempt to shed some light on how much clothing/body
shape impacts the recognition based on SoPF, we considered
recognition from a single frame. We selected the frame when the
heels are together that is the frame with the least gait related
information. The identification rate was just 10 percent that is a
considerable drop compared with rates shown in Table 5. This
suggests that the representation is not latching onto clothing/body
shape related factors in a significant manner.

8 CONCLUSIONS

We presented a statistical framework for motion analysis that
tracks the variation of nonstationarity in the distributions of
relations among image features in individual frames, which is
facilitated using the concept of a Space of Probability Functions
(SoPF). Among the attractive features of this approach are 1) no
feature-level tracking or correspondence is necessary, 2) there is no
need for explicit object shape models, and 3) movement between
frames need not be in the order of one or two pixels. We
demonstrated and evaluated the effectiveness of this representa-
tion for the task of gait-based identification. Qualitative conclu-
sions that can be drawn from these studies are:

1. The subject is a far greater source of gait variation than
viewpoint, motion types, or direction of motion.

2. It is possible to recognize persons from jogging and
running gaits and not just from walking gait.

(a)

Fig. 5. Frames from (a) the left camera and (b) the right camera.

(b)
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TABLE 5
Identification Rates When Reversing Gallery and Probe
Atrank
Exp. Gallery Probe 1 2 3 4
1 Right View Left View 90% | 96% | 97% | 99%
2 Left View Right View 89% | 97% | 99% | 99%
3 || Randomly Picked | Randomly Picked | 82% | 91% | 93% | 96%

3. Gait-based recognition need not be restricted to frontal-
parallel views; walking gaits viewed from 22.5 degrees and
45 degrees also results in similar recognition as that from
frontal-parallel views.

4. We can get up to 80 to 90 percent recognition in the

presence of just viewpoint variation.
Experiments also suggest that body shape and clothing do not
seem to be contributing to the recognition rates.

Future studies will involve more detailed analyses of gait
recognition problem along the lines charted in the HumanID Gait
Challenge problem [10]. The effect of walking speed on gait is also
an important problem that is difficult to normalize. Most systems,
including ours, use some variation of temporal warping to handle
varying speeds. Some train using samples at various speeds [2].
Some suggest the use normalized static parameters computed from
cadence, stride length, height, or limb lengths [6], [4], [2]. However,
recognition with these parameters extracted from real images is
usually low. Another relationship of interest is the effect of image
resolution on recognition. We expect the rate to drop with
resolution [2]. In general, systems that use global similarity
measures, such as ours or [1], should work well with low-
resolution images, but systematic study is still needed.
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