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Statistical shape modeling is an indispensable tool in the quantitative analysis of
anatomies. Particle-based shape modeling (PSM) is a state-of-the-art approach
that enables the learning of population-level shape representation from medical
imaging data (e.g., CT, MRI) and the associated 3D models of anatomy generated
from them. PSM optimizes the placement of a dense set of landmarks
(i.e., correspondence points) on a given shape cohort. PSM supports multi-
organ modeling as a particular case of the conventional single-organ
framework via a global statistical model, where multi-structure anatomy is
considered as a single structure. However, global multi-organ models are not
scalable for many organs, induce anatomical inconsistencies, and result in
entangled shape statistics where modes of shape variation reflect both within-
and between-organ variations. Hence, there is a need for an efficient modeling
approach that can capture the inter-organ relations (i.e., pose variations) of the
complex anatomy while simultaneously optimizing the morphological changes of
each organ and capturing the population-level statistics. This paper leverages the
PSM approach and proposes a new approach for correspondence-point
optimization of multiple organs that overcomes these limitations. The central
idea of multilevel component analysis, is that the shape statistics consists of two
mutually orthogonal subspaces: the within-organ subspace and the between-
organ subspace. We formulate the correspondence optimization objective using
this generative model. We evaluate the proposed method using synthetic shape
data and clinical data for articulated joint structures of the spine, foot and ankle,
and hip joint.
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1 Introduction

Human anatomy is spatially and hierarchically organized into complex, interrelated,
and interacting organs with definite shapes (i.e., forms) tied to their function. These
shapes vary substantially across populations Cerrolaza et al. (2019). Form and function
can also adapt in response to many biological processes, including morphogenesis,
injury, disease, and death Costafreda et al. (2011), Lindberg et al. (2012), Carriere et al.
(2014), Zhang et al. (2009), and Sciancalepore et al. (2012). Statistical shape modeling
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(SSM) is an enabling quantitative tool in medical and biological
sciences to study form and function. SSM parses the anatomy into
a quantitative representation that facilitates testing of
biologically relevant hypotheses by defining an anatomical
mapping across a population of 3D models of anatomy
generated from medical imaging data (e.g., CT, MRI).
Studying multiple organs together, especially for complex
anatomical structures like that of the subcortical brain or
articulated joints, can reveal crucial insights, which can help
explore links between changes in anatomy due to pathology and
the underlying biological process. Thus, most clinical
applications encourage statistical shape modeling of multiple
organs together instead of single organ structures outside their
multi-organ context Gorczowski et al. (2007). Unlike a single-
organ model, a multi-organ shape model should capture both
organ-specific variability and inter-organ relations to accurately
represent complex anatomies and derive quantitative metrics on
mechanisms and progression of biological processes. Inter-organ
relations can also provide contextual information for expert-
driven and automated interpretation of medical images in
applications such as radiotherapy planning, diagnosis, and
treatment planning Fritscher et al. (2014) and Si and Heng
(2017). Furthermore, multi-organ models can advantageously
introduce statistical priors for complex periodic multi-structures,
such as the spine, to apply non-rigid or poly-rigid image
registration in intraoperative guidance imaging Drobny et al.
(2020). However, inter-organ relations are either user-defined
(e.g., Cerrolaza et al. (2013) and Cerrolaza et al. (2011), limited by
their generality and practicality for an arbitrary number of
organs, or usually estimated in isolation by learning intra-
organ variability, resulting in sub-optimal models Cerrolaza
et al. (2019). Moreover, hierarchical models such as Lecron
et al. (2012) rely on pre-built shape models that were
constructed independently, for further statistical analyses,
sacrificing anatomical integrity and inducing anatomical
inconsistencies Cerrolaza et al. (2019).

Anatomical mappings can be represented implicitly using
deformation fields or explicitly using a set of landmarks (or point
correspondences) that are defined consistently across the
population. Implicit representations hold promise, but finding
the transformation that quantifies differences among shapes is
challenging. Explicit representations, which are the focus of this
work, provide more interpretable results for statistical analyses
and visualization Zachow (2015). These mappings should be
learned from the study population in a data-driven manner to
capture the underlying population-specific morphological
variability Kulis et al. (2013). Approaches for establishing such
mappings that rely on pairwise comparisons (e.g., Styner et al.
(2006) and Jenkinson et al. (2012)] typically require a predefined
atlas for initialization, leading to biased and suboptimal models
Goparaju et al. (2022). Group-wise approaches [e.g., Durrleman
et al. (2014) and Cates et al. (2017a)], on the other hand, observe
the entire population to quantify the quality of shape
correspondences, and hence better reflect the underlying
population variability Goparaju et al. (2022). Particle-based
shape modeling (PSM) Cates et al. (2007) and Cates et al.
(2017a), in particular, is a state-of-the-art computational
approach for constructing point distribution models (PDM)

via automatically placing a dense set of corresponding
landmarks on a set of shapes. The scientific and clinical utility
of PSM have been demonstrated in image and shape analysis
[e.g., Bhalodia et al. (2021) and Shigwan et al. (2020)],
neuroscience [e.g., Sultana et al. (2019) and Audette et al.
(2017)], biological phenotyping [e.g., Jones et al. (2013) and
Cates et al. (2017b)], cardiology [e.g., Bieging et al. (2018) and
Goparaju et al. (2022)], and orthopaedics [e.g., Lenz et al. (2021),
Goparaju et al. (2022), Krähenbühl et al. (2020), Jacxsens et al.
(2020), Atkins et al. (2017a), Atkins et al. (2019), Atkins et al.
(2017b), and Atkins et al. (2022)].

PSM supports multi-organ modeling using a global statistical
model, similar to other landmarks-based models [e.g., Picazo
et al. (2018), Kokko et al. (2021), and Li et al. (2016)]. This is due
to its computational simplicity and benefits over single-organ
models Wilms et al. (2017). In this modeling scheme, the multi-
structure anatomy is considered a single structure and landmarks
positions are optimized in the full shared shape space Cates et al.
(2008) and Agrawal et al. (2020). However, global multi-organ
models suffer from anatomical inconsistencies (e.g., overlapping
neighboring organs) and make subtle morphological differences
within each organ less obvious Cerrolaza et al. (2019). Global
shape models are not computationally and statistically scalable to
an arbitrarily large number of organs, with each represented by
many landmarks to describe their shapes accurately. Thus,
substantially large sample sizes are indispensable for global
shape models to have sufficient statistical power and this
being reinforced by higher dimensionality of the number of
landmarks, leads to a significant memory footprint for
correlations computation Cerrolaza et al. (2019) and Jung and
Marron (2009). Furthermore, optimizing in the shared shape
space of multi-organ structures does not separate shape from
pose variations and entangles both intra- and inter-organ modes
of variation, making the interpretation of the articulated shape
models challenging to relate to clinically relevant insights
necessary for the diagnosis of joint misalignment, pathological
deformity, and bone abnormalities. On the other hand, the
individual modeling approach for multi-organ complexes
independently builds the statistical model of each organ.
These models fail to capture the inter-organ anatomical
patterns completely Yao et al. (2016).

In this paper, we propose a multi-level statistical shape
modeling approach that overcomes the limitations of the
global shape modeling scheme. We disentangle the shared
shape space used in the global shape modeling technique into
within-organ and between-organs subspaces to model the intra-
organ shape and inter-organ pose variabilities. We formulate the
training objective to optimize the point correspondences across
the ensemble of multi-organ anatomies in the disentangled shape
space, which makes it easily scalable to model multiple organs
together without generating anatomical inconsistencies. We
demonstrate that the Point Distribution Model (PDM)
generated from the proposed shape modeling technique
effectively captures the shape variation of each organ while
simultaneously reflecting the relative pose variations between
the organs in the shape complex. We use synthetic data for proof
of concept and real clinical data with downstream validation
tasks to demonstrate the efficacy of the proposed method for
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articulated structures. The proposed shape modeling technique is
referred to as the Multi-Level Multi-Organ (MLMO) shape
modeling technique.

2 Methodology

2.1 Background—Particle-based shape
modeling for single-organ anatomy

We define the shape surface for an organ structure as a smooth
manifold of codimension one, which is a subset of Rd. We have d =
3 in this work as the shapes are segmented from 3D volumetric
images. The particle-based shape modeling (PSM) approach
optimizes population-specific shape representations by sampling
each surface in a consistently ordered fashion. Each surface S ⊂ Rd

can be sampled using a discrete set of M points {xm ∈ Rd}Mm�1 that
define the configuration space to capture the geometry for each
sample. The particle positions z = (x1, x2, . . . xM) are the
realizations of the random variable X for configuration space
associated with its probability density function p (X = x).
Consider an ensemble E that consists of shape surfaces defined
for N subjects as E � {z1, z2, . . . , zN} such that each surface has its
own set of particles after factoring out global transformations that
are irrelevant to modeling shape variations. This defines the shape
space such that the vector of M particle positions for each surface
in the configuration space is mapped to a single point in dM −
dimensional shape space. Each surface zn of the ensemble is an
instance of the shape space random variable Z associated with its
probability density function p (Z = z). PSM assumes that the shape
space is modeled by a Gaussian distribution as Z ~ (μ, Σ).
Correspondences across the ensemble are established by
minimizing an entropy-based objective function that is a
combined cost function Q for shape correspondence and
surface sampling defined as:

Q � H Z( ) −∑
N

n�1
H Xn( ) (1)

where H (.) denotes the estimation of the entropy function. The
differential entropy of p(X) is given as

H X( ) � −∫
E
p X( )logp X( )dx

� −E logp X( ){ } ≈ − 1
M

∑
M

m�1
logp xm( ) (2)

The cost function Q is minimized using a gradient descent
algorithm. The first term in Eq. 1 encourages a compact
distribution of the samples in the shape space such that
particles are in good correspondence across the shapes. The
second term favors uniformly-distributed correspondence
positions on the shape surfaces to accurately capture the
geometric details of the shape. For a stable optimization of
these terms, shape statistics μ and Σ are allowed to lag when
particle positions are updated and the negative gradient update
−zH(Z)

zZ in the shape space is computed once per optimization
iteration. The individual shape-based updates in configuration
space zH(Xn)

zXn
are then combined to provide the update for each

particle. More details related to the optimization technique and
gradient updates can be found in Cates et al. (2007) and Cates
et al. (2017a).

2.2 Multi-organ shape modeling–Problem
formulation

Amulti-organ (or multi-object) shape complex is defined as a set
of solid shapes, each representing a single and connected biological
structure, assembled together within a common coordinate frame.
This shape complex contains the shape, scale, and positional
information for each organ structure, thereby containing the
relative pose and orientation between different organ structures
in the shape complex. Multi-organ shape structures have alignment
variations between the organs that reflect subject-wise anatomical
variations relevant to how the organs are relatively positioned and
aligned with respect to each other. These alignment variations
should not be factored out by the initial rigid alignment
techniques that are usually performed prior to the shape
modeling process. These geometric relationships between the
organs are of significant importance, especially in biomechanics-
based shape modeling Agrawal et al. (2020), Zhang et al. (2016), and
Kainmueller et al. (2009).

Here, we define the notations for the multi-organ shape
modeling problem that will be used in the following sections.
Given an ensemble E of N subjects such that each subject has 3D
surfaces defined for K organs. Thus, the ensemble is defined as
E � {{zn,k}Kk�1}Nn�1. Each surface (or shape) is represented by a set of
Mk correspondence particles, where each particle is d − dimensional1

such thatM � ∑K
k�1Mk is the total number of particles representing

a multi-organ shape sample. xn,k is the realization of the
configuration space random variable Xn,k for the n − th subject
and k − th organ and the corresponding shape space variable is Zn,k

such that its realization is zn,k � [x1n,k, x2n,k, . . . , xMk
n,k ] ∈ RdMk .

2.3 Global shape modeling for multi-object
complexes

To capture shape statistics in multi-organ anatomies, Cates et al.
(2008) extended the concept of particle-based shape modeling for
single objects as described in Section 2.1, and presented an
optimization scheme where multiple organs are treated as a
single structure. Here, the shape space variable Z ∈ RdM is the
concatenation of the random variables defined for each organ
Zn,k ∈ RdMk . The optimization objective here is the combined
ensemble and shape cost function which is defined as:

Q � αH Z( ) −∑
K

k�1
∑
N

n�1
H Xn,k( ) (3)

where H is the differential entropy of the corresponding random
variable and α is the relative weighting parameter. The first term in

1 d = 3 in this work, however PSM and the proposed approach is flexible to
model any dimension.
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Eq. 3 represents the ensemble entropy in shape space Z and
minimizing this produces a compact representation of the model,
and hence lowers the complexity of the shape model. The second
term in Eq. 3 represents the surface entropy in the configuration
space X, which on maximizing gives a uniform distribution of
correspondence particles across shape surfaces. This formulation
assumes that object-level correspondence of each organ is known a
priori. This formulation decouples the spatial interaction between
the particles on different organs by constraining each particle to stay
on the shape surface of a single organ, but the ensemble entropy is
minimized in a shared shape space by modeling the entire multi-
organ shape sample z ∈ RdM as an instance of the random variable Z
that is assumed to be Gaussian-distributed and follows a generative
model described as,

z � μ + ,  ~ N 0,Σ( ) (4)
The covariance matrix Σ includes all particle positions across the

entire multi-organ shape, forcing the optimization to take place in
the shared shape space of all organs. Minimizing the entropy of this
distribution favors high spatial correlations between corresponding
samples of the entire multi-organ shape complex across the
population without incorporating how these organs interact with
each other across the population. Treating the multi-organ complex
as a single object, leads to the oversimplification of the complex
human anatomy and fails to capture the variabilities within the
organ and the interactions between the organ. To produce a compact
statistical representation of the shape complex as a whole, the global
shape modeling technique might not capture the individual
morphological changes of each organ and their interactions
correctly by placing correspondence particles that are
anatomically inconsistent.

2.4 Multi-level component analysis

One of the widely used approaches to characterize the variability of
shapes represented by a point distributionmodel (PDM) is the Principal
Component Analysis (PCA) that allow both visualization and
dimensionality reduction. The basis vectors defined by PCA are
optimal in the least squares sense as each basis vector is chosen to
minimize the sum-of-squares (SSQ) residual error in data. The basis
vectors describe the independent modes of variation by accounting for
the correlations among the correspondence positions of the particles.

The Multilevel Component Analysis (MLCA) Timmerman (2006),
an extension of PCA, is used to analyze hierarchical structures in multi-
object models. More specifically, the correspondence particle zmn,k ∈ Rd

is observed at two levels—a local within level, where shape variation is
identified in each individual organ, and at a global level, where the
relative pose of each organ is observed in the multi-organ shape
complex. Using this model, the generative model of a particle can
be formulated as follows:

zmn,k � �zn︸︷︷︸
offset

+ zmn,k − �zn,k( )︸����︷︷����︸
within−organ

+ �zn,k − �zn( )︸����︷︷����︸
between−organs

, (5)

where �zn � 1
M∑K

k�1∑Mk
m�1zmn,k is the offset term representing the global

centroid of the multi-organ shape complex and �zn,k � 1
Mk
∑Mk

m�1zmn,k is
the centroid of the k − th organ. The second term of Eq. 5 encodes

within shape organ variations, which is the deviation of the
correspondence particle of each organ from its own centroid.
The last term of Eq. 5 encodes the between organs pose
variations, which is the relative pose changes of each organ in
the multi-organ shape complex from the global centroid of the
shape complex.

MLCA uses the notion of Analysis of Variance (ANOVA) to
split the total sum of squares into components that are related to the
effects used in the model. For Eq.5, we can write SSQ residual
errors as:

∑
m,n,k

zmn,k( )2
︸����︷︷����︸

ssqtotal

� ∑
m,n,k

zmn,k − �zn,k( )2
︸�������︷︷�������︸

ssqwithin

+∑
n,k

�zn,k − �zn( )2
︸������︷︷������︸

ssqbetween

(6)

In Component Analysis (CA) models such as PCA, the main
goal is to approximate the data in the best possible manner in the
least-squares sense. By Eq. 6, the total sum of squares for
correspondence particle data can be split into two levels—within
and between, then it is natural to explain the best possible sum of
squares at each level by building a two-level component model.
Thus, MLCA gives a general formulation of such a two-level
component model. Here, we build the component model at each
level—in the within subspace for each organ and in the between
subspace for all the organs together. This gives us K + 1 mutually
orthogonal subspaces and we assume each of these subspaces can be
modeled by a Gaussian distribution. Thus, analogous to PCA, the
shape vector describing each organ zk ∈ RdMk can be expressed by a
linear combination of the basis vectors of the within subspace and
between subspace as follows:

zk � μ + UW
k α

W
k + UB

kα
B
k (7)

where μ ∈ RdMk is the consolidated mean of the within and between
subspace and the offset, UW

k ∈ RdMk×N is the matrix of principal
components of the within subspace of organ k and UB

k ∈ RdMk×N is
the sub-matrix of principal components of between subspace that
belongs to organ k. The coefficient vectors αWk ∈ RN of the within
subspace are distributed according to N (0,ΣW

k ) and the coefficient
vectors αB ∈ RN are distributed according to N (0,ΣB) where Σ*
denotes the covariance matrix of the within subspaces of each organ
and the between subspace defined respectively by the within and
between terms of Eq. 5. This formulation of MLCA, gives us an
analysis technique by which we can probe the configuration
variations of articulated joints or other multi-organ anatomies
separately from the morphological or shape variations.

2.5 Proposed shape modeling
approach—multi-level multi-organ shape
modeling

We propose a novel optimization scheme for multi-organ shape
complexes that disentangles the shared shape space of the multiple
organs into relevant subspaces. We build our hypothesis from the
generative model in Eq. 7 of multi-level component analysis. The
shared shape space for the multi-organ structure can be split into
individual subspaces for each organ, which models the shape
variability within each organ, and a common subspace, which
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accounts for the relative pose variability between the organs in the
shape sample. The random variable Z is replaced by a sequence of
random variables ZW

k , which models the shape variability of each
organ, and another random variable ZB for the interactions between
each organ across the population. The shape morphology variations
for each organ k and their relative alignment in the multi-organ
complex are encoded in the within vectors for each organ zWk and a
between vector zB by splitting the particles in the shape vector z in
terms of the deviation of the centroid of each organ and centroid of
the multi-organ complex according to within and between terms of
Eq. 5. We propose a new cost function that minimizes the entropy of
each individual within subspaces and between subspace as follows.

Q � αW ∑
K

k�1
H ZW

k( ) + αBH ZB( ) −∑
K

k�1
∑
N

n�1
H Xn,k( ) (8)

where H is the differential entropy function; αW and αB are the
relative weighting parameters for the within and between subspaces,
respectively, that define the contribution of the correspondence
objective of that subspace to the particle optimization process.
The within subspaces for each organ and the between subspace
are modeled as Gaussian distributions p(ZW

k ) and p (ZB) with
covariances ΣW

k and ΣB, respectively. We estimate these
covariance matrices directly from the data using the within and
between parts of Eq. 5. The objective function Q in the above Eq. 8 is
minimized in such a way that correspondence particle updates for
the within and between subspaces are made in an alternating
fashion. We first make particle updates by computing the
gradient in the within subspace for each organ and then make
changes in the relative alignment in each organ by computing the
gradient updates in the between subspace. In this way, we
disentangle the shape from pose in the optimization process,
while simultaneously preserving the anatomical correctness of the
articulation of the joint. The entropy terms for the within and
between subspace in Eq. 8 are given by:

H ZW
k( ) ≈ 1

2
logΣW

k � 1
2
∑
dMk

i�1
log λWk,i (9)

H ZB( ) ≈ 1
2
logΣB � 1

2
∑
dK

i�1
log λBi (10)

where λWk,i and λ
B
i denotes the eigenvalues of Σ

W
k and ΣB respectively.

The gradient updates of each subspace is computed as:

−zH Z+( )
zX

≈ Y+ Y+⊤Y+ + αI( )−1 (11)

where Z+ denotes the subspace and Y+ denotes the mean centered
matrix of that subspace. Here, + can be W or B representing the
within and between subspace, respectively. The dimensionality of
the particle correlation matrices in these disentangled within and
between subspaces ΣW

k and ΣB are dMk × dMk and dK × dK,
respectively, which is much lower than the dimensionality of the
correlation matrix in global shape modeling approach which is dM ×
dM. This disentangled formulation in the proposed MLMOmethod
gives relief in computational burden as it leads to faster eigenvalue
decomposition of the correlation matrix of significantly lower
dimension used for entropy computations (Eqs. 9, 10) and
consequently, faster optimization as compared to the global

shape modeling approach. Moreover, this makes the MLMO
model more flexible and less constrained, demonstrating its
better statistical power under high dimensional and low sample-
size settings which is more predominant in multi-object shape
modeling scenarios.

2.6 Evaluation metrics

In this section, we describe different quantitative and qualitative
metrics used to systematically evaluate the results produced by the
underlying PSM method and the associated shape correspondence
performance.

2.6.1 Qualitative metrics
We use mean and modes of variation to qualitatively assess the

shape model. PCA is a linear transformation of data into new
coordinate space, in which each coordinate axis represents
decreasing amount of variability in the data. In MLCA, this
transformation is done at different levels in which the data is
observed. The point correspondences generated by the respective
PSM technique is subjected to PCA in the shared subspace and
MLCA in the within-organ and between-organs subspaces. This
provides a ranking of the uncorrelated modes of variation based on
the amount of variance explained relative to the total variance.
When PCA is performed in the shared shape space, the modes of
variation for the morphology and relative pose of the multi-organ
shape structure remain entangled. This limits the ability of the shape
model to discover hidden patterns in the shape class of interest that
can be clinically relevant. MLCA disentangles shape morphology
and alignment variations in multi-organ shape complexes. This
helps in factoring out significant variations of how the shape
morphology of each organ changes across the population and
also how the relative alignment of multi-organ shape varies
across the population. We visualize and describe these qualitative
modes for the clinical data in Section 3 by examining the anatomical
correctness and integrity of the mean shape and its associated
modes.

2.6.2 Quantitative evaluation metrics
We use the quantitative metrics of compactness, generalization,

and specificity Davies (2002) to assess the shape-correspondence
performances with respect to the PDM construction. These
measures are defined under the assumption that the shape model
is inherently built using a PCA generative process. We extend these
metrics for MLCA by defining these evaluation measures for within-
organ and between-organs subspaces for the multi-organ shape
model. These measures collectively quantify the quality of the
shape model constructed from correspondence particles and are
defined as a function of number of modes P under consideration.

2.6.2.1 Compactness
Multi-organ shape models inherently have high dimensionality

but this high dimensional shape space can be parameterized by a
low-dimensional subspace (shared, within and between) in terms of
eigenvectors and associated eigenvalues. Compactness is the
evaluation metric that quantifies the amount of variance of the
underlying shape model. For a given subspace S, compactness is
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computed as sum of the eigenvalues λSp up to the P − th mode as
C(P) � ∑P

p�1λ
S
p, where S can be G, W or B denoting the global

shared, within or between subspaces, respectively. A shape model
with higher compactness measure is better as it can explain the
shape and/or pose variability with fewer modes of variation.

2.6.2.2 Generalization
Generalization is defined as the ability of the shape model to

represent unseen shapes of the structure modeled. It is quantified as
an approximation error using the leave-one-out cross validation
approach where a testing shape vector is left out from N shape
vectors and the shape model is obtained from the remaining N − 1
shape vectors. The approximation error is then calculated in terms
of Euclidean distance (in mm) between the held-out shape instance
and its reconstruction from the shape model. For a multi-organ
shape model, we compute this metric in different
subspaces—shared, within and between, which quantifies how
well the shape model can generalize shape vectors from that
subspace. Generalization is thus quantified as Generalization(P) �
1
N∑N

n�1En(P) where, En(P) � ‖zSn(P) − zSn‖2 is the approximation
error between shape vector zSn(P) reconstructed using P modes,
zSn is the held out shape vector, and S can be either G, W or B
denoting the global shared, within or between subspaces
respectively. The shape vector reconstruction for the shared
subspace follows the PCA generative Eq. 4 and the
reconstruction for the within and between subspace follows the
MLCA generative Eq. 7. For two shape models built using the same
training data, the model having a lower value of generalization error
indicates a more efficient shape model that can better represent
unseen shape structures. By computing generalization in these
different subspaces, we can assess how well a shape model can
learn the characteristics of the multi-organ shape and it’s relative
alignment modeled from a limited training set. If the multi-organ
shape model is over-fitted to the training data, it will not be able to
generalize well to unseen examples and this would be highlighted by
a higher generalization error. A lower generalization error in the
within subspace denotes that the shape model can easily generalize
the morphological changes of a particular organ and similarly a
lower generalization error in the between subspace indicates that the
shape model can easily generalize the relative pose of the multi-
organ shape complex (denoted by the centroid of each organ).

2.6.2.3 Specificity
Specificity quantifies the ability of the shape model to generate

new plausible instances of the shapes by constraining the variability
in the shape space using the learned population-specific shape
statistics. To compute this metric, we randomly sample a large
number of vectors (1,000 in our experiments) from the subspace and
then compute the approximation error (Euclidean distance, in mm)
between the randomly sampled shape vector and nearest training
sample. Specificity is defined as a function of number of modes P
considered and computed as Specificity(P) � 1

T∑T
t�1‖zSt(P) − zSt ‖2,

where T is the large number of shape vectors randomly generated,
zSt(P) is the shape vector randomly sampled from the subspace, zSt is
the closest training sample and S can be either G, W or B denoting
shared, within or between subspaces respectively. The randomly
sampled vectors for shared subspace are generated using the PCA
generative Eq. 4 and the randomly sampled vectors for the within

and between subspace are generated using the MLCA Eq. 7. For two
shape models, a model with lower value of specificity is better and
more specific. A lower specificity value in the within subspace
denotes that the shape model is more specific to the
morphological changes in the shape model and similarly a lower
specificity in the between subspace indicates that the shape model is
more specific to the relative pose variations of the multi-object shape
complex.

3 Experiments and results

We used synthetic and real medical data to demonstrate that the
proposed shape modeling approach generates optimal shape models
for complex multi-organ anatomical structures. We use the global
shape modeling approach described in Section 2.3 as a baseline
method for comparison. Shape models can also be created by the
individual modeling approach (Section 2.1), where shape models are
built separately for each organ in the multi-organ structure. If we
model each organ separately, we sacrifice the inter-structural shape
and pose correlations, which are of significant interest in many
clinical contexts. The main emphasis of this paper is to efficiently
bring in these inter-organ relations in the shape model for multi-
organ structure. Therefore, in this work, we restrict our comparison
only to the joint shape modeling approach. We employed
ShapeWorks Cates et al. (2017a) and Cates et al. (2007), an
open-source software implementation of the particle-based shape
modeling method to build shape models for the clinical and
synthetic data. We implemented the baseline method of global
shape modeling approach using the optimization scheme already
given by ShapeWorks. We modified the objective function to
implement our proposed optimization scheme described in
Section 2.5. ShapeWorks utilizes an iterative, particle-splitting
strategy, in which the full set of particles is initialized in a
multiscale fashion such that in every step each particle is split to
produce a new nearby particle until the desired number of particles
is attained. This mechanism is a self-tuning system of particles that
distribute themselves across the shape surface using repulsive forces
to achieve optimal point distributions that cover each surface. The
number of particles for a particular anatomical shape surface
depends on its size, curvature, and morphological variations such
that smooth and small shapes require less number of particles as
compared to complex and highly variable shapes. In our
experiments on different datasets, the number of particles for
given anatomy is chosen empirically by utilizing this coarse-to-
fine particle splitting strategy until the resulting particle
representation is deemed to capture sufficiently good detail for
the given anatomy depending on its size and curvature.

3.1 Proof of concept experiment

To illustrate and assess the proposed MLMO shape modeling
approach, we devised a proof-of-concept experiment using synthetic
shapes. We created synthetic data simulating multi-organ structures
using supershapes, which are a family of parameterized shapes Gielis
(2003). Each object in themulti-object synthetic shape is modeled by
a supershape with different number of lobes and shape parameters
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randomly drawn from a χ2 distribution which reflects the
morphological changes in each supershape. The relative
alignment of supershapes in the multi-object shape complex is
modeled by a parabolic curve y = ax2, where a ~ U(0, 0.001) for
each x coordinate of the individual supershape. This results in shape
variations in the supershape reflected by the change in one
parameter of supershape and the alignment variations of the
multi-object shape complex changing from concave to convex.
Thus, the synthetic dataset helps us evaluate the shape modeling

technique as these shape and pose variations have been incorporated
in a known way, and the underlying PSM technique should correctly
model these variations.

We build the shape models using 512 correspondence points for
each supershape object in the multi-object shape complex. To
evaluate the shape model, we use MLCA to visualize the patterns
of shape and pose variability across the population. The dominant
modes of the shape model should correctly reflect these variabilities,
which are known to be only two for the synthetic dataset. Figure 1A
shows the within-object morphology variations with the
compactness measure for each supershape and Figure 1B shows
the between-objects alignment variations and its compactness
measure. For the MLMO shape model, there is only one mode of
variation in the within-object subspace that shows the shape
variability of each supershape and there is only one mode of
variation in the between subspace which shows the changes in
the alignment of the entire shape structure going from concave
to convex. Therefore, it can be concluded that the proposed shape
modeling technique correctly disentangled the shape and pose
variations and explained the total variability for within and
between subspaces with just one mode. On the other hand,
although the global shape model correctly identifies the pose
variation in the between subspace, it adds shape variations in the
secondary within-object modes, which does not truly reflect the
shape variations in the actual synthetic dataset. This underpins our
hypothesis that optimizing the shape model in the shared shape
subspace of a multi-object structure without disentangling the shape
from alignment might bring in those variations in morphology or
pose that are not anatomically accurate.

3.2 Spinal column

3.2.1 Dataset
Publicly available labeled and segmented data for human

vertebrae by the vertebrae segmentation challenge (VerSe)
Sekuboyina et al. (2021) is used to build shape models. Although
this database is large-scale, the number of patients that have the
entire spine segmented is limited. A subset of subjects from VerSe is
selected such that the number of vertebrae covered in the multi-
organ structure of each subject is maximized. 30 patients having
complete 17 vertebrae present in the thoracolumbar vertebral region
- thoracic (T1 to T12), and lumbar (L1 to L5) were selected. The
shape cohort comprises of healthy subjects and the subjects having
multiple pathologies related the spinal column, in the age range of
60 ± 17 years. We build the shape model with 8,704 correspondence
particles on the whole spine such that 512 particles are placed on
each vertebra.

3.2.2 Qualitative results
Figure 2 shows the modes of variation for PCA done in shared

shape space. We can see that for both the shape modeling
approaches, the modes depicting morphological changes of
vertebrae and their relative pose are entangled. The primary
mode of variation shows variation in the spinal length with some
changes in the morphology of each vertebra. Both pose and local
shape changes are inter-twined across these variations. The second
and third modes show a variation of kyphosis and lordosis

FIGURE 1
Proof of concept experiment results—Modes of variation and
compactness metric. (A) Within-object subspace. (B) Between-
objects subspace.
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curvatures in the sagittal plane. The particles are in better
correspondence with the proposed MLMO shape modeling
approach as this is indicated by the smooth reconstructed shapes
from the generated particles that are more faithful to the original
training shape. The modes of variation for the global shape model
show anatomical inconsistencies in regions where the vertebrae
come close to each other.

Figure 3 shows the within-organ modes of variation highlighting
only morphological changes in each vertebra. For both shape
modeling approaches, we can see that the primary mode captures
the change in scale. The secondary mode shows significant changes
in the size of the vertebral body and spinous process, especially in the
lower thoracic-lumbar regions. The third mode shows a similar
change in the vertebral body and spinous process in the lumbar
region but the changes are more clearly seen in the MLMO shape
model. The particles are in good correspondence and the shape
reconstructions are smooth, preserving the anatomical correctness

of the vertebrae for the proposed MLMO shape model as compared
to the global shape model. The global shape model has
inconsistencies in particle correspondence, denoted by jagged
shape reconstruction, especially in the posterior arch of the
vertebrae, and also weaker correspondence is seen in regions
where the lower end of vertebrae comes in close to each other.

Figure 4 shows the between-organs mode of variation
illustrating the relative alignment variations of the spine. Similar
modes were observed for both shape models. The between modes
explain the global shape of the spinal curve passing through the
vertebral body centers. The primary mode of variation is the
elongation and compression of the entire vertebra column which
depicts the change in inter-vertebral spaces. However, more
penetration of bones is seen in the middle arch of the vertebrae
column for the global shape model as compared to the proposed
MLMO shape model. The secondary mode captures the curvatures
of the thoracolumbar spine segments. It well reproduces the natural

FIGURE 2
PCAmodes of variation computed in the shared subspace for the spinal column dataset. The color map shows the distance of each mode from the
mean shape. Some of the anatomical inconsistencies are highlighted in red circles labeled from (A–F).

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Khan et al. 10.3389/fbioe.2023.1089113

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1089113


variations in the spine when the lumbar segment curvature
(lordosis) compensates for the thoracic segment curvature
(kyphosis). The third mode captures the variations in the upper-
thoracic segment curvature. To see some clinically relevant modes,
we can fix one of the vertebrae and observe alignment variations
around that vertebra. One such mode is observed when we fix L3 as
the origin referential frame, a spine kyphosis variation from hyper-
kyphosis (an adult spine deformity pathology where the spine
curvature is important), passing to asymptomatic kyphosis for
the mean model (moderated natural angle), towards hypo-
kyphosis (straight spine, also pathological).

3.2.3 Quantitative results
The evaluation metrics described in Section 2.6.2 are used to

quantitatively assess the proposed shape modeling approach and
compare it to the baseline method of the global shape modeling

approach. Figure 5A shows the within-organ compactness for each
individual vertebra from T1 to L5. We observe that the proposed
MLMO shape model gives a compact shape model in the within-
organ subspace better than the joint shape model. The shape
variations of each vertebra can be explained by less number of
modes for the MLMO shape model as compared to the global shape
model. To explain 99% of variance, MLMO shape models need
15 modes as compared to more than 20 modes needed by the global
shape model. Figures 5B, C show the compactness in the between-
organ subspace and in the shared shape space and we can see that the
compactness measure is nearly the same for both the approaches.

Figure 6A shows the within-organ generalization error for each
individual vertebra in the multi-organ structure. On average, the
MLMO shape model has a generalization error of 1.5 mm and
2.5 mm in the thoracic and lumbar regions, whereas, the global
shape model has a generalization error of 3.0 mm and 4.5 mm for

FIGURE 3
Within-organmodes of variation showingmorphological changes in each vertebra. The colormap shows the distance of eachmode from themean
shape. Some of the anatomical inconsistencies are highlighted in red circles labeled from (A–F).
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the thoracic and lumbar regions, respectively. MLMO shape model
consistently improves the generalization on the held-out samples for
each vertebra as compared to the global shape model. This implies
that the shape morphological variations of each bone are generalized
well by the proposed shape modeling technique. Figure 6B shows the
generalization error in the between-organs subspace and we can see
that the proposed MLMO approach can generalize well for unseen
relative alignment of the bones in the multi-organ model of the
vertebra as compared to the global approach where the relative pose
is not optimized during the shape modeling. Thus, it can be seen that
by optimizing the shape and relative pose subspace separately, we
can get a shape model which can generalize well to unseen
morphological changes of each vertebra and also to their unseen
relative alignment. From Figure 6C, it can be seen that the proposed
modeling approach gives a lower generalization error in the shared
PCA subspace. Figure 7 shows the specificity measures in different

subspaces. The MLMO shape model is more specific in the shared,
within, and between subspaces.

3.2.4 Validation results
To investigate the relevance of our proposed shape modeling

approach, we experimented to use the resulting shape descriptors
as a predictor in a regression task. Therefore, an experiment is
formulated to compare the predicted patient age by the shape
model versus the ground-truth age. Correspondence particles of a
statistical shape model have the potential to produce additional
diagnostic, predictive, and prognostic information beyond what is
visually perceptive and hence can be used for various downstream
tasks which are clinically relevant Goparaju et al. (2018). Several
clinical studies have shown age-related morphological and
alignment changes in the vertebra. Osteophyte formation
involves an increase in the vertebral endplate dimensions, and

FIGURE 4
Between-organmodes of variation showing relative pose variations in the spinal column. Themean shape is grey in color with ± 1σmodes shown in
blue and ± 2σ modes shown in pink color. Some of the anatomical inconsistencies are highlighted in red circles and significant pose variations are
annotated using arrows.
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activity-induced lifelong periosteal growth Junno et al. (2015) and
Whitmarsh et al. (2012) or due to some other underlying pathological
condition. This validation task aims to study which shape modeling
technique’s correspondence particles are more predictive of the
patient’s age and is based on the hypothesis that due to the
temporal features of age progression, the correspondence particles
generated by the shape model can also display a sequential pattern of
low-dimensional distribution of age progression. With the age
regression on the shape descriptors, we aim to corroborate that the
proposed model efficiently captures the morphological changes
related to normal aging evolution. These aging variations of the
spinal column are typically related to the narrowing of the spinal
canal, increase in endplate size and convexity, decrease in vertebral
body height, and increase in pedicle diameters Whitmarsh et al.
(2012). The idea is to compare both model regressions (MLMO
and global shape Model) to see if the MLMO shape model has

more prediction power (better R2 metric). A regression model is
built using the correspondence particles generated by the shapemodel
to predict the age of the same shape cohort of 30 subjects as described
in Section 3.2 having mean age of 60 ± 17 years. We applied random
sampling and selected 30% of subjects to be used as a testing dataset
which is held out from the initial analysis. Feature vectors for the
regression model were generated by projecting the correspondence
particles to the shared PCA subspace for the global shape modeling
approach and the MLCA subspace for the proposed MLMO shape
modeling approach. For both approaches, we select features up to the
number of modes that can explain 97% variability across the
population. We used Least Absolute Shrinkage and Selection
Operator (LASSO) as the regression model for our experiment
Friedman et al. (2010). The independent variable is the subject’s
age and the dependent variables are the correspondence particles of
the training set which are the shape descriptors in the PCA andMLCA

FIGURE 5
Compactness metric for spinal column data—(A) within-organ subspace. (B) Between-organs subspace. (C) Shared subspace.
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subspaces, respectively for the two shape models. The coefficient of
determination R2 is computed to assess the two trained regression
models. This metric is related to the regression residuals and is
defined as:

R2 � 1 − ∑T
i�1 yi − ỹi( )2

∑T
i�1 yi − �y( )2 (12)

where T is the number of test subjects, yi is the actual patient age and
ỹi is the patient age predicted from the shape model and �y is the
mean patient age. The regression model was tuned using a five-fold
cross-validation approach to get optimal regularization weight for
the curve fit. The R2 metric was then calculated on the testing
dataset. The age regression curve fitted for the MLMO shape
modeling approach has an R2 value of 0.62 with a mean
predicted age of 63 ± 8 years and for the global shape modeling
approach, the R2 value is 0.20 with a mean predicted age of 46 ±
15 years. As we have a drawback of having a small number of
samples in the regression model, we studied the influence of sample
number on the regression model. We repeated this experiment by

training it on a specific percentage of subjects coming from the
training data and then increasing the percentage of training shapes.
The R2 metric values coming from these experiments are then
interpolated using a power law curve. Under the power law curve
assumption, we should see a significant improvement in accuracy if
we increase the training data size. This helps in getting an estimate of
the evaluation metric value at a point when we have a sufficient
number of training shapes available. The results from this
experiment are shown in Figure 14A and we observe that there is
an improvement in the R2 score for both the shape models. The R2

value for the regression model built for the MLMO shape model
increases to 0.81 and the R2 score increases up to 0.31 for the global
shape model if we have a training dataset of size 1.2 times the current
size. These results suggest that the correspondence particles
generated from the MLMO shape modeling approach are more
predictive in capturing the morphological and relative alignment
variations of the vertebra column which arise due to changes in age.
We hypothesize that as the proposedMLMO shape model optimizes
particle correspondences separately on the within-organ and

FIGURE 6
Generalization error (in mm) for spinal column data—(A) within-organ subspace. (B) Between-organs subspace. (C) Shared subspace.
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between-organs subspaces, it can better capture the feature changes
of the vertebra both morphology as well as configuration-wise.
However, this validation task has certain limitations that warrant
consideration. The results are shown on a very small dataset and the
gender of the subjects is not taken into consideration. However,
there seems to be a correlation between gender and vertebral
pathology, which limits the generalizability of the validation results.

3.3 Foot and ankle

3.3.1 Dataset
Dataset comprising images from weightbearing CT (WBCT)

scans (Planmed Verity - 0.4 × 0.4 × 0.4 mm voxels) for the foot and
ankle of twenty-seven asymptomatic participants is used to build
shape models. The subjects’ age was in the range of 50.0 ± 7.3 years,
with height and BMI in the range of 169.4 ± 6.4 cm and 25.3 ± 3.8 kg/
m2, respectively. The bones of interest (namely, the calcaneus, talus,

navicular, and cuboid), make up the hindfoot and part of the
midfoot, which is comprised of the subtalar, talonavicular, and
calcaneocuboid joints. Due to the complex morphology and joint
relationships within these four bones, current 2D radiographic
measurements fail to quantify the 3D morphology and joint
relationships properly. Computationally modeling these
morphologies and joint relations could yield increased clinical
understanding of pathologies, improved surgical planning, and
advanced implant design. The WBCT scans were subjected to
segmentation, decimation, and smoothing to generate 3D surface
models of the talus, calcaneus, navicular, and cuboid. We build
shape models using 1,024 correspondences for the talus, 2048 for the
calcaneus, and 512 for both the navicular and cuboid bones.

3.3.2 Qualitative results
Figure 8A shows the modes of variation for PCA in the shared

subspace of all the bones. Both the shape modeling techniques give
similar morphological and configurational modes while maintaining

FIGURE 7
Specificity (in mm) for spinal column data—(A) within-organ subspace. (B) Between-organs subspace. (C) Shared subspace.
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FIGURE 8
Qualitative results for foot and ankle data. (A) PCAmodes of variation. The color map shows the distance of eachmode from themean shape. mean
shape. The arrows denote the direction along which significant shape changes take place. (B)Within-organmodes of variation. The color map shows the
distance of each mode from the mean shape. The arrows denote the direction along which significant shape changes take place. (C) Between-organs
modes of variation—Medial, Anterior and Superior View. The mean shape is grey in color with +1 σmodes shown in blue and −1 σmodes shown in
pink color.
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the joint articular relationships. The primary mode highlights the
overall growth and shrinkage of all four bones simultaneously. The
secondary PCA modes remain entangled in terms of alignment and
morphology and there is an inverse relationship between the

calcaneus and talus. As the calcaneus lengthens, the posterior
facet’s slope decreases and when the two bones are analyzed
together simultaneously, we see that when the talar dome
heightens, the posterior process diminishes and the calcaneus

FIGURE 9
Quantitative Evaluation metrics (compactness, generalization (inmm), and specificity (inmm)) for the foot and ankle dataset in (A)within-organ (B)
between-organs (C) shared subspaces.
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shortens with the posterior facet’s slope increasing. Moreover, as the
talar dome heightens, we see that the navicular and cuboid slide
inferiorly with very less rotation around the anterior-posterior axis.
The third PCAmode shows variation in the anteromedial facet such
that it moves from the anterior to posterior direction as we move
along different standard deviations of modes.

Figure 8B shows the within-organ modes of variation. We
observe identical morphological modes for both shape modeling
techniques. The primary mode here as well highlights the change in
scale and shows each bone increasing and shrinking in size
individually. The secondary mode shows the lengthening of the
calcaneus with a simultaneously decreasing posterior facet slope. We
can still observe modest talar dome, navicular and cuboid changes,
but they are not as dominant as the PCA modes discussed above.
The third mode emphasizes a similar anterior/posterior
anteromedial facet variation but this is accompanied by a
rotational component. We also see that the anteromedial facet’s
slope changes as we move along the standard deviations from a steep
slope to a more flattened slope.

Figure 8C shows the between-organ modes of variation. We
notice similar modes for both shape modeling techniques,
highlighting significant variations in the overall configuration of
the articulated joint while preserving the mean morphology, which
was not seen directly in the PCA modes. The primary mode of
variation is an overall outward and inward movement between the
bones which effectively increases and decreases the joint space
distance. The secondary mode primarily emphasizes the superior
and inferior motion of the four bones such that as the talus moves
along the superior direction, the calcaneus, cuboid, and navicular
move along the inferior direction. The third mode reflects the medial,
and lateral movement of the talus and calcaneus such that as the talus
moves along the medial axis, the calcaneus moves laterally. Moreover,
we see as the talus moves in the medial direction, the navicular rotates
along the superior and lateral axis, and the cuboid rotates in an
inferior and medial direction.

3.3.3 Quantitative results
Figure 9 shows the quantitative evaluation metric results. The

compactness measure for the MLMO shape model is higher as
compared to the global shape model, although the difference is not
very pronounced. The MLMO shape model gives lower
generalization and specificity errors in each subspace (within,
between, shared), which indicates that it can generalize well to
unseen morphological and pose variations of the ankle joint, either
combined or separately.

3.3.4 Validation results
Joint level measurements serve as an important tool to better

understand the joint level morphology and alignment variations and
to improve ankle joint pathological diagnosis and operative
procedures. To validate the proposed shape modeling technique,
we used the shape model to predict the joint coverage area of the
articulating region of the subtalar joint which is the joint between
two of the tarsal bones (the talus and calcaneus) in the foot.
Coverage area can be used to gain useful insight and quantify the
morphological variations, like osteoarthritis development and
alignment variation, such as joint subluxation Schaefer et al.
(2012) and Louie et al. (2014).

Samples from the entire dataset were randomly sampled into
train-test splits with seventy percent of samples selected for the
training of the shape models using the proposed and the global
shape modeling approach. Each test shape sample is then
orthogonally projected onto the PCA subspace for the global
shape modeling approach and onto the within-organ and
between-organs subspaces for the proposed MLMO shape
modeling approach, and then reconstructed back following the
generative equations of PCA and MLCA as described in Eqs 4, 7.
We then compare the coverage of the subtalar joint for the
reconstructed sample to the ground truth coverage measurements
of that subject. To calculate the coverage area between two bones we
use normal vectors from each face of one of the bones and identify
which faces those vectors intersect with on the opposing bone. We
consider that normal vector to be within coverage only if it intersects
with an opposing face and the surface area was calculated on that
identified region. To measure the error in coverage area between the
ground-truth and reconstructed shape samples, we use relative error
ϵ as an evaluation metric which is defined as

ϵ � |~a − a|
a

(13)

where ~a is the predicted coverage area of the subtalar joint measured
from the reconstructed shape complex and a is the coverage area of
the subtalar joint for that particular subject computed on ground-
truth meshes. We repeated this experiment using five-fold cross-
validation. Figure 14B shows the box plot for the relative errors. We
can see that the relative error for the proposed MLMO shape model
is comparatively smaller than the global shape model, although this
difference is small. The mean relative coverage area error of
calcaneus and talus is 4.0% and 3.6%, respectively, for the
proposed MLMO shape modeling approach. For the global shape
modeling approach, the errors are 4.4% and 3.8% for the calcaneus
and talus, respectively. In Table 1, we report the population level
coverage area measurements of the subtalar joint for the five-fold
cross-validation experiments from each of the optimization
approaches along with the ground truth coverage measurements.
These results suggest that the MLMO shape modeling technique is
better at preserving the true anatomical correctness of the articulated
joint (indicated here by coverage area) while simultaneously
building a compact model.

3.4 Hip joint

3.4.1 Dataset
We used a dataset of 51 hemi-pelvis and proximal femur pairs of

the hip joint. The shape cohort comprised of 24 control subjects, six
patients with cam femoroacetabular impingement (FAI), 10 patients

TABLE 1 Coverage area measurements (μ ± σ in mm2) of the subtalar joint.

Talus Calcaneus

Ground truth 1527.87 ± 201.30 1439.94 ± 186.78

Global shape model 1503.08 ± 164.38 1413.19 ± 141.92

MLMO shape model 1481.22 ± 165.38 1391.91 ± 140.33
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FIGURE 10
PCAmodes of variation in the shared subspace for the hip joint dataset. The color map shows the distance of each mode from themean shape. The
arrows denote the direction along which major shape variations take place.

FIGURE 11
Within-organ modes of variation showing morphological changes in each bone for the hip joint dataset. The color map shows the distance of each
mode from the mean shape.
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with acetabular dysplasia and 10 patients with pelvic retroversion.
The shape models were built using 2048 correspondences on the
pelvis and 512 on the femur, using the two shape modeling
approaches.

3.4.2 Qualitative results
Figure 10 shows the PCA modes of variation in the shared

subspace. We observe similar modes for both the shape models with
a difference in magnitude, with the global shape model having
reduced magnitude of variation. The primary mode highlights the
shape variation associated with overall growth and shrinkage in size,
along with an asphericity of the femoral head likely attributed to
some of the subjects having cam FAI morphology. The second mode
highlights anterior-posterior pelvic tilt entangled with shape
variations on the femoral head and the ilium. The third mode
shows elongation and shortening of the femoral shaft attributed to
the field of view of the imaging, as well as changes in the curvature of
the ilium.

Figure 11 shows the within-organ modes of variation
highlighting morphological changes of pelvis and hip. The
primary mode shows the changes in scale as growth and
shrinkage variations. There are some morphological changes on
the femoral head as well. The secondary mode shows the
morphological changes of the ilium with minimal shape variation
for femur. The third mode shows the shape variations in femoral
head and shaft. The shape variation capture by the modes of the
proposedMLMO shape model are of higher magnitude as compared
to the global shape model.

Figure 12 shows the between-organ modes of variation depicting
the relative alignment variations of the hip joint while
simultaneously preserving the mean shape. In the primary mode,
we observe the increased and decreased space between the femoral

head and the acetabulum. This observation may be unique to this
dataset, as the images were acquired with the hip in traction to widen
the intra-articular joint space for visualization of the separated
cartilage layers during CT image acquisition. The variability in
the amount of traction applied cannot be factored out by the
initial rigid alignment process. However, we notice that the non-
physiological penetration of femoral head into the acetabulum is
more pronounced in the modes discovered by the global shape
model. The second mode shows the femoral head tilting towards the
posterior direction with the pelvis fixed, representing variation in
flexion-extension of the hip joint. The third mode shows minor
alignment shift between the pelvis and femur in the opposite
direction, such that when pelvis shifts laterally the femur shifts
medially and vice versa.

3.4.3 Quantitative results
Figure 13 shows the quantitative evaluation metric results. The

compactness measure for the shape models, both baseline and
proposed are very close to each other. The MLMO shape model
has lower generalization and specificity errors as compared to the
global shape model in the between and within subspaces but has
similar errors in the shared subspace. The specificity measure is
lower for the MLMO shape model in each subspace. In the within
subspace, the generalization and specificity metrics are higher for the
pelvis than the femur for both shape models.

3.4.4 Validation results
Statistical shape models can be employed to automate the

inference of patient-specific anatomical morphometrics. For the
validation task using the hip joint data, we estimated the patient-
specific anatomical landmarks for the pelvis and femur anatomies.
The estimation of landmarks is an important task as landmarks are

FIGURE 12
Between-organs modes of variation showing relative pose variations for the hip joint dataset. The mean shape is yellow in color with ± 1σ modes
shown in red and ± 2σ modes shown in green color. The arrows denote the direction along which significant pose variations take place.
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used for a variety of clinical and research applications, like motion
tracking or coordinate system identification for surgical planning or
robotic surgery. The given dataset was randomly sampled into train-
test split with 30% of subjects held out as testing dataset. The shape
model was generated on the training dataset using the baseline and

proposed methodology. Ground-truth landmarks were manually
annotated by an expert using first and second principal curvature of
the surfaces for guidance. We chose five landmarks for the hip joint
in our validation task as shown in Figure 14C. Three landmarks were
defined on the pelvis, including the anterior superior iliac spine

FIGURE 13
Quantitative Evaluationmetrics (compactness, generalization (inmm), and specificity (inmm)) for the hip joint dataset computed in (A)within-organ
(B) between-organs (C) shared subspaces.
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(ASIS), posterior superior iliac spine (PSIS) and iliac crest, as are
commonly used in motion capture and for the development of a
pelvic coordinate system. Two landmarks were defined on the
femur, including the greater trochanter and lesser trochanter.
The point correspondences for each test subject were then
generated using the shape model of the training data. The
subject-specific landmarks were then warped from the subject
space to the mean space of the shape model using thin plate
splines (TPS) Bookstein (1989). This was followed by
constructing a TPS warp using correspondences of the mean
shape and the subject-specific anatomy as reference points, which
served as a mapping between the mean and subject spaces. Finally,
the mean landmarks were warped back to subject space to obtain
subject-specific landmarks which were the predicted points from the
SSM. We then computed the Euclidean distances between the
predicted landmarks and the ground-truth values. We repeated
this process five times on different train-test splits to get five-fold
cross-validation metrics for the euclidean distance error. Figure 14D
shows the box-plot for the Euclidean distance error in mm for the
proposed and baseline methods. The landmarks predicted by the
proposed MLMO shape model had comparatively lower errors as
compared the ones predicted by global shape model. The errors for
the landmarks placed on femur (greater and lesser trochanter) are
lower in magnitude as compared to the errors for landmarks on
pelvis. The highest errors were observed for the iliac crest landmark,
which was placed on the most prominent feature of the iliac crest, a
location which is variable across subjects and difficult to identify
through palpation of bony prominences for motion capture. From
these results, we infer that due to the disentangled approach to build

the shape model, the proposed MLMO shape model had particle
correspondences which reflected the true morphology of the
individual bone (femur or pelvis) which were anatomically
correct. A promising direction for the future application of the
MLMO shape model motivated by this validation experiment is to
calculate joint angle measurements in a relevant clinical/anatomical
coordinate system from the surface reconstructions provided by the
MLMO shape models. With the MLMO shape model, landmarks
that are necessary to define a coordinate system could be based on
their spatial relationship to the underlying correspondence particles,
which can then be used to calculate pose automatically in a clinically
relevant anatomic coordinate system. This work can improve the
clinical interpretation of articulated joint data from statistical shape
models. We also see the potential of tying the correspondence model
to associated biomechanics measurements to quantify form-
function relationships. For instance, we can show that patients
with more severe cases of hip dysplasia (which can be measured
by MLMO) also exhibit more pronounced hip instability (as
measured by motion capture).

4 Conclusion

In this paper, we proposed a new shape modeling approach for
multi-organ anatomies by separating shape from pose and building a
shape model by optimizing the mutually orthogonal subspaces of each
organ and their relative pose. The proposed method efficiently uses the
available, typically limited, 3D models of anatomy to capture subtle,
clinically relevant morphological intra- and inter-structural

FIGURE 14
Validation Results—(A) Power law interpolation for R2 metric computed at different training data sizes of spinal column data. (B) Box-plot for the
relative error of coverage area for calcaneus and talus. (C) Anatomical landmarks for femur and pelvis used for landmark inference - iliac crest (blue), ASIS
(red), PSIS (brown), lesser trochanter (pink) and greater trochanter (green). (D) Box-plot for Euclidean distance error computed for the landmark inference
validation task done on the hip joint.
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correlations. The method also provides a scalable approach for
modeling anatomies with more organs compared to the current
global shape modeling scheme that can get prohibitive with
increased number of correspondence points and more organs. This
offers a practical solution for a wider range of problems in the multi-
organ shape acquisition and modeling relative to the work in the
literature. We showed from experiments that the MLMO shape
modeling technique outperforms the global PSM method by
accurately capturing the morphological and configuration variations
for multi-object structures. Our model mitigates the problem of
overestimation of variance which is the case with global shape
models, where PCA in the shared shape space leads to anatomical
inconsistencies. The proposed MLMO modeling technique is scalable
as the generative model is built individually for each organ and also for
their relative pose, thereby leading to covariance matrices of much
lower dimension than the jointmodels. The shapemodels generated by
the proposed PSM method are more compact, specific, and
generalizable as compared to the global shape models in high
dimensional, low sample size settings. Due to the generative nature
of the proposed MLMO shape modeling technique, this method is
orthogonal to and can be extended to various posterior inference
techniques that are applied to traditional statistical shape models
Albrecht et al. (2013). An intriguing direction for a future work
application using the MLMO shape modeling technique could be to
infer the shape and pose relations when some organ shapes are known
a priori, and the objective is to model the posterior distribution of the
entire multi-organ shape given the known partial parts. The additional
benefit of learning conditional distribution usingMLMO shapemodels
for articulated joints will be that it can be used to reconstruct and
understand the healthy morphology of the shape with simultaneously
restoring the native joint biomechanics as the shape and relative pose
subspaces remain disentangled in the proposed approach.

Our work comes with some limitations. The proposed MLMO
shape modeling technique builds from the idea that configuration
variations in the pose can be learned by modeling the distance of the
centroid of each object from the global centroid. This enables us to
disentangle the shape from its relative pose and gives us a simple way
to learn the relative alignment of structures in the multi-organ shape
complex, along with the morphological changes in each object.
Although this linear assumption that a Gaussian distribution can
model each subspace helps us to bring anatomical correlations in
terms of relative pose between joint structures in multi-organ
settings to the shape modeling process, however, these relative
pose variations cannot be entirely linear, and might have some
non-linear variations across the shape and pose features. A direction
for future work can be to incorporate a more robust generative
model that can learn linear and non-linear embeddings of the high-
dimensional shape and pose spaces in low-dimensional space in a
fully probabilistic manner for multi-organ anatomies. This will
improve the capability of the multi-organ shape models to
handle complex inter-object pose relations better to build shape
models of complex anatomies as realistically as possible.
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