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The statistical multifragmentation model is modified to incorporate the Helmholtz free energies calculated
in the finite temperature Thomas-Fermi approximation using Skyrme effective interactions. In this formulation,
the density of the fragments at the freeze-out configuration corresponds to the equilibrium value obtained in the
Thomas-Fermi approximation at the given temperature. The behavior of the nuclear caloric curve at constant
volume is investigated in the micro-canonical ensemble, and a plateau is observed for excitation energies between
8 and 10 MeV per nucleon. A kink in the caloric curve is found at the onset of this gas transition, indicating
the existence of a small excitation energy region with negative heat capacity. In contrast to previous statistical
calculations, this phase transition takes place even when the system is constrained to fixed volume. The observed
phase transition takes place at approximately constant entropy. The charge distribution and other observables
also turn out to be sensitive to the treatment employed in the calculation of the free energies and the fragment
volumes at finite temperature, specially at high excitation energies. The isotopic distribution is also affected by
this treatment, which suggests that this prescription may help obtain information on the nuclear equation of state.
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I. INTRODUCTION

Understanding the behavior of nuclear matter far from
equilibrium, besides its intrinsic relevance to theoretical
nuclear physics, is a subject of great interest to nuclear
astrophysics, where the fate of supernovae and the properties
of neutron stars are appreciably influenced by the nuclear
equation of state (EOS) [1–3]. Thus, this area has been
intensively investigated in different contexts during the last
two decades [2–11]. Nuclear collisions, at energies starting at
a few tens of MeV per nucleon, provide a suitable means
to study hot and compressed nuclear matter [9–17]. The
determination of the nuclear caloric curve is of particular
interest, as it allows one to infer on the existence of a liquid-gas
phase transition in nuclear matter. Nevertheless, owing to
experimental difficulties, conflicting observations have been
made in different experimental analyses [17–30]. Although
there have been attempts to reconcile these results [31], this
issue has not been settled.

The properties of the disassembling system in central
collisions, as well as the outcome of the reactions, have
been found to be fairly sensitive to the EOS employed in
the many theoretical studies using the dynamical models that
have been performed [9–13]. However, in spite of their success
in describing many features of the nuclear multifragmentation
process [32–34], there has not been much effort to incorporate
information based on the EOS into the main ingredients of
statistical multifragmentation models. Yet, these models have
recently been applied to investigate, for instance, the isospin
dependence of the symmetry energy at densities below the
saturation value [35–37]. These calculations have suggested
an appreciable reduction of the symmetry energy coefficient

at low densities, but other statistical calculations [38–40]
indicate that surface corrections to the symmetry energy
may also explain the behavior observed in those studies.
Therefore, statistical treatments, which consistently include
density effects, are preferable for these studies.

In this work, we modify the statistical multifragmentation
model (SMM) [41–43] and calculate some of its key ingre-
dients from the finite temperature Thomas-Fermi approxi-
mation [44–47] using Skyrme effective interactions (SKM).
This version of the model is henceforth labeled SMM-TF.
The internal Helmholtz free energies of the fragments are
calculated in a mean field approximation, which is fairly
sensitive to the Skyrme force used [48]. This makes it possible
to investigate whether such statistical treatments may provide
information on the EOS. Furthermore, this approach allows
one to consistently take into account contributions to the
free energy due to excitations in the continuum, in contrast
to the traditional SMM [49]. For consistency with the mean
field treatment, the equilibrium density of the fragments at
the freeze-out stage is also provided by the Thomas-Fermi
calculations. Thus, in contrast with former SMM calculations,
fragments are allowed to be formed at densities below their
saturation value. For a fixed freeze-out volume, this leads to a
systematic reduction of the free volume, which directly affects
the entropy of the fragmenting system, the fragment kinetic
energies, and the system pressure. As a consequence, other
properties, such as the caloric curve and the multiplicities of
the different fragment species produced, are also affected.

We have organized the remainder of this work as follows. In
Sec. II, we discuss the modifications to the SMM and present
the results obtained with this modified treatment in Sec. III.
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Concluding remarks are drawn in Sec. IV. In the Appendix, we
provide a brief description of the Thomas-Fermi calculations
employed in this work.

II. THEORETICAL FRAMEWORK

In the SMM [41–43], it is assumed that a source, made up of
Z0 protons and A0 − Z0 neutrons, is formed at the late stages
of the reaction, with total excitation energy E∗. This excited
source then undergoes a simultaneous statistical breakup. As
the system expands, there is a fast exchange of particles
among the different fragments until a freeze-out configuration
is reached, at which time particle exchange ceases, and the
composition of the primary fragments is well defined. One
then assumes that thermal equilibrium has been reached
and calculates the properties of the possible fragmentation
modes through the laws of equilibrium statistical mechanics.
A possible scenario consists in conjecturing that the freeze-out
configuration is always attained when the system reaches
a fixed pressure, i.e., the nuclear multifragmentation is an
isobaric process. In this case, different statistical calculations
predict a plateau in the caloric curve [42,50–55]. The situation
is qualitatively different if one assumes that for a given
source, the freeze-out configuration is reached at a fixed
breakup volume Vχ . As found in many different calculations,
a monotonic increase of the temperature with excitation
energy takes place in this case [55–57]. In what follows,
we demonstrate that this is a consequence of the properties
assumed for the fragments formed and not of the fixed volume
assumption.

In this work we keep the breakup volume fixed for all
fragmentation modes and parametrize it through the expression

Vχ = (1 + χ )V0, (1)

where V0 denotes the volume of the system at normal density
and χ � 0 is an input parameter.

In the micro-canonical version of SMM, the sampled
fragmentation modes [43] are consistent with mass, charge,
and energy conservation, and thus the following constraints
are imposed for each partition:

A0 =
∑
A,Z

NA,ZA, (2)

Z0 =
∑
A,Z

NA,ZZ, (3)

and

Eg.s.
source + E∗ = Etrans(T ) +

∑
A,Z

NA,Z[−BA,Z + ε∗
A,Z]

+ CCoul

(1 + χ )1/3

Z2
0

A
1/3
0

− CCoul

(1 + χ )1/3

∑
A,Z

NA,Z

Z2

A1/3
. (4)

In the above equations, Eg.s.
source is the ground state energy of the

source, NA,Z denotes the multiplicity of fragments with mass
and atomic numbers A and Z, respectively, BA,Z corresponds
to the binding energy of the fragment, and ε∗

A,Z(T ) represents
its excitation energy at temperature T . The Coulomb repulsion
among the fragments is taken into account by the last two terms

of the above equation, which, together with the self-energy
contribution included in BA,Z , give the Wigner-Seitz [58]
approximation discussed in Ref. [41]. The coefficient CCoul

is given in Ref. [59]. As discussed in Ref. [49], the fragment
binding energy BA,Z is either taken from experimental values
[60] or obtained from a careful extrapolation if empirical
information is not available. The spin degeneracy factors,
which enter into the calculation of the translational energy
Etrans, are also taken from experimental data for A � 4. In the
case of heavier fragments, this factor is neglected; i.e., it is set
to unity for all nuclei.

One should notice that the freeze-out temperature varies
from one fragmentation mode f = {NA,Z} to another, since
it is determined from the energy conservation constraint of
Eq. (4). Therefore, the average temperature is calculated, as
any other observable O, through the usual statistical averages:

〈O〉 =
∑

f Of exp(Sf )∑
f exp(Sf )

, (5)

where Sf denotes the entropy associated with the mode f . This
entropy is calculated through the standard thermodynamical
relation

S = −dF

dT
, (6)

where

F = E − T S (7)

is the Helmholtz free energy. In the following, we write this
quantity as

F =
∑
A,Z

NA,Z

[−BA,Z + f ∗
A,Z(T ) + f trans

A,Z (T )
] + FCoul, (8)

where the contributions from the fragment internal excitation
f ∗

A,Z and translational motion f trans
A,Z are explicitly separated.

The latter reads

f trans
A,Z = −T

[
log

(
gA,ZVf A3/2

λ3
T

)
− log(NA,Z!)

NA,Z

]
. (9)

In this expression, λT =
√

2πh̄2

mnT
is the thermal wavelength, mn

is the nucleon mass, gA,Z is the spin degeneracy factor, and Vf

denotes the free volume, i.e., it is the difference between Vχ

and the volume occupied by all the fragments at freeze-out.
The quantity FCoul corresponds to the last two terms in Eq. (4).

Before we present the changes in the model associated
with the Thomas-Fermi calculations, we briefly recall below
the calculation of Helmholtz free energy F in the SMM.

A. The standard SMM

In its original formulation [41], the SMM assumes that
the diluted nuclear system undergoes a prompt breakup and
that the resulting pieces of matter collapse to normal nuclear
density, although being at temperature T . Therefore, the
volume occupied by the fragments corresponds to V0, so that

Vf = χV0. (10)
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The energy and entropy associated with the translational
motion of the fragment are, respectively, given by

εtrans
A,Z = f trans

A,Z + T s trans
A,Z = 3

2T (11)

and

s trans
A,Z = − d

dT
f trans

A,Z

= 3

2
+ log

[
gA,ZVf A3/2

λ3
T

]
− log(NA,Z!)

NA,Z

. (12)

The internal free energy f ∗
A,Z has contributions from bulk

and surface terms:

f ∗
A,Z = −T 2

ε0
A + β0A

2/3

[(
T 2

c − T 2

T 2
c + T 2

)5/4

− 1

]
. (13)

The values of the parameters in this expression are ε0 =
16.0 MeV, Tc = 18.0 MeV, and β0 = 18.0 MeV [49]. This
expression is used for all nuclei with A � 5. Lighter fragments
are assumed to behave as point particles, except for the
α particle, for which one retains the bulk contribution to the
free energy in order to take its excited states into account.

In Ref. [49], the calculation of f ∗
A,Z has been modified to

include empirical information on the excited states of light
nuclei. We label this version of the model as ISMM, and it is
used throughout this work.

B. The SMM-TF

The Thomas-Fermi approximation, briefly outlined in the
Appendix, allows one to calculate the internal free energy
of the fragments f ∗

A,Z from Skyrme effective interactions.
Equations (A19) and (A26) clearly show that f ∗

A,Z contains,
besides those from the nuclear interaction traditionally used
in SMM, contributions associated with the Coulomb energy
in addition to the ones appearing in Eq. (13). The additional
Coulomb contribution arises, in the present case, because the
equilibrium density of the nucleus at temperature T does
not correspond, in general, to its ground state value. This is
illustrated in Fig. 1, which shows the ratio between the average
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FIG. 1. (Color online) Ratio between the average equilibrium
density of the nucleus at temperature T and the ground state value as
a function of the temperature. For details, see the text.

density 〈ρ〉 at a temperature T , and the corresponding ground
state value 〈ρ0〉, for several selected light and intermediate
mass nuclei. We define the sharp cutoff density 〈ρ〉 as that
which gives the same rms radius as the actual nuclear density
obtained in the Thomas-Fermi calculation. One observes
that 〈ρ〉 decreases as one increases the temperature of the
nucleus and that it quickly goes to zero as T approaches its
limiting temperature, since the nuclear matter tends to move
to the external border of the box due to Coulomb instabilities
[47,48,61]. In our SMM-TF calculations presented below, we
only accept a fragmentation mode at temperature T if it is
smaller than the limiting temperature of all the fragments of the
partition. If this is not the case, the entire partition is discarded
as not being physically possible, and we sample another one.

Thus, a fragment’s volume at temperature T is defined as

VA,Z

V 0
A,Z

=
〈
ρ

A,Z
0

〉
〈
ρA,Z

〉 , (14)

where V 0
A,Z represents the ground state value. Since it is

useful to have analytical formulas to use in practical SMM
calculations, we performed a fit of 〈ρA,Z〉 using the expression

〈ρA,Z〉〈
ρ

A,Z
0

〉 = 1 + T aA,Z
n

n−1∑
i=0

a
A,Z
i T i, (15)

where {aA,Z
i } are the fit parameters. This expression has proven

to be accurate enough for numerical applications, as illustrated
in Fig. 1, which shows a comparison between Eq. (15)
(full lines) and the results obtained with the Thomas-Fermi
calculation (circles). The fit was carried out using n = 6. The
dashed lines emphasize the fact that 〈ρA,Z〉 = 〈ρA,Z

0 〉 in the
standard SMM.

Instead of being given by Eq. (10), the free volume of a
fragmentation mode now reads

Vf = (1 + χ )V0 −
∑
A,Z

NA,ZV 0
A,Z

[
1 + T aA,Z

n

n−1∑
i=0

a
A,Z
i T i

]−1

.

(16)

For the values of χ usually adopted in statistical calculations
(0 � χ � 5), this expression shows that for some partitions,
there may be a temperature TV for which Vf � 0. Therefore, if
Eq. (4) leads to T � TV , the partition is discarded, as it is not
a physically acceptable solution.

From Eq. (9), the entropy associated with the kinetic motion
of the fragment (A,Z) becomes

s trans
A,Z = 3

2
+ log

[
gA,ZVf A3/2

λ3
T

]
− log(NA,Z!)

NA,Z

+ T

Vf

dVf

dT
.

(17)

One should notice that, besides the smaller free volume, the
last term in this expression does not appear in the earlier
version of the SMM. Since dVf /dT � 0, this expression gives
a smaller contribution to the total entropy than Eq. (12). Owing
to this change in the entropy, the average kinetic energy of the
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fragment becomes

εtrans
A,Z = 3

2
T

(
1 + 2

3

T

Vf

∂Vf

∂T

)
, (18)

which, for a given temperature, is also lower than the corre-
sponding SMM value. As a matter of fact, if the second factor
dominates the first one, for T > TK , where εtrans

A,Z (TK ) = 0,
it can even become negative. We also discard all partitions
for which there is no solution of Eq. (4) satisfying T < TK .
This aspect is illustrated in Fig. 2, which shows the total
kinetic energy Etrans as a function of T for the 150Nd nucleus,
with E∗/A = 8 MeV, for a partition containing M = 29
fragments. The full line represents Etrans, whereas the dashed
line corresponds to the standard SMM formula. The factor,
M − 1 is due to the fact that the center-of-mass motion is
consistently removed in all the kinetic formulas, although it is
not explicitly stated above.

The observed drop of the kinetic energy may lead to non-
trivial consequences. In the case of the 150Nd nucleus and for
E∗/A <∼ 7.0 MeV, the fragment multiplicity is relatively low.
Therefore, in this lower excitation energy range, the behavior
of the kinetic energy does not lead to any qualitative changes
arising from the energy conservation constraint. However, for
higher excitation energies, and consequently larger fragment
multiplicities, the kinetic energy is comparable to the total
energy of the system Etotal. In this case, for a given value
of Etotal, there may be two values of T which are acceptable
solutions to Eq. (4). This is also illustrated in Fig. 2, which
shows the difference 	E between the left- and right-hand sides
of this expression. Since all the micro-states corresponding to
the same total energy Etotal should be included, both solutions,
in this case associated with temperatures T ≈ 5.3 and T ≈
6.2 MeV, must be considered. They contribute, however, with
different statistical weights, because of the different number
of states associated with each of these two solutions.
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FIG. 2. (Color online) Kinetic energy (full line) of a particular
partition of the 150Nd nucleus into M = 29 fragments, for E∗/A =
8 MeV and Vχ/V0 = 3, as a function of the temperature. For
comparison, the standard average translational energy, (M − 1) 3

2 T ,
is also displayed (dashed line). The difference between the left- and
the right-hand sides of Eq. (4), 	E, is also shown (dashed-dotted
line).
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FIG. 3. (Color online) Temperature distribution for the breakup
of the 150Nd nucleus at E∗/A = 8 MeV and for Vχ/V0 = 3. The full
line corresponds to all events; those with two temperatures associated
with Etotal are depicted by the dashed line.

Based on this scenario, the determination of the freeze-out
temperature from isotopic ratios [30,62], where one tacitly
assumes that T is univocally determined from E∗, should be
carefully reexamined. To give a quantitative estimate of these
effects, we show in Fig. 3 the temperature distribution for
the fragmentation of the 150Nd nucleus, at E∗/A = 8 MeV
and Vχ = 3V0. The full line in this figure shows the results
when all the partitions are considered, whereas the dashed line
represents only those that lead to two different temperatures.
The cases with two temperature solutions correspond to 43% of
the events and account for 76% of the total statistical weight.
These numbers are drastically changed at lower excitation
energies: for instance, at E∗/A = 6 MeV, one finds 0.03% and
0.09%, respectively. In spite of the great importance of these
solutions at high excitation energy, the temperature distribution
does not exhibit two clear dominant peaks, separated by a
gap, as it could be expected from Fig. 2. This is because the
numerical value of the two solutions vary from one partition
to the other, and the expected signature is thus blurred.

We have also fitted the internal free energies of the nuclei
through a simple analytical formula:

f ∗
A,Z = −T 2

m∑
i=0

b
A,Z
i T i, (19)

where {bA,Z
i } are the fit coefficients. The results are depicted in

Fig. 4 by the full lines, whereas the Thomas-Fermi calculations
are represented by the circles. As in the previous case, an
excellent agreement is obtained with a small number of
parameters (m = 5). The free energies used in the ISMM are
also shown in this picture (dashed lines). One sees noticeable
differences at low temperatures in the case of the lighter
nuclei. Particularly, many more states are suppressed in the
ISMM than in the SMM-TF, which suggests that the latter
should predict larger fragment multiplicities than the former.
This is due to the empirical information on excited states
that is taken into account in the ISMM [49]. In the case of
heavier nuclei, the differences are more important at higher
temperatures, where the ISMM has more contributions from
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FIG. 4. (Color online) Internal free energy of selected nuclei as a
function of the temperature. For details, see the text.

states in the continuum than the SMM-TF. However, the
determination of the free energy at high temperatures in the
ISMM is not as reliable as in the Thomas-Fermi approximation
in the sense that the numerical values of the parameters ε0, Tc,
and β0, used in actual calculations, are not obtained from a
fundamental theory. They correspond to average values [41,42]
which, sometimes, are slightly changed by different authors
[42,49,63].

From the above parametrization to f ∗
A,Z , the entropy and

excitation energy associated with the fragment (A,Z) read

s∗
A,Z = 2T

m∑
i=0

b
A,Z
i T i + T 2

m∑
i=1

ib
A,Z
i T i−1 (20)

and

ε∗
A,Z = T 2

m∑
i=0

b
A,Z
i T i + T 3

m∑
i=1

ib
A,Z
i T i−1. (21)

The free energies and equilibrium volumes are calculated
using these expressions for α particles and all nuclei with
A � 5.

III. RESULTS AND DISCUSSION

The SMM-TF model described in the previous section is
now applied to study the breakup of the 150Nd nucleus at
fixed freeze-out density. We use Vχ/V0 = 3 in all calculations
below. The caloric curve of the system is displayed in Fig. 5.
Besides the SMM-TF (circles) and the ISMM (triangles)
results, the Thomas-Fermi calculations for the 150Nd nucleus
are also shown (dotted line), as well as the Fermi gas (full
line) and the Maxwell-Boltzmann (dashed line) expressions.
For E∗/A <∼ 8.0 MeV, both SMM calculations agree fairly
well on the prediction of the breakup temperatures. However,
a kink in the caloric curve is observed at this point, in the
case of the SMM-TF, indicating that the heat capacity of
the system is negative within a small excitation energy range
around this value. Negative heat capacities have been predicted
by many calculations and have been strongly debated in the
recent literature [42,50–54,64–68]. However, this feature is
normally observed at the onset of the multifragment emission,
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FIG. 5. (Color online) Caloric curve associated with the breakup
of the 150Nd nucleus. The ISMM calculation of Ref. [49] (triangles)
and the SMM-TF calculation presented in this work (circles) are seen
to differ for E∗/A > 8 MeV. For reference the excitation energy of the
compound nucleus calculated within the Fermi gas model (full line),
the classical gas model (dashed line), as well as the Thomas-Fermi
approach (dotted line) have also been presented. For further details,
see the text.

i.e., at the beginning of the liquid-gas phase transition [42,53],
whereas it appears much later in the present calculation.

To understand the qualitative differences between the two
SMM approaches, we show in Fig. 6 the multiplicity of light
particles Nlp (all particles with A � 4, except for α particles),
the α particle Nα and the intermediate mass fragment (IMF,
3 � Z � 15) NIMF multiplicities, as well as the total fragment
multiplicity Ntotal as a function of the excitation energy. It
is important to notice that neutrons are included in Nlp and
Ntotal. One sees a clear disagreement between the two SMM
calculations in the prediction of the α particle multiplicity.
This is due to the construction of the internal free energies
in the ISMM [49], which considers empirical low-energy
discrete states. Since the first excited state of the α particle is
around 20 MeV, this strongly increases the free energy at low
temperatures within the ISMM calculation, in contrast to the
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FIG. 6. (Color online) Average multiplicity of light particles, α’s,
and IMF’s, and the total fragment multiplicity, as functions of the
excitation energy. For details, see the text.
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Thomas-Fermi model calculations. For the other multiplicities,
the agreement between the two model calculations is fairly
good for excitation energies up to E∗/A ≈ 8 MeV. The
small discrepancy between Ntotal in the two calculations can
be attributed to the differences in the α multiplicities. All
multiplicities rise smoothly up to approximately this excitation
energy. Then, at E∗/A ≈ 8 MeV, in the SMM-TF calculations,
Nα and NIMF reach a maximum and decrease from there
on. This behavior is not observed in the case of the ISMM,
because it takes place beyond the energy range considered in
the figure. Another feature also observed in this picture is the
sudden change in the slope of the Ntotal and Nlp multiplicities
calculated using the SMM-TF model, which also takes place
at the excitation energy mentioned above and is not seen in the
ISMM results.

Although the Helmholtz free energies of the fragments
are somewhat different in both calculations, the differences
are not large enough to quantitatively explain this peculiar
behavior, as illustrated in Fig. 4. Therefore, the differences in
the multiplicities calculated within the ISMM and SMM-TF
models must be associated with the behavior of the kinetic
terms, because of changes in the free volume in the SMM-TF
calculations.

To examine this aspect more closely, we show in Fig. 7 the
energy dependence of 〈Vf 〉. It confirms the expectation that
〈Vf 〉 should decrease as E∗ increases, owing to the expansion
of the fragment volumes at finite temperature. However, it
reaches a minimum at E∗/A ≈ 8.0 MeV and rises from this
point on. The logarithmic volume term of the entropy [Eq. (17)]
disfavors partitions with small free volumes. Furthermore, the
last term in Eq. (17) also gets larger as T increases since,
besides being explicitly proportional to T , the factor | dVf

dT
|

grows faster at high temperatures, as it can be inferred from
the behavior of the densities shown in Fig. 1. Therefore, the
system favors the emission of very light particles, Nlp, which
cannot become excited in our treatment, in order to minimize
the reduction of Vf . Nevertheless, this preference is closely
related to the energy conservation constraint given by Eq. (4).
It is only when the excitation energy becomes sufficiently
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FIG. 7. (Color online) Average free volume and entropy per
nucleon as a function of the excitation energy calculated within the
ISMM and SMM-TF models.

high that there is enough energy for the system to produce
a significant number of very light particles. The inset in
Fig. 7 shows the entropy per nucleon predicted by the two
SMM treatments. It reveals that while in the ISMM case
it rises steadily, the entropy saturates and even decreases in
the SMM-TF model for 8.0 <∼ E∗/A <∼ 11.0 MeV. The large
emission of particles that have no internal degrees of freedom
prevents the entropy from falling off from this point on, since
they lead to larger dVf

dT
(smaller absolute values) by increasing

Vf , as they do not expand. One should notice that the reduction
of the complex fragment multiplicities does not mean that the
limiting temperature of the fragments in the different partitions
has been reached. In fact, the breakup temperatures obtained
in the present calculations are much lower than the limiting
temperatures of most nuclei, except for the very asymmetric
ones, as may be seen in the examples given in Fig. 1 and in
Refs. [47,48]. This effect on the fragments produced should
appear at much higher excitation energies, as those fragments
have excitation energies much smaller than the original
nucleus, since an appreciable amount of energy is used in
the breakup of the system. Therefore, the back bending of
the caloric curve and the small plateau observed in Fig. 5
are strongly ruled by the changes in the free volume. As a
consequence of this fact, the phase transition at high excitation
energy takes place at approximately constant entropy.

This observation is also corroborated by the charge distri-
butions shown in Fig. 8 for four different excitation energies:
E∗/A = 5, 6, 7, and 8 MeV. It shows that the multiplicity
of heavy fragments is strongly reduced in the SMM-TF
calculations as the excitation energy increases, although they
are not completely ruled out of the possible fragmentation
modes. In particular, the SMM-TF model systematically gives
much more of the lighter fragments than the ISMM, for the
reasons just discussed.

Even though the fragments are not directly affected by their
limiting temperatures at the excitation energies we consider,
the reduction of the entropy associated with the volume
affects the fragment species in different ways. Indeed, since
the proton-rich nuclei tend to be more unstable, they are
hindered due to these dilatation effects more strongly than
the other isotopes. Owing to their larger volumes at a given
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FIG. 8. (Color online) Charge distribution in the breakup of the
150Nd nucleus at four different excitation energies.
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FIG. 9. (Color online) Isotopic distribution of selected nuclear
species produced in the breakup of the 150Nd nucleus at E∗/A =
6.0 MeV.

temperature T , partitions containing proton-rich fragments
have smaller entropies than the others. Therefore, one should
expect to observe a reduction in the yields of these fragments.
This qualitative reasoning is confirmed by the results presented
in Fig. 9, which displays the isotopic distribution of some
selected light fragments, produced at E∗/A = 6.0 MeV. One
sees that even though both SMM models make similar
predictions for many observables at this excitation energy,
the role played by the free volume effects just discussed is
non-negligible. Since the limiting temperatures, as well as
the equilibrium density at temperature T , are sensitive to
the effective interaction used [47,48], these findings suggest
that careful comparisons with experimental data may provide
valuable information on the EOS.

IV. CONCLUDING REMARKS

We have modified the statistical multifragmentation model
to incorporate the Helmholtz free energies and equilibrium
densities of nuclei at finite temperature from the results
obtained with the Thomas-Fermi approximation using Skyrme
effective interactions. Owing to the reduction of the transla-
tional energy of the fragments at finite temperature, the model
predicts the existence of two temperatures associated with
the same total energy. This feature is directly associated with
the reduction of the free volume due to the expansion of the
fragment volumes. If this statistical treatment proves to be
more appropriate for describing the nuclear multifragmenta-
tion process than its standard version, the determination of
the isotopic temperatures, at high excitation energies, should
be carefully reexamined, since one tacitly assumes a univocal
relationship between the temperature and the excitation energy
in the derivation that leads to the corresponding formulas [62].
Furthermore, as pointed out in Ref. [69], due to the reduction
of the free volume in the present treatment, the fragment
distribution may be somewhat affected by the recombination
of fragments in the exit channel. Thus the very concept of the
freeze-out volume should be carefully reexamined. Studies
along this line are in progress.

The thermal dilatation of the fragment volumes also has
important consequences on the fragmentation modes. For
excitation energies larger than approximately 8 MeV per
nucleon, it favors enhanced emission of particles that have
no internal degrees of freedom (very light nuclei, protons, and
neutrons), leading to the onset of a gas transition at excitation
energies around this value. The existence of a small kink in
the caloric curve, as well as a plateau, for a system at constant
volume is qualitatively different from the results obtained
in previous SMM calculations, where these features were
observed only at (or at least at nearly) constant pressure [55].

Since many-particle multiplicities, such as those associated
with the IMF’s and the light particles, are very different in
both statistical treatments for excitation energies larger than
8 MeV per nucleon, we believe that careful comparisons
with experimental data may help to establish which treatment
is better suited for describing the multifragment emission.
Furthermore, since the isotopic distribution turns out to be
sensitive to the treatment even at lower excitation energies,
this suggests that one may obtain important information on
the EOS by using different Skyrme effective interactions in
the SMM-TF calculations. Particularly, this modified SMM
model is appropriate for investigating the density dependence
of the symmetry energy recently discussed [35–37,40].

In this work, we have employed the SKM force [44].
However, we do not expect significant qualitative changes in
our results if different Skyrme forces [70,71] are used because
the main changes brought by our modified treatment of the
SMM are due to the dilatation of the fragment volumes at
finite temperature, consistent with the microscopic treatment.
Detailed study on the effects of using various Skyme forces
will be described in a future publication [72].
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APPENDIX: FINITE TEMPERATURE THOMAS-FERMI
APPROXIMATION

The Thomas-Fermi approximation to nuclear systems is
thoroughly discussed in Refs. [44–47]. Thus, we review below
its essential features to give a full account of all calculations
presented in this work.

The equilibrium configuration of a nucleus at temperature
T is found by minimizing the thermodynamic potential 


with respect to the number density ρα(α = p, n for protons or
neutrons):


 = F[ρ] −
∑

α

∫
d3�r µαρα, (A1)
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where the Helmholtz free energy is given by

F[ρ] =
∫ [

Hnucl + HCoul − T
∑

α

Sα

]
d3�r. (A2)

In the above expression, Sα denotes the entropy density as-
sociated with the species α,µα is the corresponding chemical
potential, Hnucl is the nuclear energy density of the system,
and the Coulomb term reads

HCoul = e2

2
ρp(�r)

∫
ρp(�r ′)

| �r − �r ′ | d3 �r ′ − 3

4
e2

(
3

π

)1/3

ρ4/3
p (�r).

(A3)

The second term above corresponds to an approximation to
the exchange contribution to the Coulomb energy [73,74].

The expression forHnucl given in Ref. [44] may be rewritten
as

Hnucl = H0 + Hτ + Hgrad + HJ , (A4)

where

H0 = t0

2

[(
1 + x0

2

)
ρ2 −

(
x0 + 1

2

) (
ρ2

n + ρ2
p

)]

+ t3

12
ρσ

[(
1 + x3

2

)
ρ2 −

(
x3 + 1

2

) (
ρ2

n + ρ2
p

)]
,

(A5)

Hτ = h̄2

2m∗
p

τp + h̄2

2m∗
n

τn, (A6)

Hgrad = 1

64

[
9t1 − 5t2

(
1 + 4

5
x2

)]
( ��ρ)2

− 1

64
[3t1(1 + 2x1) + t2(1 + 2x2)]

× ( ��ρn − ��ρp)2, (A7)

HJ = 1

2
W0[ �J · ��ρ + �Jn · ��ρn + �Jp · ��ρp], (A8)

the total density is denoted by ρ = ρn + ρp, and �J = �Jp + �Jn

is the spin-orbit density. The kinetic factor τα is given by

τα = 1

2π2

(
2m∗

α

h̄2

)5/2

T 5/2I3/2(yα), (A9)

where

h̄2

2m∗
α

= ∂

∂τα

Hnucl

= h̄2

2m
+ 1

8
[t1(1 − x1) + 3t2(1 + x2)] ρα

+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρα′ , (A10)

and ρα′ = ρp (ρn) if α = n (p). The Fermi-Dirac integral

In/2(y) =
∫ ∞

0
dx

xn/2

1 + exp(x − y)
(A11)

is efficiently calculated using the formulas given in Ref. [75],
where one also finds approximations to the inverse function

y(In/2). The latter is determined from the number density

ρα = 1

2π2

(
2m∗

α

h̄2

)3/2

T 3/2I1/2(yα). (A12)

The entropy density Sα can then be easily calculated as

Sα = 5

3

h̄2

2m∗
α

τα

T
− ραyα. (A13)

The parameter set {xi, ti , σ,W0}, i = 0, 1, 2, 3, for the Skyrme
interaction used in this work, SKM, is listed in Ref. [44]. Since
we stay in the zeroth-order approximation in h̄, �Jα = 0 and
then HJ does not contribute to Hnucl [44].

Following Suraud and Vautherin [46,47], the equilibrium
configuration is found by iterating the densities at the kth step
according to

ρ(k+1)
α = ρ(k)

α

[
1 − λ

(
B(k)

α − µ(k)
α

)]
, (A14)

where

µ(k)
α = 1

Nα

∫
d3�r B(k)

α (�r)ρ(k)
α (�r), (A15)

Np = Z,Nn = A − Z, and

B(k)
α = δF

δρ
(k)
α

. (A16)

The parameter λ is chosen to be small enough to ensure that the
first-order approximation given by Eq. (A14) remains valid.

In our numerical implementation, we have assumed spher-
ical symmetry and discretized the space using a mesh spacing
	R = 0.1 fm, which suffices for our purposes. As suggested in
Refs. [46,47], the second term of Eq. (A7) is neglected, since it
is small and may lead to numerical instabilities. Similar to the
treatment adopted in Ref. [46], the gradient density terms are
calculated at the mesh point ri+1/2 = (i + 1/2)	R, using [76]

∂

∂r
ρ(ri+1/2) = ρ(ri) − ρ(ri−1)

2(	R/2)
+ O[(	R)2], (A17)

which turned out to be numerically stable.
Because of the important contributions associated with

unbound states at high temperatures, the above treatment is
not accurate for T >∼ 4 MeV, as pointed out by Bonche, Levit,
and Vautherin [61]. Therefore, those authors have proposed
a method to extend the Hartree-Fock calculations to higher
temperatures. As they have noticed, there are two solutions
of the Hartree-Fock equations for a given chemical potential.
One of them corresponds to a nucleus in equilibrium with
its evaporated particles, whereas the other is associated with
the nucleon gas. Thus, in their formalism, the properties of
the hot nucleus is obtained by subtracting the thermodynamic
potential associated with an introduced nucleon gas 
G from
that corresponding to the nucleus in equilibrium with its
evaporated gas 
NG. Except for the Coulomb energy, there
is no interaction between the gas and the nucleus-gas system.

This approach has been successfully applied by those
authors [48,61] and has been adapted to the finite temperature
Thomas-Fermi approximation by Suraud [47]. More precisely,
the thermodynamic potential associated with the nucleus is
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given by


N = 
NG − 
G + ECoul. (A18)

One should notice that, by construction, 
NG and 
G do
not contain any Coulomb contribution. More specifically, one
defines the subtracted free energy as

F sub =
∫ [

HNG
nucl − HG

nucl − T
∑

α

(
SNG

α − SG
α

)]
d3�r

+
∫

Hsub
Coul d3�r, (A19)

where the subtracted Coulomb energy density, in the last term
of this expression, reads

Hsub
Coul ≡ e2

2
ρp(�r)

∫
d3 �r ′ ρp(�r ′)

| �r − �r ′ | (A20)

− 3

4
e2

(
3

π

)1/3 [(
ρNG

p

)4/3 − (
ρG

p

)4/3]
,

and the subtracted density ρp

ρp(�r) = ρNG
p (�r) − ρG

p (�r) (A21)

is the quantity that enters in the direct part of the Coulomb
energy.

The iteration scheme given by Eq. (A14) remains un-
changed if one rewrites B(k)

α as

B(k,γ )
α = ± δF sub

δρ
(k,γ )
α

, (A22)

where the super-index (k, γ ) denotes the quantity associated
with the gas (γ = G) or the nucleus-gas (γ = NG) at the kth
stage of the iteration. The positive sign is associated with the
NG solution, whereas the negative sign is used in the other

case. The proton and neutron chemical potentials are given by
an expression similar to Eq. (A15), that is,

µ(k)
α = 1

Nα

∫
d3�r{B(k,NG)

α (�r)ρ(k,NG)
α (�r)

−B(k,G)
α (�r)ρ(k,G)

α (�r)
}
, (A23)

since ρNG and ρG are constrained by

Nα =
∫

d3�r [
ρ(k,NG)

α (�r) − ρ(k,G)
α (�r)

]
. (A24)

One then starts with a reasonable guess for ρNG
α and ρG

α ,
which can be a Woods-Saxon density for the former and a
small constant value for the latter (subject to the condition
ρα > 0), obeying the constraint given by the above expression,
and applies the iteration scheme just described. Ideally,
convergence is reached when B

(k,γ )
α (�r) − µ(k)

α vanishes, so that
ρ

(k,γ )
α becomes stationary. In practice, one can monitor the

quantity [47]

	E2
α =

∫
d3�r {(

B(k,NG)
α (�r) − µ(k)

α

)2
ρ(k,NG)

α

+ (
B(k,G)

α (�r) − µ(k)
α

)2
ρ(k,G)

α

}
(A25)

and stop the iteration when the established tolerance is reached.
The Helmholtz free energy of the nucleus can then be easily
calculated through Eq. (A19), so that the internal free energy
of the nucleus is

f ∗
A,Z(T ) = F sub(T ) − F sub(T = 0). (A26)

We have used the approximation just described in this
appendix to calculate f ∗

A,Z for all the fragments employed
in the SMM, with A � 5 (and α particles) from T = 0 MeV
up to the limiting temperature [47,48,61] in steps of 0.1 MeV.
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et al., Phys. Rev. Lett. 80, 3928 (1998).

[26] H. F. Xi, G. J. Kunde, O. Bjarki, C. K. Gelbke, R. C. Lemmon,
W. G. Lynch, D. Magestro, R. Popescu, R. Shomin, M. B. Tsang
et al., Phys. Rev. C 58, R2636 (1998).

[27] J. A. Hauger, S. Albergo, F. Bieser, F. P. Brady, Z. Caccia,
D. A. Cebra, A. D. Chacon, J. L. Chance, Y. Choi, S. Costa
et al., Phys. Rev. Lett. 77, 235 (1996).
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