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While computed tomography and other imaging techniques are measured in absolute units with physical

meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and dif-

fer between study visits and subjects. Much work in the image processing literature on intensity normal-

ization has focused on histogram matching and other histogram mapping techniques, with little emphasis

on normalizing images to have biologically interpretable units. Furthermore, there are no formalized prin-

ciples or goals for the crucial comparability of image intensities within and across subjects. To address this,

we propose a set of criteria necessary for the normalization of images. We further propose simple and ro-

bust biologically motivated normalization techniques for multisequence brain imaging that have the same

interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of differ-

ent normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of
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patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at

dozens of imaging centers.

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Complex multi-modality, cross-sectional and longitudinal imaging

studies are now commonplace in medical research and clinical practice.

Such studies produce terabytes of highly complex data, cost millions of

dollars, and require years to decades of follow-up. Many such studies

have already been conducted and are currently underway to investigate

a diverse collection of disabling and fatal diseases. Most of these studies

include multisequence magnetic resonance imaging (MRI) to assess

structural differences and changes in the brain. The nature of convention-

al MRI unitsmakes direct quantitative analysis difficult; in particular, MRI

scans are acquired in arbitrary units that are not comparable between

study visits within a single subject nor across different subjects.

The image analysis literature has emphasized the importance of

intensity normalization (whichwe refer to as normalization for brevity)

for registration (Hellier, 2003), cross-sectional (Wang et al., 1998; Shah

et al., 2011) and longitudinal (Sweeney et al., 2013a) segmentation,

longitudinal quantification (Meier and Guttmann, 2003), and other

measures (Madabhushi et al., 2006; Loizou et al., 2009). Much work

over the past two decades has aimed to address this issue with limited

success (Nyul and Udupa, 1999; Nyul et al., 2000; Weisenfeld and

Warfield, 2004; Jäger et al., 2006; Madabhushi and Udupa, 2006;

Leung et al., 2010) (for a comprehensive review of these methods, see

Shah et al., 2011). However, as the goals of normalization have not

been formalized, the comparison of these methodologies is difficult. As

intensity normalization is often also a preprocessing step for later anal-

yses, in each such case these analytical goals aremost relevant. Further-

more, all previously proposedmethods suffer from the lack of biological

interpretability of the normalized units.

Our goal is to propose an explicit statistical framework for image in-

tensity normalization, develop a new class of robust intensity normali-

zation methods for studying the brain through MRI, and deploy them

on thousands of images from the Australian Imaging, Biomarkers and

Lifestyle Flagship Study of Aging (AIBL), the Alzheimer's Disease Neuro-

imaging Initiative (ADNI), and two large studies of multiple sclerosis

(MS) acquired using a variety of scanners and protocols. In the next sec-

tion, we describe a set of criteria that formalize the goals of normaliza-

tion. We then describe a novel statistical normalization methodology

and the results from this simple technique, and we conclude with a

discussion.

2. Materials and methods

2.1. Principles of image normalization

Consider the image intensity Yij(v) at each voxel v expressed in

arbitrary units andmeasured for subject i at visit j using a particularmo-

dality. Normalization is any transformation of the type Yij(v) → Nij

{Yij(v)}. It is useful to conceptualize the histogram of intensities Yij(v)

as a mixture of densities:

f ij xð Þ ¼
X

K

k¼1

wijk f ijk xð Þ; ð1Þ

where fijk(x) is the subject/visit-specific intensity densities of empty

space and known tissues, such aswhitematter, graymatter, cerebrospi-

nal fluid, bone, skin, and lesions. The weightswijk ≥ 0 sum to 1 and rep-

resent the relative weights of components k = 1, …, K. This includes

both cases with and without pathology, as the weight for lesions or

other abnormal tissues can be zero. Note that the densities fijk(x) and

weights wijk are not directly observed, but may be estimated by first

segmenting the images and estimating wijk using the proportion of the

image in the k-th tissue class and fijk(x) by the histogram of intensities

in that tissue.

The quantitative analysis of images assumes the existence of a

theoretical model in normalized space for all images: gij(x) =

∑ k = 1
K wijkgk(x), where the densities gk(x) are independent of subjects

and/or visits, though the weights assigned to these densities depend on

subject and visit andmay be themeasure of interest in studies. The funda-

mental difficulty of normalization is to find a transformation from fij(x) to

gij(x) that respects the ordering of distributions and their mutual dis-

tances in the normalized space, and thus we denote a normalized density

by ĝij xð Þ for clarity.

Although the fundamental importance of intensity normalization

has been emphasized by numerous publications in the imaging litera-

ture (Shah et al., 2011; Nyul and Udupa, 1999; Weisenfeld and

Warfield, 2004), no formal guiding principles nor definitions have

been established. We introduce a set of 7 principles, which we refer to

as the statistical principles of image normalization (SPIN).

The normalization process should produce units that:

1. have a common interpretation across locations within the same tis-

sue type

2. are replicable

3. preserve the rank of intensities

4. have similar distributions for the same tissues of interest within and

across patients

5. are not influenced by biological abnormality or population

heterogeneity

6. are minimally sensitive to noise and artifacts and

7. do not result in loss of information associated with pathology or

other phenomena.

SPIN is motivated by the goal of population-level analysis that

respects the structure of images while requiring the comparability of

replicable and biologically meaningful units within tissue types within

and across subjects. The preservation of ranks avoids situations where

normalized image comparisons are discordant with comparisons

made using rawunitswithin a subject, and the requirements ofminimal

sensitivity to noise, population heterogeneity, and pathology aim to

avoid spurious findings.

In the absence of SPIN, much of the work on normalization has

progressed with little objective quantification or validation. To assess

SPIN, severalmetricsmay be appropriate: SPIN 1 depends on the defini-

tion of the normalization and is crucial for the population-level inter-

pretability of statistical inference from the image intensities. SPIN 2

may be assessed using simulations, or the analysis of data containing

replicates. SPIN 3 requires Nij(⋅) to be a strictly increasing function.

Careful inspection of SPIN 4 suggests that after normalization fijk(⋅)
should be as close to one another as possible for all i and j and for any

fixed k. Thus, a natural starting point would be to consider transforma-

tions that reduce the distance between the fijk(x) for any fixed k. SPIN

5–7 require validation studies in large biologically heterogeneous pop-

ulations with varying levels of noise and artifacts, and SPIN 7 may be

more difficult to quantify. Although no single normalization method

may be available to satisfy all 7 SPIN criteria simultaneously, depending

on the particular goal of a planned analysis each criterion may be

assessed and implications of any violationsmust be carefully examined.

The most common approach for normalization, proposed by Nyul

and Udupa (1999) and refined by Shah et al. (2011) and Nyul et al.
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(2000), involves the matching of histograms. This process consists of

two stages: the first stage creates a template histogram, say γ(x), with

landmarks of interest usually through averaging histograms in a refer-

ence population (Nyul et al., 2000). Then, for each subject in the

study, the histograms of each subject are mapped fij(x) via a piecewise

linear transformation to the template defined using quantiles as knots.

This process is computationally fast and has proven helpful for lesion

segmentation as shown in Shah et al. (2011). These methods may be

useful in very limited scenarios, but often result in severe violations of

SPIN: firstly, the variation in intensities is difficult to interpret. Although

histogrammatchingmethods produce replicable results, they are based

on suspect assumptions: 1) the distribution of tissue-type is the same

across subjects and visits (see theResults section and Fig. 1); 2) subjects'

brains do not have abnormal pathology (Nyul et al., 2000); and 3) tech-

nical artifacts (for example, from patient motion and residual spatial

inhomogeneity after correction (Shah et al., 2011)) do not exist.

This makes histogram matching inappropriate for any study of images

from multiple subjects. Our comprehensive study of histogram-

matchingmethods indicates that these approaches lead to the false ero-

sion of GM on a magnitude much larger than would be expected from,

say, the natural progression of Alzheimer's disease (AD) (~2% gray

matter erosion per year (Anderson et al., 2012)). Such failures are crip-

pling to many quantitative studies of anatomical development and

etiology.

Our interest lies in developing principled statistical methods for

normalizing images to ensure comparability within and across subjects.

In the remainder of this paper, we introduce a formal statistical frame-

work and propose statistically principled methods for generalizable

and robust inference from large MRI studies. Given the large number

of images we intend to normalize (thousands to tens of thousands),

the procedure proposed needs to be fully automatic and fast. This re-

quires the robust and rapid identification of the normal-appearing

white matter (NAWM) in each subject at each study visit. In previous

studies, Shinohara et al. (2011) used a white-matter mask based on

the Lesion-TOADS (Shiee et al., 2010) segmentation algorithm. The

problem with such an approach is that it can be slow (45 min per

image), it requires manual tuning of segmentation parameters, and its

performance can be sensitive to heterogeneity in large imaging studies.

We suspect that thismay be due to the use of unsupervisedmethods for

image segmentation using unnormalized data. To avoid this, we pro-

pose a faster and more robust approach.

2.2. Study populations

We first study two large populations consisting of healthy subjects,

subjects with mild cognitive impairment (MCI), and subjects with AD.

The first is the ADNI database (adni.loni.ucla.edu). In the data analyzed

in this paper, we consider 616 adults aged 55 to 90 consisting of cogni-

tively normal older individuals, people with MCI, and people with early

AD who were imaged longitudinally at 1427 study visits (1–7 visits per

subject). The second source of data was collected by the AIBL study

group. AIBL study methodology has been reported previously (Ellis

et al., 2009), and 262 cognitively normal older individuals, people

withMCI, and people with early AD aged 55 to 90were imaged longitu-

dinally (1–2 visits per subject) at 442 study visits.

We also consider two studies of multiple sclerosis (MS) from two

different centers in the US. The Neuroimmunology Branch of the Na-

tional Institute for Neurological Disorders and Stroke (NINDS) and the

Department of Neurology and Neurosurgery at the Johns Hopkins

School of Medicine are simultaneously acquiring MRI for the long-

term study of the natural history and treatment ofMS. From these ongo-

ing separate studies, we consider 242 (99 from Johns Hopkins and 143

fromNINDS) patients withMS scanned under a diverse collection of ac-

quisition protocols and scanners. Clinical summaries of the population

of MS subjects studied in this work are described elsewhere (Sweeney

et al., 2013b).

2.3. Imaging sequences and preprocessing

From the ADNI and AIBL studies, we consider T1-weighted (T1-w)

MP-RAGE and T2-weighted (T2-w) imaging acquired on 1.5 and 3 T

scanners according to the standardized protocol (Jack et al., 2008). For

the studies of MS at Johns Hopkins and NINDS, we analyze T1-w and

T2-w imaging acquired under protocols on 3 T scanners described else-

where (Sweeney et al., 2013a, 2013b). All image preprocessingwas con-

ducted using the Medical Image Processing, Analysis and Visualization

(http://mipav.cit.nih.gov) software environment through the Java

Image Science Toolkit (Lucas et al., 2010). All images were corrected

for spatial inhomogeneity (Sled et al., 1998) and rigidly aligned across

modalities at each study visit to the Montreal Neurological Institute

template. For performance assessment within tissue types, TOADS

(Bazin and Pham, 2007) was used for segmentation of the brain in the

AD studies, and LesionTOADS (Shiee et al., 2010) was used inMS studies.

These segmentations were not used for any normalization technique de-

scribed below, but only for performance assessment.

Fig. 1. Schematic showing the proposed normalization techniques. The steps shown in the

cyan region are standard preprocessing steps, while the green region shows the white

stripe normalization algorithm. The bottom right section in purple shows the hybrid

white stripe normalization technique.
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2.4. Methodology

The goal of our method is to minimize the discrepancy between the

distributions of intensities fijk(⋅) across subjects and visits within tissue

classes while respecting SPIN. We call this tissue-specific histogram

normalization. We propose to accomplish this by focusing on matching

moments of the distribution in a particular reference tissue and appro-

priately adjusting the intensity distribution in other tissues accordingly.

Assume for the moment that, for every subject and visit, we have an

area of white matter (a sub-mask of the white matter). Then we can ac-

curately estimate the distribution function fij1(x) (say k = 1 for white

matter) for each i and j and obtain a normalized estimator that has a

mean of zero and a variance of one, ĝij1 xð Þ ¼ σ ij1 f ij1 μ ij1 þ σ ij1x
� �

,

where μij1 andσij1 are themean and standard deviation of fij1(x), respec-

tively. An estimator of the normalized histogram across the image using

linear normalization with respect to the white-matter distribution is:

ĝij xð Þ ¼ σ ij1 f ij μ ij1 þ σ ij1x
� �

¼
X

K

k¼1

wijk σ ij1 f ijk μ ij1 þ σ ij1x
� �h i

: ð2Þ

All units are expressed inmultiples of standard deviations,σij1, of the

white-matter intensities, and zero is the average intensity of white

matter. Note that the densities fijk(⋅) and weights wijk are theoretical

and need not be estimated in practice (except for fij1(⋅) as described
above). This method was used in several papers (Sweeney et al.,

2013a; Shinohara et al., 2011), though it was never proposed as a formal

normalization procedure and its statistical properties for normalizing

other tissues have not been investigated.

Consider a T1-weighted structural MR image, Yij(v). The proposed

normalization techniques are shown in a flow diagram in Fig. 1. We

use NAWM as a reference tissue, since it is the most contiguous brain

tissue and therefore least confounded by partial volume averaging and

is, by definition, not obviously affected by pathology (leading to confor-

mity to SPIN 5). To identify the distribution of NAWM intensities, we

first isolate a rectangle containing the measured intensities within an

α=4 cm section at the center of the head (using a fast rigid alignment

to theMontreal Neurological Institute template). The thickness α of this

section was chosen empirically (see Fig. A.3 for a sensitivity analysis).

We then use a penalized spline smoother (Ruppert et al., 2003), a fully

automatic smoothing technique that estimates the smoothing parame-

ter, to estimate the mode μij1
∗ (the largest non-background peak) of the

intensity histogram inwhitematter based on this rectangle. To estimate

the variability within NAWM on the raw image, we estimate the stan-

dard deviation σij1
∗ of intensities within Ωi,j,τ = {v : Fij

−1[F(μij1
∗ ) − τ] b

Yij(v) b Fij
−1[F(μij1

∗ ) + τ]}, which we call the white stripe (where

Fij(x) = ∫ − ∞
x fij(x) dx). Here τ is a quantile tolerance in the original

space of intensities. We found several values to work well in practice

and used τ = 0.05 after conducting a sensitivity analysis (see

Appendix B). The estimation of μij1
∗ and σij1

∗ has been found to be re-

markably robust across thousands of images (failure rate b 1%, 15 out of

2109 study visits). If the family of densities fij1(v) can be parameterized

by two parameters then μij1 = ψ1(μij1
∗ , σij1

∗ ) and σij1 = ψ2(μij1
∗ , σij1

∗ )

(proof follows from the method of moments). Thus, matching μij1
∗ and

σij1
∗ (estimable directly from thewhite stripewithout prior segmentation)

results in matching μij1 and σij1. This process, which we refer to as white

stripe normalization, is demonstrated visually for a single image in Fig. 2.

For multimodal imaging, including multi-sequence MR imaging ac-

quired in the studies of interest, the above normalization technique

does not apply directly. To address this, we first propose the rigid

Raw Image

Histogram-Matched

A

C

B

D

Raw Histogram

Matched Histogram

Histogram - Proposed Normalization

F

Proposed Normalization

E

-6

149

0

1

-77

94

Fig. 2. Failure of histogrammatching methods. First column: region of interest from patient with MCI shown before (A) and after (C) histogrammatching. Red square indicates region of

gray matter on raw image that disappears after histogram matching. Second column: histograms (shades of gray indicate different study visits) of the gray matter before (B) and after

(D) histogram matching for subjects in ADNI. Note the large proportion of gray matter incorrectly matched to background (zero intensity). The green line shows the histogram for the

image shown in the left column. (E) and (F) show the same image and histograms after the normalization proposed in this paper.
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alignment of the multi-modality imaging using standard techniques

within each study visit. This robust procedure produces a four-

dimensional image Yij
(m)(v) for m = 1, …, M where M is the number of

modalities acquired. Fortunately, in almost all modern research MRI

protocols the acquisition of a high-resolution T1-w image is a key com-

ponent. Thus, to extend themethods developed above, we consider the

use of the white stripe method on the T1 image Yij
(1)(v) to estimate the

white stripe Ωi,j,τ
(1) . Then, for each modality m, we estimate the white

stripe moments μij1
(m) ∗ and σij1

(m) ∗. We then normalize each modality by

calculating {Yij
(m)(v)− μij1

(m) ∗}/σij1
(m) ∗. An alternate approach is to normal-

ize by using our peak-finding algorithm to find the largest non-

background mode in the histogram on modality m, and use this to

form thewhite stripeΩi,j,τ
(m). Note that this peak does not necessarily cor-

respond to NAWM alone on all imaging modalities; in particular, the

white stripe estimation applied directly to T2-weighted imaging yields

a mixture of GM andWM intensities since these are similar. This results

in good performance for normalization of both tissue classes, but excel-

lent performance for neither. A natural extension of this idea is to nor-

malize using tissue from the white stripe in all classes; that is,

normalizing with respect to Ωi,j,τ
hybrid = ∩ mΩi,j,τ

(m) allows comparability in

terms of a more specific definition across modalities. Thus, in the

Results section, we compare these three proposed normalization

methods: 1) the T1-based white stripe, which normalizes the data

based onΩi,j,τ
(1); 2) the T2-based white stripe, based onΩi,j,τ

(2); and 3) a hy-

brid white stripe using Ωi,j,τ
hybrid.

To assess the performance of the various methods described above,

we propose a new generalization of variance for probability densities

to quantify variability before and after normalization as measure of

SPIN 4. From the theory of U-statistics (Hoeffding, 1948), the sample

variance∑ l;kð Þ∈Γ�∫
ffiffiffiffiffiffiffiffiffiffiffi

f l uð Þ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffi

f k uð Þ
q

� �2

du=2jΓ�jwhere Γ⁎ is a random-

ly chosen sufficiently large subset of Γ (for this study we used |Γ∗| =

2000). Asymptotic properties of our estimated variance of densities fol-

low from standard U-statistic arguments as the number of densities

under study increases.

3. Results

All images from the four studies were normalized using the histo-

gram matching-based approach (Shah et al., 2011; Nyul and Udupa,

1999), and the T1-based, T2-based, and hybrid white stripe methods

proposed in the Methodology section. Fig. 1 shows how the faulty as-

sumption made by histogrammatching of common distributions of tis-

sue throughout the head causes severe mismatching of gray matter

(GM) to cerebrospinal fluid (CSF); note how a normal-appearing part

of the brain (raw data shown in Fig. 1A) is induced to showmassive ero-

sion of GM by histogram normalization (histogram normalized data

shown in Fig. 1C). Such failures are crippling to many quantitative stud-

ies of anatomical development and etiology. The results from our pro-

posed T1-based normalization method are shown in Fig. 1E and F and

demonstrate significant improvement over histogrammatching. An ad-

ditional example for visual inspection is shown in Figs. A.10 and A.12 of

the Appendix, and an example of severe erosion in an imaging study
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Fig. 3. Example of the white stripe normalization procedure. In the top left plot, the raw histogram of a T1-w image is shown. Using a peak-finding algorithm, μij1
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estimated. In the right column of the figure, Ωi,j,τ is shown before and after normalization. The density of the intensities in NAWM before (fij1) and after normalization ĝij2
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is shown

using dashed magenta lines. The bottom left plot shows the histogram after white stripe normalization.
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withmotion artifact after histogrammatching is shown in Figs. A.11 and

A.13.

Simulations were conducted to validate the performance of the pro-

posed image normalization methodology, and the results are provided

in Appendix A. To visually assess the performance of differing normali-

zation methods across the four MRI studies, the histograms of the T1-w

and T2-w images are displayed in Fig. 3 for the AD studies and Fig. 4 for

the MS studies. Each line corresponds to a study visit where color

indicates the study and differing shades are for clarity in illustration.

In Fig. 3, the first two columns correspond to the T1-w and T2-w den-

sities in cerebral white matter and the second two correspond to the

gray matter. In Fig. 4, the last two columns correspond to white matter

lesions.

The results below do not include 15 study visits (0.7%) across the

four studies on which our peak-finding algorithm failed. These were

identified via manual inspection, and this failure was attributable to

very severe chronic MS (2 patients), diffuse vascular white matter dis-

ease (5 patients), and high BMI resulting in excess fat in the scalp (5

subjects, mean BMI = 32.4). For obese subjects, standard fast skull-

stripping algorithms, such as FSL BET (Smith, 2002), solves these issues

associated with excess extracranial fat. Each of these subjects shows

that in severe cases of pathology and in some outliers, SPIN 5 may be

violated.

The heterogeneity in raw intensities across scans shows variability as

expected, even in the ADNI and AIBL studies where protocols were man-

dated in advance and tightly controlled. The histogram-transformed

Fig. 4. Histograms of intensities before and after normalization by tissue type in two large studies of AD. Rows indicate different normalization methods and columns correspond to MR

sequence and anatomical structure.
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intensities (second row of Figs. 3 and 4) also show significant variability

as well as mismatching as described in Fig. 1. The T1-based white stripe

shows good comparability of the NAWM distributions across subjects

and visits on the T1-w imaging, but less comparability in the T1-w GM.

This is expected due to the partial volume averaging of GM voxels with

WMandCSF, and the differentialWMtoGMcontrast ratios across images

and protocols. The T2-w NAWM also shows large heterogeneity under

the T1-based white stripe normalization, especially in the Hopkins

study. The T2-based white stripe shows generally good comparability

on the T1-w imaging in both theWM and GM, and especially good com-

parability on the T2-w imaging. However, the proposed T1-basedmethod

shows slightly closer T1-w distributions in the NAWM. Finally, the hybrid

method shows similar performance to the T1-basedmethod on T1-w im-

aging, and near identical performance to the T2-based method on T2-w

imaging. In MS lesions, the T1-based and hybrid white stripe methods

show moderate comparability across subjects on T1-w imaging. This is

likely due to the much greater biological heterogeneity in these regions.

The T2-based andhybridwhite stripemethods result in good comparabil-

ity across subjects on T2-w imaging in the Hopkins study, but poor com-

parability across subjects in theNINDS study likely due to themuch larger

range in scanning parameters. Figs. A.5–A.7 of the Appendix show the re-

sults from the AD studies separated by baseline diagnosis, and Figs. A.8–

A.9 show the results from the MS studies separated by lesion load. The

white stripe methods perform similarly independent of disease severity.

To assess these comparisons quantitatively, we use the Hellinger

distance-based variance proposed in theMethodology section. Our pro-

posed variancemeasures heterogeneity in a sample of densities; smaller

values of this quantity within tissue types indicate better comparability

(SPIN 4). Furthermore, lower variance in large heterogeneous imaging

studies suggests more replicable measurements (SPIN 2), low sensitivi-

ty to the spectrum of biological abnormality (SPIN 5), and low sensitiv-

ity to minor noise and artifacts (SPIN 6).

The results from these variance calculations are shown in Fig. 6. The

performance of the hybrid white stripemethod is superior to other pro-

posed methods in most cases, including the histogrammatching meth-

od. As noted above in Figs. 4 and 5, the hybrid method shows small

variances in the NAWM and WM lesion in all modalities and low

variance in the GM on the T2-w imaging. The large variance in the T1-

w densities in the GM reflects the nature of the white stripe normaliza-

tion; if the primary goal of interest is to study GM on T1-w imaging, a

normalization targeted specifically to graymattermotivated by the pro-

posed white stripe method might be appropriate.

4. Discussion

Wehave introduced SPIN, a set of principles for image normalization

and an explicit framework based on mixtures of distributions, where

each fundamental distribution has a physical interpretation. Although

intensity normalization has been acknowledged as crucial for the quan-

titative analysis of MRI, there are currently no automatic methods for

statistical intensity normalization of brain MRI that satisfy the basic re-

quirements of SPIN. In addition, confounding due to acquisition- and

subpopulation-related differences across scanners and study sites is

more problematic in increasinglymore commonmulti-modality studies

that require more complex protocols.

We propose the first methodology for the statistical normalization of

neuroimaging that satisfies SPIN. Our methods require less than 5 s of

computation timeon a standard laptop perMRI scan,making themhighly

suitable for routine use in clinical practice and research. Using fast, scal-

able, and fully automatic coarse segmentation techniques, we suggest a

simple and robust technique for estimating parameters of theNAWMdis-

tribution in an image. These parameters are matched across visits and

subjects to yield simple and clear biological interpretations. This approach

Fig. 5. Histograms of intensities before and after normalization by tissue type in two large studies of MS. Rows indicate different normalization methods and columns correspond to MR

sequence and anatomical structure.

15R.T. Shinohara et al. / NeuroImage: Clinical 6 (2014) 9–19

image of Fig.�5


is robust to artifact and pathology and allows for generalizable inference

to large multi-center imaging studies.

Our proposed methodology satisfies SPIN under many circum-

stances through a subject/visit-specific linear transformation of intensi-

ties resulting in the same physical interpretation across subjects and

visits. In addition, using information across imaging modalities jointly

allows for more precise normalization with similar simple interpreta-

tion of units across modalities. Using precursors to this methodology

(Sweeney et al., 2013a, 2013b) we have found dramatically improved

lesion detection performance cross-sectionally and longitudinally; the

methods proposed here promise further improvement in performance

and dramatically reduced computational requirements.

Ourmethods aim tomatch the intensity of tissueswithout upsetting

the natural balance of tissue intensities. When this is not possible, we

characterize how far apart the tissue-specific components are. This

approach is fundamentally different from the normalization algorithms

common in genomics (for example, see Irizarry et al., 2003), which are

dedicated to matching distributions with one component. Instead, we

propose intensity normalization approaches for mixtures of densities

where each density has a physical interpretation, using a pre-selected

reference tissue type. The results from our analyses indicate good com-

parability across study visits, subjects, study centers, and highly hetero-

geneous scanning protocols. Although we present our methods in the

context of T1-w and T2-w MRI of the brain, our methods may be natu-

rally extended to other imagingmodalities used throughout thebody. In

some scenarios, the coarse segmentation used here may not perform

well and alternative segmentation methods may be more appropriate

for segmenting a reference tissue.

Although the T1-based method conforms to SPIN, the proposed T2-

based method violates SPIN for normalizing T1-w imaging. First, as the

relative proportions of WM and GM vary from patient to patient, SPIN

4 is violated. Furthermore, as patients with varying severity of diseases

such as AD andMS have varying loss of GM, SPIN 5 does not hold. How-

ever, as the distribution of T2-w intensities in theWM and GM are sim-

ilar, applying the T2-based normalization to the T2-w imaging conforms

to SPIN. The hybrid white stripe method, which performs similarly to

the modality-specific normalizations on the appropriate images, does

not result in anymajor violations of SPIN and inmost cases dramatically

improves the comparability of imaging across study visit, subjects, and

study protocols.
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Table 1

Parameters used in the simulation study. The parameterσμ is the standard deviation of the

means across tissue classes across subjects, and σW is the standard deviation of intensities

within each tissue class.

Simulation setting σμ σW

1 0.10 1

2 0.10 2

3 0.10 5

4 0.25 1

5 0.25 2

6 0.25 5

7 0.5 1

8 0.5 2

9 0.5 5
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While the proposed techniques involve the normalization with

respect to a particular reference tissue, extensions might involve the

normalization of each tissue class individually. However, this would in-

duce dependency on the accuracy of segmentation which may not be

desirable inmany cases of large imaging databaseswhere segmentation

remains difficult. Furthermore, artifacts from patient motion and other

sources could be problematic as they are known to affect segmentation,

which could then also affect the normalization.
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Appendix A. Simulation studies

To investigate the performance of the proposed white stripe nor-

malization techniques, we conducted a series of simulation studies.

We used the two-dimensional image template shown in Fig. A.1 and

sampled n = 100 subject images using the intensity data generating

distribution:

Y i vð Þ∼ZSHIFT;i þ Z
2
SCALE;i

�

N 20;σWð Þ for v in NAWM

N 10þ ZGM;i;σW

� �

for v in GM

N 10þ Zlesion;i

� �

;σW Þ for v in lesion

N 10þ ZBG;i

� �

;σW Þ for v in background

8

>

>

>

>

>

<

>

>

>

>

>

:

where ZSHIFT,i, and ZSCALE,i ∼ N(0, 1) are latent subject-level whole-image

shift and scale random variables, and ZGM,i, Zlesion,i, and ZBG,i ∼ N(0, σμ)

are latent tissue-specific shifts.We simulate data under the nine scenarios

of varying values of the parameters σμ and σW as shown in Table 1. The

performance of thewhite stripe normalization applied to the raw intensi-

ties Yi(v) is shown in Fig. A.2, and the method performs well throughout.

The white stripe normalization shows least benefit in setting 7 for which

the variability inmeans across tissue classes ismost similar to the variabil-

ity within tissue classes; this is a difficult case in which a highly nonlinear

normalization would be necessary to improve normalization perfor-

mance in the GM and lesion tissue classes, and such techniques require

further study.

Appendix B. Sensitivity analyses for α and τ

To assess the sensitivity of the proposedmethodology to the specifi-

cation of the parameter α, we reanalyzed the data from theMS study at

NINDS across a variety of values of α. The results from this analysis are

shown in Fig. A.3, and show relative stability in the normalization for

the T1-based, T2-based, and hybrid white stripe normalizations for α

ranging from 20 mm to 80 mm. We chose to use the 40 mm thickness

as it was optimal in the NAWM, and also because differential BMI and

other extracerebral tissue factors resulted in poor differentiation of the

NAWM peak in some studies for larger thicknesses.

To assess the sensitivity of the proposedmethodology to the specifi-

cation of the parameter τ, we reanalyzed the data from theMS study at

NINDS across a variety of values of τ. The results from this analysis are

shown in Fig. A.4, and show stability in the normalization for the T1-

based, T2-based, and hybrid white stripe normalizations for τ ranging

from 1% to 10%. For τ = 20%, the T1-based normalization technique

showed less comparable intensities across all tissue classes.

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.nicl.2014.08.008.
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Fig. A.4. Bar plots showing the Hellinger distance-based variances before and after normalization in the NINDS study for various values of τ.
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