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Abstract

The authors have proposed a new practical optimal design method called the

statistical optimization method, which consists of the following five steps : the

effectivity analysis, reanalysis, evaluation of dispersion, the optimization and

evaluation of structural reliability. The design of experiments, combined with a

series of finite element analyses (FEA), is used to generate approximate

evaluation functions for the controlling behavior depending on the changes in

design variables of an object structure. The evaluation functions can also be

used as direct tools for estimating the characteristic behavior of design structure.

First-order second-moment method is employed to evaluate and generate

approximate evaluation functions for the dispersion of the behavior. A

mathematical programming etc. are employed to solve the optimization

problem of the approximate evaluation functions of the behavior with

dispersion. Finally, second-moment method is employed to evaluate the

structural reliability. It is confirmed that the proposed method can be used for

almost all kinds of the nonlinear problems including the impact behavior of

structures, and that it can be carried out in much smaller number of FEA than

the other existing methods.

1 Introduction

A variety of methods and systems for optimal design have been proposed. Most

of these methods and systems incorporate structural and sensitivity analyses in

their loops for optimum calculations to compute objective functions and

constraints and, to evaluate the convergence properties. These systems have

such difficulties as that their construction is complicated and their efficiency
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214 Computer Aided Optimum Design of Structures V

low. Under actual conditions computation for optimization of such nonlinear

phenomena as collision is very difficult, because the sensitivity coefficient of

design factors for characteristic value varies according to the time or load path.

Generally, structures have tolerance or dispersion in dimensions, material

characteristics and so on, which will cause more or less dispersion in the

characteristic values. Therefore, if one wants to design the structure with high

accuracy, he has to consider about such dispersion as well. Evaluation of

possible failure or lost function of structures is also important to design highly

reliable and safe structures. Stochastic finite element method for the evaluation

of structural reliability and dispersion in structural analyses are well-known.

However the method has problems in that they require long calculation times in

any nonlinear problems and that general purpose analytical software can't be

employed. The conventional evaluation and optimization method have been

processed individually and independently because of complicated analyses

respectively. Therefore these methods reduce the efficiency of analyses.

This paper proposes a statistical optimization method, which is a

practical, general purpose, highly efficient integrated design support system.

2 STATISTICAL OPTIMIZATION METHOD^

2.1 Flow of Statistical Optimization Method

As shown in the flow chart of Figure 1, the statistical optimization method is

composed of five steps; the effectivity analysis, reanalysis, evaluation of

dispersion, the optimization and evaluation of structural reliability. The details

of these steps will be discussed in order below.

2.2 Effectivity Analysis

Combination of the design of experiments with the structural analyses enables

us to quantitatively estimate the effectivity of design factors on the

characteristic values with a less analytical labor.

2.2.1 Design of Experiments^

The design of experiments with an orthogonal array has been widely used

especially in the field of quality control as a method of systematic analyses of

the effectivity of design factors. In the orthogonal array, the design factors are

assigned to the columns, while the input data of structural analyses are assigned

to the rows. The following shows some samples of the orthogonal arrays.

LA(B̂ ) is the description of the table, where "L" stands for orthogonal array,

"A" for the number of rows, "B" for the number of levels, and "C" for the

maximum number of design factors.

Representative samples : L16(2̂ ),L18(2̂  X3̂ ),L

Multi-level samples : L32(2' X4*),L64(4*'),L50(2' X5")

Multi-factor samples : L36(2" X 3̂ ),L54(2̂  X 3
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EFFECTIVITY ANALYSIS

Design of experiments

• Select design variables and level values
• Arrange in orthogonal array

• Carry out analysis of variance
• Generate estimation expressions

H Structural analysis p

Structural analysis for
selected design variables

and level values

Select characteristic values from
result of structural analysis

Sensitivity analysis

Calcuate sensitivity by partial
differential of estimation expression

rl
EVALUATION OF DISPERSION

Generate estimation expressions of
dispersion and evaluate dispersion

• Select objective function and conditions of
constraint
• Optimum calculation with estimation
expressions

RELIABILITY EVALUATION

Calculate reliability index #0* and
upper bound of probability of failure

Figure 1 Analysis flow of statistical optimization method
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The most appropriate orthogonal array should be selected depending

upon the number of design factors, the settings of interaction, and the number

of levels. Effectivity analysis can be carried out quite efficient by the

orthogonal array. Utmost care should be exercised in setting the number of

levels and the range of level values, which affect the accuracy of effectivity

analysis, evaluation of dispersion and optimal solution. The number of levels

should be determined by taking into account the variation characteristics

(tendency) of design factors which will affect characteristic values. For

example, if the estimated characteristics is an nth-degree function of design

factors, the number of levels for the design factors should be chosen to be

higher than n + l. The level value should be set within the range of actual

design.

2.2.2 Structural Analysis

Structural analyses are conducted with the input data generated according to the

orthogonal array. Based on the analytical results, the data of characteristic

values are obtained for the analysis of variance. As shown in the flow of the

statistical optimization method, structural analyses are independent of the other

steps, which eliminates the necessity to consider its combination with optimum

calculation. Therefore, this reduces the number of repeated structural analyses

remarkably. Because of this advantage, the statistical optimization method can

be applied to most of nonlinear problems such as impact problems, eigenvalue

problems, and so on. Moreover, in this method, any commercial structural

analysis software can be used to carry out the analysis of such nonlinear

problems. Not only the direct results of structural analysis but also modified

values such as maximum value, mean value and integrating value can be

utilized as characteristic values. In this method, one set of structural analyses

are conducted only once against the combined design factors.

2.2.3 Analysis of Variance and Estimation Expression

As a part of the effectivity analysis, it is necessary to conduct the analysis of

variance and to generate estimation expressions. The detailed analyses of

variance are carried out by an evaluation method which decompose the

effectivity of design factors on characteristic values into the orthogonal

components. This method of analysis enables us to express the effectivity of

design factors by concrete characteristics as primary effects and secondary ones.

However, it should be noted that we can extract only the qualitative nature

through the evaluation of the effectivity which uses the F-value and

contribution rate obtained from the analysis of variance.

The estimation of characteristic values are represented by a multivariate

polynomial expression, based upon the design factors with the degrees regarded

as effective by the analysis of variance. This method can generate simple

estimation expressions. Estimation expression for each design factor is given

by an orthogonal polynomial of equation (1), expressed by a Chebyshev's
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orthogonal function^ . [equation (1) is applicable only to the levels with an

equal interval.] An estimation expression containing different design factors

can be composed by adding identical terms other than "V in the estimation

expression of each design factor. The highest degree of each design factor in

the estimation expression is equal to a — 1, where a is the number of levels.

12

In the formula above, "A" stands for a variable, " A " for a mean level value, "a"

for the number of levels and "h" for the interval between levels. Coefficient

"bo" and "b" can be expressed by equation (2), based on the orthogonal

relations of estimation expressions.

bo = average of all analytical values (2)

In this equation, "Ay" stands for the level value of Variable (factor) A, and ")V

for the mean analytical value of each level.

2.2.4 Sensitivity Analysis

Since the estimation expressions are simple explicit equations, partial

differential of the estimation expression (Y) about a design factor (//) can

produce the sensitivity as shown in equations (3). This sensitivity (Si) is a

primary differential coefficient. In this equations, "m" stands for the total

number of design factors.

rfY
&=— (,'= 1,2,-• •,/,:) (3)

ft

This sensitivity represents the variation of a characteristic value against the

unitary variation of a design factor. And the sensitivity indicate the quantitative

effectivity of the design factor on the characteristic value. The sensitivity (Si)

changes along with the design factor (//). Substitution of a definite value of the

design factor (//) for the equation (dY/df.) can produce the sensitivity at any

value of the design factor. In addition, since the estimation expression is the

function which continuously represents a phenomenon, the sensitivity obtained

by partial differential of the estimation expression can be considered to express

a quantitative effectivity. This is free from the choice of the preset range of
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level value as discussed in the analysis of variance. Therefore, to determine the

effectivity precedence of design factors, employment of sensitivity gives more

precise results than the analysis of variance.

2.3 Re-analysis

The estimation expression for characteristic value obtained in the effectivity

analysis can be used for the re-analysis. A designer has only to substitute a set

of concrete values of the design factors into the estimation equation, then he

has can obtain the corresponding characteristic value. Use of this estimation

expression allows the designer to know easily any variation of the characteristic

value accompanied by the change of design. The re-analysis method is highly

efficient and practical. The authors believe that the use of the simplified re-

analysis method will contribute largely to the enhancement of the efficiency in

design work.

2.4 Evaluation of Dispersion

In this paragraph, the authors will shows the evaluation method of the

characteristic values which are dispersed along with design factors. First-order

second-moment method is employed for estimation and evaluation of the

dispersion̂ . The response (U) of characteristic values can be expressed by the

functional equation (4), in which the design factors (/;, /2, ..., fm) are treated as

random variables. This equation is equivalent to the estimation expression of

characteristic values which is expressed by Equation (1). The response (U) of

characteristic values with the dispersion of design factors is expressed by

equation (5), which uses the definite term (U ), the width of variation (A/- ) of

design factor (//), sensitivity (dY/df.). Equation (6) expresses the expectation

(E[U]) of the characteristic values at a definite value (/). The variance

(Var\U\) in this instance can be obtained from equation (7) by using "Var\fi\"

and "Var\fj]" which represent the variance of design factor (//) and (ft),

respectively.

(4)

(5)

(6)

(7)
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In the equations above, " / " is equivalent to {f, , f^ , • • • , /,„ } and " " stands

for definite values, and "m" for the number of design factors. " (")/ " means to

evaluate the differential about the definite values (/,, A, •••,/,„)• Since the

standard deviation (a) is the square root of the variance (Var\ the standard

deviation (GU) which indicates the dispersion of characteristic values can be

calculated as the square root of equation (7). Therefore, the estimation

expression of the standard deviation (a</) is represented by an explicit equation.

Incidentally, the correlation coefficient (py) of autocorrelation is 1. By using the

results, equation (8) produces the coefficient of variation (C.O.V) which is

often used as an index of relative dispersion against expectation.

2.5 Optimum Calculation

General problems of optimization can be formulated by equation (9):

Constraints: g-(x) * 0 (i = l,2,--,&)

/,.(%) = 0 (j=t+l,&+2,--.,f)

Under the constraints,

Objective function: /(*) -* minimum (9)

These g,(*), A/(x) and/(;c) in equation (9) can be represented by the estimation

expressions for expectation and dispersions of the characteristic values. Since

this method enables us to use any functions ( =estimation expressions) obtained

from different analyses(for example, intensity analysis and eigenvalue analysis),

at the same time, an optimum calculation, where plural phenomena is taken

into account, is possible. Therefore, this method facilitates to set problems for

optimization.

(1) General Example

Function: Mass -* Minimum

Characteristic valued (expectation + standard deviation * n) ̂  Set value

Characteristic value B (expectation) = set value

Where n in the constraints is a coefficient that represents the allowance as set

by standards, codes, regulations, and sometimes, by experience.

(2) Example Intended for Robust Design

Standard deviation of characteristic value — » Minimum

Set value ^ Expectation of characteristic value ^ Set value

Mass ̂  Set value
The computational method to solve the optimization problems may be selected

from mathematical programming, genetic algorithm, and others.
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2.5.1 Optimum Calculation of Continuous Variables

As the tool of the optimum calculation for continuous variables the authors use

the mathematical programming that can be applied most generally and

universally for mathematical optimization. Among many mathematical

programming methods, they have adopted the successive (or sequential)

quadratic programming (SQP) method. This method has been recognized the

most efficient against nonlinear optimization problems with constraints that are

very common in the practical problems. In the SQP method, successively

approximated quadratic programming problems are generated as partial

problems of equation(9) and the processes are repeated one after another to get

the solution. Equation(lO) shows an approximate expression when a point x^

is given at the k-\h iteration. In this approximate expression, the objective

function takes a form of quadratic approximation, while the constraints are

expressed in a form of the linear approximation.

Objective function: Vf(x̂ )d + -d*B^d -» minimum

Constraints: &(*<*>) + Vg.(x̂ fd ;> 0

&.(%(*)) + VA.(%(*yd = 0 (10)

B: Matrix in which Hessian Matrix (V*L(*<*>,A<*>)) of Lagrangian (L)

was

approximated.

d: Vector (d) (in the search direction from jĉ )

Estimation expressions can be used as the objective functions or the constraints.

With these estimation expressions given in explicit forms, the above equations

can be solved easily, and we can get optimal solutions efficiently.

2.5.2 Optimum Calculation for Discrete Variables

For the optimization problems where the design factors are composed of only

discrete values because of the requirements such as standards, codes and

marketability of products, we can adopt the round robin computation method

where all the combinations of design factors with discrete values are calculated.

These satisfied conditions can be chosen out of the calculation results. Discrete

values need not be equidistant. The round robin method is very time consuming

in the general optimization algorithm because the number of combination is

extraordinarily large. However, in this case, we can expect very short

computing time because we use the simple estimation equations, instead of the

direct FEM analyses, to calculate the characteristic values.

2.6 Evaluation of Structural Reliability

The authors will describe how to evaluate the structural reliability by the

present method. The second moment method is applied to evaluate the
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reliability with expectation values and variance leaving the distribution form

unknown ^. The reliability index, which is a scale corresponding to the

probability of failure, can be obtained by this method. Equation (11) represents

the performance function that defines the limit conditions of the characteristic

value, where Z > 0 stands for the safe side and Z ^ 0 for failure region. The

performance function can be generated as an explicit equation by using the

estimation expression (1) of the characteristic value and the limit value for

design.

2.6.1 Evaluation by FOSM Method

Equation (12) gives a reliability index 0 of the first-order second moment

(FOSM) method. With the distribution form of Z left unknown, the reliability

index /3 indicates how far the expectation E [Z] is away from the critical point

(Z = 0) with the standard deviation 0? as a scale. The standard deviation (% can

be obtained as a square root of the variance Var[Z] as shown in the equation

(13) Since the performance functional equation is explicit, the variance

Var[Z] can be obtained in the similar fashion to the equation (7).

Z-»(/„/„-./„) (11)

(12)

#r°

However, the FOSM method based upon the reliability /3 is lack of universality

because it depends on the representation of a numerical formula even if the

performance function remains physically the same. Further the performance

functions are nonlinear in most cases. In these cases there are the lack of

universality in the FOSM method.

2.6.2 Evaluation by AFOSM Method

Advanced first-order second moment (AFOSM) method ̂  allows one to have

a universal reliability index independent of the form or expression of the

performance function. The reliability index /3* in the AFOSM is defined as the

shortest distance from the origin to the point on the curve h(Y) = 0 lying on the

limit state surface of equation (15) in the space of normalized Y/ as shown in

the equation (14). The end point of this shortest distance on the surface is

called design point (Y/*). The new variable Y, has been so normalized that the

mean ̂ % = 0 and standard deviation OY\ - 1. Where ̂  and a// are the mean

values and standard deviation of the random variable/).

                                                             Transactions on the Built Environment vol 28, © 1997 WIT Press, www.witpress.com, ISSN 1743-3509 



222 Computer Aided Optimum Design of Structures V

(14)

/..̂ ) (15)

0* and Y/*, when the performance function is nonlinear, are obtained by the

iteration method, and they are applied to the nonlinear optimization problem as

shown in the equation (16). The SQP of the mathematical programming

method is adopted for the calculation of these values. It is assumed that there is

not correlation among the variables /i,/2, ...,//*•

Objective function: Y* + Y* +• • -+Y^ —> Minimum = /3*

Equality constraints: h (Fi, ¥2,..., Ym) = 0 (16)

Note that /3 is equal to f$* when the performance function is linear.

The partial safety factor %,, which is the ratio of design point to the mean

value of random variable ̂u//, is given by equation (17). The //* showing the

design point is Y/* as inverse-transformed into the original variable by the

equation (14)

%,=/)*/#, (;" = l,2,...,m) (17)

2.6.3 Upper Bound of Probability of Failure

If the distribution form of Z remains unknown, the probability of failure P/

cannot be obtained from only the expectation value and variance. However the

upper bound of the probability of failure that shows the value on the safe side

can be obtained by this method. In the present method we can use the equation

that gives an upper bound, which is rather low.

(18)

3 Application

It is important that cars should secure the safety of its passengers when they

crash into each other. The behavior of automobile seats at a collision raises

complicated problems where dynamic behaviors with large deformations and

material nonlinearities are involved. In this section, the authors solved

quantitatively the effectivity and sensitivity of the components of seat frame on

the collision response from the estimation expressions. Using the results of

these calculations, authors carried out evaluation of dispersion and the

optimum calculation for minimum cost of materials of seat frame.
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3.1 Analysis of Effectivity

3.1.1 Design of Experiments

Eight design factors that consist of the thickness and yield stress of four steel

members that compose the seat frame were considered in the analysis. On

assumption that the characteristic value would show nonlinear relations, we

employed 3 levels as the number of levels of each design factor . The

orthogonal array L27 was used. Each level of thickness is tl.2,tl.4,tl.6 and

each level of yield stress is 196MPa,245MPa,294MPa, respectively.

3.1.2 Finite Element Analysis

The explicit finite element method software, LS-DYNA3D, was used for the

analysis of collision. FEM model is shown in Figure 2. The weight in the

model was set to add to the frame a load by inertia force due to input

acceleration. The half waves of a sine wave (max. acceleration 300 m/sec ,

cycle 200 ms) were applied to all the restraint points.

3.1.3 Analysis of Variance

The maximum displacement of weight portion that obtained from FEA was

selected as a typical characteristic value of the collision phenomenon. Through

the variance analysis we can decompose the effectivity into first-order and

second-order ones. Table 1 shows the results of the variance analysis. The

Figures 1 and 2 in the column "FACTOR" means first-order and second-order

components of design factors. And "**" and "*" in "F RATIO" means that

these components have a significant difference at 1% and 5% risk rates,

respectively. From this results it is clear that there is not significant difference

in interaction of tc and to-

3.1.4 Estimation Expression

An estimation expression (19) for the maximum displacement dmax was

generated with the design factors and degrees regarded as significant by the

variance analysis (Criterion used 5% risk rate in F-Table). The variables t and a

in the expression represent the design factors of respective members.

Maximum displacement d̂  = 61.24 - 22.04(r̂  -1.4) -14.5 l(f* -1.4)

-1.4)' - 0.0266?}-33.62(r̂  -1.4)

j -245)' -160l}

-0.03218((%g -245)-0.3144(GTc -245)

+0.0020?4{((%c -245)' -160l}-0.1830(â  -245)

±4.296 (mm) (19)

3.1.5 Sensitivity Analysis
The differentiation of equation (19) about individual design factors can produce

the sensitivity to the maximum displacement as shown below. Clear and

quantitative effectivity can be obtained easily from this method.
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Calculation point of

Displacement

Plate

Element number: 79

Node number : 124

Figure 2 FEM model

Table 1 Analysis of variance for maximum displacement

Factor

OA

OB

GC

OD

*A

IB

tc

to

tc*to
Error

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

Sum of

Square

7.461 13E+02

1.01770E+02
4.47710E+01

9.56765E+00

4.27279E+03

1.48819E+02

1.44629E+03

3.28567E+01

3.49750E+02

2.32421E+00

1.51583E+02

3.28609E+00

2.30287E+03

9.40078E+01

8.13900E+02

1.45538E+01

4.05736E+01

1.17359E+02

Degree

of

1

1

1

0

1

1

1

1

1

0

1

0

1

1

1

0

0

14

Variance

7.461 13E+02

1.01770E+02
4.47710E+01

9.56765E+00

4.27279E+03

1.48819E+02

1.44629E+03

3.28567E+01

3.49750E+02

2.32421E+00

1.51583E+02

3.28609E+00

2.30287E+03

9.40078E+01

8.13900E+02

1.45538E+01

1.01434E+01

8.38279E+00

F Ratio

8.901E+01 **

1.214E+01 **

5.341E+00 *

O.OOOE+00

5.097E+02 **

1.775E+01 **

1.725E+02 **

3.920E+00

4.172E+01 **

O.OOOE+00

1.808E+01 **

O.OOOE+00

2.747E+02 **

1.121E+01 **

9.709E+01 **

O.OOOE+00

O.OOOE+00

Contribution

Ratio(%)

6.94

0.88

0.34

0.00

40.14

1.32

13.54

0.23

3.21

0.00

1.35

0.00

21.60

0.81

7.58

0.00

0.00

2.10

Total 1.06229E+04 26 100.00
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&LV =

m̂y/ =

"̂-/ = -56̂ 6 + 197.92(f c -1.4)

Mma* (mm/ \

**— / = -0.1314 + 0.00342(â  - 245)

m̂a,/ = -0.03218
/<%?a

- 0.004148(ac - 245)

"̂-/ = -0.1830 f̂ ^

3.2 Evaluation of Dispersion

The evaluation of the dispersion in the maximum displacement was evaluated

based on the assumption that the design factors would vary without any

correlation to each other. To calculate the standard deviations (of) of respective

design factors, the coefficient of variation was specified to be 3% for the sheet

thickness and 5% for yield stress. The equation (20) is an estimation expression

for the variance Var[dmax] of the maximum displacement which is calculated by

using the above values and sensitivities. The square root of the equation (20) is

an estimation expression for the standard deviation Odmax of the maximum

displacement.

tM<U = (-0.6612, jz +(-0.4353f,y

+[{-1.697 + 5.937(fc -1.4)}̂  J + (-1.009;„)'

+[{-0.00657 + 0.0001715(0̂  - 245}â  J

+(-0.001609(7, y

+[{-0.01572 + 0.0002074(c7c - 245)}̂]'

+(-0.009147â )' (20)

Any designer can proceed his work exactly and efficiently with consideration of

the dispersion by making use of these results .

3.3 Optimum Calculation

To minimize the material cost of the frame, optimum calculation was made by

using SOP method. The estimation expression of the maximum displacement

and that of dispersion were used as a behavior inequality constraint function.

As the value for constraint conditions, an assumed value was set to prevent the
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personal injury by deformation (maximum displacement). In this calculation,

all the design factors were assumed to be continuous variables.

(1) Design factors: Thickness and yield stress of all members (8 factors)

(2) Objective function: Cost of materials (function of thickness and yield stress)

Cost = 0.01233lJ(25.4f, - 1* ){^ + 70J + (ttAt, - 1,* )(^ + 70

+ (25.4f<. - f/ )̂  + 70J + 0.10927%̂  + 70J \ (yen)

(21)

(3) Constraints:

• Max. displacement dmax [estimation expression (19)]+

Standard deviation Odmax [square root of expression (20)] ̂ 50 mm

• Thickness (1.2 mm ^ t ̂  1.6mm)

• Yield stress (196 MPa ^ oy ̂ 294 MPa)

(4) Results of Optimization

• Objective value: 153.8 yen

• Max. displacement d̂ ax + Standard deviation Odmax

= 44.7 mm + 5.3 mm = 50 mm

• Variable: IA - 1.2 mm IQ- 1.2 mm tc = 1.29 mm to = 1.6 mm

OA = 239 MPa OB = 196 MPa GC = 283 MPa % = 294 MPa

• Convergence frequency: 14 times

Because of its simple mathematical expression, this optimum calculation was

able to carried out immediately at once on a personal computer.

3.4 Evaluation of Structural Reliability

Evaluation of structural reliability was evaluated by using the second moment

method. Evaluation was carried out for combined variables as calculated by the

optimum computation. The performance function (22) was set by using the

estimation expression (19) of maximum displacement and by assuming that

this displacement loses its function at 50 mm as the limit value.

Z = 50 mm - max. displacement dmax (estimation expression (19)) (22)

3.4.1 Evaluation by FOSM Method

The reliability index /3 by FOSM method becomes /3= 1 by mean of the

expectation E[Z] = 5.3 mm, the standard deviation Oz = 5.3 mm in the equation

(22), and the equation (12).

The upper bound of probability of failure under this condition is P/ < 0.5

from the equation (18).

3.4.2 Evaluation by AFOSM Method

The reliability index 0* by AFOSM method was calculated by using the SQP
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method into the equation (23). Y in this equation is a variable normalized by the

equation (14). Z(Y) is the equation (22) as transformed into the function of Y.

Objective function: ^%/ +%/ +%/ +%/ +%/+%/+%/+%/

—> Minimum value = /3*

Equality constraint: Z(Y) = 0 (23)

Reliability index (AFOSM method) 0* = 0.972

4 Conclusion

As a conclusion the authors describe the characteristics of the statistical

optimization method:

(1) Applicable to nonlinear problems

(2) The statistical optimization method is an efficient method that can be

applied with less labor of structural analysis.

(3) This method is very practical because it is possible to make use of

existing programs for structural analysis and optimization.

(4) This method serves as a tool to get quantitative information useful for

design.

(5) Integrated design analysis and evaluation system

(6) Since the optimum calculation by this method uses the estimation

expressions equivalent to the regression expressions, the optimal

solutions is not strict but approximate one, but the calculation can be

carried out within very short computing time.

(7) The accuracy of estimation expression depends on how to set the

number and range of levels of design factors. Therefore, to set the

problem a designer is required to have some knowledge of the

phenomena.
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