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Abstract

This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques,

called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing

acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis

that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are

highlighted and we identify where we expect key developments to appear in the immediate future.
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1. Background

With the increase in the power and resources of computer

technology, building natural-sounding synthetic voices has pro-

gressed from a knowledge-based approach to a data-based one.

Rather than manually crafting each phonetic unit and its appli-

cable contexts, high-quality synthetic voices may be built from

sufficiently diverse single-speaker databases of natural speech.

We can see progress from fixed inventories, found in diphone

systems (Moulines and Charpentier, 1990) to more general, but

more resource consuming, techniques of unit-selection synthe-

sis where appropriate sub-word units are automatically selected

from large databases of natural speech (Hunt and Black, 1996).

ATR ν-talk was the first to demonstrate the effectiveness of

the automatic selection of appropriate units (Sagisaka et al.,

1992), then CHATR generalized these techniques to multiple

languages and an automatic training scheme (Hunt and Black,

1996). Unit-selection techniques have evolved to become the

dominant approach to speech synthesis. The quality of output

derives directly from the quality of recordings, and it appears

that the larger the database the better the coverage. Commer-

cial systems have exploited these techniques to bring about a

new level of synthetic speech (Beutnagel et al., 1999).

However, although certainly successful, there is always the

issue of spurious errors. When a required sentence happens to

need phonetic and prosodic contexts that are under-represented

in a database, the quality of the synthesizer can be severely de-

graded. Even though this may be a rare event, a single bad join

in an utterance can ruin the listeners’ flow. It is not possible

to guarantee that bad joins and/or inappropriate units will not

occur, simply because of the vast number of possible combina-

tions that could occur. However, it is often possible to almost
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always avoid these for particular applications. Limited domain

synthesizers (Black and Lenzo, 2000), where the database has

been designed for the particular application, go a long way to-

ward optimizing almost all synthetic output. Despite the ob-

jective for optimal synthesis all the time, there are limitations

in unit-selection techniques. As no (or few) modifications to

the selected pieces of natural speech are usually done, this lim-

its the output speech to the same style as that in the original

recordings. With the need for more control over speech varia-

tions, larger databases containing examples of different styles

are required. IBM’s stylistic synthesis (Eide et al., 2004) is a

good example but this is limited by the number of variations

that can be recorded. Unfortunately, recording large databases

with variations is very difficult and costly (Black, 2003).

In direct contrast to this selection of actual instances of

speech from a database, statistical parametric speech synthe-

sis has also grown in popularity over the last years (Yoshimura

et al., 1999; Ling et al., 2006; Black, 2006; Zen et al., 2007c).

Statistical parametric synthesis might be most simply described

as generating the average of some sets of similarly sounding

speech segments. This contrasts directly with the target in

unit-selection synthesis that retains natural unmodified speech

units, but using parametric models offers other benefits. In both

the Blizzard Challenge in 2005 and 2006 (Tokuda and Black,

2005; Bennett, 2005; Bennett and Black, 2006), where common

speech databases were provided to participants to build syn-

thetic voices, the results from subjective listening tests revealed

that one instance of statistical parametric synthesis techniques

offered synthesis that was more preferred (through mean opin-

ion scores) and more understandable (through word error rates)

(Ling et al., 2006; Zen et al., 2007c). Although even the propo-

nents of statistical parametric synthesis feel that the best exam-

ples of unit-selection synthesis are better than the best examples

of statistical parametric synthesis, overall it appears that the

quality of statistical parametric synthesis has already reached
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Figure 1: Overview of general unit-selection scheme. Solid lines represent

target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue

comes down to the fact that, given a parametric representation,

it is necessary to reconstruct the speech from these parameters.

The process of reconstruction is still not ideal. Although mod-

eling the spectral and prosodic features is relatively well de-

fined, models of residual/excitation have yet to be fully devel-

oped, even though composite models like STRAIGHT (Kawa-

hara et al., 1999) are proving to be useful (Irino et al., 2002;

Zen et al., 2007c).

The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although

many research groups have contributed to progress in statisti-

cal parametric speech synthesis, the description given here is

somewhat biased toward implementation on the HMM-based

speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen

et al., 2007b) for the sake of logical coherence.

The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier

contrast with statistical parametric synthesis is described. Then,

the core architecture of statistical parametric speech synthesis

is more formally defined, specifically based on the implemen-

tation on HTS. The following sections discuss some of the ad-

vantages and drawbacks in a statistical parametric framework,

highlighting some possible directions to take in the future. Var-

ious refinements that are needed to achieve state-of-the-art per-

formance are also discussed. The final section discusses con-

clusions we drew with some general observations and a discus-

sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize

new naturally sounding utterances by selecting appropriate sub-

word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This

includes recipes for building state-of-the-art speaker-dependent and speaker-

adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,

2003), which illustrate a number of the approaches described in this review.
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Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-

resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-

thesis, even though they are theoretically not very different.

Hunt and Black presented a selection model (Hunt and Black,

1996), described in Fig. 1, which actually existed previously in

ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of

a target cost, i.e., how well a candidate unit from the database

matches the required unit, and a concatenation cost, which de-

fines how well two selected units combine. The definition of

target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =

p
∑

j=1

w
(t)
j C

(t)
j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-

texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =

q
∑

k=1

w
(c)
k C

(c)
k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-

tures. These two costs must then be optimized to find the string

of units, u1:n = {u1, . . . , un}, from the database that mini-

mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n

∑

i=1

C(t)(ti, ui) +
n

∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-

ing method that allows the target cost to effectively be pre-

calculated (Donovan and Woodland, 1995; Black and Taylor,

1997). Units of the same type are clustered into a decision tree

that asks questions about features available at the time of syn-

thesis (e.g., phonetic and prosodic contexts).
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There has been, and will continue to be, a substantial amount

of work on looking at what features should be used, and how

to weigh them. Getting the algorithms, measures, and weights

right will be the key to obtaining consistently high-quality syn-

thesis. These cost functions are formed from a variety of heuris-

tic or ad hoc quality measures based on the features of the

acoustic signal and given texts. Target- and concatenation-cost

functions based on statistical models have recently been pro-

posed (Mizutani et al., 2002; Allauzen et al., 2004; Sakai and

Shu, 2005; Ling and Wang, 2006). Weights (w
(t)
j and w

(c)
k )

have to be found for each feature, and actual implementations

use a combination of trained and manually tuned weights. All

these techniques depend on an acoustic distance measure that

should be correlated with human perception.

Work on unit-selection synthesis has investigated the opti-

mal size of units to be selected. The longer the unit, the larger

the database must generally be to cover the required domain.

Experiments with different-sized units tend to demonstrate that

small units can be better as they offer more potential joining

points (Kishore and Black, 2003). However, continuity can

also be affected with more joining points. Various publications

have discussed the superiority of different-sized units, i.e., from

frame-sized (Hirai and Tenpaku, 2004; Ling and Wang, 2006),

HMM state-sized (Donovan and Woodland, 1995; Huang et al.,

1996), half-phones (Beutnagel et al., 1999), diphones (Black

and Taylor, 1997), to much larger and even non-uniform units

(Taylor and Black, 1999; Segi et al., 2004).2

In all, there are many parameters to choose from by varying

the size of the units, varying the size of the databases, and lim-

iting the synthesis domain. Black highlighted these different

directions in constructing the best unit-selection synthesizer for

the targeted application (Black, 2002).

The mantra of “more data” may seem like an easy direction

to follow, but with databases growing to tens of hours of data,

time-dependent voice-quality variations have become a serious

issue (Stylianou, 1999; Kawai and Tsuzaki, 2002; Shi et al.,

2002). Also, very large databases require substantial comput-

ing resources that limit unit-selection techniques in embedded

devices or where multiple voices and multiple languages are

required.

These apparent issues specific to unit-selection synthesis are

mentioned here because they have specific counterparts in sta-

tistical parametric synthesis.

3. Statistical parametric synthesis

3.1. Core architecture of typical system

In direct contrast to this selection of actual instances of

speech from a database, statistical parametric speech synthe-

sis might be most simply described as generating the average

of some sets of similarly sounding speech segments. This con-

trasts directly with the need in unit-selection synthesis to retain

2Note that a zero-cost join results from maintaining connectivity of units

drawn from a unit-selection database and that implicitly yields a non-uniform

unit-selection synthesizer.
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Figure 3: Block-diagram of HMM-based speech synthesis system (HTS).

natural unmodified speech units, but using parametric models

offers other benefits.

In a typical statistical parametric speech synthesis system,

we first extract parametric representations of speech includ-

ing spectral and excitation parameters from a speech database

and then model them by using a set of generative models (e.g.,

HMMs). A maximum likelihood (ML) criterion is usually used

to estimate the model parameters as

λ̂ = arg max
λ

{p(O | W, λ)} , (5)

where λ is a set of model parameters, O is a set of training

data, and W is a set of word sequences corresponding to O. We

then generate speech parameters, o, for a given word sequence

to be synthesized, w, from the set of estimated models, λ̂, to

maximize their output probabilities as

ô = arg max
o

{

p(o | w, λ̂)
}

. (6)

Finally, a speech waveform is reconstructed from the paramet-

ric representations of speech. Although any generative model

can be used, HMMs have been widely used. Statistical para-

metric speech synthesis with HMMs is particularly well known

as HMM-based speech synthesis (Yoshimura et al., 1999).

Figure 3 is a block diagram of the HMM-based speech syn-

thesis system. It consists of parts for training and synthesis.

The training part performs the maximum likelihood estimation

of Eq. (5) by using the EM algorithm (Dempster et al., 1977).

This process is very similar to that for speech recognition, the

main difference being that both spectrum (e.g., mel-cepstral co-

efficients (Fukada et al., 1992) and their dynamic features) and

excitation (e.g., log F0 and its dynamic features) parameters are

extracted from a database of natural speech and modeled by

a set of multi-stream (Young et al., 2006) context-dependent

HMMs. Another difference is that linguistic and prosodic con-

texts are taken into account in addition to phonetic ones. For

example, the contexts used in the HTS English recipes (Tokuda

et al., 2008) are
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• phoneme:

- current phoneme

- preceding and succeeding two phonemes

- position of current phoneme within current syllable

• syllable:

- numbers of phonemes within preceding, current, and

succeeding syllables

- stress3 and accent4 of preceding, current, and succeed-

ing syllables

- positions of current syllable within current word and

phrase

- numbers of preceding and succeeding stressed syllables

within current phrase

- numbers of preceding and succeeding accented sylla-

bles within current phrase

- number of syllables from previous stressed syllable

- number of syllables to next stressed syllable

- number of syllables from previous accented syllable

- number of syllables to next accented syllable

- vowel identity within current syllable

• word:

- guess at part of speech of preceding, current, and suc-

ceeding words

- numbers of syllables within preceding, current, and suc-

ceeding words

- position of current word within current phrase

- numbers of preceding and succeeding content words

within current phrase

- number of words from previous content word

- number of words to next content word

• phrase:

- numbers of syllables within preceding, current, and suc-

ceeding phrases

- position of current phrase in major phrases

- ToBI endtone of current phrase

• utterance:

- numbers of syllables, words, and phrases in utterance

To model fixed-dimensional parameter sequences, such as mel-

cepstral coefficients, single multi-variate Gaussian distributions

are typically used as their stream-output distributions. How-

ever, it is difficult to apply discrete or continuous distributions

to model variable-dimensional parameter sequences, such as

log F0 sequences with unvoiced regions (Fig. 4). Although sev-

eral methods have been investigated for modeling log F0 se-

quences (Freij and Fallside, 1988; Jensen et al., 1994; Ross

and Ostendorf, 1994), the HMM-based speech synthesis sys-

tem adopts multi-space probability distributions (Tokuda et al.,

3The lexical stress of the syllable as specified from the lexicon entry corre-

sponding to the word related to this syllable.
4An intonational accent of the syllable predicted by a CART tree (0 or 1).
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Figure 4: Example of F0 sequence with voiced and unvoiced regions.

2002a) as their stream-output distributions.5 Each HMM also

has its state-duration distribution to model the temporal struc-

ture of speech (Yoshimura et al., 1998). Choices for state-

duration distributions are the Gaussian distribution (Yoshimura

et al., 1998) and the Gamma distribution (Ishimatsu et al.,

2001). They are estimated from statistical variables obtained

at the last iteration of the forward-backward algorithm. Each

of spectrum, excitation, and duration is clustered individually

by using phonetic decision trees (Odell, 1995) because they

have their own context dependency. As a result, the system

can model the spectrum, excitation, and duration in a unified

framework.

The synthesis part performs the maximization of Eq. (6).

This can be viewed as an inverse operation for speech recog-

nition. First, a given word sequence is converted into a context-

dependent label sequence, and then the utterance HMM is con-

structed by concatenating the context-dependent HMMs ac-

cording to the label sequence. Second, the speech parame-

ter generation algorithm generates the sequences of spectral

and excitation parameters from the utterance HMM. Although

there are several variants of the speech parameter generation

algorithm (Tokuda et al., 2000; Tachiwa and Furui, 1999), the

Case 1 algorithm in (Tokuda et al., 2000) has typically been

used. Finally, a speech waveform is synthesized from the gen-

erated spectral and excitation parameters using excitation gen-

eration and a speech synthesis filter (e.g., mel log spectrum ap-

proximation (MLSA) filter (Imai et al., 1983)). The following

describes details on the speech parameter generation algorithm.

To simplify the notation here, we assume that each state-

output distribution is a single stream, single multi-variate Gaus-

sian distribution as

bj(ot) = N (ot ; µj ,Σj), (7)

where ot is the state-output vector at frame t, and bj(·), µj , and

Σj correspond to the j-th state-output distribution and its mean

vector and covariance matrix. Within the HMM-based speech

5Other F0 modeling techniques such as Fujisaki’s model (Hirose et al.,

2005), quantification method type 1 (QMT1) (Iwano et al., 2002), and case-

based reasoning (CBR) (Gonzalvo et al., 2007a) have also been used. Yu et al.

also proposed a method of modeling log F0 sequences using standard HMMs

(Yu et al., 2009).
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synthesis framework, Eq. (6) can be approximated as6

ô = arg max
o

{

p(o | w, λ̂)
}

(8)

= arg max
o

{

∑

q

p(o, q | w, λ̂)

}

(9)

≈ arg max
o

max
q

{

p(o, q | w, λ̂)
}

(10)

= arg max
o

max
q

{

P (q | w, λ̂) · p(o | q, λ̂)
}

(11)

≈ arg max
o

{

p(o | q̂, λ̂)
}

(12)

= arg max
o

{N (o ; µq̂,Σq̂)} , (13)

where o =
[

o⊤
1 , . . . ,o⊤

T

]⊤
is a state-output vector sequence

to be generated, q = {q1, . . . , qT } is a state sequence, and

µq =
[

µ⊤
q1

, . . . ,µ⊤
qT

]⊤
is the mean vector for q. Here,

Σq = diag [Σq1
, . . . ,ΣqT

] is the covariance matrix for q and

T is the total number of frames in o. The state sequence, q̂, is

determined to maximize its state-duration probability as

q̂ = arg max
q

{

P (q | w, λ̂)
}

. (14)

Unfortunately, ô will be piece-wise stationary where the time

segment corresponding to each state simply adopts the mean

vector of the state. This would clearly be a poor fit to real

speech where the variations in speech parameters are much

smoother. To generate a realistic speech-parameter trajectory,

the speech parameter generation algorithm introduces relation-

ships between the static and dynamic features as constraints for

the maximization problem. If the state-output vector, ot, con-

sists of the M -dimensional static feature, ct, and its first-order

dynamic (delta) feature, ∆ct, as

ot =
[

c⊤t , ∆c⊤t
]⊤

, (15)

and the dynamic feature is calculated as7

∆ct = ct − ct−1, (16)

the relationship between ot and ct can be arranged in matrix

form as

o W c











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
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






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




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


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





(17)

6The Case 2 and 3 algorithms in (Tokuda et al., 2000) respectively maximize

Eqs. (10) and (8) under constraints between static and dynamic features.
7In the HTS English recipes (Tokuda et al., 2008), second-order (delta-delta)

dynamic features are also used. The dynamic features are calculated as ∆ct =
0.5(ct+1 − ct−1) and ∆2ct = ct−1 − 2ct + ct+1.
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Figure 5: Overview of HMM-based speech synthesis scheme.

where c =
[

c⊤1 , . . . , c⊤T
]⊤

is a static feature-vector sequence

and W is a matrix that appends dynamic features to c. Here, I

and 0 correspond to the identity and zero matrices. As you can

see, the state-output vectors are thus a linear transform of the

static features. Therefore, maximizing N (o ; µq̂,Σq̂) with re-

spect to o is equivalent to that with respect to c:

ĉ = arg max
c

{N (Wc ; µq̂,Σq̂)} . (18)

By equating ∂ logN (Wc ; µq̂,Σq̂) /∂c to 0, we can obtain a

set of linear equations to determine ĉ as

W⊤
Σ

−1
q̂

Wĉ = W⊤
Σ

−1
q̂

µq̂. (19)

Because W⊤
Σ

−1
q̂

W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory of

ĉ will no longer be piece-wise stationary since associated dy-

namic features also contribute to the likelihood and must there-

fore be consistent with HMM parameters. Figure 5 illustrates

the effect of dynamic feature constraints. As we can see, the

trajectory of ĉ becomes smooth rather than piece-wise.

3.2. Advantages

Most of the advantages of statistical parametric synthesis

against unit-selection synthesis are related to its flexibility due

to the statistical modeling process. The following describes de-

tails of these advantages.

3.2.1. Transforming voice characteristics, speaking styles, and

emotions

The main advantage of statistical parametric synthesis is its

flexibility in changing its voice characteristics, speaking styles,
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and emotions. Although the combination of unit-selection and

voice-conversion (VC) techniques (Stylianou et al., 1998) can

alleviate this problem, high-quality voice conversion is still

problematic. Furthermore, converting prosodic features is also

difficult. However, we can easily change voice characteristics,

speaking styles, and emotions in statistical parametric synthe-

sis by transforming its model parameters. There have been four

major techniques to accomplish this, i.e., adaptation, interpola-

tion, eigenvoice, and multiple regression.

Adaptation (mimicking voices)

Techniques of adaptation were originally developed in speech

recognition to adjust general acoustic models to a specific

speaker or environment to improve the recognition accuracy

(Leggetter and Woodland, 1995; Gauvain and Lee, 1994).

These techniques have also been applied to HMM-based speech

synthesis to obtain speaker-specific synthesis systems with a

small amount of speech data (Masuko et al., 1997; Tamura

et al., 2001). Two major techniques in adaptation are maxi-

mum a posteriori (MAP) estimation (Gauvain and Lee, 1994)

and maximum likelihood linear regression (MLLR) (Leggetter

and Woodland, 1995).

MAP estimation involves the use of prior knowledge about

the distributions of model parameters. Hence, if we know what

the parameters of the model are likely to be (before observing

any adaptation data) using prior knowledge, we might well be

able to make good use of the limited amount of adaptation data.

The MAP estimate of an HMM, λ, is defined as the mode of

the posterior distribution of λ, i.e.,

λ̂ = arg max
λ

{p(λ | O,W)} (20)

= arg max
λ

{p(O, λ | W)} (21)

= arg max
λ

{p(O | W, λ) · p(λ)} , (22)

where p(λ) is the prior distribution of λ. A major drawback

of MAP estimation is that every Gaussian distribution is indi-

vidually updated. If the adaptation data are sparse, then many

of the model parameters will not be updated. This causes the

speaker characteristics of synthesized speech to often switch

between general and target speakers within an utterance. Vari-

ous attempts have been made to overcome this, such as vector

field smoothing (VFS) (Takahashi and Sagayama, 1995) and

structured MAP estimation (Shinoda and Lee, 2001).

Adaptation can also be accomplished by using MLLR and

Fig. 6 gives an overview of this. In MLLR, a set of linear trans-

forms is used to map an existing model set into a new adapted

model set such that the likelihood for adaptation data is maxi-

mized. The state-output distributions8 of the adapted model set

are obtained as

bj (ot) = N (ot ; µ̂j , Σ̂j), (23)

µ̂j = Ar(j)µj + br(j), (24)

Σ̂j = H⊤

r(j)ΣjHr(j), (25)

8The state-duration distributions can also be adapted in the same manner

(Yamagishi and Kobayashi, 2007).

Transformed Model

General Model 

Linear Transforms

Regression Class

Figure 6: Overview of linear-transformation-based adaptation technique.

where µ̂j and Σ̂j correspond to the linearly transformed mean

vector and covariance matrix of the j-th state-output distribu-

tion, and Ar(j), Hr(j), and br(j) correspond to the mean linear-

transformation matrix, the covariance linear-transformation

matrix, and the mean bias vector for the r(j)-th regression

class. The state-output distributions are usually clustered by a

regression-class tree, and transformation matrices and bias vec-

tors are shared among state-output distributions clustered into

the same regression class (Gales, 1996). By changing the size

of the regression-class tree according to the amount of adap-

tation data, we can control the complexity and generalization

abilities of adaptation. There are two main variants of MLLR.

If the same transforms are trained for A and H , this is called

constrained MLLR (or feature-space MLLR); otherwise, it is

called unconstrained MLLR (Gales, 1998). For cases where

adaptation data are limited, MLLR is currently a more effective

form of adaptation than MAP estimation. Furthermore, MLLR

offers adaptive training (Anastasakos et al., 1996; Gales, 1998),

which can be used to estimate “canonical” models for train-

ing general models. For each training speaker, a set of MLLR

transforms is estimated, and then the canonical model is esti-

mated given all these speaker transforms. Yamagishi applied

this MLLR-based adaptive training and adaptation techniques

to HMM-based speech synthesis (Yamagishi, 2006). This ap-

proach is called average voice-based speech synthesis (AVSS).

It could be used to synthesize high-quality speech with the

speaker’s voice characteristics by only using a few minutes of

the target speaker’s speech data (Yamagishi et al., 2008b). Fur-

thermore, even if hours of the target speaker’s speech data were

used, AVSS could still synthesize speech that had equal or bet-

ter quality than speaker-dependent systems (Yamagishi et al.,

2008c). Estimating linear-transformation matrices based on the

MAP criterion (Yamagishi et al., 2009) and combining MAP

estimation and MLLR have also been proposed (Ogata et al.,

2006).

The use of the adaptation technique to create new voices

makes statistical parametric speech synthesis more attractive.

Usually, supervised adaptation is undertaken in speech synthe-

sis, i.e., correct context-dependent labels that are transcribed

manually or annotated automatically from texts and audio files

are used for adaptation. As described in Section 3.1, pho-

netic, prosodic and linguistic contexts are used in speech syn-
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Figure 7: Space of speaker individuality modeled by HMM sets {λi}. In this

figure, {I(λ′,λi)} denotes interpolation ratio.

thesis. The use of such rich contexts makes unsupervised adap-

tation very difficult because generating context-dependent la-

bels through speech recognition is computationally infeasible

and likely to produce very inaccurate labels. King et al. pro-

posed a simple but interesting solution to this problem by only

using phonetic labels for adaptation (King et al., 2008). King

et al. evaluated the performance of this approach and reported

that the use of unsupervised adaptation degraded its intelligi-

bility but its similarity to the target speaker and naturalness of

synthesized speech were less severely impacted.

Interpolation (mixing voices)

The interpolation technique enables us to synthesize speech

with untrained voice characteristics. The idea of using interpo-

lation was first applied to voice conversion, where pre-stored

spectral patterns were interpolated among multiple speakers

(Iwahashi and Sagisaka, 1995). It was also applied to HMM-

based speech synthesis, where HMM parameters were inter-

polated among some representative HMM sets (Yoshimura

et al., 1997). The main difference between Iwahashi and Sag-

isaka’s technique and Yoshimura et al.’s one was that as each

speech unit was modeled by an HMM, mathematically-well-

defined statistical measures could be used to interpolate the

HMMs. Figure 7 illustrates the idea underlying the interpola-

tion technique, whereby we can synthesize speech with various

voice characteristics (Yoshimura et al., 1997), speaking styles

(Tachibana et al., 2005), and emotions not included in the train-

ing data.

Eigenvoice (producing voices)

Although we can mimic voice characteristics, speaking styles,

or emotions by only using a few utterances with the adapta-

tion technique, we cannot obtain adapted models if no adap-

tation data are available. The use of the interpolation tech-

nique enables us to obtain various new voices by changing the

interpolation ratio between representative HMM sets even if

no adaptation data are available. However, if we increase the

number of representative HMM sets to enhance the capabili-

ties of representation, it is difficult to determine the interpola-

tion ratio to obtain the required voice. To address this problem,

Eigenvectors

Mean vector
Reduced space

µ̄

e1

e2

s1

s2

s3

s4

s5

s
′

s6

s7

Figure 8: Space of speaker individuality represented by super-vectors of HMM

sets.

Shichiri et al. applied the eigenvoice technique (Kuhn et al.,

2000) to HMM-based speech synthesis (Shichiri et al., 2002).

A speaker-specific “super-vector” was composed by concate-

nating the mean vectors of all state-output distributions in the

model set for each S speaker-dependent HMM set. By ap-

plying principal component analysis (PCA) to S super-vectors

{s1, . . . , sS}, we obtain eigen-vectors and eigen-values. By

retaining lower-order eigen-vectors (larger eigen-values) and

ignoring higher-order ones (small eigen-values), we can ef-

ficiently reduce the dimensionality of the speaker space be-

cause low-order eigen-vectors often contain the dominant as-

pects of given data. Using the first K eigen-vectors with arbi-

trary weights, we can obtain a new super-vector that represents

a new voice as

s′ = µ̄ +
K

∑

i=1

ν′

iei, K < S, (26)

where s′ is a new super-vector, µ̄ is a mean of the super-vectors,

ei is the i-th eigen-vector, and ν′
i is the weight for the i-th eigen-

vector. Then, a new HMM set can be reconstructed from s′.

Figure 8 has an overview of the eigenvoice technique, which

can reduce the number of parameters to be controlled, and this

enables us to manually control the voice characteristics of syn-

thesized speech by setting the weights. However, it introduces

another problem in that it is difficult to control the voice char-

acteristics intuitively because none of the eigen-vectors usually

represents a specific physical meaning.

Multiple regression (controlling voices)

To solve this problem, Miyanaga et al. applied a multiple-

regression approach (Fujinaga et al., 2001) to HMM-based

speech synthesis to control voice characteristics intuitively

(Miyanaga et al., 2004; Nose et al., 2007b), where mean vec-

tors of state-output distributions9 were controlled with an L-

dimensional control vector, z = [z1, . . . , zL]
⊤

, as

µj = Mjξ, ξ =
[

1, z⊤
]⊤

, (27)

9The state-duration distributions can also be controlled in the same manner

(Nose et al., 2007b).
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Figure 9: Overview of multiple-regression HMM-based emotion-controlling

technique.

where Mj is a multiple-regression matrix. We can estimate

{Mj} to maximize the likelihood of the model for the train-

ing data.10 Each element of z captures specific voice charac-

teristics, speaking styles, or emotions described by expressive

words such as gender, age, brightness, and emotions, which are

manually assigned through subjective listening tests. We can

create any voices required in synthetic speech by specifying

the control vector representing a point in a voice-characteristics

space where each coordinate represents a specific characteristic.

Estimating voice characteristics, speaking styles, and emotions

of speech based on the multiple-regression technique has also

been proposed (Nose et al., 2007a). Figure 9 illustrates the idea

underlying the multiple-regression technique, whereby we can

intuitively control emotions in synthetic speech.

By combining these techniques, we can synthesize speech

with various voice characteristics, speaking styles, and emo-

tions without having to record large speech databases. For ex-

ample, Tachibana et al. and Nose et al. proposed the combina-

tion of multiple-regression and adaptation techniques to achieve

a multiple-regression technique with a small amount of speech

data (Tachibana et al., 2008; Nose et al., 2009).

3.2.2. Coverage of acoustic space

Unit-selection systems typically select from a finite set of

units in the database. They search for the best path through-

out a given set of units. Of course, when there are no good

examples of units in that set, this can be viewed as either a

lack of database coverage or that the required sentence to be

synthesized is not in the domain. To alleviate this problem,

many systems do some localized smoothing at segment bound-

aries. While Wouters and Macon and Tamura et al. introduced

the notion of fusion units, they effectively increased the num-

ber of available units by allowing new units to be constructed

from existing ones (Wouters and Macon, 2000; Tamura et al.,

2005). In contrast to unit-selection synthesis, statistical para-

metric synthesis uses statistics to generate speech. Thus, a

much wider range of units is effectively available, as context af-

fects the generation of speech parameters through constraining

dynamic features, and smoother joins are possible. However,

10This training can be viewed as a special case of cluster adaptive training

(CAT) (Gales, 2000), i.e., CAT estimates both z and Mj based on the ML

criterion but the multiple-regression technique only estimatesMj and uses the

provided control vector, z, to assign an intuitive meaning to each cluster.

although it can potentially cover the given acoustic space better

than unit-selection systems, it is still limited by the examples in

the database.

3.2.3. Multilingual support

Supporting multiple languages can easily be accomplished

in statistical parametric speech synthesis because only the con-

textual factors to be used depend on each language. Further-

more, we can create statistical parametric speech synthesis sys-

tems with a small amount of training data. Takamido et al.

demonstrated that an intelligible HMM-based speech synthe-

sis system could be built by using approximately 10 minutes

from a single-speaker, phonetically balanced speech database.

This property is important to support numerous languages be-

cause few speech and language resources are available in many

languages. Note that the contexts to be used should be de-

signed for each language to achieve better quality of synthesis

because each language has its own contextual factors. For ex-

ample, the use of tonal contexts is essential in tonal languages

such as Mandarin Chinese. Up till now, Arabic (Abdel-Hamid

et al., 2006; Fares et al., 2008), Catalan (Bonafonte et al., 2008),

Croatian (Martincic-Ipsic and Ipsic, 2006), Dzongkha (Sherpa

et al., 2008), US (Tokuda et al., 2002b), UK, Scottish, Cana-

dian, Indian, and South African English, Farsi (Homayoun-

pour and Mehdi, 2004), Finnish (Ojala, 2006; Vainio et al.,

2005; Raitio et al., 2008; Silen et al., 2008), French (Drugman

et al., 2008), Scottish Gaelic (Berry, 2008), standard (Weiss

et al., 2005; Krstulović et al., 2007), Austrian, Viennese so-

ciolect and dialect German, Greek (Karabetsos et al., 2008),

Hebrew, Hindi, Hungarian (Tóth and Németh, 2008), Indone-

sian (Sakti et al., 2008), Irish, Japanese (Yoshimura et al.,

1999), Korean (Kim et al., 2006b), Lao, Mandarin Chinese (Zen

et al., 2003a; Wu and Wang, 2006a; Qian et al., 2006), Eu-

ropean (Barros et al., 2005) and Brazilian (Maia et al., 2003)

Portuguese, Russian, Serbian, Slovak (Sýkora, 2006), Slove-

nian (Vesnicer and Mihelic, 2004), Spanish (Gonzalvo et al.,

2007b), Swedish (Lundgren, 2005), Tamil, Telgu, Thai (Chom-

phan and Kobayashi, 2007), Vietnamese, Xhosa, Zulu, and

Mandarin Chinese–English bilingual (Liang et al., 2008; Qian

et al., 2008a) systems have been or are being built by various

groups.

Up till now, speech synthesizers in new languages have typ-

ically been constructed by collecting several hours of well-

recorded speech data in the target language. An alternative

method has been to apply the same idea as in speech recogni-

tion, i.e., to use a multilingual acoustic model from an existing

synthesizer in one language and cross adapt models to the tar-

get language based on a very small set of collected sentences.

To utilize speech data from multiple speakers and multiple lan-

guages for speech synthesis, unit-selection synthesis is unlikely

to succeed given that it has a wider variety of data and less

consistency. However, within statistical parametric synthesis,

the adaptive training and adaptation framework allows multiple

speakers and even languages to be combined into single mod-

els, thus enabling multilingual synthesizers to be built. Latorre

et al. and Black and Schultz proposed building such multilin-

gual synthesizers using combined data from multiple languages
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(Latorre et al., 2006; Black and Schultz, 2006). Wu et al. also

proposed a technique of cross-lingual speaker adaptation (Wu

et al., 2008a). They revealed that multilingual synthesis and

cross-lingual adaptation were indeed feasible and provided rea-

sonable quality.

3.2.4. Other advantages

Footprint

Compared with unit-selection synthesis, the footprint of sta-

tistical parametric synthesis is usually small because we store

statistics of acoustic models rather than the multi-templates of

speech units. For example, the footprints of Nitech’s Blizzard

Challenge 2005 voices were less than 2 MBytes with no com-

pression (Zen et al., 2007c). Their footprints could be further

reduced without any degradation in quality by eliminating re-

dundant information. Additional reduction was also possible

with small degradation in quality by utilizing vector quantiza-

tion, using fixed-point numbers instead of floating-point num-

bers, pruning phonetic decision trees (Morioka et al., 2004),

and/or tying model parameters (Oura et al., 2008b). For exam-

ple, Morioka et al. demonstrated that HMM-based speech syn-

thesis systems whose footprints were about 100 KBytes could

synthesize intelligible speech by properly tuning various pa-

rameters (Morioka et al., 2004). Taking these into consider-

ation, we believe that statistical parametric speech synthesis

seems to be suitable for embedded applications (Kim et al.,

2006a). A memory-efficient, low-delay speech parameter gen-

eration algorithm (Tokuda et al., 1995; Koishida et al., 2001)

and a computationally-efficient speech synthesis filter (Watan-

abe et al., 2007), which seem useful for incorporating HMM-

based speech synthesis into embedded devices, have been pro-

posed. Several commercial products based on statistical para-

metric speech synthesis for mobile devices have been released

(SVOX AG, 2007; Bai, 2007; KDDI R&D Laboratories, 2008;

SVOX AG, 2008).

Robustness

Statistical parametric speech synthesis is more “robust” than

unit-selection synthesis. If we want to build speech synthesiz-

ers using speech data from real users, the speech from the target

speaker could possibly suffer from noise or fluctuations due to

the recording conditions. This would be expected to signifi-

cantly degrade the quality of synthetic speech. Furthermore,

such data are unlikely to be phonetically balanced and there-

fore lack some units. Yamagishi et al. reported that statisti-

cal parametric speech synthesis, especially AVSS, was much

more robust to these kinds of factors (Yamagishi et al., 2008a).

This is because adaptive training can be viewed as a gen-

eral version of several feature-normalization techniques such

as cepstral mean/variance normalization, stochastic matching,

and bias removal. Furthermore, the use of an average-voice

model can provide supplementary information that is lacking

in the adaptation data. They also reported that “recording

condition-adaptive training,” which is based on the same idea

as speaker-adaptive training (Anastasakos et al., 1996; Gales,

1998), worked effectively to normalize recording conditions.

Using speech recognition technologies

Statistical parametric speech synthesis, especially HMM-based

speech synthesis, can employ a number of useful technologies

developed for HMM-based speech recognition. For example,

structured precision matrix models (Gales, 1999; Olsen and

Gopinath, 2004), which can closely approximate full covari-

ance models using small numbers of parameters, have success-

fully been applied to a system (Zen et al., 2006b).

Unifying front-end and back-end

Statistical parametric speech synthesis provides a new frame-

work for jointly optimizing the front-end (text analysis) and

back-end (waveform generation) modules of text-to-speech

(TTS) systems. These two modules are conventionally con-

structed independently. The text-analysis module is trained us-

ing text corpora and often includes statistical models to analyze

text, e.g., the phrasing boundary, accent, and POS. The wave-

form generation module, on the other hand, is trained using

a labeled speech database. In statistical parametric synthesis,

this module includes acoustic models. If these two modules are

jointly estimated as a unified statistical model, it is expected

to improve the overall performance of a TTS system. Based on

this idea, Oura et al. proposed an integrated model for linguistic

and acoustic modeling and demonstrated its effectiveness (Oura

et al., 2008a).

Fewer tuning parameters

Unit-selection synthesis usually requires various control param-

eters to be manually tuned. Statistical parametric synthesis, on

the other hand, has few tuning parameters because all the mod-

eling and synthesis processes are based on mathematically well-

defined statistical principles.

Separately control spectrum, excitation, and duration

Because statistical parametric speech synthesis uses the source-

filter representation of speech, the spectrum, excitation, and du-

ration can be controlled and modified separately.

3.3. Drawbacks and refinements

The biggest drawback with statistical parametric synthesis

against unit-selection synthesis is the quality of synthesized

speech. There seem to be three factors that degrade quality, i.e.,

vocoders, acoustic modeling accuracy, and over-smoothing.

Details on these factors and various refinements that are needed

to achieve state-of-the-art performance are described in the fol-

lowing.

3.3.1. Vocoder

The speech synthesized by the basic HMM-based speech

synthesis system sounds buzzy since it uses a mel-cepstral

vocoder with simple periodic pulse-train or white-noise exci-

tation (Yoshimura et al., 1999).

Excitation model

To alleviate this problem, high-quality vocoders such as

mixed excitation linear prediction (MELP) (Yoshimura et al.,

2001; Gonzalvo et al., 2007b), multi-band excitation (Abdel-

Hamid et al., 2006), the harmonic plus noise model (HNM)

(Hemptinne, 2006; Kim and Hahn, 2007), the flexible pitch-

asynchronous harmonic/stochastic model (HSM) (Banos et al.,
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Figure 11: Waveforms from top to bottom: natural speech and its residual,

speech and excitation synthesized with simple periodic pulse-train or white-

noise excitation, speech and excitation synthesized with STRAIGHT vocoding

method, and speech and excitation synthesized with ML excitation method.

2008), STRAIGHT (Zen et al., 2007c), the glottal-flow-

derivative model (Cabral et al., 2007, 2008), or the glottal wave-

form (Raitio et al., 2008) have been integrated. The most com-

mon feature in most of these methods is the fact that they are

based on the implementation of an excitation model through

the utilization of some special parameters modeled by HMMs;

they do not directly minimize the distortion between artificial

excitation and speech residuals.

Maia et al. have recently proposed a trainable technique of

excitation modeling for HMM-based speech synthesis (Maia

et al., 2007). Figure 10 has a block diagram of this. In this

technique, mixed excitation is produced by inputting periodic

pulse trains and white noise into two state-dependent filters.

These specific states can be built using bottom-up (Maia et al.,

2008) or top-down (Maia et al., 2009) clustering method. The

filters are derived to maximize the likelihood of residual se-

quences over corresponding states through an iterative process.

Apart from determining the filter, the amplitudes and posi-

tions of the periodic pulse trains have also been optimized in

the sense of residual likelihood maximization during referred

closed-loop training. As a result, this technique directly mini-

mizes the weighted distortion (Itakura-Saito distance (Itakura,

1975)) between the generated excitation and speech residual.

This technique is very similar to the closed-loop training for

unit-concatenation synthesis (Akamine and Kagoshima, 1998).

Both of them are based on the idea of a code excitation lin-

ear prediction (CELP) vocoder. However, there is an essential

difference between these two techniques. Maia et al.’s tech-

nique targets residual modeling but Akamine and Kagoshima’s

technique targets a one-pitch waveform. Furthermore, Maia et

al.’s technique includes both voiced and unvoiced components

for the waveform-generation part. Figure 11 shows a transi-

tional segment of natural speech and three types of synthesized

speech obtained by natural spectra and F0 with the simple pe-

riodic pulse-train or white-noise excitation, the STRAIGHT’s

excitation, and Maia et al.’s ML excitation modeling methods.

The residual signal derived through inverse filtering of a natural

speech signal and the corresponding excitation signals and syn-

thesized speech are also shown. We can see that the method of

ML excitation modeling produces excitation and speech wave-

forms that are closer to the natural ones.

Spectral representation of speech

Several groups have recently applied LSP-type parameters in-

stead of cepstral parameters to HMM-based speech synthesis

(Nakatani et al., 2006; Ling et al., 2006; Zen et al., 2006b; Qian

et al., 2006). As is well known, LSP-type parameters have good

quantization and interpolation properties and have successfully

been applied to speech coding. These characteristics seem to

be valuable in statistical parametric synthesis because statisti-

cal modeling is closely related to quantization and synthesis

is closely related to interpolation. Marume et al. compared

LSPs, log area ratios (LARs), and cepstral parameters in HMM-

based speech synthesis and reported that LSP-type parameters

achieved the best subjective scores for these spectral parame-

ters (Marume et al., 2006). Kim et al. also reported that 18-

th order LSPs achieved almost the same quality as 24-th order

mel-cepstral coefficients (Kim et al., 2006a).

Although LSP-type parameters have various advantages over

cepstral ones, they also have drawbacks. It is well known that

as long as the LSP coefficients are within 0 – π and in ascend-

ing order the resulting synthesis filter will be stable. How-

ever, it is difficult to guarantee whether LSPs generated from

HMMs will satisfy these properties because state-output distri-

butions are usually Gaussian distributions with diagonal covari-

ance matrices. This problem becomes more prominent when

we transform model parameters (Qin et al., 2006). Although

the use of a full covariance model or its approximations (Zen
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et al., 2006b), band constraints in linear-transformation matri-

ces (Qin et al., 2006), or differentials of adjacent LSPs (Qian

et al., 2006) can reduce the effect this problem incurs, we still

cannot guarantee that the resulting synthesis filter will become

stable. Combining spectral estimation and observation model-

ing would fundamentally be essential to solving this problem.

Several techniques of combining spectral analysis and model

training have recently been proposed. Acero integrated for-

mant analysis (Acero, 1999), Toda and Tokuda incorporated

cepstral analysis (Toda and Tokuda, 2008), and Wu and Tokuda

combined LSP parameter extraction (Wu and Tokuda, 2009).

These techniques, especially those of (Toda and Tokuda, 2008)

and (Wu and Tokuda, 2009), are based on a similar concept

to analysis-by-synthesis in speech coding and the closed-loop

training (Akamine and Kagoshima, 1998) for concatenative

speech synthesis. Such closed-loop training can eliminate the

mismatch between spectral analysis, acoustic-model training,

and speech-parameter generation, and thus improves the qual-

ity of synthesized speech. Signal process-embedded statistical

models like auto-regressive HMMs (Penny and Roberts, 1998)

and frequency-warped exponential HMMs (Takahashi et al.,

2001) may also be useful to solve this problem.

3.3.2. Accuracy of acoustic modeling

Hidden Markov models perform well considering the vari-

ous postulations made in using them, such as piece-wise con-

stant statistics within a state, the assumption of frame-wise con-

ditional independence of state-output probabilities, and simple

geometric state-duration distributions. However, none of these

assumptions hold for real speech. Because speech parameters

are directly generated from acoustic models, their accuracy af-

fects the quality of synthesized speech. We can expect that the

use of a more precise statistical model will improve the quality

of synthesized speech.

Better acoustic model

One way of increasing the accuracy of the acoustic model is

using dynamical models that can capture the explicit dynam-

ics of speech-parameter trajectories. To alleviate the problem

with piece-wise constant statistics, Dines and Sridharan applied

trended HMMs (Deng, 1992), which included linearly time-

varying functions in their state-output probabilities, to statis-

tical parametric synthesis (Dines and Sridharan, 2001). Simi-

larly, Sun et al. used a polynomial segment model (Gish and

Ng, 1993) to describe speech-parameter trajectories (Sun et al.,

2009). Bulyko et al. introduced buried Markov models (Bilmes,

2003), which had additional dependencies between observation

elements to increase accuracy, to statistical parametric synthesis

(Bulyko et al., 2002) to avoid the assumption of conditional in-

dependence. These dynamical models were evaluated in small

tasks and they were found to work slightly better than HMMs.

However, HMMs are still being used as dominant acoustic mod-

els in statistical parametric synthesis because these dynami-

cal models require the number of model parameters to be in-

creased. Furthermore, various essential algorithms such as pho-

netic decision-tree-based context clustering (Odell, 1995) need

to be re-derived for these dynamical models.
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Figure 12: Trajectories of second mel-cepstral coefficients of natural and syn-

thesized speech generated from ML-estimated HMMs and trajectory HMMs.

In this figure, solid, dashed, and dotted lines correspond to natural trajectory,

that generated from HMMs, and that generated from trajectory HMMs.

Zen et al. recently showed that an HMM whose state-output

vector included both static and dynamic features could be refor-

mulated as a trajectory model by imposing explicit relationships

between static and dynamic features (Zen et al., 2006c). This

model, called a trajectory HMM, could overcome the assump-

tion of conditional independence and constant statistics within

a state without the need for any additional parameters. It is de-

fined as

p (c | λ) =
∑

∀q

P (q | λ) · p (c | q, λ) , (28)

p (c | q, λ) = N (c ; c̄q, Pq) , (29)

P (q | λ) = P (q1 | λ)
T

∏

t=2

P (qt | qt−1,λ) , (30)

where c̄q is the MT×1 mean vector for q, Pq is the MT×MT
covariance matrix, M is the dimensionality of static features,

and T is the total number of frames in c. They are given by

Rqc̄q = rq, (31)

Rq = W⊤
Σ

−1
q W = P−1

q , (32)

rq = W⊤
Σ

−1
q µq. (33)

This model is closely related to the speech parameter genera-

tion algorithm (Tokuda et al., 2000) used in HMM-based speech

synthesis; the mean vector of the trajectory HMM, c̄q , which is

given by solving the set of linear equations in Eq. (31), is iden-

tical to the speech-parameter trajectory, ĉ, which is given by

solving the set of linear equations in Eq. (19). This is because

both of these are derived from the HMM with explicit relation-

ships between static and dynamic features. Hence, estimating

the trajectory HMM based on the ML criterion, i.e.,

λ̂ = arg max
λ

{p(C | W, λ)} (34)

where C is a set of training data (static feature-vector sequences

only), can be viewed as closed-loop training for HMM-based

speech synthesis. Figure 12 shows what effect trajectory HMM

training has. We can see from the figure that the trajectory

generated from the trajectory HMMs is closer to the training

data than that from the HMMs. Similar work has been carried
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out by Wu and Wang (Wu and Wang, 2006b). They proposed

minimum generation error (MGE) training11 for HMM-based

speech synthesis, which estimates model parameters to mini-

mize the Euclidean distance12 between training data and gener-

ated speech parameters as

λ̂ = arg min
λ

{E(C;W,λ)} , (35)

where E(C;W,λ) is the expected total Euclidean distance be-

tween the training data and generated parameters. This is equiv-

alent to estimating trajectory HMM parameters based on the

minimum mean squared error (MMSE) criterion instead of that

of ML (Zhang, 2009). It can also be viewed as estimating the

following statistical model based on the ML criterion:

p (c | λ) =
∑

∀q

P (q | λ) · p (c | q, λ) , (36)

p (c | q, λ) = N (c ; c̄q, I) , (37)

P (q | λ) = P (q1 | λ)
T

∏

t=2

P (qt | qt−1, λ) . (38)

Equation (35) was iteratively minimized in an on-line fash-

ion using the generalized probabilistic decent (GPD) algorithm

(Katagiri et al., 1991), which has been used for minimum clas-

sification error (MCE) training in speech recognition (Juang

et al., 1997).13 Both of these significantly improved the quality

of synthesis over the conventional ML-estimated HMM on full

systems. One of the advantages of trajectory HMM over other

dynamical models is that huge amounts of software resources

or algorithms developed for HMMs can easily be reused (Wu

et al., 2006; Zen et al., 2006a, 2007a; Qin et al., 2008) because

its parameterization is equivalent to that of HMMs.

Better duration model

The state-duration probability in the j-th state for d consecutive

frames in an HMM is given by

pj(d) = ad−1
jj (1 − ajj), (39)

where ajj is the self-transition probability of the j state. Fig-

ure 13 plots an example of the state-duration probability of

an HMM. We can see from the figure that the HMM mod-

els the state-duration probability as decreasing exponentially

with time and this is clearly a poor model of duration. To

overcome this problem, the HMM-based speech synthesis sys-

tem models state-duration distributions explicitly with Gaus-

sian (Yoshimura et al., 1998) or Gamma distributions (Ishi-

matsu et al., 2001). They are estimated from statistical variables

11The term “Trajectory HMM” denotes the name of generative models

like “HMM.” However, the term “MGE” represents the name of parameter-

optimization criteria like “ML” or “MCE.”
12Minimizing the log spectral distance (MGE-LSD) between training data

and generated LSP coefficients has also been proposed (Wu and Tokuda, 2008,

2009).
13Although the MGE training algorithm adopts the GPD-based optimization

technique, its loss function is squared error. Therefore, MGE training is not

discriminative training.
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Figure 13: Example of state-duration probability of HMM (ajj = 0.6).

obtained at the last iteration of the forward-backward algorithm,

and then clustered by using a phonetic decision tree; they are

not re-estimated in the Baum-Welch iteration. In the synthe-

sis stage, we construct a sentence HMM and determine its state

durations to maximize their probabilities. Then, speech param-

eters are generated. However, there are inconsistencies. Al-

though the parameters of HMMs are estimated without explicit

state-duration distributions, speech parameters are generated

from HMMs using explicit state-duration distributions. These

inconsistencies can degrade the quality of synthesized speech.

To resolve this discrepancy, hidden semi-Markov models (Fer-

guson, 1980; Russell and Moore, 1985; Levinson, 1986), which

can be viewed as HMMs with explicit state-duration distribu-

tions, were introduced (Zen et al., 2007d). The use of HSMMs

makes it possible to simultaneously re-estimate state-output

and state-duration distributions. Adaptation and adaptive train-

ing techniques for HSMMs have also been derived (Yamagishi

and Kobayashi, 2007). Although improvements in speaker-

dependent systems have been small (Zen et al., 2007d), it is

essential to adapt state-duration distributions (Tachibana et al.,

2006). Multi-level duration models including phoneme- and

syllable-duration distributions in addition to state-duration dis-

tributions have also been proposed to achieve better duration

modeling (Wu and Wang, 2006a; Gao et al., 2008). Lu et al.

investigated the use of full-covariance Gaussian distributions to

model the inter-state correlations of state durations (Lu et al.,

2009).

Complexity control

Another way of enhancing the accuracy of models is by in-

creasing the number of parameters. However, using too many

parameters results in over-fitting these to the training data. We

can reproduce training sentences with excellent quality but may

synthesize unseen sentences with poor quality. Therefore, con-

trolling model complexity while retaining its capability for gen-

eralization is very important to achieve superior synthesized

speech. Minimum description length (MDL) (Rissanen, 1980)

criterion-based phonetic decision-tree clustering (Shinoda and

Watanabe, 2000) has been used in the HMM-based speech syn-

thesis system to balance model complexity and accuracy. How-

12



Sentence HMM

Backing-off 

...

...

...

...

...

Training samples

The leaf node

corresponding to the label 

Decision tree
{µ

(0)
, Σ(0)}

{µ
(1)

, Σ(1)}

{µ
(2)

, Σ(2)}

{µ
(3)

, Σ(3)}

{µ
(4)

, Σ(4)}

Figure 14: Overview of phonetic decision-tree back-off technique for HMM-

based speech synthesis.

ever, since the MDL criterion is derived based on an asymp-

totic assumption, it is theoretically invalid when there are few

training data because the assumption fails. This situation often

occurs in speech synthesis because the amount of training data

used in speech synthesis is usually much smaller than that used

in speech recognition. Furthermore, Watanabe found that the

MDL criterion14 could not be applied to statistical models that

included hidden variables (Watanabe, 2007).

One possible solution to this problem is dynamically chang-

ing the complexity of models. Kataoka et al. proposed a

phonetic decision-tree backing-off technique for HMM-based

speech synthesis (Kataoka et al., 2004) as shown in Fig. 14.

It could dynamically vary the size of phonetic decision trees at

run-time according to the text to be synthesized. Similarly, unit-

selection synthesis systems using backing-off methods have

also been proposed (e.g., (Donovan and Eide, 1998)). How-

ever, Kataoka’s technique differs from these because backing-

off is undertaken to maximize the output probability of speech-

parameter trajectories.

Another possible solution is using the Bayesian-learning

framework. Bayesian learning is used to estimate the poste-

rior distributions of model parameters from prior distributions

and training data whereas ML and MAP learning are used to

estimate the parameter values (point estimates). This property

enables us to incorporate prior knowledge into the estimation

process and improves model generalization due to the marginal-

ization effect of model parameters. It offers selection of model

complexity in the sense of maximizing its posterior probabil-

ity. Recently, Watanabe et al. applied the variational Bayesian-

learning technique (Beal, 2003) to speech recognition (Watan-

abe et al., 2004), and Nankaku et al. applied this idea to HMM-

14Also, neither the Bayesian information criterion (BIC) (Schwarz, 1978)

nor Akaike’s information criterion (AIC) (Akaike, 1974) can be applied.

based speech synthesis (Nankaku et al., 2003). Bayesian statis-

tical parametric synthesis determines o as

ô = arg max
o

{p(o | w,O,W)} (40)

= arg max
o

{p(o, O | w,W)} (41)

= arg max
o

{
∫

p(o, O,λ | w,W) dλ

}

(42)

= arg max
o

{
∫

p(o, O | w,W,λ) · p(λ) dλ

}

(43)

= arg max
o

{
∫

p(o | w, λ) · p(O | W, λ) · p(λ) dλ

}

(44)

where p(o | w,O,W) is the predictive distribution of o. Equa-

tion (40) is the fundamental problem that needs to be solved

in corpus-based speech synthesis, i.e., finding the most likely

speech parameters, ô, for a given word sequence, w, using

the training data, O, and the corresponding word sequence,

W . The equations above also indicate that o is generated

from the predictive distribution, which is analytically derived

from the marginalization of λ based on the posterior distribu-

tion estimated from O. We can solve this maximization prob-

lem by using Bayesian speech parameter generation algorithms

(Nankaku et al., 2003), which are similar to the ML-based

speech parameter generation algorithms (Tokuda et al., 2000).

One research topic in the Bayesian approach is how to set the

hyper-parameters15 of the prior distribution, because the qual-

ity of synthesized speech is sensitive to these. These hyper-

parameters have been set empirically in the conventional ap-

proaches. Hashimoto et al. recently proposed a cross-validation

(CV)-based technique of setting hyper-parameters (Hashimoto

et al., 2008) for Bayesian speech synthesis. It demonstrated

that the CV-based Bayesian speech synthesizer achieved better-

quality synthesized speech than an ML-based one.

Model topology

Another research topic in acoustic modeling is model topol-

ogy. A three or five-state left-to-right structure is used for all

phonemes in the HMM-based speech synthesis system. This

is apparently unsuitable because all phonemes have different

durations and co-articulations. Related to this topic, Eichner

et al. applied stochastic Markov graphs, which have enhanced

capabilities for modeling trajectories, to statistical parametric

synthesis (Eichner et al., 2000). Although this offers a flexible

topology, it requires a search process for the state sequence at

the synthesis stage (Eichner et al., 2001) because we need to de-

termine a single-state sequence to generate speech parameters

efficiently using the speech parameter generation algorithm (the

Case 1 algorithm in (Tokuda et al., 2000)). Although we can

skip this process by marginalizing all possible state sequences

using an EM-type parameter generation algorithm (the Case 3

algorithm in (Tokuda et al., 2000)), this further increases com-

putational complexity. Taylor also discussed the model topol-

15A hyper-parameter is a parameter of the prior distribution.
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Figure 15: Graphical model representations of (a) HMM, (b) factor-analyzed

(FA) HMM, and (c) switching state space model (SSSM). In the graphical

model notation used here, the squares denote discrete variables, the circles con-

tinuous variables, the shading an observed variable, and no shading an unob-

servable variable. The lack of an arc between variables indicates conditional

independence. In this figure, st is a hidden discrete state, gt is a hidden con-

tinuous vector, and ot is an observable continuous vector all at time t.

ogy of HMM-based speech synthesis (Taylor, 2006). The de-

tails will be given in Section 4.2.4.

The parameter-tying level can also be viewed as model-

topology research. In the HMM-based speech synthesis sys-

tem, a stream-level-tying structure has been used, i.e., spectral-

parameter and excitation-parameter streams are individually

clustered by phonetic decision trees. Yu et al. investigated

more local-level-tying structures (e.g., splitting 0-th cepstral co-

efficients and splitting static and dynamic features) for model-

ing spectral features (Yu et al., 2008). Similarly, Shinta et al.

also investigated the use of a feature-dependent tying structure

with asynchronous transition (Matsuda et al., 2003) in HMM-

based speech synthesis (Shinta et al., 2005). They revealed that

some local-level-tying structures worked better than the stream-

level-tying structure but excessively aggressive separation was

not feasible. The dimension-split technique such as (Zen et al.,

2003b) is expected to be useful for automatically determining

the local-level-tying structure.

Most statistical parametric speech synthesis systems directly

model acoustic-level features, e.g., cepstral or LSP coefficients.

However, as far as we know, acoustic-level features are the fi-

nal results of speech production and only represent its surface.

There are unobservable features behind them, such as articu-

latory features. The articulators determine the resonance char-

acteristics of the vocal tract during the production of speech.

Therefore, speech can be characterized by both acoustics and

vocal-apparatus properties. Articulatory features, which vary

much more slowly than acoustic features, seem to be one of

the most effective methods of parameterizing speech. Although

there have been many attempts at using these parameters in

speech synthesis, most of them are rule-based or concatena-

tive (Hill et al., 1995; Sondhi, 2002). If we model articula-

tory movements by using HMMs and then convert articula-

tory movements generated from the HMMs with a statistical

articulatory-to-acoustic mapping technique (Toda et al., 2004;

Nakamura et al., 2006), we can achieve statistical parametric ar-

ticulatory synthesis. However, this approach just cascades two

independent modules and it may not be an optimal form.

Ling et al. recently proposed an HMM-based acoustic and

articulatory joint modeling and synthesis technique to con-

struct statistical parametric articulatory speech synthesis sys-

tems (Ling et al., 2008a). The state-output vector of HMMs

used in this technique includes both acoustic and articulatory

features (static and dynamic). Acoustic and articulatory fea-

tures were modeled in individual HMM streams and clustered

separately by phonetic decision trees. Similar to (Hiroya and

Honda, 2004), a piece-wise linear transform was adopted to

represent the dependence between these two feature streams.16

This model can be viewed as a special case of factor-analyzed

HMMs (FA-HMMs) (Rosti and Gales, 2004). Figures 15(a)

and (b) are graphical model representations of HMM and FA-

HMM. At the synthesis stage, articulatory and acoustic features

are generated simultaneously to maximize their joint-output

probability. Synthesized speech in Ling et al.’s technique can be

controlled flexibly by modifying the articulatory features gen-

erated according to arbitrary phonetic rules during the process

of generating parameters. One possible extension of Ling et

al.’s technique is using structured speech models, which can

include hidden levels of speech production (Richards and Bri-

dle, 1999; Rosti and Gales, 2003; Deng et al., 2006; Frankel

and King, 2007; Frankel et al., 2007). Figure 15(c) is a graph-

ical model representation of the switching state space model

(SSSM), which is a kind of structured speech model. We

can see from the figure that the SSSM has additional edges to

model the dependencies between gt−1 and gt. These models

are superb candidates to achieve statistical parametric articu-

latory speech synthesis. The factor-analyzed trajectory HMM

(Toda and Tokuda, 2008) and the joint-probability-modeling

technique used in trajectory HMM-based VC (Zen et al., 2008)

can also be applied to modeling and synthesizing acoustic and

articulatory features.

3.3.3. Over-smoothing

In the HMM-based speech synthesis system, the speech pa-

rameter generation algorithm (typically the Case 1 algorithm in

(Tokuda et al., 2000)) is used to generate spectral and excitation

parameters from HMMs to maximize their output probabilities

under constraints between static and dynamic features. The sta-

tistical averaging in the modeling process improves robustness

against data sparseness, and the use of dynamic-feature con-

straints in the synthesis process enables us to generate smooth

trajectories. However, synthesized speech sounds are evidently

muffled compared with natural speech because the generated

speech-parameter trajectories are often over-smoothed, i.e., de-

tailed characteristics of speech parameters are removed in the

modeling part and cannot be recovered in the synthesis part.

Although using the advanced acoustic models described in Sec-

tion 3.3.2 may reduce over-smoothing, this may still exist be-

cause the synthesis algorithm does not explicitly include a re-

covery mechanism.

Post-filtering

The simplest way of compensating for over-smoothing is by

emphasizing the spectral structure by using a post-filter, which

was originally developed for speech coding. The use of post-

filtering techniques can reduce “buzziness” and muffled sounds

16This technique was also applied to model dependence between streams for

F0 and spectral parameters (Ling et al., 2008b).
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Figure 16: Spectra generated by conditional parameter generation algorithm.

Here, a) all, b) 80%, c) 40%, and d) no frames are given to conditional pa-

rameter generation algorithm. Thin lines indicate given frames and thick lines

indicate those generated.

(Yoshimura et al., 2001; Ling et al., 2006; Oura et al., 2007).

However, too much post-filtering often introduces artificial

sounds and degrades the similarity of synthesized speech to that

uttered by the original speaker (Kishimoto et al., 2003).

Using real speech data

A second way of compensating for over-smoothing is explic-

itly using training data to generate parameters. Based on this

idea, Masuko et al. proposed a conditional parameter genera-

tion algorithm (Masuko et al., 2003). This algorithm generated

speech parameters to maximize their output probabilities under

additional constraints that some frames in c were fixed as

ĉ = arg max
c

{N (Wc ; µq,Σq)}
ct1

=c̃t1
,...,ctN

=c̃tN

, (45)

where c̃t1 , . . . , c̃tN
are fixed frames. This is a simple con-

strained problem, thus we can solve this by using the Lagrange-

multiplier method. By copying c̃t1 , . . . , c̃tN
from samples in

the training data, we can explicitly use the training data in the

generation algorithm. Figure 16 presents the spectra for natural

speech, generated by the conditional speech parameter gener-

ation algorithm, and the standard parameter generation algo-

rithm for a sentence included in the training data. We selected

the frames around the segment boundaries to be generated in

this example. We can see from the figure that we can recover

the details of speech spectra in generated frames by fixing other

frames with those of natural speech. What is important is how

frames to be fixed are selected and how samples in the train-

ing data are to be used in this algorithm. Masuko et al. fixed

the central frame of each state using a training sample that had

the best state-output probability from this state, but their im-

provements were relatively limited. They reported that frames

that did not have spectral details were selected because these
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Figure 17: Trajectories of second mel-cepstral coefficients extracted from nat-

ural speech and that generated from HMM. Solid lines indicate natural trajec-

tories and dotted lines indicate those generated.

samples had better state-output probabilities than those that had

spectral details. However, we expect that this algorithm and the

smoothing-based hybrid approaches, which will be described in

Section 4.2.2, are a good match. Note that discrete HMM-based

speech synthesis (Yu et al., 2007) is also based on the same idea

(explicitly using training data for generation) to overcome the

over-smoothing problem.

Using multiple-level statistics

Another way of compensating for over-smoothing is integrating

multiple-level statistical models to generate speech-parameter

trajectories. Boosting-style additive trees (Qian et al., 2008b),

discrete cosine transform (DCT)-based F0 models (Latorre and

Akamine, 2008; Qian et al., 2009), multi-layer F0 models

(Wang et al., 2008), combined multiple-level duration models

(Wu and Wang, 2006a; Gao et al., 2008; Qian et al., 2009),

and improved intra-phoneme dynamics models (Tiomkin and

Malah, 2008) can be categorized as integrated multiple-level

statistical models. One of the most successful methods in this

category is the speech parameter generation algorithm consider-

ing global variance (GV) (Toda and Tokuda, 2007). Figure 17

shows the trajectories of second mel-cepstral coefficients ex-

tracted from natural speech and those generated from an HMM.

We can see that the dynamic range of the generated mel-cepstral

coefficients is smaller than that of the natural ones. The speech

parameter generation algorithm considering GV has focused on

solving this phenomenon. It tries to recover the dynamic range

of generated trajectories close to those of the natural ones. A

GV, v(c), is defined as an intra-utterance variance of a speech-

parameter trajectory, c, as

v(c) = [v(1), . . . , v(M)]
⊤

, (46)

v(m) =
1

T

T
∑

t=1

{ct(m) − µ(m)}2
, (47)

µ(m) =
1

T

T
∑

t=1

ct(m). (48)

We calculate GVs for all training utterances and model them by

using a single multi-variate Gaussian distribution as

p (v(c) | λGV) = N (v(c) ; µGV,ΣGV) , (49)
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Figure 18: Spectra of natural and generated speech obtained by speech param-

eter generation algorithm without and with global variance (GV).

where µGV is a mean vector and ΣGV is a covariance matrix of

GVs. The speech parameter generation algorithm considering

GV maximizes the following objective function with respect to

c, i.e.,

FGV(c ; λ, λGV) = ω logN (Wc ; µq,Σq)

+ logN (v(c) ; µGV,ΣGV), (50)

where ω is a weight to balance the HMM and GV probabili-

ties. The second term in Eq. (50) can be viewed as a penalty to

prevent over-smoothing because it works to retain the dynamic

range of the generated trajectory close to that of the training

data. This method can be viewed as a statistical post-filtering

technique to a certain extent. Figure 18 has the spectra of nat-

ural and synthesized speech generated by the speech parame-

ter generation algorithm, and that considering GV. We can see

from the figure that the spectral structure becomes clearer by

considering GV. Although it works better than the post-filtering

technique (Toda et al., 2007), it still introduces some artificial

sounds into synthesized speech (Zen et al., 2006b). To reduce

this problem, improved versions of this algorithm have been

proposed (Latorre et al., 2007; Yamagishi et al., 2008c). In-

corporating GV into the training part of HMM-based speech

synthesis has also been proposed (Nakamura, 2007; Wu et al.,

2008b; Toda and Young, 2009).

4. Hybrid approaches to statistical parametric and unit-

selection synthesis

4.1. Relation between two approaches

Some clustering-based systems for unit selection use HMM-

based state clustering (Donovan and Woodland, 1995), where

(a) Statistical parametric synthesis (b) Unit selection synthesis
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SYNTHESIZED
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Figure 19: Overview of use of decision trees in statistical parametric and unit-

selection synthesis. Statistical parametric synthesis uses decision trees for spec-

trum, F0, and duration in parallel. However, unit-selection synthesis serially

cascades F0, duration, and unit trees.

their structure is very similar to that of the HMM-based speech

synthesis system. The essential difference between clustering-

based unit-selection synthesis and HMM-based speech synthe-

sis is that each cluster in the generation approach is represented

by the statistics of the cluster (Fig. 5) instead of the multi-

templates of speech units (Fig. 2).

The distributions for the spectrum, excitation (F0), and dura-

tion are clustered independently in the HMM-based speech syn-

thesis system. Therefore, it has different phonetic decision trees

for each of spectrum, excitation (F0), and duration (Fig. 19 (a)).

However, unit-selection systems often use regression trees (or

CART) for predicting prosody. The phonetic decision trees for

F0 and duration in the HMM-based speech synthesis system are

essentially equivalent to the regression trees in unit-selection

systems. However, in the unit-selection systems, the leaves of

one of the trees must have speech waveforms; other trees are

used to calculate target costs, to prune waveform candidates,

or to give features to construct the trees for speech waveforms

(Fig. 19 (b)).

It needs to be noted that in HMM-based speech synthesis,

the likelihoods of static and dynamic features correspond to the

target and concatenation costs. This is easy to understand if we

model each state-output distribution with a discrete distribution

using vector quantization (VQ) or approximate this by instances

of frame samples in the state; when the dynamic feature is cal-

culated as the difference between neighboring static features,

ML-based generation results in a frame-wise DP search like

the unit selection used in the HMM-based unit-selection sys-

tem with frame-sized units (Ling and Wang, 2006), i.e.,

ĉ = arg min
c

{C(q, c)} (51)

= arg max
c

{p(c | q,λ)} , (52)
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where

C(q, c) =
T

∑

t=1

C(t)(qt, ct) +
T

∑

t=2

C(c)(ct−1, ct), (53)

C(t)(qt, ct) = − logN (ct ; µ(s)
qt

,Σ(s)
qt

), (54)

C(c)(ct−1, ct) = − logN (ct − ct−1 ; µ(d)
qt

,Σ(d)
qt

), (55)

µ
(s)
j and µ

(d)
j correspond to the static- and dynamic-feature

parts of µj , and Σ
(s)
j and Σ

(d)
j correspond to those of Σj . The

discrete HMM-based speech synthesis system (Yu et al., 2007)

is based on a similar idea. Thus, HMM-based parameter gener-

ation can be viewed as an analogue version of unit selection.

4.2. Hybrid approaches

There are also hybrid approaches between unit-selection and

statistical parametric synthesis as a natural consequence of the

viewpoints above.

4.2.1. Target prediction

Some of these approaches use spectrum parameters, F0 val-

ues, and durations (or part of them) generated from HMMs

as “targets” for unit-selection synthesis (Kawai et al., 2004;

Rouibia and Rosec, 2005; Hirai and Tenpaku, 2004; Yang et al.,

2006; Krstulović et al., 2008). Similarly, HMM likelihoods are

used as “costs” for unit-selection synthesis (Huang et al., 1996;

Hon et al., 1998; Mizutani et al., 2002; Okubo et al., 2006;

Ling and Wang, 2006, 2007; Ling et al., 2007). Of these ap-

proaches, Hirai and Tenpaku (Hirai and Tenpaku, 2004) and

Ling and Wang (Ling and Wang, 2006) used 5-ms frame-sized

units, Huang et al. (Huang et al., 1996) and Mizutani et al.

(Mizutani et al., 2002) used HMM state-sized units, and Kawai

et al. (Kawai et al., 2004) and Krstulović et al. (Krstulović

et al., 2008) used half-phone-sized units. Hon et al. (Hon et al.,

1998) and Ling et al. (Ling et al., 2007) used phone-sized units,

Ling and Wang (Ling and Wang, 2007) used hierarchical units

consisting of both frame-sized and phone-sized units, Roubia

and Rosec (Rouibia and Rosec, 2005) and Okubo et al. (Okubo

et al., 2006) used diphone-sized units, and Yang et al. (Yang

et al., 2006) used non-uniform-sized units. Kominek and Black

(Kominek and Black, 2006) also used longer trajectories gen-

erated from a trajectory model to calculate the costs for unit-

selection synthesis.

All these systems used ML-estimated HMMs to predict tar-

gets or calculate costs. Ling and Wang recently proposed min-

imum unit-selection error (MUSE) training (Ling and Wang,

2008) for their HMM-based unit-selection system, which se-

lects a sequence of phone-sized units to maximize the joint-

output probability from different sets of HMMs. They de-

fined the unit-selection error as the number of different units

between selected and natural unit sequences. Model combina-

tion weights and HMM parameters were iteratively optimized

to minimize the total unit-selection error by using GPD (Kata-

giri et al., 1991). They demonstrated that this method could im-

prove the quality of synthesis over the baseline system where

model weights are set manually and distribution parameters are

trained under the ML criterion. As mentioned in (Ling and

Wang, 2008), MUSE training minimizes sentence-level string

error. In speech recognition, discriminative training based on a

criterion using fine-level unit errors, such as minimum word er-

ror (MWE) or minimum phone error (MPE), often outperforms

those using coarse-level unit errors, such as maximum mu-

tual information (MMI) or minimum classification error (MCE)

(Povey, 2003). Therefore, we can expect that the use of fine-

level error criterion in MUSE training would further improve

the quality of synthesis.

Like MUSE training, tightly coupling unit-selection and sta-

tistical parametric synthesis techniques are expected to become

important to further improve the quality of this type of hybrid

systems.

4.2.2. Smoothing units

Another type of hybrid approach uses statistical models

and/or dynamic-feature constraints to smooth segment se-

quences obtained by unit selection.

Plumpe et al. presented a probabilistic framework and the

statistics for the smoothing technique for unit-selection synthe-

sis (Plumpe et al., 1998). For a given sentence HMM whose

state-output vector includes LSP coefficients and their dynamic

features, we can find the trajectories of LSP coefficients that

minimize the following objective function:

E =
M
∑

m=1

T
∑

t=1

{xt(m) − µt(m)}2

σ2
t (m)

+ D
{xt+1(m) − xt(m) − ∆µt(m)}2

∆σ2
t (m)

, (56)

where D is a constant to control the relative importance of static

and dynamic information, and xt(m), µt(m), and σ2
t (m) cor-

respond to the observation, mean, and variance of the m-th LSP

coefficient at time t, and ∆µt(m) and ∆σ2
t (m) correspond to

the mean and variance for the dynamic feature of the m-th LSP

coefficient at time t. By taking the partial derivative of Eq. (56)

with respect to {xt(m)} and equating this to 0, we obtain a tri-

diagonal set of linear equations to determine {xt(m)}, which

becomes a special case of Eq. (19) solved in the speech pa-

rameter generation algorithm (Tokuda et al., 2000). The above

objective function includes the statistics for both static and dy-

namic features. Therefore, {xt(m)} becomes smooth while re-

taining static features close to the mean values and maintain-

ing dynamic information. Note that {xt(m)} is identical to the

speech-parameter trajectory used in HMM-based speech syn-

thesis if D = 1. Instead of using the HMM mean vectors,

Plumpe et al. used actual speech segments for {µt(m)}, to re-

tain the naturalness inherent in unit selection (Plumpe et al.,

1998). Smoothing was accomplished by finding {xt(m)} for

this {µt(m)}. Finally, the speech waveform was synthesized

from the smoothed LSP coefficients and their residual signals.

We can expect dynamic-feature constraints to reduce the dis-

continuities at the segment boundaries. Plumpe et al. reported

that using this smoothing technique reduced spectral disconti-

nuities at segment boundaries where discontinuities should not
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occur while leaving large spectral jumps where they belonged

(Plumpe et al., 1998).

Based on this idea, Wouters and Macon proposed unit fusion

(Wouters and Macon, 2000). Their system synthesized speech

by selecting two types of speech units, i.e., concatenation and

fusion. The concatenation units (diphone-sized) specified the

initial spectral trajectories, and the fusion units (phoneme-

sized) characterized the spectral dynamics at the joining points

between concatenation units. After the concatenation and fu-

sion units were selected, they were fused using the information

from these with the following objective function

E =
M
∑

m=1

T
∑

t=1

{xt(m) − ft(m)}2

+ D1 [{xt+1(m) − xt(m)} − {ft+1(m) − ft(m)}]2

+ D2 [{xt(m + 1) − xt(m)} − {ft(m + 1) − ft(m)}]2 ,
(57)

where {xt(m)} are the smoothed LSP coefficients, {ft(m)}
are the initial LSP coefficients given by linear interpolation be-

tween concatenation and fusion units, and D1 and D2 are con-

stants to control relative importance. In Eq. (57), the first term

works to retain the smoothed LSP trajectories close to the ini-

tial ones, the second obeys dynamic-feature constraints, and

the third controls the distance between adjacent LSP coeffi-

cients. By taking the partial derivative of Eq. (57) with respect

to {xt(m)} and equating it to 0, we can obtain a set of linear

equations similar to that solved in Plumpe et al.’s smoothing

technique. Note that we should minimize this objective func-

tion with respect to all LSP coefficients simultaneously because

they are dependent on one another through the third term of

the objective function. Although this increases the computa-

tional cost, it can preserve distances between adjacent LSP co-

efficients, which is important in human perception. They re-

ported that the unit-fusion approach achieved better objective

and subjective scores than time-domain concatenation and lin-

ear smoothing.

Although both techniques can reduce the spectral discontinu-

ities at segment boundaries, they introduce some artifacts when

there is mismatch between the smoothed filter coefficients and

excitation signal.

4.2.3. Mixing natural and generated segments

Yet another hybrid approach is mixing natural and generated

segments.

Okubo et al. first proposed this type of hybrid system (Okubo

et al., 2006). It first generates a sequence of spectra from a sen-

tence HMM. Then, if there are less than the necessary number

of candidate units for the required diphone, a segmental wave-

form is synthesized for this diphone by arranging the sequence

of short-time waveforms obtained by the inverse Fourier trans-

form of generated spectra. Finally, an utterance waveform is

synthesized by concatenating the sequences of segmental wave-

forms obtained from unit selection or parameter generation us-

ing pitch-synchronous overlap and add (PSOLA) (Moulines

and Charpentier, 1990).

Observation

vectors

Gaussians

Figure 20: Huge HMM network representing units. Every unique path repre-

sents exactly one unit.

Cereproc’s hybrid system proposed by Aylett and Yamagishi

is also based on this approach (Aylett and Yamagishi, 2008). If

data are sparse and concatenation errors are assessed, it selects

a unit sequence from a set of speech segments including synthe-

sized units by statistical parametric synthesis in addition to the

standard units. Selected units are then seamlessly concatenated

within a unit-selection framework.

Pollet and Breen also proposed this type of hybrid technique

that they called multiform segment synthesis, where speech pa-

rameters are generated and units are selected for a given text to

be synthesized (Pollet and Breen, 2008). As a result, two seg-

ment sequences are obtained, where the first is by generation

and the second is by selection. At the final stage, the best seg-

ment sequence is composed to maximize its output probability

by selecting either a generated segment or a selected segment

while using a speech perception model to assess whether the

natural segment is favored or not.

The advantage of this type of hybrid approach is that we

can avoid discontinuities due to data sparsity and produce a

large proportion of speech while retaining quality of synthe-

sized speech close to that of unit-selection synthesis. However,

it also causes quality of synthesized speech to often switch be-

tween natural and generated speech. If there is large mismatch

between the quality of natural and generated speech segments,

frequent switching deteriorates human perception.

4.2.4. Unifying two approaches

Unifying unit-selection and statistical parametric synthesis

has also been investigated by Taylor (Taylor, 2006). Let us con-

sider that we have Nu units for a context-dependent sub-word,

u, in the training data. Each unit can be represented as a se-

quence of observation vectors consisting of spectral and exci-

tation parameters. Taylor demonstrated that we can represent

these units with a huge HMM network as shown in Fig. 20. In

this HMM network, every unique path represents exactly one

unit in the training data, and each state-output probability is

modeled by a single multi-variate Gaussian distribution whose

mean vector is equal to the associated observation vector and

the covariance matrix has very small values in its diagonal el-

ements and 0 in its off-diagonal elements. If we synthesize

training sentences from this HMM network, we may obtain al-

most the same speech as from unit selection because this HMM

network just memorizes observation vectors by using its topol-

ogy and statistics. He also explained that we can scale the size

of a synthesis system in a principled manner by merging the

states of the network, i.e., achieving the same quality as unit
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selection if no HMM states are merged, and the same quality

as a typical HMM-based speech synthesis system if all sub-

word HMM networks are merged into the five-state left-to-right

HMM structure.

As previously described, there are several types of hybrid ap-

proaches between unit-selection and statistical parametric syn-

thesis. In the future, we may converge them into an optimal

form of corpus-based speech synthesis fusing statistical para-

metric and unit-selection synthesis.

5. Conclusion

This review gave a general overview of techniques used in

statistical parametric speech synthesis. We can see that statis-

tical parametric synthesis offers a wide range of techniques to

improve spoken output. Its more complex models, when com-

pared to unit-selection synthesis, allow for general solutions,

without necessarily requiring recorded speech in any phonetic

or prosodic contexts. The pure view of unit-selection synthe-

sis requires very large databases to cover examples of all re-

quired prosodic, phonetic, and stylistic variations. In contrast,

statistical parametric synthesis enables models to be combined

and adapted and thus does not require instances of any possible

combinations of contexts.

However, there is still much to do in statistical paramet-

ric synthesis. As demonstrated in the past Blizzard Challenge

events, although the operation of statistical parametric speech

synthesis is impressive, its naturalness is still far from that of

natural speech (Bennett, 2005; Bennett and Black, 2006; Clark

et al., 2007; Karaiskos et al., 2008). Fortunately, as indicated

in this review, there are many ideas that have yet to be fully

explored and still many more that need to be conceived. When

they are, we may find optimal solutions to filling the gap be-

tween natural and synthesized speech. There are also numerous

possible hybrid approaches between unit-selection and statis-

tical parametric synthesis. As described in this review, unit-

selection and statistical parametric synthesis approaches have

their own advantages and drawbacks. However, by properly

combining these two, we may be able to obtain a first-rate

complementary hybrid approach that can solve their respective

drawbacks while retaining all their advantages. In the near fu-

ture, we may find the holy grail of corpus-based speech synthe-

sis fusing statistical parametric and unit-selection synthesis.
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Gonzalvo, X., Socoró, C., Iriondo, I., Monzo, C., Martı́nez, E., 2007b. Linguis-

tic and mixed excitation improvements on a HMM-based speech synthesis

for Castilian Spanish. In: Proc. ISCA SSW6. pp. 362–367.

Hashimoto, K., Zen, H., Nankaku, Y., Tokuda, K., 2008. HMM-based speech

synthesis using cross validation for Bayesian criterion. In: Proc. Autumn

Meeting of ASJ. pp. 251–252, (in Japanese).

Hemptinne, C., 2006. Integration of the harmonic plus noise model into the

hidden Markov model-based speech synthesis system. Master thesis, IDIAP

Research Institute.

Hill, D., Manzara, L., Schock, C., 1995. Real-time articulatory speech-

synthesis-by-rules. In: Proc. AVIOS Symposium. pp. 27–44.

Hirai, T., Tenpaku, S., 2004. Using 5 ms segments in concatenative speech

synthesis. In: Proc. ISCA SSW5.

Hirose, K., Sato, K., Asano, Y., Minematsu, N., 2005. Synthesis of f0 contours

using generation process model parameters predicted from unlabeled cor-

pora: application to emotional speech synthesis. Speech Commun. 46 (3–4),

385–404.

Hiroya, S., Honda, M., 2004. Estimation of articulatory movements from

speech acoustics using an HMM-based speech production model. IEEE

Trans. Speech Audio Process. 12 (2), 175–185.

Homayounpour, M., Mehdi, S., 2004. Farsi speech synthesis using hidden

Markov model and decision trees. The CSI Journal Comput. Science En-

gineering 2 (1&3 (a)), (in Farsi).

Hon, H.-W., Acero, A., Huang, X.-D., Liu, J.-S., Plumpe, M., 1998. Automatic

generation of synthesis units for trainable text-to-speech systems. In: Proc.

ICASSP. pp. 293–296.

Huang, X.-D., Acero, A., Adcock, J., Hon, H.-W., Goldsmith, J., Liu, J.-S.,

1996. Whistler: A trainable text-to-speech system. In: Proc. ICSLP. pp.

2387–2390.

Hunt, A., Black, A., 1996. Unit selection in a concatenative speech synthesis

system using a large speech database. In: Proc. ICASSP. pp. 373–376.

Imai, S., Sumita, K., Furuichi, C., 1983. Mel log spectrum approximation

(MLSA) filter for speech synthesis. Electronics and Communications in

Japan 66 (2), 10–18.

Irino, T., Minami, Y., Nakatani, T., Tsuzaki, M., Tagawa, H., 2002. Eval-

uation of a speech recognition / generation method based on HMM and

STRAIGHT. In: Proc. ICSLP. pp. 2545–2548.

Ishimatsu, Y., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T., 2001. In-

vestigation of state duration model based on gamma distribution for HMM-

based speech synthesis. In: Tech. Rep. of IEICE. Vol. 101 of SP2001-81. pp.

57–62, (in Japanese).

Itakura, F., 1975. Minimum prediction residual principle applied to speech

recognition. IEEE Trans. Acoust. Speech Signal Process. 23 (1), 67–72.

Iwahashi, N., Sagisaka, Y., 1995. Speech spectrum conversion based on speaker

interpolation and multi-functional representation with weighting by radial

basis function networks. Speech Commun. 16 (2), 139–151.

Iwano, K., Yamada, M., Togawa, T., Furui, S., 2002. Speech rate control for

HMM-based speech synthesis. In: Tech. Rep. of IEICE. No. SP2002-73. pp.

11–16.

Jensen, U., Moore, R., Dalsgaard, P., Lindberg, B., 1994. Modeling intonation

contours at the phrase level using continuous density hidden Markov models.

Comput. Speech Lang. 8 (3), 247–260.

Juang, B.-H., Chou, W., Lee, C.-H., 1997. Minimum classification error rate

methods for speech recognition. IEEE Trans. Speech Audio Process. 5 (3),

257–265.

Karabetsos, S., Tsiakoulis, P., Chalamandaris, A., Raptis, S., 2008. HMM-

based speech synthesis for the Greek language. In: Proc. TSD. pp. 349–356.

Karaiskos, V., King, S., Clark, R., Mayo, C., 2008. The Blizzard Challenge

2008. In: Proc. Blizzard Challenge Workshop.

Katagiri, S., Lee, C.-H., Juang, B.-H., 1991. New discriminative training al-

gorithms based on the generalized probabilistic descent method. In: Proc.

IEEE Int. Workshop Neural Networks for Signal Process. pp. 299–308.

Kataoka, S., Mizutani, N., Tokuda, K., Kitamura, T., 2004. Decision-tree

backing-off in HMM-based speech synthesis. In: Proc. Interspeech. pp.

1205–1208.

Kawahara, H., Masuda-Katsuse, I., Cheveigne, A., 1999. Restructuring speech

representations using a pitch-adaptive time-frequency smoothing and an

instantaneous-frequency-based f0 extraction: possible role of a repetitive

structure in sounds. Speech Commun. 27 (3), 187–207.

Kawai, H., Toda, T., Ni, J., Tsuzaki, M., Tokuda, K., 2004. XIMERA: A new

20



TTS from ATR based on corpus-based technologies. In: Proc. ISCA SSW5.

Kawai, H., Tsuzaki, M., 2002. A study on time-dependent voice quality varia-

tion in a large-scale single speaker speech corpus used for speech synthesis.

In: Proc. IEEE Speech Synthesis Workshop.

KDDI R&D Laboratories, 2008. Development of downloadable speech synthe-

sis software for mobile phones. Press release.

URL http://www.kddilabs.jp/press/detail 100.html

Kim, S.-J., Hahn, M.-S., 2007. Two-band excitation for HMM-based speech

synthesis. IEICE Trans. Inf. Syst. E90-D (1), 378–381.

Kim, S.-J., Kim, J.-J., Hahn, M.-S., 2006a. HMM-based Korean speech synthe-

sis system for hand-held devices. IEEE Trans. Consumer Electronics 52 (4),

1384–1390.

Kim, S.-J., Kim, J.-J., Hahn, M.-S., 2006b. Implementation and evaluation of

an HMM-based Korean speech synthesis system. IEICE Trans. Inf. Syst.

E89-D, 1116–1119.

King, S., Tokuda, K., Zen, H., Yamagishi, J., 2008. Unsupervised adaptation

for HMM-based speech synthesis. In: Proc. Interspeech. pp. 1869–1872.

Kishimoto, Y., Zen, H., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.,

2003. Automatic estimation of postfilter coefficients for HMM-based speech

synthesis. In: Proc. Spring Meeting of ASJ. pp. 243–244, (in Japanese).

Kishore, S., Black, A., 2003. Unit size in unit selection speech synthesis. In:

Proc. Interspeech. pp. 1317–1320.

Koishida, K., Tokuda, K., Masuko, T., Kobayashi, T., 2001. Vector quantization

of speech spectral parameters using statistics of static and dynamic features.

IEICE Trans. Inf. Syst. E84-D (10), 1427–1434.

Kominek, J., Black, A., 2003. CMU ARCTIC databases for speech synthesis.

Tech. Rep. CMU-LTI-03-177, Carnegie Mellon University.

Kominek, J., Black, A., 2006. The Blizzard Challenge 2006 CMU entry intro-

ducing hybrid trajectory-selection synthesis. In: Proc. Blizzard Challenge

Workshop.
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