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Abstract—An increasingly common scenario in building speech [24]. This approach has various advantages over the concate-
synthesis and recognition systems is training on inhomogeneousnative speech synthesis approach, such as the flexibility to
data. This article proposes a new framework for estimaling cpange jts voice characteristics [17], [30]. To use speech data
hidden Markov models on data containing both multiple speakers . . L
and multiple languages. The proposed framework speaker and from mu't'P'? §peakers to mg:rease the amounlt O_f training datg,
language factorization attempts to factorize speaker-llanguage- adaptive training has been introduced to statistical parametric
specific characteristics in the data and then model them using speech synthesis [30]. This article examines an application of
separate transforms. Language-specific factors in the data are acoustic factorization to statistical parametric speech synthesis,

represented by transforms based on cluster mean interpolation where speaker and language factors are considered
with cluster-dependent decision trees. Acoustic variations caused :

by speaker characteristics are handled by transforms based on  1he two primary factors that influence speech are the voice
constrained maximum likelihood linear regression. Experimental characteristics of the speaker and the language spoken. By
results on statistical parametric speech synthesis show that the representing the voice characteristics by one transform and
proposed framework enables data from multiple speakers in language attributes by a completely separate transform, the

different languages to be used to: train a synthesis system; : :
synthesize speech in a language using speaker characteristicsSyntheSIS system will be able to alter language, or speaker,

estimated in a different language; adapt to a new language. ~ Separately. Thus factoring out speaker and language yields
a number of options for synthesis. Firstly, it can be applied

in polyglot speech synthesis. Unlike traditional multilingual
speech synthesis systems, which share common algorithms
for all languages [21], in polyglot speech synthesis speech
is synthesised in multiple languages with the same speaker’s
voice characteristics [8], [13], [26]. The speaker may have
ANY different factors influence speech signals, includenly provided speech training/adaptation data in one language.
ing the words being uttered, the speaker, the languadse, such a polyglot speech synthesis system, the voice of
and the speaking style. To handle variations caused by theseneone who speaks only English, for example, can be used
factors in acoustic modeling for automatic speech recognitibt synthesize speech in other languages such as French and
(ASR), the concept ofidaptive trainingwas introduced [2], German. Secondly, even if a speech synthesis system for a
[4]. Here a transform is associated with each homogeneaisgle language is required, for a limited data scenario, the
block in the data, such as a speaker in a particular noise corafihount of training data for acoustic modeling can be effec-
tion. A canonical model set is trained given these transforniisiely increased by using speech data from multiple speakers
This concept was then extended so that each of the factordifferent languages. Lastly, if the amount of data from a
affecting the speech signals is modelled separately, referregv language is limited, the synthesis system can be adapted
to asacoustic factorizatior[6]. Here a separate transform isto the new language by estimating its transform.
generated for each factor then a canonical model set is builtThis article proposes a new frameworkpeaker and
given the combined transforms for all factors. For examplieanguage factorization(SLF), which attempts to factorize
speaker and noise factors have been considered [6], [27]. speaker-specific/language-specific characteristics in the data.
Recently, statistical parametric speech synthesis [40] badéere, speaker and language transforms are estimated in such a
on hidden Markov models (HMMs) has grown in popularityvay that each transform is related to only one factor. Ideally,
in text-to-speech (TTS). In this approach, spectra, excitatiotldese transforms should be applicable independently, which
and durations of speech are modelled in a unified framewagyields a highly flexible framework for using the transforms.
of context-dependent sub-word HMMs [34]. For a given texio achieve such “orthogonality”, the transforms need to be
to be synthesized, speech parameter trajectories that maxinaifeerent in nature from each othérin the proposed SLF
their output probabilities are generated from the trained HMMsamework, the well-known constrained maximum likelihood
linear regression (CMLLR) [4] is used for the speaker trans-
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decision trees The emission probabili/of an observation vector given

(bias) cluster 1 f:,{?% . component, speaker, language, and a set of model parameters
X can be expressed as

: p(O(t) | m, SalvM)

s S5 (o )5, A ¥ (X0 Mo ) )

Fig. 1. Cluster adaptive training with cluster-dependent decision trees.

.
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(CAT) [5] is used. Here CAT builds an eigenspace of languages Krim) = {b’“("ﬂ’ A’“(m)} ’ (3)
and estimates the position of each language in this space. M, = [uc(m,l),...,uc(myp)], (4)
All clusters are assumed to share the same decision trees in £t) = [1,0(8)7] )
the standard CAT set-up. This is reasonable for speaker or B ’

noise modeling, since they are not very sensitive to clust&yhere the following notation will be used in this article.
dependent context dependency. However, the application tg ; . (1,....,T}, m € {1,....,M}, s € {1,...,S}

polyglot speech synthesis is more complicated, as the structure ; {1,...,L}: frame, Gaussian component, speaker, and
of the decision trees associated with each language could be Ianguégevrespectivély. ' ’
dramatically different. Consider an example where the second, q(m) € {1,...,Q}, r(m) € {1,...,R}: CAT and CM-

and third clusters correspond to tonalg, Mandarin Chinese) LLR regression classes for component respectively.

and Romancee(g, French) languages, respectively. Decision v(m) € {1,...,V}: leaf node for componentn in
tree node splits related to tonal contexts will appear in the trees  yacision treés f(;r the covariance matrices.
for the second cluster, whereas they will not for the third clus- c(m,i) € {1,...,NY}: leaf node for clustei of compo-

ter. To handle such cluster-specific context-dependency, this ant/m in decision trees for cluster mean vectors.

article uses CAT with cluster-dependent decision trees [36],, 7 1/ s 1. P O, R,V,N: numbers of frames, Gaussian
[38], which is illustrated in Fig. 1. This is similar to cluster- C(’)mp,or;er’lts’ sg)ea;kérs languages, clusters CAT and CM-
dependent decision trees used in the additel, model LLR regression classes, leaf nodes in decision trees for

[38]. However, SLF can be a far more suitable application of 6 covariance matrices, and leaf nodes in decision trees
this technique as the limitation of sharing decision trees over ¢q: the cluster mean vectodsiespectively.

all languages is expected to be larger. « o(t),&(t): observation vector and extended observation
The remainder of this article is organized as follows:  vector at frame, respectively.
Section Il describes the model structure of SLF. Section Il ; () (- CAT interpolation weight for clusterand CAT

gives the training algorithm. Section IV explains the adaptation iangrpolation weight vector, for language associated

algorithm. Section V shows experimental results. Concluding \jth CAT regression clasg, respectively
remarks and future plans are presented in the final section. , ,, - cluster mean vector associated with leaf nede

o M,,: matrix of cluster mean vectors for component
e A b X9 CMLLR linear transformation matrix,
[l. MODEL STRUCTURE bias vector, and extended transform for speakassoci-
ated with CMLLR regression class respectively.
Figure 2 shows the block diagram of SLF. This is similar to « X;: covariance matrix associated with leaf ndde
the structured transform framework [35] to combine CMLLR « M: set of model parameters.
and CAT. The SLF framework has multiple clusters, each qhe set of model parameters consists of two distinct parts:
e o o s o of e 3 canencal paametrsh — (s, ). comprisng
; ; 9. cluster mean vectorsju,, }, and covariance matrices,
illustrates the language-adaptation part. The cluster-dependent (21} 5
decision trees are located at the leftmost part of this figure. A
Cluster mean vectors are associated with the leaf nodes GfThe state-duration probabilities, which are essential in speech synthesis,
the cluster-dependent decision trees. Mean vectors in e&égﬁi"so bedefpfesse" in the S;‘m? ma””efa _ _ ol
_ f . Is model structure can be interpreted as a tree Intersection model,
language adapted mOdel set are generat_e_d by mt_erpOIatmgvm%h can effectively represent the vast context space with a small number
cluster mean vectors with language-specific CAT interpolati®fparameters [10], [36]. Hera/ is the total number of leaf nodes of cluster-
weights. The generated mean vectors, together with covariadegendent decision trees and is the total number of unique combinations
: luster-dependent decision trees, decision trees for covariance matrices, and
mat,”(,:es’ form the Ianguage-adgpted mOd_eI set. Note tr ession classes for CAT and CMLLR transforms. Tlds> N, where
decision trees exist for the covariance matrices but these are- n if all trees are the same.
not shown in the figure. The right-hand side of Fig. 2 illustrates*Here the first cluster is assumed to be a bias cluster,its weight is
the speaker-adaptation part. In addition to language adaptatff to L.
g . For this article the estimation of the component prior (mixture weights)
by CAT, speaker-specific CMLLR transforms are applied tg,

_ d transition matrices are not considered. Their formulae are identical to the
generate the final speaker- and language-adapted model ss&tindard CAT updates.
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Fig. 2. Block diagram of SLF. Shaded blocks corresponds to the parameters and trees to be updated during the training process.

2) transform parameters = {Xﬁs),A((,l)}, compris- given as
ing speaker-specific CMLLR transform$,XﬁS)} and (s) )
Ian(g)uage-specific CAT interpolation weight vectors, O, (my (1) = X7, € (D), (7)
l
{Aq } ll';lz) = Mm)‘fll()m)~ (8)

Thus M = {A, W}. The next section describes how to train

these parameters.
B. Canonical parameter re-estimation

Substituting Egs. (2), (4), and (8) into Eq. (6) yiélds

I1l. TRAINING
N 1
A. Auxiliary function QMM) = —5 PORACEN)
m,t,s,l
The goal is to estimate the parameters that maximize the
ikeli i ini ith i i - T -1 O
Iog_llk_ellhood given the training data with |_ts associated tran. Zl"’c(m,i)Ai,q(m)Ev(m)Aj,q(m)u’C(maj)
scriptions and speaker/language labels. Like speaker adaptive i
training (SAT), the expectation-maximization (EM) algorithm
is used. An iterative approach is adopted where first the trans- _9 Z NcT(mﬂ‘) /\Ef;(m)g;én)afizn) ® |
form parameters are estimated, then the canonical parameters. ;

The whole process is then repeated.
From Eq. (1), the auxiliary function of the EM algorithm is

1 (m)
3 > <“cT<m,z'>Gii He(m,i)

given as
T (m) T (m)
1 +2 Z “C(m’i)Gij He(m,g) — 2“c(m,i)ki )7
M) — = J#i
QM; M) 5 mzf; l'ym(t, s,1) (10)
(s) | T (s) (m) (m) .. .
{(q‘zm)(t) — uﬁf)) S <6r‘zm) (t) — ugfg) whereG;" andk;" are accumulated statistics defined as
s (m) _ @ -1 4
+ log [Zym) | — 2log ]A&b)} +C, (6) Gy = 2 (5 DA g m Zam A gm (11)
t,s,l
. (m) _ @ -1 ()
whereC' is a constant independent g8#, M is the current k™= ;%’(t’S’l)/\i,q(m)zv(m)or(m) (). (12)

estimate of the set of model parameters, apdt, s, 1) is the

posterior probability of component: generatingo(t) given Using this auxiliary function the ML estimates of the canonical

s and [, calculated usin%] the forward-backward algorithmharameterA can be found. Initially just the cluster mean
with M. af;;fn) (t) and ugn) correspond to the transformed

observation vector and the interpolated cluster mean vector&onstant terms independent of the cluster mean vectors are omitted.
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vectors are considered. The first partial derivative of Eq. (10)  Cluster1 = = = Clusteri = = »  Cluster P

with respect tou,, is given by Q/O\@
. Hn
8Q(M’ M) = kn - Gnnﬂ/n - Z Gnul—l/ua (13) ”3 i ”‘{" I \;‘f_i}\ “N_Z
8/"’71 :rz ! I\T.Lt',
M1 M2 -

v#n H;ﬂ o MN—-1 HUN
- +
where
' \ Fig. 3. Overview of tree-reconstruction process. Nadis associated with
= im ’ n = im : the decision tree for cluster Shaded parts correspond to parameters and a
G G k k(™. (14)  the decisi for cluster Shaded d q
m,i,j m,i tree to be updated.

c(m,i)=n c(m,i)=n
c(m,j)=v

By setting Eq. (13) to0, the ML estimate ofu, can be D. Tree reconstruction

determined as The conventional cluster-based techniques such as eigen-

voice [7] and CAT [5] assume that all clusters have the
fn =Gt | Ky — Z Gt | - (15) Same parameter ty_ing str_uctuﬁes_\., the same decision trees.
vtn However, this restriction is not inherent to these techniques:
each cluster can in fact have its own parameter tying struc-
It can be seen from Eq. (15) that the ML estimate of ture. Recently, cluster-based techniques with cluster-dependent
depends on all other cluster mean vectors. In principle, thecision trees have been proposed [14], [38], where different
optimization should therefore be repeated over all clustgecision trees are built for each cluster. In these techniques,
mean vectors until they converge. Alternatively, all clustehe cluster-dependent decision trees are expected to capture
mean vectors can be determined simultaneously by solvid@ister-specific context dependency.
the following set of linear equatiorfs: As building multiple trees simultaneously [38] is computa-
R tionally expensive, an iterative, cluster-by-cluster reconstruc-
Gu ... G| | k1 tion approach [14] is used. While reconstructing decision
: . : =1 (16) trees for a cluster, the parameters of all other clusters, which
Gni ... Guyn| | kn include the structure of the other trees, their associated cluster
mean vectors, covariance matrices, and transform parameters,
Although the dimensionality of Eq. (16) can be hundreds @fre fixed® The goal is to build decision trees and estimate
thousands, it is sparSeTherefore, it can be stored and solvedssociated parameters that maximize the log likelihood given
efficiently using a sparse matrix storage and solver. the training data, while maintaining the balance between model
By taking the first partial derivative of Eq. (6) with respectomplexity and accuracy.
to 3, and setting it to0, the ML estimate of the covariance As illustrated in Fig. 3, let us consider the situation that

matrices can be determined as noden associated with the decision tree for clustés divided
_(s) ) T into two new terminal nodesp? and n?, by questiong.
R > t,s,l@k ,ym<t’8’l>0r(m) (t) Or(m) (t) By applying the assumptions introduced in [11], the total log
3, = = , (17) likelihood of noden for clusteri can be calculated &5
Z t,s,l,m 7m(t7 S, l)
v(m)=k 1 . (m)
L(n) = —= G .
where (n) 9 Z (l'l’c(m,z) i Mc(m,i)
5 (1) = 660 (8) — ) (18) e
o = — .
r(m) r(m) m T (m) T (m)
+2 Z ”’c(m,i)GijL He(m,j) — 2Hc(m7i)ki ' ’ (19)
J#i

C. Transform parameter re-estimation ] ]
whereS(n) denotes a set of components associated with node

Reestimation of the transform parameters is a simple §- Because all cluster mean vectors associated with noué
erative process. Given the CAT interpolation weight vectorge tied € mesn) te(m.i) = Bn), EQ. (19) can be re-written as
{Aél)}, the adapted mean vector{wﬂfb)}, are used to estimate ’
the CMLLR transforms,{XﬁS)}, as described in [5]. Then 1
given the CMLLR transforms{ X"}, the CAT interpolation L(n) = *QHTTL > G |
weight vectors,{A,(f)}, are estimated using the transformed meS(n)

feature vectors{é,.s) (t)}, as described in [4], [20]. ) )
+ “’;zr Z kzm - Z Gi;'n ﬂ'c(m,j) . (20)

7If all covariance matrices are diagonal, each dimensiofiof } can be meS(n) i
determined independently.

8Gn, # 0 only if n-th and v-th nodes appear simultaneously in the
training data. Due to the nature of decision trees (hard split of data), mosPHere it is assumed that no cluster mean vectors are shared across clusters.
combinations do not appear in the training data. 10Constant terms independent of the cluster mean vectors are omitted.
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If all the canonical parameters associated with the other trébsse of the LI-SAT model. The covariance matrices, space
and all the transform parameters are assumed to be unchangeights for multi-space probability distributions (MSD) [23],
the ML estimates oft,, can be determined as and their parameter sharing structure are also initialized to
those of the LI-SAT model. A specific language tag is assigned
to each of2, ..., P clusters,e.g, clusters2, 3, and4 are for
o, = Z ng) German, Spanish, and French, respectively. The decision trees
mesS(n) for clusters2, ..., P are initialized to have only root nodes,
and the cluster mean vectors associated with these root nodes
3 k™ — ZGZ(.;”),J,C(m’j) . (21) are set to0. A set of CAT interpolation weights are simply

-1

meS(n) i set tol or 0 according to their assigned language tags
Substituting Eq. (21) into Eq. (20) yields : .
g Ea. (21) a- (20)y ) \O _ 1 4 =1orits language tag i
1 - %] 0 Otherwise '
L) =Sy | Y G| B (22)
meS(n) A set of CMLLR transforms of the LI-SAT model are used to
into nodesn? andn? with questiong is computed as which gives exactly the same log likelihood on the training
+ - . .
. . data as the LI-SAT model is achieved.
AL(n;q) = L(n}) + L(nL) = L(n). (23) From this initial stage, the process of training the SLF model
Based on the log-likelihood gain, the best question to spit an interleaving update process as described below:
noden can be selected as 1) Initialize canonical parameterd, = {u,,X;} and
G = arg max AL (n; q). (24) transform parameter®, = {Xﬁs), )\fll)}, setj = 0.
q ’ 2) Re-construct decision trees cluster-by-cluster from clus-

By repeating this process from the root node until a stopping  ter 1 to P.'3 R R

criterion is met, this decision tree can be re-constructed.3) EstimateA;.; givenA; and W;.

Splitting can be stopped according to the log-likelihood gain 4) EstimateW) ., given A;,; and Wj.

by a heuristic threshold [11], cross validation [19], or an 5) j = j + 1. Go to 2) until convergence.
information criterion such as the minimum description length

(MDL) criterion [18]. After re-constructing decision trees for

a cluster, decision trees for the next cluster are re-built in the IV. ADAPTATION TO TARGET CONDITION
same manner. This process is repeated from clusterP.

Decision trees for the covariance matrices and regressiorf\daptation to a target condition, which is a particular pair
classes for the CMLLR transforms and the CAT interpolatioff speaker and language, involves two distinct sub-steps of
weight vectors are also required. In the experiments whi€stimating speaker-specific CMLLR transforms and language-
will be described in Section V, covariance matrices (argPecific CAT interpolation weight vectors X *, A"}, given
component priors) were clustered together with the bias cli§e set of canonical model parameters, similar to the
ter. Furthermore, regression classes for CMLLR transforrii@nsform parameter estimation described in Section 1lI-C.
and CAT interpolation weight vectors were defined globallyhese transforms are used to construct the adapted model for
(silence, pause, and othet$). synthesis.

E. Initialization : :
While training a model using the EM algorithm, initializa—A' Intra-lingual speaker adaptation

tion is always an important issue. There exist several possiblantra-lingual speaker adaptation is straightforward. Given
ways of initializing the parameters of an SLF model. Onge adaptation data from the target speaker in one of the
option is to initialize the parameters with a speaker-adaptivepaining languages, only the speaker transfo{rﬂ{r(s)}, of

trained language-independent (LI-SAT) model. the pair of speaker and language transfon{rﬂ,ﬁs), )\ff)}, is

First an LI-SAT model is trained in the standard SA—IEastimated [4], [20] aS{Af;l)} can be set to the one estimated

manner using the training data from mu_Itlp_Ie_ _speakers_ IR the training process.
different languages. Then, an SLF model is initialized using
this LI-SAT model as follows: The number of clustefsis 12 L .

. . Other initialization schemes are also possible, such as random or
set to L + 1. The decision trees for clustdr (bias cluster) ejgenvoice-style initialization. The deterministic and binary initialization
and their associated cluster mean vectors are initialized sttheme, which was used in the experiments, requires 1 clusters as it

creates a separate cluster for each of the languages. However, with other
1L jang and Dines reported that the use of a global transform workdjaftialization appro_aches, having + 1 clusters is not strictly necessary. Thi;
better than many regression tree-clustered transforms in cross-lingua spewiéérbe preferred if there are a large number of languages in the training
adaptation [9]. Therefore, the three simple regression classes were udat. A preliminary experiment showed no significant difference between the
here. Increasing the number of regression classes is straightforward but bioary and random initialization approaches.
investigated. 13Thus results depend on the order of re-construction of decision trees.
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Fig. 4. Block diagram of cross-lingual speaker adaptation in SLF. Shaded blocks correspond to those being updated.

B. Cross-lingual speaker adaptation for polyglot synthesis It is possible to perform language adaptation omitting steps

Figure 4 illustrates cross-lingual speaker adaptation (CLSA) @nd 6). This has the advantage that building the decision
in the SLE framework. Firs{XT(S)} is estimated in the same '€€S for the target language is not required. However, where
. ) . (s) ("), the target language is not well represented by the training

way as intra-lingual speaker adaptation. Thieki;”’, Ay '}

i - () ) languages this may impact synthesis performance. This may
can be obtained by combininfX;™'} with {Xg '} for any 0 often, given the wide range of variations in languages.

of the training languages. From the adapted model, speegl|;s it is likely that the context-dependency in the target
in Ianguaggl’ with the voice characteristics of speakecan language cannot be fully expressed by a point (or a set of
be synthesized. As a re§ult, the SLF framework can perfo%ints) in the language eigenspace. In this case, having target
polyglot speech synthesis. language-specific decision trees (steps 5) and 6)), provides
an ability to capture the target language-specific context-
C. Language adaptation dependency. This is a new and powerful way to do adaptation

. . - 0 a target condition.
Language adaptation aims to adapt an existing SLF r‘nOéGLI'he process of adding new trees is similar to the tree recon-

to a new language. Figure 5 illustrates the adaptation PrOCEKPuction described in Section II-D. It is interesting to note

Itis described as follows: that incrementally adding a new language to an existing system

1) Initialize {X*) A}, {X) AT} for speak- using language adaptation can be viewed as an approximation
ers/language pairs in the adaptation data, whEre of fy|| SLF training. It allows a new system to be built from an
denotes the new language afid, ..., s"} correspond existing system by having additional decision trees for the new
to the speakers in the adaptation ddta. data. This eliminates the requirement to store/access speech

2) Reestimatg X\"},...,{X\* )} given {A{ '} andA data used for training the existing system while building a
[4], [20]. , , . new system.

3) ReestimatgAy '} given {X*)},... {X* )} andA  Note that the CAT interpolation weights for the additional
[5]. cluster are fixed td in Fig. 5 and the experiment reported in

4) Go to 2) until convergence. Section V-E, as there is an arbitrary scaling between additional

5) The number of clusters is increased framto P + 1. cluster mean vectors and their interpolation weights. Fixing
Decision trees for clusteP + 1 are initialized to have V(I/\(Pl’/-i)-l , = 1 removes this issue.
only root nodes. All cluster mean vectors associated with '
the root nodes of the decision trees for clugter 1 are V. EXPERIMENTS
set to0. The CAT interpolation weights for clustét+1

A. Data preparation
are set tol.

6) Accumulate statistics then build decision trees for cIusterA range of multilingual speech databases are ava|lablez such
Pt as GlobalPhone [16]. However, none of them are designed

for speech synthesis purposes. Therefore, a new database was
14In the experiments reported in Section ()}, .., {X")} were recorded. The database consisted of five languages; North

initialized to an identity transform ancﬂAfll”)} was initialized to the one American (US) English, British (UK) English, European Span-
estimated from all training data. ish, European French, and Standard German. There were 10
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Fig. 5. Block diagram of language adaptation. Language-specific CAT interpolation weights for the target language are estimated and additional cluster-
dependent decision trees, which represent the unique context-dependency of the target language, are built. Shaded blocks correspond to those being update

non-professional speakers (five male and five female) in easpeakers and in all training languages, while each of the
language. These speakers were selected from four age rand2sSAT models was trained using the data from all training
(1 from 13-18, 2 from 20-30, 1 from 30-50, and 1 from 50speakers in one language. This LI-SAT model was used to
70) for each gender. Speakers did not have strong regiomatialize the SLF model. To store and solve the sparse set
accents. Each speaker uttered the same 50 phonetically w€Hinear equations of Eqg. (16), the compressed sparse row
sentences which covered all phones in the language and @SR) format and the parallel sparse direct linear solver
other set of 50-100 which were selected from various domaiflARDISO) [15] were used, respectively. Decision tree-based
(and differed among speakers). The total recording duration fawntext clustering based ar-fold cross validation [19] was
each speaker was between eight and fifteen minutes. A headsetd to improve the robustness of the constructed tPees.
microphone was used to record the voices. All recording@ve iterations of SLF tree update and model estimation were
were in a standard recording room with low reverberation amdn. All adaptation was performed in a supervised, batch
minimal background noise. To avoid the effect of variationadaptation mode. After training the models, speech parameters
in recording conditions, the same microphone and recordify the test sentences were generated from the models using
room were used for all speakers. The sampling frequency whe speech parameter generation algorithm including a global
48 kHz, later down-sampled to 16 kHz. These recordings werariance (GV) term [22]. For each target speaker, a context-
used for these experiments. independent Gaussian distribution with a diagonal covariance
A universal phone set, which covered all training language®atrix, which modeled the probability distribution of GVs,
was defined and used. Each phone symbol in this phowas estimated from the adaptation data. From the generated
set has an equivalent transcription in the IPA alphabet [Hpeech parameters, speech waveforms were synthesized using
The recording scripts were automatically converted into thike source-filter model.
corresponding phone sequences using a proprietary text analA variety of subjective listening tests were conducted.
ysis engine. A proprietary HMM-based automatic aligner wasll subjective listening tests were crowd-sourd€d.To
then used to extract the phone segmentations. A univeragbid non-native speakers participating in the evaluation,
context-dependent label format, covering possible contextsdnly subjects who lived in the home country of each
the training languages, was also defined. The contexts usedaimguage (GermanGermany, UK English>United King-
this format were similar to those in [25]: they included phodom, US EnglisksUnited States, SpanishSpain, and
netic, prosodic, and grammatical contexts. The fundamenEknch-France), could participate in the evaluation.
frequency €) values of the recordings were automatically All paired-comparison preference listening tests reported
extracted from the recordings using the voting method [33]here compared the naturalness of synthesized speech. To
ensure that pairs of speech samples were played equally often
in AB as in BA order, both orders were regarded as different

) . ) pairs. Pairs of samples were randomly chosen and presented
The speech analysis conditions and model topologies Usgfl each subject. After listening to each pair of samples,

in this experiment were the same as those of HTS 2008 [3gle gupjects were asked to choose their preferred one. Note
except the use of 23 Bark-scale band aperiodicities [32] rather
than 5-band ones. Refer to [33] for details. Five speaker°The LI-SAT and LD-SAT models were also trained with the same setting

; i decision tree-based context clustering.
adaptlvely trained Ianguage-dependent (LD-SAT) models aP.PqGAmazon Mechanical Turk (http://wv?/w.mturk.com/) was used for ex-

a Ianguage-independgnt (LI'SAT) model were trained_' .Tr&@riments in German, UK English, and US English. Clickworker (http:
LI-SAT model was trained using the data from all trainingiwww.clickworker.com/) was used for experiments in French and Spanish.

B. Experimental setup
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TABLE Il
TABLE | THE VALUES OF THE ESTIMATED LANGUAGE SPECIFICCAT
NUMBERS OF LEAF NODES AND PARAMETERS FOR MEICEPSTRAL INTERPOLATION WEIGHTS FOR THE TRAINING LANGUAGES FOR
COEFFICIENTS log Fyy, BAND APERIODICITY, AND STATE DURATIONS IN MEL-CEPSTRAL COEFFICIENTS ANOog F VALUES. THE LARGEST
THE SLF MODEL. WEIGHTS AMONGST CLUSTERS IN EACH LANGUAGE ARE IN THE BOLD
FONT.
Speech parameter
Cluster mel-cep. [ Tog Fp [ band ap.] dur. Speech Cluster
1 (bias) 2071] 4059 5940 | 1168 parameter| language || 2 [ 3 [ 4 [ 5 [ 6
2 102 3304 20 46 German .619 | 401 | .002 | .340 | .325
3 164 3744 17 38 UK English || .294 | .575 | .424 | 252 | .233
4 88 3582 18 27 mel-cep. | US English || .339 | .457 | .846 | .255 | .236
5 129 3259 25 21 Spanish 489 | .381 | .048 | .627 | .398
6 125 2956 28 41 French 428 | .314 | .070 | .383 | .682
Before intersection ) 2679 | 20904 6048 1341 German .897 | .049 | .136 | .102 | .098
After intersection (/) 172135 | 607915 8039 | 21457 UK English || .037 | .879 | .184 | .057 | .084
# of parameters 570000 45257 827172] 12545 log Fo US English || .111 | .197 | .821 | .043 | .091
Total # of parameters 1454974 Spanish || .064 | .118 | .117 | .909 | .084
French .065 | .047 | .174 | .092 | 914
TABLE Il

that the subjects could select “No preference” if they had NPrRerFeRENCE SCORE$%) OF SPEECH SYNTHESIZED FROM THED-SAT

preference. The metrics to exclude cheats (preference for &), LI-SAT (LI ), AhéDSSLF (SLF) MODELS. NOTE THAT N/P DENOTES
P . f “NO PREFERENCE’ SCORES WITH STATISTICALLY SIGNIFICANT

second s_ample anq deviation in system preference) in [3] were - oo oC ATp < 0.05 LEVEL ARE IN THE BOLD FONT.

used while computing preference scores.

All mean opinion score (MOS) tests and differential MOS Preference score P
(DMOS) tests reported here evaluated the naturalness of syn- Language || LD [ LI [ SLF [ NP [| (t-test)
thesized speech and the speaker similarity, respectively. Test 39.71362| - |241 0.164

) German || 352 | - | 46.8| 18.0 0.001

samples were randomly chos'en and prgsented for each subject. _ | 3381 432 230 0.005
In the MOS test, after the subjects had listened to a test sample, _ 448 375 - | 177 0.023
they were asked to assign it a naturalness score from the | UKEnglish || 3611 - | 486 153 <0.0001
31.8 | 50.8 | 17.4 || <0.0001

five-point Likert scale (5: completely natural — 1: completely 9T 553
unnatural). In the DMOS test, after the subjects had listened US English || 26.2

- 15.6 || <0.0001
- 60.6 | 13.1 || <0.0001
36.7 | 47.6 | 15.6 0.002

to the target speaker’s natural speech and a test sample (same 423 3 e 00
sentence), they were asked to assign it a similarity score from Spanish | 39.4 | - | 41.9| 187 0249
the five-point Likert scale (5: exactly the same — 1: completely - | 28.1] 48.1 | 23.8 || <0.0001
different). 37.8 | 425 - 19.7 0.110
French 37.2| - | 465 164 0.007

- | 347|430 226 0.010

C. Building single language systems

The first experiment evaluated the performance of SL
in building speech synthesis systems for single languag
Training data consisted of 4631 utterances by 40 speak . .
in five languages (German, UK and US English, Spanis\ﬁs weights were fixed to 1. It can be seen from the table

and French). Eight (four female and four male) speakers pi L the sec,;ogd, third,&c:(uréh, ?ftp Sgdsi)(tlh rc}lu;ters_tt;nde%
language were used for trainiAg.The remaining two (one © 'SPreseNt Serman, U ENghsh, nglish, Spanish, an
F{&nch, respectively. This tendency was due to the determin-

female and one male) speakers per language were used. bi itialization d bed in Section III-E. F I
evaluation. A hundred utterances not included in the trainifigh ©: N2y Initialization described in section fil-k. For mel-
data were used for estimating speaker transforms, and fi stral coefficients, the non-bias clusters were shared across
sentences included in neither training nor adaptation data wi gouages, for example, th(.:" second cI.uster made th? largest
contribution to German but it also contributed to Spanish and

used for evaluation. h. The fourth clust de | tributi 0 UK
Table | shows the numbers of leaf nodes and parameters lﬁanc - |Ne fourth cluster made large contributions to

spectrum (mel-cepstral coefficientsyg Fy, excitation (band and US English but almost no contribution to other languages.

aperiodicity), and state durations in the SLF model. Note th-gpls SUQQSSS tzabtsh'é clﬁs:]er (;eptrﬁsert]:]s thhe cgmm(_)nh{acftors
the total numbers of parameters of the LD-SAT and LI-S ?e vZ\;een Ian b ngls - On elother _atr;] ,Iwetlg S (;)r
models were comparable to that of the SLF model; there w P% o Were aimost binary. For examp'e, the Sixth cluster made

1695011 parameters in the five LD-SAT models, and the LF- '2/9€ contribution to French but almost no contribution to

SAT model had 1432941 parameters. It can be seen fr lﬂ? other languages. These results are intuitive bedagsg,
the table that the numbers of leaf nodes assignetbdd, as a large language-dependency whereas the other parameters

for the non-bias clusters were comparable. However for m&gve a large dependency an language-common factors such as

cepstral coefficients, band aperiodicities, and durations thé’%gne classes.

were far fewer language-dependent leaf nodes. Table Il sho ive paired-comparison preference listening tests were con-
' (\:fﬁcted. These tests compared synthesized speech generated

1"The total duration of the training data was about seven hours long. from LD-SAT, LI-SAT, and SLF models over 100 (2 speakers

e estimated language-specific CAT interpolation weights for
g' training languages. Note that cluster 1 was omitted as
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. . D, [JAVM [OCROSS MELI-SAT [CJSLF EEINTRA 95% fid int |
x 50 sentences) evaluation utterances. One subject could , L 9% confidence interva

evaluate a maximum of 40 pairs. Each pair was evaluate®
by four subjects. Table 1l shows the preference test resultsg
It can be seen from the table that SLF achieved the besh
preference scores among the three systems in all languages.
An informal analysis of the synthesized speech showed that tr‘%
LD-SAT models could produce more natural prosody than thez
LI-SAT model but their segmental quality sometimes degrade@
due to data sparseness, whereas the LI-SAT model produced GF1 GF2 GF3 em GM2 GM3
flat prosody but its segmental quality was better than those 4
of the LD-SAT models. The analysis also showed that thep
segmental quality of the SLF model was similar to that of thed
LI-SAT model but its prosody was similar to that of the LD- §
SAT models. These results indicate that even when buildin§
a synthesis system for a single language, the use of SLF ta 2
take data from multiple languages is advantageous as it ca@

effectively increase the amount of data for training the acoustic

3

models GF1 GF2 GF3 GM!1 GM2 GM3
Target Speakers
D. Polyglot speech synthesis Fig. 6. Differential MOS and MOS test results of synthesized speech from

. the different adapted models.
The second experiment evaluated the naturalness and the

speaker similarity of synthetic speech in polyglot speech
synthesis. The LD-SAT, LI-SAT, and SLF models from the
previous section were used. Six German-English bilingual
speakers (three female speakers GF1-GF3 and three male
speakers GM1-GM3) from the EMIME German-English bilin-
gual database [28] were used for adaptation. This datab#3eaddition to the above samples, vocoded natural speech
was processed (segmentation, text analysis, feature extractigayples were included in the experiment. The naturalness
in the same manner as the database used for training. B similarity scores of the vocoded natural speech were
adaptation data consisted of 99 utterances for each targeaund4.7 for all the target speakers. System 2) was based on
speaker. Forty-six sentences included in neither the trainiti conventional state-mapping-based CLSA method [9], [13],
nor adaptation data were used for evaluation. [29]. System 4) can be viewed as a speaker adaptively trained
A mean opinion score (MOS) test and a differential MOSersion of HMM-based polyglot speech synthesis based on
(DMOS) test were conducted. The source language wa¥xing mono-lingual corpora [8] System 5) used only US
German and the target language was Endfisiihe speech English data for both training and adaptation. There were
samples to be evaluated were synthesized from the systeh?98 (6 speakersc 46 sentences< 8 systems) samples in
below: the test. One subject could evaluate a maximum of 40 and 80
1) US English LD-SAT model without adaptatioA\N). test samples in the DMOS and MOS tests, respectively. Each

2) US English LD-SAT model adapted with CMLLR trans{€st sample was evaluated by three subjects.
forms for the target speaker estimated from the GermanFigure 6 shows the experimental results. It can be seen
adaptation data using the state-mapping CLSA methf@m the figure that all the adaptation techniques achieved
based on transform mappitfg13], [29] (CROSS better similarity thanAVM There were significant differences

3) LI-SAT model adapted with CMLLR transforms for thePetweenCROSSand LI-SAT /SLF in speaker similarity. It
target speaker estimated from the German adaptati@nknown that adaptation performance of the state-mapping
data (I-SAT ). CLSA method severely degrades if there is a large mis-

4) SLF model adapted with CMLLR transforms for théhatch between the acoustic models for the source and target
target speaker estimated from the German adaptati@guages [9], [12], [29]. This mismatch can be caused by
data and the pre-estimated CAT interpolation weightdconsistencies in the training data for the source and target
for US English 6LF). languages, such as speaker variations, recording conditions,

and amount of data. On the other hand, lASSAT and
18According to personal communication with Dr. Mirjam Wester of UniverSLF use all languages together while estimating the models,

sity of Edinburgh, who developed the bilingual database, many of the spea éy are less affected by the mismatches between the source
in the database have mixed accents of English. The dominant accents in their

speech were GF1) US, GF2) UK/German, GF3) German/US, GM1) Us, gmafld target languages. Furthermo&LF achieved the same
German/UK, and GM3) UK/German. or slightly better similarity a$NTRA. This indicates that the

'9The state-mapping CLSA method based on transform mapping implépeaker and language factors were successfully factorized by
mented in HTS-2.2 was used. Although the authors also investigated th,

performance of the CLSA method based on data mapping [29], no statisticﬁlﬁ SLF frar_nelwo_rk- However, there .St'” exists a large gap
significant difference was observed. in speaker similarity between synthesized and natural speech.

5) US English LD-SAT model adapted with CMLLR
transforms for the target speaker estimated from target
speaker’'s English adaptation dat&dITRA).
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TABLE IV INOADAPT  [EADAPT-10 Il ADAPT-20
PREFERENCE SCORE$%) OF SPEECH SYNTHESIZED FROM THISLF

[JADAPT-50  EEADAPT-100  EETRAIN 95% confidence interval
MODEL WITHOUT LANGUAGE ADAPTATION (NA), WITH ESTIMATED CAT 4 1 95% confidence interva

INTERPOLATION WEIGHTS(W, WITH ESTIMATED CAT INTERPOLATION g
WEIGHTS AND ADDITIONAL DECISION TREES(W+T). NOTE THAT N/P &
DENOTES“NO PREFERENCE’ SCORES WITH STATISTICALLY SIGNIFICANT s
PREFERENCE ATp < 0.05 LEVEL ARE IN THE BOLD FONT. =
o
o]
Target Adaptation Preference score P pe
language data NA T W [ W+T] N/P (t-test) 2
8 speakers || 36.6 | 413 - | 221 0.109 German UK English  US English Spanish French
X 37.6 - 478 | 14.6 0.003
us 10% of utts. || — | 36.4 | 45.1 | 185 0.003 Target Languages
English 8 speakers || 34.7 | 38.2 - 27.1 0.179
X 29.6 - 55.6 | 14.8 || <0.001 Fig. 7. MOS test results of synthesized speech from the language adapted
50% of utts. - 32.8 | 51.8 | 15.4 || <0.001 SLF models using different amounts of adaptation data.
8 speakers || 37.9 | 28.5 - 33.7 0.005
X 26.1 - 53.3 | 20.6 || <0.001
German | 10% of utts. - 26.4 | 51.2 | 22.3 || <0.001 .
g speakers || 316 | 316 | — | 368  0.500 of UK English. On the other hand, when German was used
X 207| - | 708 | 85 || <0.001 as the target language, the CAT interpolation weights were
S0% ofutts.|| - | 183] 736 ] 81 || <0.001 roughly evenly distributed. These results indicate that if there

exists a language similar to a target language in the training

o _ L . data, reasonable points in the language eigenspace can be
This is a known issue of all statistical parametric Spee¢f,ng 1o express the target language. However, if it doesn't
synthesizers [31]. Further research to improve the speakgfs: estimating CAT interpolation weights is insufficient, thus
similarity of synthesized speech is required. The MOS teﬁéving additional trees is essential.
results shows a similar tendency to the preference test fofr, gee the relationship between the performance of language
US English conducted in the previous section; the m““'pﬁ‘daptation and the amount of the adaptation data, MOS
language approaches achieved significantly better scores thalls \were conducted. The amount of the data for language

the single language approaches. adaptation was changed (randomly selected 10, 20, 50 to 100
% of adaptation utterances per speaker). The speech samples to
E. Adaptation to new languages be evaluated were synthesized from the language-adapted SLF
The third experiment evaluated language adaptation. It wa@del with different amounts of adaptation dafeDAPT-X,
performed as follows: where X denotes the amount of adaptation data per speaker),

Jbe SLF model without language adaptatibdfQADAPY,* and
estimated without using one of the five languages in t{R€ SLF model trained with all languagé{TRAIN). There
database. were 600 (2 speakers 50 sentencesx 6 systems) samples

2) For each SLF model, a language transform was edfi-the test. One subject could evaluate a maximum of 140 test

’ mples. Each test sample was evaluated by five subjects.

mated using the data consisting of eight speakers in tA@™ ;
excluded language. Figure 7 shows the experimental results. It can be seen
3) Then speaker transforms were estimated using all adfgm the figure that applying language adaptation improved
tation data from the target speakers. the naturalness of synthetic speech as the amount of adaptation
. . ata increased. We can also see tABYAPT-100 achieved

Note that the target speakers were not included in the data for . o

language adaptation similar performance t@RAIN. These results indicate that the

A set of paired-comparison preference listening tests wer?cla‘ F framework can adapt to a target condition even when it

conducted to evaluate the language adaptation process. Tt}eas a very different context dependency. It also suggests that

tests compared synthesized speech from the SLF mod"ﬁe.SLF training can be well-approximated t_)y.incrementally
without language adaptatiolN),?® with the estimated CAT & ding a new condition (language) to an existing system.
interpolation weights\{y, and with the estimated CAT inter-

polation weights and the additional decision treds+{j, over VI. CONCLUSION

100 (2 speakers< 50 sentences) evaluation utterances. OneThis article has proposed a framework of speaker and
subject could evaluate a maximum of 40 pairs. Each pair wesiguage factorization and its application to statistical para-
evaluated by four subjects. Table IV shows the preference tasétric speech synthesis. This framework factorizes speaker-
results. It can be seen from the table that having additiorgiecific/language-specific characteristics in the data and mod-
decision trees was effective for language adaptation, especially them by individual factor-specific transforms. Language-
when the target language was far from the training languagepecific factors in the data are represented by transforms
When US English was used for the target language and th&sed on CAT with cluster-dependent decision trees. Acoustic
remaining four languages (German, UK English, Spanish, aggriations caused by speaker characteristics are handled by
French) were used for training, the estimated points of Ufansforms based on CMLLR. This form of factorization

English in the language eigenspace were very close to those
21The CAT interpolation weights estimated from all training data were used.

20The CAT interpolation weights estimated from all training data were used.22This SLF model was the same as the one used in Section V-C.

1) Five SLF models were trained. Each of them w
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enables the following things to be done: increasing the quantigg] R. Sproat, Ed.Multilingual text-to-speech synthesis: The Bell labs
of data by having data from multiple speakers in different lan-_ approach Kluwer Academic Publisher, 1998.

val h hesi d addi | T. Toda and K. Tokuda, “A speech parameter generation algorithm
guages, polyglot speech synthesis, and adding a new language qonsigering global variance for HMM-based speech synthetsCE

to an existing system. Trans. Inf. Syst.vol. E90-D, no. 5, pp. 816-824, 2007.
Future work includes having large variations of languagé&] K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi, “Multi-space

. - . . robability distribution HMM,” IEICE Trans. Inf. Syst.vol. E85-D,
in the training data. This may remove the requirement for Eo. 3, pp.y455_464, 2002. yst

additional decision trees for language adaptation as there ig4 K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura,
better chance to find a training language which is similar to a SPeech parameter generation algorithms for HMM-based speech syn-

. . thesis,” inProc. ICASSP2000, pp. 1315-1318.
new language. It may enable very rapid language adaptationt) k. Tokuda, H. zen, and A. Black, “An HMM-based speech synthesis

be performed. Application of the proposed framework to other  system applied to English,” ifroc. IEEE Speech Synthesis Workshop
factors which have cluster-specific context dependency is aLg& 2002, CD-ROM Proceeding.

fi h Ki | d . d . C. Traber, K. Huber, K. Nedir, B. Pfister, E. Keller, and B. Zellner,
of interest, such as speaking styles, domains, and emotion “From multilingual to polyglot speech synthesis,” Rroc. Eurospeech

1999, pp. 835-838.
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