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Statistical Pattern Analysis of Partial Discharge
Measurements for Quality Assessment of Insulation

Systems in High-Voltage Electrical Machinery
Birsen Yazici, Member, IEEE

Abstract—In this paper, we present a new statistical analysis
method of phase-resolved partial discharge (PD) measurements
for the quality assessment of electrical insulation in high-voltage
machinery. The method is based on a supervised classification
approach which utilizes histogram similarity analysis. The moti-
vation for choosing histogram similarity analysis is twofold. First,
the phase-resolved PD measurement itself is, in fact, a two-di-
mensional histogram. Therefore, a histogram-matching-based
approach suits the very nature of the data. Second, histogram sim-
ilarity analysis combines the typical statistical parameters, used
in PD analysis, in a statistically powerful and rigorous way. In our
study, we utilize various histogram types and similarity analysis,
including correlation, chi-square, and Kolmogorov–Smirnov tests.
Further, we propose a postprocessing method to quantify the
accuracy of classification results which enables the user to make
soft decisions. Our experimental study on laboratory samples
demonstrates that the method shows strong potential in detection
and classification of insulation defects. The results from our study
suggest that the proposed method provides a powerful, general,
and mathematically simple approach to the analysis of phase-re-
solved PD measurements.

Index Terms—High voltage, histogram similarity, partial dis-
charge (PD) analysis, quality assessment.

I. INTRODUCTION

P
ARTIAL discharge (PD) analysis has been established as

a reliable diagnostic tool to asses the insulation systems

for their integrity and design deficiencies. Interpretation of the

PD patterns can reveal the source and the reason for its occur-

rence and, therefore, has been used as a condition monitoring

and quality control tool by the manufacturing industry (se [1],

[13], and references therein). For many years, the interpretation

was performed by human experts. In recent years, advancement

of computer hardware and pattern recognition techniques has

provided automation and improvement of the PD interpretation

process. As a result of the computer-aided processing, massive

amounts of PD measurements can be interpreted efficiently and

reliably. Among the well-known pattern recognition methods
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applied to PD analysis are expert systems, neural networks, fuzzy

classifiers, fractal models, and statistical methods, among others

[2]–[5]. For more recent publications and review, see [10]–[13].

This paper presents a quality assessment method for insula-

tion systems in high-voltage electrical machinery. The proposed

qualityassessmentmethodcanbeutilizedtoevaluatethe integrity

andthedesigndeficienciesofinsulationsystemsduringthemanu-

facturing process. The preliminary study on the experimental de-

sign and comparison with other techniques was reported in [6].

Since then, the method has been commercialized [7].

In phase-resolved PD measurement data, PD pulses are

grouped by their phase angle with respect to the 60-Hz sine

wave. Consequently, the voltage cycle is divided into phase

windows representing the phase angle axis from 0 to 360 .

In our measurement setup, the PD observations takes place

over several voltage cycles and the number of occurrences

of individual PD events is recorded for each phase window.

Hence, the way in which the data are acquired motivates a

histogram-based statistical analysis of PD patterns. In the

proposed analysis method, phase-resolved PD measurement

data are viewed either as a two-dimensional (2-D) histogram in

which the two axes consist of phase windows and PD magni-

tude or as a collection of one-dimensional (1-D) histograms in

which the axis consists of PD magnitude.

For quality assessment of high-voltage insulation, a set of PD

training measurements are acquired from good and defective

insulation equipment. A representative PD measurement and a

threshold value are determined for each insulation quality class

by using histogram similarity analysis. The quality class rep-

resentatives and thresholds are then stored in a data base to be

used as baselines for normal and defective insulation during the

testing stage. In the testing stage, PD measurement is acquired

from unknown quality insulation equipment and the distance be-

tween the class representatives and the data is measured using

histogram similarity measures. If the distance is within the limits

of the normal insulation threshold, it is tagged as “good,” other-

wise, it is tagged as “defective.”

The remainder of this paper is organized as follows. In

Section II, we introduce the histogram similarity measures.

In Section III, we discuss how histogram similarity measures

can be utilized as an insulation quality assessment tool. In

Sections IV–VII, we discuss preprocessing, training, testing,

and postprocessing stages of the method. In Section VIII, we

present testing setup and experimental design. In Section IX,

0093-9994/04$20.00 © 2004 IEEE
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Fig. 1. 2-D histogram for a phase-resolved PD measurement.

we present numerical results demonstrating the performance

of the proposed analysis methods. Finally, in Section X, we

briefly discuss further items of interest in the context of insu-

lation quality assessment and conclude the paper.

II. PD DATA AS A HISTOGRAM AND HISTOGRAM

SIMILARITY MEASURES

A. Histogram Types

In a phase-resolved PD measurement, PD observation takes

place over several voltage cycles and the PD pulses are digitally

recorded by their phase angle with respect to a single voltage

cycle. Therefore, a phase-resolved PD measurement is a 2-D

histogram of PD events with respect to discharge magnitude and

phase angle. Hence the very nature of the data motivates a his-

togram based statistical analysis. In this study, phase-resolved

PD data are treated as four different kinds of histograms.

• The PD measurement itself is a 2-D histogram. The phase

window and the PD magnitude form the two dimensions

of the histogram. The joint probability mass function of

phase windows and PD magnitudes can be computed by

normalizing the histogram to unit area. In our discussion,

we shall refer to this histogram as the “2-D histogram.”

Fig. 1 shows a typical 2-D histogram obtained from our

data acquisition system. Note that the voltage cycle is

divided into 256 phase windows, each window corre-

sponding to 1.4 .

• For a given phase window, the number of occurrences of

individual PD pulses provides a histogram of PD mag-

nitudes. Hence, phase-resolved PD measurements can be

viewed as a collection of 1-D histograms in which the di-

mension is the PD magnitude. The minimum width for the

phase window is chosen 1.4 degrees. In our discussion,

we shall refer to this collection of histograms as the “1-D

phase histograms.” Fig. 2 shows a 1-D phase histogram for

the phase angle 138.6 –140 .

• To simplify the analysis, one can consider only the total

number of occurrences for each phase window or PD mag-

nitude, i.e., the sum of the individual PD events for each

Fig. 2. 1-D phase histogram of PD measurements for a given phase window.

Fig. 3. X-marginal histogram of a phase-resolved PD measurement.

phase window or for each PD magnitude. We shall refer

to the histogram obtained by the sum of the individual

PD events for each phase window as the “X-marginal his-

togram,” and the histogram obtained by the sum of the in-

dividual PD events for each PD magnitude as the “Y-mar-

ginal histogram.” Figs. 3 and 4 show X- and Y-marginal

histograms of a phase-resolved PD measurement.

B. Histogram Similarity Measures

In this study, we used four histogram similarity measures to

asses the discrimination value of each one under different cir-

cumstances. These measures are as follows:

• sample correlation;

• Kolmogorov–Smirnov distance 1 and 2;

• chi-square test.

Sample correlation regards two histograms as vectors and

checks if the two histograms are parallel geometrically. Kol-

mogorov–Smirnov distances compares two histograms with
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Fig. 4. Y-marginal histogram of a phase-resolved PD measurement.

respect to point shifts and chi-squares test compares two his-

tograms with respect to the number of observations.

To keep the notation simple, we shall describe these measures

for a 1-D histogram. The 2-D description is a straightforward

extension. To facilitate our discussion, let us introduce some

notations.

Probability mass function or normalized histogram

(2.1)

where

number of events whose intensity is ;

total number of events in the measurement set;

number of bins in the histogram.

1) Cross-correlation value

(2.2)

where is the mean value of the probability density func-

tion

2) Kolmogorov–Smirnov distance [8]—cumulative distribu-

tion function

(2.3)

a) Kolmogorov–Smirnov distance 1

(2.4)

The distribution of the Kolmogorov–Smirnov statistics

in the case of null hypothesis (data sets drawn from

the same distribution) can be calculated, thus giving

the significance of any observed nonzero value of KS1.

The function that enters the calculation of the signifi-

cance can be written as the following sum:

(2.5a)

In terms of this function, the significance level of an

observed value of KS1 (as a disprove of the null hy-

pothesis that the distributions are the same) is given

approximately by the formula [14]

Probability observed

(2.5b)

where is the effective number of data points given

by

(2.5c)

and are the number of data points in the first

and second distributions, respectively. For the 2-D

Kolmogorov–Smirnov test the probability that the

observed test statistics exceeds KS1 is given by [15]

Probability observed

(2.5d)

where is the correlation coefficient defined in (2.2).

b) Kolmogorov–Smirnov distance 2

(2.6)

3) Chi-square test

Let be a histogram observed in an

experiment and be a known proba-

bility mass function. We want to know whether ’s are

drawn from the population represented by the ’s. We

measure the distance between the two distributions via the

chi-square statistics [8]

(2.7)

where is the total number of observations in the ex-

periment. If ’s are indeed drawn from the population

represented by ’s, then it can be shown by the central

limit theorem that as , each term in the summation

of (2.6), is the square of a Gaussian random variable with

zero mean and unit variance. Therefore, is a random

variable with chi-square distribution. A large value of ,

e.g., , indicates that it is rather unlikely that the

two distributions represented by ’s and ’s are the

same.

Let be the probability that the chi-

square statistic is at least , given that there are bins in

the histogram and that ’s are drawn from the popula-

tion represented by ’s. The value of

can be computed by the incomplete gamma function

Probability (2.8)
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Chi-square test for two histograms

Since we really do not know the “true” probability mass

functions of the PD events, what we implement is a modified

chi-square test which checks whether the two measurements

, and are drawn from

the same population by some unknown probability distribu-

tion function. It can be shown in this case that the chi-square

statistics is given by

(2.9)

where and .

In our implementation, is the first histogram, and

is the second histogram of PD events. Note that if

for some bin , then the corresponding term

is dropped in the summation in (2.9).

III. QUALITY ASSESSMENT OF THE INSULATION SYSTEM

The proposed quality assessment method is a “supervised”

approach, that is, the type and the number of insulation defects is

predetermined. The method can be utilized for detection, as well

as identification of insulation defects. The “detection” involves

an automatic decision making to determine whether a given test

insulation is good or not. The “identification,” on the other hand,

involves detection, as well as classification, of the insulation

defect to one of the known defect classes.

As more information is provided to the system, improved de-

fect detection and identification can be achieved. For defect de-

tection, only a set of PD measurements representing a good

insulation system is needed. For identification, however, PD

measurements from the defect classes are needed. These defect

classes may be: 1) suspended metal particulate in insulation; 2)

armor degradation; 3) conductor/insulator delamination; 4) in-

sulator/insulator delamination; or 5) insulator/armor delamina-

tion, among others. The outcome of such a quality assessment

system is one of the following: 1) good insulation; 2) defective

insulation with known defect type; and 3) defective insulation

with unknown defect type.

The method consists of four stages: preprocessing, training,

testing, and postprocessing. In the preprocessing stage, the PD

data are subjected to signal conditioning methods, such as gain

normalization, phase shifting, and noise suppression. In the

training stage, the features of defective and good insulation

are learned from a set of so-called training data. The learning

process involves feature extraction from raw data and statistical

analysis. The statistical analysis of the features leads to a set

of representatives and thresholds for each class. The represen-

tatives of each class along with the thresholds are stored in a

data base to be used as baselines during the testing stage. In

the testing stage, features are extracted from a test PD data

coming from an unknown insulation quality and a statistical

distance between the representatives of each class and the

features is computed. The resulting distances are compared

with the thresholds in the data base to check whether the test

measurement belongs to one of the known classes. In the post

processing stage, the decisions from multiple PD measurements

are combined to increase the confidence level and a probability

Fig. 5. Block diagram of the quality assessment method.

is associated with each decision to quantify the accuracy of

the process. Fig. 5 illustrates the major stages of the proposed

quality assessment process. Each stage is discussed in more

detail in the following sections.

A. Preprocessing

In this stage, the raw PD data are processed: 1) to convert

from bipolar mode to a unipolar mode; 2) to adjust the phase

with respect to supply voltage; and 3) to normalize with respect

to gain factor. Also, as a part of the PD computer aided diagnosis

system, digital filtering can be applied to suppress periodic noise

in the measurements, if needed. For example, excitation noise

often results in spikes superimposed on the PD data [9]. In our

study, such a noise was removed by standard digital notch fil-

tering in the frequency domain.

B. Training

The block diagram of the training process is illustrated in

Fig. 6. In this section, we shall explain each step in more de-

tail.

It is well-known empirically that the low-count high-magni-

tude PD events contain more discrimination information than

the low-magnitude high-count PD events [6]. During the fea-

ture extraction process, in order to highlight the relative impor-

tance of the low PD counts, we take the logarithm of the PD

event counts and thereby suppress the effect of the high-count

low-magnitude events. Additionally, the resulting data can be

thresholded to eliminate low-magnitude events.

After feature extraction, a representative is determined for

each class by averaging the PD data. Let denote the repre-

sentative of the class , and

be the th member of the class where is the total number

of classes and is the number of samples available for class

. Next, an intra-class distance between the class representative

and each of its members is calculated by using the his-

togram similarity measures introduced in Section II

(5.1a)

where stands for one of the histogram similarity measures.

Note that in the case of 1-D phase histograms, the distance func-

tion is a vector in which each entry is the distance between

the member and the reference 1-D phase-resolved histograms
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Fig. 6. Block Diagram of the Training Stage.

Fig. 7. Block diagram of the testing stage.

for each phase window. To clarify the difference, we introduce

vector notation for the 1-D phase histograms

(5.1b)

where corresponds to the phase window.

In order to obtain the optimal radius for each class, the sample

mean and standard deviation of the distances within each class

are calculated. For the 2-D histograms, the intra-class mean ra-

dius and standard deviation are given as follows:

(5.2a)

(5.2b)

For the 1-D phase histograms the intra-class mean radius and

standard deviation are given by

(5.3a)

(5.3b)

Next, an unit standard deviation tolerance is allowed for

each class radius. Note that in case of Gaussian distribution

of intra-class distances, is typically chosen to be 2 to pro-

vide a 99% confidence interval. However, in our scheme, it is

kept as an input parameter to allow the user to utilize one’s

engineering judgment in setting the tolerance. The class radii

, for the 2-D and 1-D histograms are given as

follows:

(5.4a)

(5.4b)

Note that in both 2-D and 1-D histograms, the class radius

is given by a scalar value. Finally, the representative and the

threshold of each class are stored in the data base.

IV. TESTING

The major steps of the testing process are illustrated in Fig. 7.

Similar to the training process, the test data are first subjected to

the operations discussed in the preprocessing stage and feature

extraction process described in the training stage. Next, using

one of the histogram similarity measures, the distance between

the test feature and the reference of each class is computed.

For the 2-D histogram, the distance is given by a scalar quan-

tity while for the 1-D phase histograms, it is given by a vector

quantity

(6.1a)

(6.1b)

where is the total number of classes. In order to compare the

vector quantity, (6.1b), with a scalar threshold, we compute a

cumulative distance by summing the quantity in (6.1b) over all

the phase windows

(6.2)
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Next, we check if the distance between test feature and the ref-

erences of each class is less than the class threshold . If the

distance is greater than all the thresholds, ,

the test measurement is tagged as defective, but of unknown de-

fect type. If the distance is less than one or more thresholds,

the test measurement is assigned to the class for which the dis-

tance between the reference and test feature is minimum. If the

assignment is the class of good insulation, the measurement is

tagged as nondefective.

To improve the accuracy of our decision making, we repeat

this testing scheme for multiple PD measurements for each in-

sulation equipment. Decisions obtained from each measurement

and the distances of the test features to the class representatives

are fed to the postprocessor to finalize the decision on the insu-

lation equipment.

V. POSTPROCESSING

In the postprocessing stage, there are two major tasks: 1) clas-

sify the insulation equipment by combining the decisions from

each test PD measurement and 2) associate a probability to each

decision reflecting the accuracy of the classification process. We

shall start with the second task since making a final decision on

the insulation equipment depends on the accuracy of each deci-

sion made on individual PD measurements. Recall that during

the testing stage, a distance between the test feature and the rep-

resentative of each class is computed

(7.1)

The distance of the test feature to a class representative is quan-

tified in terms of unit standard deviation of the class. Rela-

tive comparison of these distances determines the accuracy of

the final decision. To compare these decisions, we compute the

probability distribution of the test statistics, namely, the test sta-

tistics of the chi-square, Kolmogorov–Smirnov 1 and 2 tests,

and correlation test. The test statistics of the chi-square and

Kolmogorov–Smirnov 1 tests are provided in (2.5b), (2.5d) and

(2.8), respectively. For the test statistics of the correlation and

Kolmogorov–Smirnov 2 tests, we assume Beta distribution with

parameter . In particular, we employed the following version

of the Beta distribution:

(7.2)

Note that

Probability (7.3)

Therefore, when the distance is 0, i.e., , the proba-

bility is 1, and when the distance is greater or equal to , the

probability is 0. Beta distribution on the correlation and Kol-

mogorov–Smirnov test are reasonable assumptions. Because, if

the distance between the test feature and a class representative

is either 0, or an order of a magnitude larger, such as , it is

reasonable to assume that the conditional probability of that

particular class given the measurements is either very high or

very low. In the case of 0 distance, Beta distribution suggests

that the test measurement belongs to the class with probability

1, and in the case of or larger distance, the probability that

the test measurement belongs to that class is 0.

There are two user-controlled parameters in the Beta distri-

bution (7.2), namely, and . The parameter controls the

threshold beyond which the probability that a measurement

coming from a particular class of distance or larger is 0.

This distance can be set to an order magnitude larger than the

threshold , such as unit standard deviation or can be deter-

mined experimentally during the training stage. The parameter

controls the confidence in the class identification power of

the testing scheme. This parameter should be set to a value so

that 80% or more values should be correctly classified. This

value can be determined empirically during the training stage.

If an 80% class identification level is assumed, is given by

(7.4)

or, more generally, can be chosen so that Probability D

is equal to the confidence level in percentage. Fig. 8 shows how

the proposed probability mapping function behaves for typical

values of and given in (7.4).

Next, we combine the class assignments and the associated

probability values obtained from multiple PD measurements to

get a final class assignment and a probability value for a given

insulation equipment. The steps of this process can be summa-

rized as follows.

• Assign a probability value to each PD measurement de-

scribing the likelihood of the measurement belonging to

each class in the database. Let and

be the probability that the measurement

belongs to class where is the number of measure-

ments collected from the insulation equipment and is

the number of classes.

• Define

(7.5)

as the probability that the insulation equipment belongs to

class with probability . Finally, the insulation equip-

ment is assigned to the class with the highest overall prob-

ability, i.e.,

(7.6)

where is the class label at which is

maximum.

VI. DESIGN OF EXPERIMENTS

This paper covers several types of defects on stator bars:

1) suspended metallic particles in the groundwall insulation;

2) slot armor degradation;

3) corona suppressor degradation;

4) insulation–conductor delaminations;

5) insulator–insulator (bound) delaminations;

6) “white” bars (puffed insulation).
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Fig. 8. Quality class likelihood function.

Fig. 9. PD testing configuration.

Each of these defect types has implications for either the man-

ufacture of individual bars or machines, as well as actual field

degradation phenomena. Each bar was subjected to a specific,

sequential protocol to investigate the effects of voltage applica-

tion on new bars, the effects of hipot, and the effect of a single

thermal cycle on the PD patterns.

The test configuration is shown in Fig. 9. A 60-Hz corona-free

high-voltage supply energized model generator stator bars. The

bars were placed in a simulated stator slot and held firmly with

C-clamps. The slot was made of either aluminum or steel plates

cut to fit the slot section of the bars. A 1.3-nF ceramic cou-

pling capacitor was used as a coupling impedance. Placed on the

ground strap to the coupling capacitor, a high frequency current

transformer collected the PD signals. The signals were mon-

itored by a phase-resolved PD acquisition system. The band-

width of data collection was 100 k to 800 kHz. Data was col-

lected for 30 s for each pattern.

The bars were a collection of both genuine stator bars (with

end-arms) and straight quality control (QC) bars. Construction

of the QC bars is as follows: to bare copper bars, an internal

grading of conductive tape was laid; 10 layers of mica tape

were laid next; to this was laid the external armor; on the ends,

one layer of corona suppressor tape was used; the bars were

compounded according to normal factory conditions. The bars

were designed for a 13.8-kV machine application (8 kV line-to-

ground). Corona suppressors were more than 7 in long, making

TABLE I
MODEL DEFECT BARS

the bars suitable for PD testing up to 35 kV. The bars were gener-

ally tested at line-to-ground voltages. Table I shows a collection

of the bars and the defects. Additional stator bars were of sim-

ilar construction.

A. Good Bars

In order to establish a baseline, three “good” bars were

produced. Typical phase-resolved PD patterns are shown in

Fig.10(a) and (b). The activity pattern is a characteristic “hump”

centered in the first and third quadrants. The activity levels are

low, with maximum discharges (at 1 pulse/s discharge rates,

minimum) of only 91 pC.

There can be noticeable conditioning with voltage application

and/orvoltage/thermalhistory.Boththemaximummagnitudedis-

charge with at least 1 pulse/s discharge rate Q and the ac-

tivity level (count rate at fixed gain) are plotted in Fig. 11 for a rep-

resentative “good” bar. The activity is initially high (Point A) and

conditions over the first 20–40 min. This is believed to be caused

byconditioningofvarious,ubiquitousvoids in the insulation.The

activity then increases over the next several hours (Point B). This

is postulated to be due to activation of the internal grading: it is

believed that the internal grading may not be fully activated until

subjected to sufficient voltage. This activation is accompanied by

electrical activity, detected as internal PD. Finally, the bar condi-

tions to a baseline level (Point C) that the bar will maintain until

significant insulation degradation initiates.

If the voltage is removed after several days of electrical condi-

tioning,andsubsequently reappliedafteracooldowntime, thePD

activity will again be high (Point D) and then decay, but the bump

phenomenon (Point B) is not observed again. This time, however,

conditioning takes about 2 h before a plateau is reached.

If the bar is then subjected to a 1-min hipot at three times

rated voltage (the factory specification), the subsequent PD is

even lower (Point E). This shows the conditioning effect that

hipot testing can have on good bars. In contrast, hipot testing can

aggravate some defects in bad bars. This shows the symbiotic

relationship that exists between PD and other electrical tests.

If the bar is then subjected to a single thermal cycle (3 h at

155 C), the PD activity is enormous (Point F). This is caused

by insulation delamination from the copper due to differences
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Fig. 10. Representative phase-resolved PD measurements for (a) good bars,
(b) good bars with end-arm, and (c) bars with slot discharge.

in the coefficient of thermal expansion. This happens after a

new winding or machine is turned on for the first time and then

allowed to cool. The activity will condition, but it takes about

10 h. Accordingly, it is important to have machines running at

stable load and temperature conditions as long as possible prior

to measuring PD activity in order to ensure reliable data. Bars

in a machine need significantly more settling-in time due to the

compounded effects of thermal cycling and vibration.

B. Slot Armor Degradation

Slot armor degradation is a phenomenon that happens as a

result of bars vibrating in the slot. The stator core lamination

edges, and sometimes the wedge systems as well, provide an

unfriendly, coarse surface. The forces on a bar in a slot are radial

and are caused by the currents flowing in the bar. The forces are

proportional to the square of the current and cause the bar to

oscillate at the second harmonic. As a result, PD activity from

this type of defect is often (but not always) load sensitive.

Fig. 10(c) shows a representative phase-resolved PD pattern

taken from bar 2G17 that demonstrates the effect of slot armor

degradation on PD activity. This bar is a solventless end-section

with end-arm. The bar had painted (rather than taped) armor.

This is often done when bars are slightly oversized after com-

pounding; the armor tape is removed to fit the bar, and a semi-

conductive paint is applied instead. This paint does not sur-

vive under voltage stress as well as does tape. As a result, the

paint eventually erodes, leaving bare insulation exposed to the

stator armor. Consequently, electrical discharges occur in the air

gap, producing large PD signals and are often accompanied by

ozone formation. These discharges are large and are therefore

more detrimental to insulation than are other defects. Allowed to

progress, the discharges will disintegrate the epoxy from within

the wrapped tape, leaving a white, powdery residue (often called

“corona dusting”).

The differences in PD patterns are striking. The magnitude

of PD activity from slot discharge is often very large. In this in-

stance, the activity is five times larger than normal. More char-

acteristic, however, is the shape of the PD pattern. In contrast

to the typical “hump” of PD activity seen from the control, slot

discharge results in “shelves of activity” or often “squared-off”

patterns. In addition, this type of event often results in high fre-

quency signals.

Data taken from hydro generator bars with taped armor

showed similar behavior. Hence, in terms of slot discharge PD

patterns, there is nothing unique about painted versus taped

armor.

It has been suggested that this pattern should shift in phase-

space with varying load and/or power factor. An extensive in-

vestigation, using currents up to 2500 A, and power factors from

leading to lagging by as much as 35 in each direction, showed

this not always to be the case. The patterns follow the voltage

and did not seem to vary significantly with load. A small change

in amplitude was noted, but on a complete stator, this would be

insignificant. This load independence is believed to be due to

surface roughness of the typical stator bar: a perfectly smooth

stator bar might behave differently.

Related to the phase shift of this pattern is the phase shift

that occurs due to test voltage. In this test, the position in phase

space of the onset of PD activity was monitored as a function of

applied voltage. Going from the corona inception voltage (CIV)

to 14 kV (rated phase-to-phase voltage), one sees a shift in the

position of PD onset from 26 to 35 . This is a shift of over

60 .

C. Corona Suppressor Degradation

Corona suppressor degradation is a phenomenon that often

occurs during voltage-endurance (VE) testing but can also occur

in service. Phase-to-phase discharges can also cause this degra-

dation. On isolated bars, however, it is sometimes manifested

in burnout of the corona suppressor immediately adjacent to
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Fig. 11. Bar TT539B (Good Bar) typical aging and conditioning patterns.

the slot armor. This is due to the heat that is generated during

voltage application, particularly during VE testing. This results

in a disconnected corona suppressor which is accompanied by

surface discharges. The results of excessive discharges will pro-

duce white powder (corona dusting). Often, this type of damage

is only cosmetic and can be repaired.

To expedite this, the corona suppressor on a good bar was dis-

connected adjacent to the slot section by filing it away. The bar

was then put on test and the patterns analyzed. A typical phase-

resolved PD pattern is shown in Fig. 12(a). The pattern is readily

distinguished from that of normal, internal PD [Fig. 10(a)].

D. Insulation–Conductor Delaminations

Delaminations at the conductor-insulator interface com-

monly occur in machines that experience many thermal cycles.

This defect is particularly prevalent in machines that are used

for load peaking. Also, many cogeneration facilities will cycle

on a weekly basis and often suffer conductor–insulator delam-

inations as a result.

To simulate this defect, release agent was used on the bare

bar prior to application of the groundwall insulation. The strand

insulation is not corona resistant and will degrade in the pres-

ence of PD. However, to expedite this process, the strand in-

sulation was removed in several areas by light sanding prior

to applying the groundwall insulation. Representative phase-re-

solved PD plots are shown in Fig. 12(b).

After application of a single hipot, the count rate for this bar

more than doubled. Interestingly, however, Q only increased

by about 25%. Neither, however, conditioned significantly after-

ward. This shows the aggravating effect that hipot tests can have

on this defect. The hipot test acted to initiate many new sites of

activity (as manifested in the count rate).

E. Insulator–Insulator (Bound) Delaminations

Voids are ubiquitous in high-voltage insulation. Usually,

however, these voids are relatively small. Most of these small

voids will undergo electrical conditioning whereby the inner

surfaces of the voids are covered with semiconductive degrada-

tion products. Consequently, the electrically active voids may

eventually “turn off.” This is part of the conditioning process of

normal high-voltage insulation for rotating machinery.

Void “packets” were prepared in freestanding pre-cured insu-

lation. These packets were then incorporated into the insulation

during the winding process and located at know positions along

the bar. The packets were not located at the edges of the bar as this

is difficult to do and often not the location for large voids to occur.

Phase-resolved PD patterns were collected and a representa-

tive plot is shown in Fig. 12(c). Not surprisingly, the pattern is

strikingly similar to those from a normal (i.e., good) insulation,

making discrimination difficult without the aid of sophisticated

analysis procedures.

F. “White” Bars (Puffed Insulation)

White bars occur when a stator bar is not completely cov-

ered by resin during the VPI process. This results in a bar that is

“puffy.” This scenario is particularly useful for bar quality con-

trol and/or bar quality analysis.

Phase-resolved PD patterns were collected and a representa-

tive plot is shown in Fig. 13(a). Not surprisingly, the pattern is

strikingly similar to those from a normal (i.e., good) insulation.

G. Suspended Metallic Particles in the Groundwall Insulation

To simulate this effect, three defects were introduced into the

same bar, located at three sites: the first defect is a 0.75-in-long

7-mil-diameter magnetic wire buried within the third mica tape

layer along a corner, with the wire oriented axially; the second

defect is identical to the first except it is located in the fifth mica

tape layer; the third defect is a 5-mg piece of steel wool in the

seventh mica tape layer along a corner. Infrared and dissipation

factor tests were unable to detect the particles. These tests, in

addition to a hipot test, indicated that the bar exhibited normal

test results.

Phase-resolved PD patterns were collected and a representa-

tive plot is shown in Fig. 13(b). Surprisingly, the pattern is very

similar to those from a normal (i.e., good) insulation. A single

hipot did not noticeably aggravate any discharge quantities or

symmetries for this defect.

H. No Internal Grading

Internal grading was introduced in 1992 for generator stator

bars by some manufacturer. Consequently, a large fleet of gen-

erators in operation does not contain internal grading. While in-

ternal grading has been shown to improve voltage endurance
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Fig. 12. Representative phase-resolved PD measurements for a bar with (a)
faulty corona suppressor, (b) insulation/copper delamination, and (c) bound
voids.

performance, its validity for lower voltage long-term applica-

tions is questionable.

Phase-resolved PD patterns were collected and a represen-

tative plot is shown in Fig. 13(c). The immediate observation

is that the PD activity is significantly larger than that from a

bar with internal grading. In contrast to bars made with internal

grading, this activity did not noticeably condition over a period

of 16-h energization.

After application of a single hipot, the count rate for this bar

increased by more than 50%. Interestingly, however, it was ob-

served that Q only increased by about 15%. Neither, how-

ever, conditioned significantly afterward. This shows the aggra-

Fig. 13. Representative phase-resolved PD measurements for (a) a white bar,
(b) a bar with metal wires in the insulation, and (c) a bar without internal grading.

vating effect that hipot tests can have on this defect. The hipot

test acted to initiate many new sites of activity (vis a vis the

count rate), without significantly worsening those that already

existed.

VII. NUMERICAL RESULTS

In the training stage, we used nine generator bars with var-

ious insulation defects and two generator bars with good in-

sulation quality. The bar names and the defect types are tab-

ulated in Table I. From each bar, five PD measurements were

collected. A sample PD measurement from each class is shown

in Figs. 10, 12, and 13. The number of test samples used for each

class is tabulated in Table II. Note that bars TT539 and TT540
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TABLE II
NUMBER OF TRAINING SAMPLES FOR EACH CLASS

are combined to form the class of “Good Bars” and TT547B

and TT548B are combined to form the class of “No Internal

Grading.” Therefore, there are nine classes, of which eight are

defect classes and one is the good insulation class. Totally, 52

measurements were used in this experiment. Note that the data

base can be updated as more samples from the existing classes

or new classes become available.

Note that, in our earlier work, we used the same set of mea-

surements to assess various commercially used parameters [6].

These include classical parameters such as the peak discharge

magnitude (at a specified count rate) or the overall count rate

and a multitude of integrated quantities such as the Normalized

Quantity Number (NQN), the Quadratic Rate (QR), the Inte-

grated Charge (IC), the Average Discharge Current (ADC), or

the Discharge Power (DP). Statistical parameters included var-

ious moments such as the first (average), second (standard de-

viation), third (skewness), and fourth (kurtosis). More sophisti-

cated approaches involved fractal features.

The representative PD measurement and threshold values

were determined for each class with respect to different his-

togram types and histogram similarity measures. The values

of the thresholds for each class with respect to the correlation

measure and 2-D histogram are tabulated in Table III. Note that

large threshold values indicate that the training samples are

statistically homogenous.

We checked the feasibility of the proposed quality assess-

ment method for various histogram similarity measures and his-

togram types. These include chi-square, correlation, and Kol-

mogorov–Smirnov tests using 2-D, 1-D, and X- and Y-marginal

histograms. The performance of the testing and postprocessing

stages is evaluated separately.

For the testing stage, we computed the “defect detection,”

“false positive rate,” and “class identification” power of each

histogram similarity measure using 2-D, 1-D, and X- and

Y-marginal histograms. The probability of defect detection

is defined as the likelihood of classifying a test measurement

coming from a defective insulation as defective. Probability of

false positive is defined as the likelihood of classifying a test

measurement as defective while it is coming from a nondefec-

tive insulation, and the identification power is defined as the

likelihood of identifying the class type of test measurements

correctly. In all of these experiments the tolerance level is

TABLE III
CORRELATION THRESHOLDS FOR EACH CLASS

chosen to be 2 unit standard deviation. The performance of

each similarity measure and histogram type is tabulated in

Tables IV–VII.

Note that it is desirable to have high probability of detection

and class identification power and low probability of false

positive. Among the type of histograms used, the performance

of the 1-D phase-resolved histogram appears to be the best

in all categories. The performance of 2-D histogram is also

encouraging and has potential for further improvement. However

both X- and Y-marginal histograms perform poorly as compared

to the first two histogram types, particularly in terms of the

probability of false positive and the class identification power.

With respect to the histogram similarity measures, Kol-

mogorov–Smirnov test2 appears to perform the best in the case

of 1-D phase-resolved histogram. Out of 42 measurements,

collected from the defective bars, all of them correctly tagged

as defective yielding 100% defect detection capability. Out

of 10 measurements collected from non defective bars all

are tagged as “good bars” yielding 0% probability of false

positive. Out of 52 measurements collected from 9 classes all

except 1 of them are correctly classified yielding 98% class

identification power. The detailed experimental results for each

histogram similarity measure and histogram type are sum-

marized in the confusion matrices shown in Tables VIII–XV.

The confusion matrices of the X- and Y-marginal histograms

are not included since the results are not very significant to

present.

Note that in a confusion matrix, the number in the th row

and th column of this table shows how many samples from

class are classified as class . For example, in Table VIII,

the row titled TT542B shows that one sample is classified as

class Grade and four samples are classified as class TT542B.

In the case of perfect classification, the confusion matrix is

diagonal.

Preliminary experimental results show that the performance

of the correlation and Kolmogorov–Smirnov 1 and 2 tests

using 1-D phase histograms is excellent. In both 1-D and 2-D

histograms, the resolving power of the chi-square test appears

to be not as powerful as the other similarity measures. This is

particularly evident considering the difference between the bars

with metal wire and the nondefective bars. However, the results

are encouraging and have potential for further improvement.
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TABLE IV
PERFORMANCE OF THE TESTING STAGE USING 1-D PHASE HISTOGRAMS

TABLE V
PERFORMANCE OF THE TESTING STAGE USING 2-D HISTOGRAM

TABLE VI
PERFORMANCE OF THE TESTING STAGE USING X-MARGINAL HISTOGRAM

TABLE VII
PERFORMANCE OF THE TESTING STAGE USING Y-MARGINAL HISTOGRAM

TABLE VIII
CONFUSION MATRIX FOR THE CHI-SQUARE TEST USING 1-D PHASE HISTOGRAMS

We performed extensive experiments to show the feasibility

of the postprocessing stage in terms of improving the accuracy

of the final decision and providing additional information on

the accuracy of the final and intermediate decisions. The results

confirm that the proposed postprocessing method is effective in

improving the overall accuracy of the classification method.
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TABLE IX
CONFUSION MATRIX FOR THE CORRELATION TEST USING 1-D PHASE HISTOGRAMS

TABLE X
CONFUSION MATRIX FOR THE KOLMOGOROV–SMIRNOV1 TEST USING 1-D PHASE HISTOGRAMS

TABLE XI
CONFUSION MATRIX FOR THE KOLMOGOROV–SMIRNOV2 TEST USING 1-D PHASE HISTOGRAMS

Based on the training data, we chose the parameters of the

Beta distribution function as follows:

and

so that Probability

Here, we only discuss the numerical results of the Kol-

mogorov–Smirnov test 2 using 1-D phase histograms to

illustrate the postprocessing procedure. Table XVI tabulates

the distance and the class likelihood probability of each sample

coming from the class “suppressor” to the nine classes in the

database. The row entitled “Distance1” shows the distance

of the ith measurement to the nine classes in terms of unit

standard deviations and the row entitled “Prob1” shows the

probability of the th measurement belonging to one of the nine

classes in the data base. It is desirable that the distance of the

measurements is closest to the class “suppressor” and the class
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TABLE XII
CONFUSION MATRIX FOR THE CHI-SQUARE TEST USING 2-D HISTOGRAM

TABLE XIII
CONFUSION MATRIX FOR THE CORRELATION TEST USING 2-D HISTOGRAM

TABLE XIV
CONFUSION MATRIX FOR THE KOLMOGOROV-SMIRNOV1 TEST USING 2-D HISTOGRAM.

likelihood probabilities of the measurements are the highest for

the class “suppressor.” In this example, four measurements are

within 0.59 and one measurement is within 1.46 unit standard

deviation of the class “suppressor.” The class likelihood prob-

ability of the measurements is at least 95% for the close ones

and 86% for the other ones. Therefore, all five measurements

are classified as class “suppressor” with an average likelihood

of 94%. However, if we look at the third measurement, we see

that it is within 2.11 unit standard deviations of the class “ther-

maVE” with a likelihood probability of 0.79. Similarly, other

measurements are also within nonnegligible neighborhood of

the class “thermaVE.” This yields an average 72% likelihood

probability that the test bar may be of class “thermaVE.”

Table XVII summarizes the likelihood probabilities of the

bars for each class. Although all the test bars have the highest

class likelihood probability for the true class, some bars exhibit

significant similarity to more than one class. For example in the

case of bar with metal wire, it was found that the test bar belongs
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TABLE XV
CONFUSION MATRIX FOR THE KOLMOGOROV–SMIRNOV2 TEST USING 2-D HISTOGRAM

TABLE XVI
DISTANCES PAND CLASS LIKELIHOOD OF THE MEASUREMENTS FROM CLASS “SUPPRESSOR” FOR THE

KOLMOGOROV–SMIRNOV2 TEST USING 1-D PHASE HISTOGRAMS

TABLE XVII
CLASS LIKELIHOOD OF EACH BAR FOR THE KOLMOGOROV–SMIRNOV2 TEST USING 1-D PHASE HISTOGRAMS

to the class of “metal wires” with 93% probability whileit may

also belong to the class of nondefective bars with 88% proba-

bility.

The class likelihood probabilities may help the user to decide

if additional measurements and testing are needed before the

final decision on the insulation equipment is called.

VIII. CONCLUSION

In this paper, we presented a new statistical analysis method

of PD measurements. This analysis may be used for the quality

assessment of electrical insulation systems, particularly, high-

voltage motors and generators. The method is based on a su-

pervised classification approach which utilizes histogram sim-
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ilarity analysis. The motivation for choosing histogram simi-

larity measures is twofold. First, the phase-resolved PD mea-

surements themselves are, in fact, 2-D histograms. Therefore, a

histogram-matching-based approach suits the very nature of the

data. Second, histogram similarity measures combine the typ-

ical statistical parameters in a statistically powerful and rigorous

manner, such as mean, variance, and higher order moments, em-

ployed in the analysis of PD measurements.

In our approach, we treat the phase-resolved PD data as

four different kinds of histograms: 1) 2-D histogram; 2) 1-D

histogram; 3) X-marginal histogram; and 4) Y-marginal his-

togram. Among the histogram similarity measures, we studied:

1) sample correlation; 2) Kolmogorov–Smirnov distance 1; 3)

Kolmogorov–Smirnov distance 2; and 4) chi-square distance.

Further, we developed a postprocessing method which pro-

vides likelihood of any test equipment belonging to one of the

classes in the data base. As a result, the accuracy of the final clas-

sification results are improved and quantified. Such an approach

facilitates soft decision making and guides users for further ac-

tion.

The discrimination capability of the histogram types and dis-

tance measures were appraised using over 50 laboratory pat-

terns from nine different classes. Our results suggest that Kol-

mogorov–Smirnov 2 test using 1-D phase histograms performed

the best, yielding 100% defect detection, 0% false positives, and

98% class identification power. In the case of 2-D histograms,

all similarity measures performed comparably and are encour-

aging, but not as good as 1-D phase histograms. In the case of X-

and Y-marginal histograms, all similarity measures performed

poorly as compared to 2-D and 1-D histograms. Results based

on 2-D and marginal histograms can be improved by an appro-

priate combination of these techniques.

Our preliminary experimental results demonstrate that the

method shows strong potential for detecting and identifying in-

sulation defects. The approach could be applied as a statistical

process control tool during manufacturing of individual bars,

windings, or complete machines. Finally, the approach can be

utilized for online or offline testing of aged machinery to quan-

tify the degradation in electrical insulation.
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